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Abstract

Mean Field Games provide a powerful framework to analyze the dynamics of

a large number of controlled agents in interaction. Here we consider such sys-

tems when the interactions between agents result in a negative coordination

and analyze the behavior of the associated system of coupled PDEs using the

now well established correspondence with the non linear Schrödinger equation.

We focus on the long optimization time limit and on con�gurations such that

the game we consider goes through di�erent regimes in which the relative im-

portance of disorder, interactions between agents and external potential varies,

which makes possible to get insights on the role of the forward-backward struc-

ture of the Mean Field Game equations in relation with the way these various

regimes are connected.
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1 Introduction

Mean Field Games are a powerful framework introduced a little more than ten years
ago by Lasry and Lions [1�3] to deal with complex problems of game theory when the
number of �players� becomes large. Their applications are numerous, ranging from �nance
[4�6] to sociology [7�9] and engineering science [10�12], and more generally when tackling
optimization issues involving many coupled subsystems.

Important mathematical e�orts and progresses in this �eld have been made recently, for
one part on the coherence of the theory [13,14], with important results on the existence and
uniqueness of a solution to these problems [15�17], and in the study of the convergence
of a many player game to its mean �eld counterpart [18�20], and on the other part on
the development of e�ective numerical schemes [21�24] granting the opportunity for more
application oriented studies, and, especially in the more recent years, in the extension of
the theory to more complex framework [5, 17,25,26].

However, constitutive equations of Mean Field Games are di�cult to analyze. Few
exact solutions exist, mainly in simpli�ed settings [27�30], and the numerical schemes,
while quantitatively accurate, do not provide a complete elucidation of the underlying
mechanisms. This lack of general understanding on the behaviour of Mean Field Games is
most presumably slowing down their appropriation by researchers concerned primarily by
applications to sociology, economy, or engineering sciences.

It appears therefore useful to study a small set of paradigmatic Mean Field Game
problems, which, in the spirit of the Ising problem of Statistical Mechanics, are simple
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enough to be fully analyzed, and �understood� � in the sense a physicist would give to
that word � but complex and rich enough to shed some light on the behaviour of a much
larger class of Mean Field Games. Quadratic Mean Field Games, for which the connection
to non-linear Schrödinger (NLS) equation can be used to make a link with a �eld very
familiar to physicists, are a good candidate for that role, and have been previously studied
by some of us in the regime of strong positive coordination [31,32].

In this paper, we extend the previous studies cited above to the strong negative coor-
dination regime, when the behavior of the agents results in a repulsive interaction between
them, and that this repulsion essentially dominates the dynamics (see below for a more
speci�c statement). This will allow us in particular to address one of the conceptual di�-
culties posed by Mean Field Games, namely the one associated with the forward-backward
structure of the equations, which poses new challenges with respect to time-forward sys-
tems of equations usually met in physics. In particular, as the system con�guration at any
given time depends on both initial and �nal conditions, conserved quantities, whenever
they exist, cannot be determined a-priori but only as a by-product of the resolution of the
equations for the dynamics.

To stress the speci�c role of the forward-backward structure, we shall moreover focus
on the long optimization time limit, and choose a setting (typically a very narrow initial
distribution of agents) such that the system we consider goes through di�erent regimes
in which the relative importance of disorder, interactions between agents and external
potential varies, evidencing the role of the forward-backward structure in the way they are
linked together.

The structure of this paper is the following: In section 2, we review brie�y the Mean
Field Game formalism and its connection with the non-linear Schrödinger equation and
introduce a related �hydrodynamic� representation; we also address the question of con-
served quantities. In section 3 we consider the ergodic state which, whenever it exists,
is a time independent solution playing a fundamental role in the long optimization time
limit we consider here. Indeed, this ergodic state not only describes a signi�cant part of
the agents dynamics, but its existence also provides a major simpli�cation, even for the
transient dynamics, as it essentially decouples the �nal and initial boundary conditions
of the problem. In section 4 we study in details two important limiting regimes. Finally,
in section 5, we consider the full dynamics of the problem, and address the important
question of matching the di�erent regimes. Section 6 contains a summary of our results
and concluding remarks.

2 Quadratic Mean Field Games with negative coordination

2.1 Derivation of Mean Field Game equations

We consider a large set of players, or agents, which are described by a state variable
Xi ∈ Rd, i ∈ {1, · · · , N} representing what is supposed to be their relevant characteristics
in the problem at hand (physical position, amount of a given resource, social status, etc..).
Those N players are assumed to be identical in all their characteristics, except possibly in
the initial conditions and the stochastic realizations of the dynamics.

In the simplest case, these state variables follow a Langevin dynamics

dXi
t = aitdt+ σdWi

t , (1)

where the drift velocity ait is the control parameter �xed by the agent according to his own
strategy, σ is a constant and each of the d component of Wi is an independent white noise
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of variance 1. For each agent, the strategy consists in adapting his velocity in order to
minimize a cost functional that re�ects his preferences, averaged over all possible future
trajectories

c[ai](t,xit) = 〈
∫ T

t

(
L(Xi

τ ,a
i
τ )− V [mτ ](Xi

τ )
)
dτ〉noise + 〈cT (Xi

T )〉noise . (2)

In this expression, 〈·〉noise means an average over all realisations of the noise for trajectories
starting at xit at time t, L(x,a) is a �running cost� depending on both state and control, and
cT (x) is the ��nal cost� depending on the state of the agent at the end of the optimization
period T . The interaction with the others players at time t is given through the dependence
on the empirical density of agents mt in the state space,

mt(x) =
1

N

∑
i

δ(x−Xi(t)) . (3)

which embodies the fact that the interaction is �exchangeable�, namely that it depends
on the positions of the players in the state space and not on their identity. The game
is �quadratic� in the sense that the running cost depends quadratically on the control
parameter, namely L(x,a) = µa2/2. Hereafter we consider potentials which are linear
functionals of the density V [m](x) = gm(t,x) + U0(x), where g represents the strength
of the interactions and U0(x) is a (reversed) potential de�ning a landscape in the state
space accounting for, for instance, the proximity to various facilities or resources, trending
markets, etc· · · We stress that with our sign convention, V [m](x) has to be understood as
a gain (not a cost), and thus negative values for g imply repulsive interactions, and the
reversed potential U0(x) needs to have large and negative values at large distances to be
�con�ning�.

In the limit of a very large number of players, one can assume that the density m(t,x)
becomes a deterministic object which cannot be modi�ed by the behavior of a single
player. Therefore the optimization problem (2) decouples for each player and can be solved
introducing the value function u(x, t) = min

a
c[a](t,x) Using linear programming [33], this

function can be shown to evolve according to Hamilton-Jacobi-Bellman equation [2]. In
turn, consistency imposes that the (yet unknown) time dependent density mt is solution
of the Fokker-Planck equation associated with the (single particle) Langevin equation (1)
with the velocities that realize u(x, t). As a consequence, the study of Mean Field Games
reduces to that of a system of two coupled PDEs [1,2, 22,32]

∂tu(t,x) =
1

2µ
[∇u(t,x)]2 − σ2

2
∆u(t, x) + gm(t,x) + U0(x) [HJB]

∂tm(t,x) =
1

µ
∇ [m(t,x)∇u(t,x)] +

σ2

2
∆m(t,x) [FP]

. (4)

This system of equation has a rather atypical �Forward-Backward� structure, which shows
up in particular through the signs in front of the Laplacian terms, which are di�erent in
both equations. The boundary conditions also re�ect this structure, as the �nal value
of the value function is �xed by the terminal cost, u(T,x) = cT (x), while the density of
players evolves from a �xed initial distribution. Understanding the consequences of such
a structure is one of the main challenges here and this paper gives a contribution in that
direction through a discussion of various limiting regimes and approximation schemes.

In this respect, a key-point is the concept of ergodic state introduced in this setting
by Cardaliaguet et al. [34]. In the long optimization time limit T → ∞ and under some
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additional assumptions that are veri�ed here, it is possible to show that for most of the
duration of the game the system will stay close to a stationary state∣∣∣∣∣m(x, t) ' mer(x)

u(x, t) ' uer(x)− λt
(for 0� t� T ) , (5)

where mer(x) and uer(x) are solutions of the time independent equations
−λ =

1

2µ
[∇uer(x)]2 − σ2

2
∆uer(x) + gmer(x) + U0(x)

0 =
1

µ
∇ [mer(x)∇uer(x)] +

σ2

2
∆mer(x)

, (6)

and λ a constant that can be determined through the normalisation of m.
As we shall see, this notion is instrumental to the way we look at a Mean Field Game

problem. The ergodic state for the quadratic games we consider will be studied in section
3.

2.2 Alternative representations

Even if the forward-backward nature of Eqs. (4) constitutes the main challenge in mean
�eld games studies, the coupling of a Fokker-Planck equation with an Hamilton-Jacobi-
Bellman equation is not something physicists are particularly used to dealing with and
poses its own challenges. In the special case of quadratic mean �eld games, however, this
problem can be cast in a form more familiar to physicists [22,32,35]. We discuss now these
alternative representations.

2.2.1 Schrödinger representation

Proceeding as in [32] we can de�ne a change of variables variables (u(t,x),m(t,x)) 7→
(Φ(t,x),Γ(t,x)) through the relations{

u(t,x) = −µσ2 log Φ(t,x)

m(t,x) = Γ(t,x)Φ(t,x)
, (7)

where the �rst equation is a classical Cole-Hopf transform [36] and the second corresponds
to an "Hermitization" of Eq. (4). In terms of the new variables (Φ,Γ) the Mean Field
Game equations reads 

−µσ2∂tΦ =
µσ4

2
∆Φ + (U0 + gΓφ)Φ

+µσ2∂tΓ =
µσ4

2
∆Γ + (U0 + gΓφ)Γ

. (8)

As for the original form of the Mean Field Games equations this system has a forward-
backward structure brought both by opposite relative signs for the di�erential terms in the
two equations and by mixed initial and �nal boundary conditions Φ(T, x) = exp

[
−cT (x)/µσ2

]
,

Γ(0, x) Φ(0, x) = m0(x). Through these transformations the system (4) can be mapped
onto the non-linear Schrödinger equation

i~∂tΨ = − ~2

2µ
∆Ψ− (U0 + gρ)Ψ , (9)
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under the formal correspondence µσ2 → ~, Φ(x, t)→ Ψ(x, it), Γ(x, t)→ [Ψ(x, it)] and ρ ≡
||Ψ||2 → m ≡ ΦΓ. Equations (8) di�er from non-linear Schrödinger in a few ways. First,
they retain the forward-backward structure inherited from the original Mean Field Game
equations, and the functional space of which their solutions Φ and Γ can be constructed
also di�ers. Actually Φ and Γ are non-periodic, real positive functions, while Ψ would be
a complex valued function. Those di�erences are signi�cant but are not important enough
to undermine the value of this mapping. Non-linear Schrödinger equation has been studied
for decades in the various �elds of non-linear optics [37], Bose-Einstein condensation [38]
or �uid dynamics [39]. Several methods have been developed along the years to deal with
this equation and most can be adapted to mean �eld games [32].

2.2.2 Hydrodynamic representation

Starting from the non-linear Schrödinger representation of Eqs. (4) it is also possible to
exploit the "Hermitized" nature of the previous transformations and perform a Madelung-
like transformation [40] {

Φ(t, x) =
√
m(t, x)eK(t,x)

Γ(t, x) =
√
m(t, x)e−K(t,x)

, (10)

De�ning a velocity v as

v ≡ σ2∇K = σ2 Γ∇Φ− Φ∇Γ

2m
= −∇u

µ
− σ2∇m

2m
, (11)

it is easy from equations (8) to obtain a continuity equation along with its associated Euler
equation 

∂tm+∇.(mv) = 0

∂tv +∇
[
σ4

2
√
m

∆
√
m+

v2

2
+
gm+ U0

µ

]
= 0

, (12)

typical of hydrodynamics. This system closely resembles the original mean �eld game
equations (4) but can prove to be more convenient when performing some approximations
(small noise limit) or applying some speci�c methods of resolution.

2.3 Action, and conserved quantities

The system of equations (8) can be derived from stationarity of an action functional S
de�ned as

S[Γ,Φ] ≡
∫ T

0
dt

∫
R
dx

[
µσ2

2
(Γ∂tΦ− Φ∂tΓ)− µσ4

2
∇Γ.∇Φ +

[
U0 +

g

2
ΓΦ
]

ΓΦ

]
, (13)

so that

Eq. (8) ⇔


δS

δΦ
= 0

δS

δΓ
= 0

. (14)

The existence of an action underlying the dynamics has two consequences. First, and
as we shall see in section 4, this action can serve as the basis of a variational approach.
Second, using Noether theorem, time translation invariance implies that there exists a
related conserved quantity that, by analogy with physical systems, we shall call �energy�.

6



SciPost Physics Submission

Depending on the considered regime of approximation, either the Schrödinger or hy-
drodynamic representation may prove to be more convenient. As such, we provide the
reader with two alternative expressions for the energy of the game

E =

∫
R
dx

[
−µσ

4

2
∇Γ.∇Φ + U0ΓΦ +

g

2
(ΓΦ)2

]
=

∫
R
dx

[
µσ2

2

(
m
( v
σ

)2
− σ2 (∇m)2

4m

)
+ U0m+

g

2
m2

] . (15)

Note however that this quantity cannot be computed from the boundary data without
solving the dynamics. In analogy with physical systems, each of the three terms under the
integral can be given an interpretation: the �rst, σ dependent, is a �kinetic� energy, and
the two others are, respectively, a �potential� energy and an interaction energy.

In the following sections, we are going to consider di�erent regimes of approximation,
which will be characterized by a di�erent balance between the various components of the
energy. The conservation of total energy, and the fact that a transition from one regime to
another implies a transfer between one �kind� of energy to another, will help us providing
a global picture, across the various regimes, of the Mean Field Game dynamics.

3 Static Mean Field Game: the ergodic state

The notion of ergodic state is crucial in Mean Field Games theory, and its importance is
twofold. To start with, it corresponds to a simpler, static, problem, which, when it exists
can provide a good approximation of the behaviour of solutions of Eqs. (4) for all inter-
mediate times. It also allows for the initial and �nal parts of the dynamics (when entering
or leaving the ergodic state) to essentially decouple. Instead of constructing a solution
of Eqs. (4) associated with the pair of boundary conditions m0(x) and cT (x), the initial
dynamics can be approximated by a simpler Mean Field Game, with the same arbitrary
initial condition m0(x) but a generic terminal condition: the ergodic state. Conversely,
the �nal part of the dynamics can be described by another Mean Field game, starting in
the ergodic state and evolving with cT (x) as the �nal condition. In this way, this notion of
ergodic state reduces the dynamical problem with mixed boundary conditions (4) to two
relatively simpler ones. The aim of this section is thus to describe the ergodic solution,
and the possible approximation schemes that can be used to describe it, as well as discuss
its stability.

In the strong interaction regime we focus on, the ergodic state can be approached
equivalently within the NLS representation and the hydrodynamic one. Both approaches
lead to a very simple analysis, we present both below.

3.1 Alternative representations in the ergodic state

In the ergodic state, strategies become stationary, as established by Eqs. (5). In the
Schrödinger representation, the ergodic solutions of the equations (8) depend on time
through an overall scaling factor asΦ(t,x) = exp

(
+ λ
µσ2 t

)
Φer(x)

Γ(t,x) = exp
(
− λ
µσ2 t

)
Γer(x)

, (16)

where Φer(x) = exp
[
−uer(x)/µσ2

]
and Γer(x) = mer(x)/Φer(x). Furthermore, boundary

conditions for the density limx→±∞mer(x) = 0 imply in turn that the functions Γer and

7



SciPost Physics Submission

-1.5 -1 -0.5 0 0.5 1 1.5
X

0

0.2

0.4

0.6

0.8
m

Figure 1: Computational solution of the Gross-Pitaevskii equation (full line) and Thomas-
Fermi approximation (dashed line). In this case g = −2, σ = 0.4, µ = 1 and U0(x) = −x2.

Φer are equal up to a multiplicative constant, so it is appropriate to relate them to Ψer(x),
solution of the following stationary NLS equation

−λΨer(x) =
µσ4

2
∆Ψer(x) + U0(x)Ψer(x) + g|Ψer(x)|2Ψer(x) . (17)

Hence, assuming that the system is in the ergodic state, resolution of the time-dependent
coupled PDEs Eqs. (8) reduces to that of the single, time-independent, ODE Eq. (17),
whith Φ(t,x)Γ(t,x) = Φer(x)Γer(x) = |Ψer(x)|2 = mer(x), showing in particular a direct
relation between the solution Ψer of the stationary NLS equation (17) and the static ergodic
density.

In the hydrodynamic representation, we can derive in a similar way the equations for
the ergodic state. Denoting ver the ergodic velocity, Eqs. (12) readily become

ver = 0

λ+
σ4

2
√
mer

∆
√
mer +

gmer + U0

µ
= 0

. (18)

This form shows the stationarity of the optimal strategy, and the autonomous equation
obeyed by the density in the ergodic state.

3.2 Bulk of the distribution: Thomas-Fermi approximation

One of the many interests of the Schrödinger representation is that we can exploit the large
literature surrounding this equation. In the large interaction regime, the stationary NLS
(or Gross-Pitaevskii) equation can be accurately analysed through the use of Thomas-Fermi
approximation [41].
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First, by looking at the expression for the energy (15), one can note that a natural length
scale appears. Indeed denoting L the length scale characterizing a solution of Eqs. (8), we
�nd that the �kinetic energy� behaves as

Ekin = −
∫
R
dx
µσ4

2
∇Γ.∇Φ ∼ µσ4

L2
, (19)

while the �interaction energy� behaves as

Eint =

∫
R
dx
g

2
(ΦΓ)2 ∼ g

L
. (20)

The ratio between kinetic and interaction energies, which is a good measure of the relative
importance of the di�usion and interaction processes, is then given by∣∣∣∣Ekin

Eint

∣∣∣∣ ∼ ν

L
, (21)

where

ν ≡ µσ4

|g|
(22)

has the dimension of a distance. In the context of the non-linear Schrödinger equation,
ν is known as the "healing length", and represents the typical length-scale on which the
interaction energy balances quantum pressure (or di�usion in the context of MFG), and is
named in this way because it is the minimum distance from a local perturbation at which
the wave function can recover its bulk value (hence "heal").

In the limiting case where the kinetic energy is negligible in the bulk of the distribution,
i.e. when the typical extension of the distribution is large in front of the healing length
ν (something that, we assume, will happen because - strong - repulsive interactions will
cause agents to spread despite the con�ning potential U0), Eq.(17) reduces to a simple
algebraic equation

−λ ≈ U0(x) + g|Ψer(x)|2 , (23)

which is easily solved as

ΨTF(x) =


(
λ+ U0(x)

|g|

)1/2

if λ > −U0(x)

0 otherwise

, (24)

where the constant λ is then computed using the normalisation condition∫ ∞
−∞

mer(x)dx = 1 . (25)

The very same approximation can also be derived by neglecting the o(σ4) term in Eqs. (18),
which yields 

ver = 0

mer =
λ+ U0

|g|
, (26)

an expression clearly equivalent to Eq. (24).
Such an approximation may seem naive at �rst but actually yields rather good results.

Let us take the example of quadratic external potential U0(x) = −µω2
0x

2/2. [Note that, as
mentioned above, U0(x) has to be understood as a gain and, to be �con�ning� has to reach

9



SciPost Physics Submission

its maximum value for a �nite x and go to −∞ for large x, thus the negative sign.] We �nd

λ =
[
3|g|
√
µω2

0/4
√

2
]2/3

, and we can see on Fig. 1 that, in the bulk, the approximation

agrees perfectly with the exact (numerical) result.
The tails of the distribution, for which densities is low, and thus interactions e�ects are

small, cannot be described in this way however and call for a speci�c treatment.

3.3 Tails of the distribution: semi-classical approximation

If Thomas-Fermi approximation yields good results in the bulk of the distribution, i.e. for
λ > −U0(x), it fails to describe regions where the density of agents is small. When this
density is su�ciently small however, that is in the tails of the distribution where λ+U0(x)
is su�ciently negative, the problem simpli�es once again because the non-linear interacting
term is negligible. In this context Eq. (17) reads

−λΨ(x) ≈ µσ4

2
∆Ψ(x) + U0(x)Ψ(x) , (27)

and we can solve it within a semi-classical approximation. More speci�cally, we look for

solutions of Eq. (27) in the form ΨSC(x) = ψ(x) exp

(
S(x)√
µσ4

)
up to the second order in

σ2. As an example, we will once again look at the case of quadratic external potential
U0(x) = −µω2

0x
2/2, and compare the approximation to numerical results. In order to keep

the core of the text concise, details of the computation are provided in Appendix (A). The
semi-classical approximation yields

ΨSC(x) =

[
C

µω2
0x

2 − 2λ

]1/4

exp

{
λ

µω0σ2

[
x

√
µω2

0

2λ

√
x2
µω2

0

2λ
− 1

−argcosh

(
x

√
µω2

0

2λ

)]} , (28)

where C is a constant numerically determined to match with the bulk of the distribution.
This expression gives results in very good agreement with the true solution for x � X,

where the "turning point" X ≡
√

2λ
µω2 corresponds to the position where ΨTF vanishes.

Eq. (28), however, exhibits a singularity at the turning point X. This spurious divergence
can be easily avoided by a uniform approximation [42], leading to

ΨSC =


Cleft

(
8πSleft

3U0

)1/2

cos
(π

3

) [
J1/3(Sleft) + J−1/3(Sleft)

]
if x < X

2Cright

(
8Sright

π |U0|

)1/2

cos
(π

3

)
K1/3(Sright) if x > X

, (29)

where Cleft and Cright are constants to be numerically determined, Jγ stands for the Bessel
function of the �rst kind of order γ and Kγ for the modi�ed Bessel function of the sec-
ond kind. Explicit expressions for the actions Sleft(x) and Sright(x), in the case of the
quadratic gain U0(x) = −µω2

0x
2/2, are provided in Appendix A. Figure (2) illustrates how

this uniform approximation Eq. (29) constitutes a neat improvement over Eq. (24) when
describing the tails of the distribution.

Depending on the external potential U0(x), computing this approximation may become
somewhat involved. If so, the tails of the distribution can still be described by an Airy
function, as discussed in [41], using the consistently simpler, albeit less accurate, approx-
imation method of linearizing the potential around x ≈ X and looking at the asymptotic
behaviour.

10



SciPost Physics Submission

0 0.5 1 1.5
x

0

0.2

0.4

0.6

0.8

m

1.5 2 2.5
10-20

10-10

100

Figure 2: Computational solution of the Gross-Pitaevskii equation (full), Thomas-Fermi
approximation (dashed) and semi-classical uniform approximation (dot). The inset shows
the same curves in Log-Linear plot focusing on the tail of the distribution. Parameters for
this �gure are g = −2, σ = 0.4, µ = 1, U0(x) = −x2 and C = 8.10−4.

3.4 Some properties of the ergodic state

To conclude this section on the ergodic state, we shall describe here some of its properties
that will become relevant when trying to connect it to the beginning (or end) of the game.

3.4.1 Final cost and energy in the ergodic state

Something that may not appear clearly from the de�nition Eqs. (6) of the ergodic state,
but becomes obvious when looking at its hydrodynamic counterpart Eqs. (26), is that for
quadratic Mean Field Games in the strong repulsive interaction regime, the value function
u, becomes essentially �at during the ergodic state

ver = 0 ⇔ uer = Ker + o(σ2) , (30)

where the O(σ2) terms are the �rst order corrections to the Thomas Fermi approximation
and Ker is a constant. The Mean Field Games equations Eqs. (4) being invariant by
translation of u, we will choose this constant Ker to be zero for the rest of this paper.
This characterization, uer = 0, will then be used as an "e�ective" terminal condition when
discussing the beginning of the game.

Another interesting aspect of the ergodic state is that it provides us with a way of
computing the (conserved) energy E = Eer of the system

Eer =

∫
R
dx
[g

2
m2

er +merU0dx
]
< 0 , (31)

which is the correct expression for the "kinetic" energy up to o(σ4) terms. Since interactions
are assumed repulsive and the external potential con�ning (which implies it can be chosen
negative for all x), both terms in the energy have to be negative.
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With those two properties at hands, we can restrict our analysis of the transient states
to games with negative energy and zero terminal conditions, making for a simpler discussion
of the time-dependent problem.

3.4.2 Approaching the ergodic state: stability analysis

To �nish this section, we discuss the stability of the ergodic state. Focusing on the bulk of
the distribution we will use the hydrodynamic representation as it is the better framework
to deal with the small σ limit. Recalling Eqs. (26), the expression of the ergodic state
under this representation 

ver = 0

mer = −λ+ U0

g

, (32)

we then apply small perturbations δm and δv to this stationary state and compute their
evolution. Near the ergodic state Eqs. (12) become∂t(δm) = −∇(merδv)

∂t(δv) = − g
µ
∇δm , (33)

implying

∂tt(δm) =
g

µ
∇(mer∇δm) . (34)

Assuming that δm = δm0e
ωt, Eq. (34) amounts to the eigenvalue problem D̂δm0 =

−(µ/g)ω2δm0 with
D̂ ≡ −∇(mer(x)∇·) . (35)

It is relatively straightforward to show that D̂ is a real symmetric operator, implying
its eigenvalues are real, and furthermore that all these eigenvalues are positive (cf Ap-
pendix. B). Noting (εi)i≥0 the set of (real, positive) eigenvalues of D̂ and (ϕi(x))i≥0 the
corresponding eigenvectors, the �linear modes� in the vicinity of (mer, ver) are

Q±(i) = (δm(i), δv
±
(i)) ≡ (ϕi(x),±

√
−g/µ εi∇ϕi(x)) , (36)

and they follow an exponential time dependenceQ±(i)(t) = e±ωitQ±(i)(0), with ωi =
√
−gεi/µ

(remember g < 0).
This exponential behaviour highlights the fact that, as discussed in [32] in a simpler

(variational) context, the ergodic state should be understood as a unstable / hyperbolic
�xed point, which is approached exponentially fast at small times, and left exponentially
quickly near T .

Returning to the particular case of the quadratic external potential U0 = −µω2
0x

2/2,
and assuming as above that δm ∝ e±ωt, we get

− 2

(
ω

ω0

)2

δm = ∂y
[
(1− y2)∂yδm

]
y = x

√
µω2

0

2λ

, (37)

a Legendre equation de�ned for 0 ≤ y ≤ 1. Dismissing odd ones, the solution with smallest
eigenvalue (for ω = ω0) is the �rst order Legendre polynomial of the second kind, hence

δm ≈ Q1(y)e±ω0t . (38)

The e�ect of this perturbation is thus simply to add tails to the distribution of agents.

12
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4 Time dependent problem: the beginning of the game

As shown by Eqs. (19)-(20)-(21)-(22), di�erent length scales are associated with di�erent
dynamical regimes: very short distances L� ν are dominated by di�usion, and for L� ν
interactions take over. The �large interaction limit� that we consider here essentially means
that the healing length ν is much smaller than any characteristic feature of the �one-
body� gain U0(x), and we will work under that hypothesis. However, as the size of the
distribution of agents further increases, interaction e�ects become weaker (although the
e�ects of di�usion decrease even more rapidly) and, even in the large |g| limit that we
mostly consider here, the ergodic state is still characterized by a balance between the
interaction energy Eint and the potential energy Epot. The fact that this balance has to
be reached is eventually what �xes the typical size of the ergodic state distribution.

A good setting which may allow to explore all dynamical regimes is to consider an
extremely narrow initial distribution (so that its width Σ0 is signi�cantly smaller than ν).
The beginning of the game will therefore mainly consist in an expansion of this initial
distribution, expansion that will go on until the balance between Eint and Epot is reached.
During that expansion we may neglect the e�ects of the external potential. In this section
we will therefore study the set of equations (8) in the particular case of U0(x) = 0

− µσ2∂tΦ(t, x) =
µσ4

2
∂xxΦ(t, x) + gΦ2(t, x)Γ(t, x)

+ µσ2∂tΓ(t, x) =
µσ4

2
∂xxΓ(t, x) + gΦ(t, x)Γ2(t, x)

. (39)

While it can be shown that this system is integrable (in the sense that there exists a
canonical transform from (Φ,Γ) to action-angle variables) [43], we will not attempt here to
explicitly use this property and will approach the various limiting regimes through the use
of variational ansätze. Furthermore, as we know (cf Section 3.4) that the value function
of the ergodic state, which can here be interpreted as a �nal cost for the beginning of the
game, is essentially constant, we shall work below under the assumption that the terminal
cost is essentially �at.

4.1 Large ν regime : Gaussian Ansatz

When the extension of the distribution of agents is small in front of ν, the e�ects of
di�usion become dominant, and Eqs. (39) become simple heat equations, for which the
Green's function has a Gaussian shape. It is therefore natural to tackle this regime using
Gaussian variational approach [44], as already applied to Mean Field Games in [32].

4.1.1 Preliminary de�nitions

Variational approximation amounts to minimizing the action on a small subclass of func-
tions (here taken so that the distribution of agents is Gaussian), e�ectively reducing a
problem with an in�nite number of degrees of freedom to one with a �nite, easily manage-
able, number. As in [32] we consider the following Ansatz

Φ(x, t) = exp

[
(−Λt/4 + Pt · x)

µσ2

]
1

(2πΣt)1/4
exp

[
−(x−Xt)

2

(2Σt)2
(1− Λt

µσ2
)

]
Γ(x, t) = exp

[
(+Λt/4− Pt · x)

µσ2

]
1

(2πΣt)1/4
exp

[
−(x−Xt)

2

(2Σt)2
(1 +

Λt
µσ2

)

] , (40)
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which indeed yields a Gaussian distribution centered in Xt with standard deviation Σt

m(t, x) = Γ(t, x)Φ(t, x) =
1√

2πΣ2
t

exp

[
−(x−Xt)

2

2(Σt)2

]
, (41)

and where Pt and Λt respectively are the momentum and the position-momentum correlator
of the system. Inserting this variational ansatz in the action (13) we get S̃ =

∫ T
0 L̃(t)dt

where the Lagrangian L̃ = L̃τ + Ẽkin + Ẽint + Ẽpot only depends on Xt, Pt, Σt, Λt and
their time derivatives. This yields

L̃τ = ṖtXt −
Λt
2Σt

Σ̇t Ẽkin =
Pt
2µ

+
Λ2
t − µ2σ4

8µΣ2
t

Ẽint =
g

4
√
πΣt

Ẽpot =

∫
R
U0(x)m(t, x)dx

. (42)

As long as the density of players m(t, x) remains narrow enough that U0(x) can be
linearized on the distance Σt, we see that Ẽpot ≈ U0(Xt) and that the variable (Xt, Pt)
and (Σt,Λt) decouple. As discussed in [32] (Xt, Pt) then follows the dynamics of a point
particle of mass µ subject to the external potential U0(x). The discussion below, in which
we assume U0(x) = 0, could also therefore be generalized straightforwardly to this situation
(by just adding the motion of the center of mass).

4.1.2 Evolution of the reduced system (Xt,Σt;Pt,Λt) for U0(x) = 0

Minimizing the action with respect to each parameter yields the evolution equations
Ẋt =

Pt
µ

Ṗt = 0

Σ̇t =
Λt

2µΣt
Λ̇t =

Λ2
t − µ2σ4

2µΣ2
t

+
g

2
√
πΣt

. (43)

Under the assumption that U0(x) = 0, Pt is a constant and is essentially a measure of the
asymmetry of Φ(t, x) and Γ(t, x) as well as the drift of the center of mass of the density.
If Φ(t, x) and Γ(t, x) are symmetric with respect to x = x0, Pt = 0 and the center of
mass does not move. For the sake of simplicity, let us focus on this con�guration and let
Xt = x0 = 0. The equations for (Σt; Λt) have a �rst integral corresponding to conservation
of total energy of the system Ẽtot = Ẽkin + Ẽint + Ẽpot. Its expression reduces here to

Ẽtot =
µΣ̇2

2
− µσ4

8Σ2
t

+
g

4
√
πΣt

. (44)

4.1.3 Zero-energy solution

In the limit where the external potential has very slow variations (e.g: U0(x) = f(εx)
with ε � 1 and f a smooth function such that limx→±∞ f(x) → −∞ ), the potential
energy Ẽpot can be neglected for all relevant values of x but still ensures the existence of
an ergodic state, characterized by a low density mer(x) ≈ ε, large spreading Σer ≈ ε−1 and
small energy Ẽtot ≈ ε. In the limit ε → 0, convergence to the (asymptotic) ergodic state
occurs in the limit of an in�nitely long game, T →∞, and is characterized by an inde�nite
spreading with zero total energy, Ẽtot = 0. In that case the evolution equation reads

Σ̇t =
ν2

Σt

√
α0

(√
π + 2

Σt

ν

)
α0 =

|g|
4
√
πµ ν3

, (45)
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which can be integrated as√
√
π +

2Σt

ν

(
Σt

ν
−
√
π

)
= 3
√
α0 t+ C0 , (46)

where C0 is an integration constant �xed by the initial width of the distribution Σ0,

C0 =
√√

π + 2Σ0
ν

(
Σ0
ν −

√
π
)
.

4.1.4 Finite-energy solutions

In practice, we know that the energy of the ergodic state computed in section 3 is neg-
ative, and therefore we are mainly interested in negative energy solutions. In that case,
Eq. (44) with Ẽtot < 0 implies that the width Σt cannot grow beyond the value Σ∗ =

ν
(
α− +

√
α−(α− +

√
π)
)
with α− = 1

8
√
π
|g|

ν|Ẽtot|
. Furthermore, Eq. (44) can be integrated

as

Fα−

(
Σt

ν

)
=

√
2|Ẽtot|
µν2

t+ C− , (47)

where Fα−(ξ) is de�ned for 0 ≤ ξ ≤ Σ∗

ν as

Fα−(ξ) =

∫ ξ z√√
πα− + 2α−z − z2

dz

= α− arcsin

[
ξ − α−√

α−(α− +
√
π)

]
−
√√

πα− + 2α− ξ − ξ2

, (48)

and C− = Fα−(Σ0
ν ) is an integration constant.

Note that Eq. (47) implies that these solutions exist for �nite time intervals since the
function Fα−(ξ) has a �nite maximal value at ξ = Σ∗

ν . For �xed initial conditions, the

maximal allowed time for the game scales as |Ẽtot|−3/2 and the solutions converge to the
zero energy ones in the limit Ẽtot → 0−.

It can be worth noting that in the limit t→ 0, the zero energy solution, Eq. (45), the
negative energy ones Eq. (47) as well as the positive energy solutions given for completeness
in appendix C, Eq. (77), yield a similar behaviour for Σt. This concludes our discussion
of the large ν regime. Next we will address the opposite limit when the healing length is
small.

4.2 Small ν regime: Parabolic ansatz

As we have shown in a previous paper [35], in the weak noise, in�nite optimization time,
limit of the potential-free negative coordination Mean Field Game, the density of players
quickly deforms to take the shape of an inverted parabola that scales with time. These
parabolic solutions can be interpreted as arising from a low order approximation of a
multipolar expansion in a electrostatic representation of the problem [35]. Furthermore,
simulations indicate that, under the assumption that the variations of the terminal cost are
small compared to ũ, (non scaling) inverted parabolas are still stable solutions of Eqs. (39)
with �nite optimization time.

Imposing the normalisation condition {
∫∞
−∞m(t, x)dx = 1 ∀ t} we thus consider the

ansatz

m(t, x) =


3(z(t)2 − x2)

4z(t)3
if z(t) > x

0 otherwise

, (49)
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Figure 3: Computational solution of the Gross-Pitaevskii equation (blue dot) and varia-
tional Ansatz (red dashed). The inset shows the time evolution of the numerical variance
(full) and Σ as de�ned in Eq. (47). In this case g = −2, σ = 3.5, µ = 1 and T = 20.

and look for a formal solution outside the singularities in the derivative at x = ±z(t). It is
worth mentioning that such an approach already exists in the realm of cold atoms [45,46].
However di�erences arise from the fact that we are dealing with complex time and from
the forward-backward structure of Mean Field Games.

In practice, in this subsection, we shall discuss as an �independent problem� an e�ective
potential-free (ie U0(x) = 0) game in the small ν regime. We furthermore assume that
the �nal condition, at t = T̃ , is that of a �at terminal cost c̃T̃ (x) = 0 and that the initial
density of agents, at t = 0, is essentially a Dirac delta function, i.e. an inverted parabola
of the form (49) with z(t=0) = z0 = 0. Note that, as we will still assume that the healing
length ν is the smallest length size of the problem, this implies that we actually consider
here the limit ν, z0 → 0 with z0 � ν. In the context of the original game, this e�ective
game will correspond to the expansion phase beyond the healing scale ν. How it will be
coupled to the ergodic state or to the small ν regime will be examined subsequently, but
as the conserved energy of the ergodic state is negative, we will consider more speci�cally
this regime.

4.2.1 Preliminary de�nitions

While the Schrödinger representation along with the Gaussian variational ansatz were
well-suited to describe a large ν regime, the hydrodynamic representation is actually more
convenient to deal with the small noise limit. In the context of cold atoms, the equivalent
of the o(σ4) term in Eqs. (12) is considered to be safely negligible as long as the extension
of the condensate is large in front of the healing length ν. Focusing on this weak noise
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regime (Thomas Fermi approximation) here amounts to studying the system
∂tm+∇(mv) = 0

∂tv +∇
[
v2

2
+
g

µ
m+

U0

µ

]
= 0

. (50)

Going through Madelung substitution shows that we can get away with only neglecting
o(σ4) terms while absorbing o(σ2) contributions in the de�nition of v Eq. (11), which is
not as transparent from Eqs. (4).

As we shall see below, we can �nd exact solutions of Eqs. (50) assuming the parabolic
form (49), and, therefore, we shall not need to resort to the action (13) to derive the
corresponding dynamics.

4.2.2 Elementary integration of the hydrodynamic representation

In the U0(x) = 0 limit the expression of the velocity associated to a parabolic distribution
Eq. (49) can easily be extracted from the continuity equation in (50). Integrating over
[−∞;x] and taking into account that m vanishes at in�nity, we get

v(t, x) =
z′(t)

z(t)
x . (51)

To derive the time evolution of z(t), we insert the explicit forms of m(t, x) and v(t, x) in
the second equation of Eqs. (50), yielding

z′′(t) =
3g

2µz(t)2
. (52)

This closely resembles what can be found when dealing with expanding Bose Einstein con-
densates (BEC) [46], one main di�erence lying in the fact that the multiplicative constant
in front of 1/z2 is negative in the context of Mean Field Games but positive in the context
of Bose Einstein condensates.

Eq. (52) can be integrated as

z′(t)2 = −3g

µ

[
1

z(t)
+

ε

z∗

]
. (53)

For commodity the integration constant has been written as 3|g|ε/µz∗ and ε can take the
value −1, 0 or 1. We shall see below the values −1, 0 or 1 of ε correspond to negative, 0 or
positive energies, and that in the ε = −1 (negative energy) case, z∗(> 0) can be interpreted
as z(T̃ ) for the e�ective game. In the BEC context, only the positive ε case is relevant [46],
and the fact that, here, zero or negative ε have to be considered as well, which allows for
new sets of solutions, constitutes another important di�erence.

4.2.3 Characterisation of z(t)

To solve this equation, let us introduce two functions ξ+(y) > 0 and ξ−(y) ∈ [0; 1], associ-
ated with +1 and −1 values of ε, implicitly de�ned through the relations√

ξ+(y)(1 + ξ+(y))− argsinh
√
ξ+(y) = y ∀y > 0 , (54)

and
arcsin

√
ξ−(y)−

√
ξ−(y)(1− ξ−(y)) = y ∀y ∈ [0,

π

2
] . (55)
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We also de�ne a third function ξ0(t) given explicitly as

ξ0(y) =

(
3y

2

)2/3

∀y > 0 , (56)

which corresponds to the ε = 0 solution discussed in [35]. It is worth noting that all three
functions are monotonous increasing functions of time and have the following properties

ξ+(0) = ξ−(0) = ξ0(0) = 0

ξ+(y) > ξ0(y) ∀y

ξ0(y) > ξ−(y) ∀y ∈ ]0,
π

2
]

ξ+(y) ≈ ξ0(y) ≈ ξ−(y) as y → 0

.

We can now write the di�erent solutions of Eq. (53) in terms of the above functions. Even
if we only consider repulsive interactions, because of the square power in Eq. (53), its
solutions can either be increasing or decreasing. There are three families of increasing
solutions

z(t) =


z∗ξ

+(αz
−3/2
∗ t) if ε = 1

ξ0(αt) if ε = 0

z∗ξ
−(αz

−3/2
∗ t) if ε = −1

, (57)

where α =
√
−3g/µ. The reciprocal three families of decreasing solutions are irrelevant

to our discussion as they will not ultimately lead to the ergodic state introduced section
3. We still provide a succinct analysis of those solutions in appendix D for the sake of
completeness.

Let us address how the boundary conditions of our e�ective game constrain the solution
within the family (57). The aforementioned initial condition that the density of agents
starts as a Dirac delta function imposes that z(t = 0) = 0 is already implemented in
Eq. (57). Consider now the the terminal boundary condition, i.e. the fact that at T̃ the
terminal cost is �at. Recalling that v = −∇u/µ+o(σ2), the expression of the velocity (51),
implies that the terminal cost cT̃ (x) = u(T̃ , x) can be constant only if the time derivative
of z(t) is zero. According to Eq. (53), this is only possible if ε = −1 and z(t) = z∗. Hence,
the study of the e�ective game we consider here can be reduced to that of "-" type solutions
and we deduce that z∗ = z(T̃ ). Now, one can check easily from Eq. (55) that ξ−(π/2) = 1
(which is compatible with the fact that ξ−(y) ∈ [0; 1] is an increasing monotonous function
de�ned for y ∈ [0, π/2]). From Eq. (57) we infer

z(T̃ ) = z∗ ⇒ αz
−3/2
∗ (T̃ ) =

π

2
. (58)

This yields a relation between the �nal time of the e�ective game T̃ and the �nal extension
of the distribution of players

T̃ =
πz

3/2
∗

2α
. (59)

The duration of the e�ective game, i.e. the time it takes to go from a narrow, delta-like
initial density of agents, to a �at terminal cost, thus determines the parameter z∗, and
therefore �xes which member of the family Eq. (57) has to be considered.

Inserting Eq. (57) in the ansatz (49) and (51), directly yields explicit expressions for m
ans v, which, as illustrated in Figure (4) provide satisfactory approximations, even though
the noise σ, and thus the healing length ν, is not strictly zero (see captions for details).
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Figure 4: Computational solution of the Gross-Pitaevskii equation (dot) and parabolic
ansatz (dashed). The inset shows the time evolution of z numerically (full) and analytically
(dashed). In this case, we have chosen g = −2, σ = 0.45 and µ = 1, meaning ν ≈ 0.02.
The actual (numerical) game takes place from t = 0, when it starts as an inverted parabola
of extension 0.4, to t = T = 20 when the terminal cost is �at. The e�ective game starts
at time t ≈ −0.07 as a Dirac delta function and its e�ective duration is T̃ ≈ 20.07. The
only di�erence between the numerical results and the parabolic ansatz comes from the fact
that σ is non-zero in the simulation. This �gure also illustrates how the Thomas-Fermi
approximation becomes more and more e�ective as the typical extension of the density
becomes larger in front of ν.
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4.2.4 Energy of the system

The energy plays a crucial role in the dynamics of the spreading of the players and its
conservation will be the key property we will use to match the di�erent regimes of approx-
imation. Because we ultimately want to link this regime to the ergodic state described in
section 3, we will focus on negative energy only. In the potential free regime, the energy
contains two terms, one is the �kinetic energy� (associated with the di�usion term), the
other comes from the interactions. Dropping the o(σ4) term in the de�nition Eq. (15) of
the kinetic energy, we thus have E = Ekin + Eint, with

Ekin =
µ

2

∫ z

−z
mv2dx

Eint =

∫ z

−z

gm2

2
dx

. (60)

As the energy is conserved, it can be evaluated at any time, and particularly at the end
of the e�ective game. If ε = 0, z → ∞ as t → ∞ and it becomes clear that, in this case,
E = 0. A similar reasoning would show that, if ε = +1, E ∼ 1/z2

∗ > 0. When ε = −1,
however, we can evaluate the energy at t = T̃ , when z = z∗ and v = 0, which trivially
implies that, at that point and within the Thomas-Fermi approximation, the kinetic energy
is zero. Inserting Eq. (49) with z(t) = z∗ into the second equation of (60) we get

E−kin(T̃ ) = 0 + o(σ4)

Eint(T̃ ) =
3g

10z∗

, (61)

which, using Eq. (59) implies

E =
3g

10z∗
=

3g

10

(
2αT̃

π

)−2/3

. (62)

For the e�ective game we consider here � narrow initial density, �at terminal cost
v(T̃ ) = 0, small ν regime, individual gain U0(x) = 0 � there is a strong link between the
duration of the game T̃ and the energy E. In some sense T̃ monitors the dynamics of
the spreading of the players completely, and takes the same role as Ẽtot did in the large ν
regime. As such, �nite games with �at terminal cost correspond to non-0 energy and there
is a one-to-one relation between T̃ and E.

This �nishes our analysis of the small ν regime, and more generally of the expansion
regime. The next section will now address ways to relate those transient times to the
ergodic state.

5 The full game

As stressed at the beginning of section 3, the existence of an ergodic state in the long
optimization time limit makes it possible to e�ectively split the full optimization problem
into two decoupled ones, the �rst linking the initial condition to the ergodic state, and
the second the ergodic state to the �nal boundary condition. Here, as the second can be
analyzed following essentially the same lines, we consider only the �rst of these transient
regime. In this section, we thus examine how the regimes of approximation discussed in
the two previous section couple with one another.
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We start in section 5.1 by �rst addressing, once again, an e�ective game, in the vein
of the one we studied in section 4.2, but assuming a �nite value of healing length so that
players are initially distributed on a distance much smaller than ν. This will allow us to
focus on the transition from a large to a small ν regime during the initial stages of the
game. Then, in section 5.2 we will consider the the transition from this initial phase of
expansion towards an ergodic state.

5.1 Matching small and large ν regimes

As mentioned above, we consider here, just as in section 4.2, an e�ective potential-free
game of duration T̃V , with �at terminal cost and an initial distribution of agents which
width Σ0 is much smaller that the healing length ν. We furthermore assume that the
optimization time is large enough so that, at the end of the game, the density of player
has spread on a distance much larger than ν.

Under those assumptions, we can distinguish two main phases the e�ective game will
go through: an initial phase which can be described by the Gaussian ansatz introduced
section 4.1 and, at the end of the game, a terminal phase for which the density of agents
will follow the parabolic ansatz of section 4.2. Between those two phases, the density will
transition from a Gaussian-like distribution to an inverted parabola. The precise shape of
the density during the crossover is complicated to describe, and will not be addressed here,
but we shall see that we can still describe the dynamics of the spreading of the players
across the two regimes.

To proceed, let us introduce a couple of quantities that will characterise the dynamics.
The �rst one is the total energy E of the system, a conserved quantity, which is common
to both regimes. The second is the time ttr at which the system will transition from the
Gaussian regime to the parabolic one.

Seen from within the initial, Gaussian, description, the transition time tGtr can be de�ned
by the condition

Σ(tGtr) = ν , (63)

which through Eq. (47) provides a relation between E and tGtr

F (8E,−2g/
√
π, µσ4; ν)− F (8E,−2g/

√
π, µσ4; Σ0) =

tGtr
2
√
µ
. (64)

In the parabolic description, the duration T̃IV of the e�ective game of section 4.2 can
be inferred from the expression for the energy, Eq. (62)

T̃IV =
π

2α

(
3g

10E

)3/2

. (65)

On this side of the transition, the transition time tpara
tr is thus obtained by the condition

z(tpara
tr − tpara

0 )√
5

= ν , (66)

where z/
√

5 is the standard deviation of the parabolic distribution Eq. (49), and tpara
0 =

T̃V − T̃IV the �ctitious time at which the parabolic evolution appears to have started (from
an initial Dirac delta shape) seen from the large z side of the transition. From Eq. (57) this

implies that
√

5ν/z∗ = ξ−(αz
−3/2
∗ (tpara

tr − tpara
0 )). Inserting this into Eq. (55), we obtain

now a relation between tpara
tr and z∗

α

z
3/2
∗

(tpara
tr − tpara

0 ) = arcsin

√√
5ν

z∗
−

√√√√√5ν

z∗

(
1−
√

5ν

z∗

)
, (67)
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which, given the fact that z∗ and E are linked through Eq. (62) is actually a relation
between tpara

tr and E.
The self-consistent condition tpara

tr = tGtr then implies that Eqs. (64)-(67) �x both the
energy E and the transition time ttr, and thus solve the game we are considering in this
subsection.

Knowing the energy, as illustrated in Figure (5), one can reconstruct the evolution of
the variance of the Gaussian distribution at small times using Eq.(47) and, then, of the
width of the inverted parabola using Eq. (57). Figure (6) gives further indication that both
the Gaussian and parabolic ansatz yield good result to evaluate not only the spreading of
the players but also the shape of the distribution in this con�guration. The two regimes
overlap when Σt is of order ν and either approximation regime gives a fairly accurate
description of the phenomenon. However, near the end of the game both approximations
become less and less accurate due to the vicinity of the terminal condition, which, because
σ is small but positive, is not identically zero, vT (x) = 0 + o(σ2).

5.2 Matching transient and ergodic states

We now turn back to the complete game of Eqs. (4), or more speci�cally the �rst half
of that game linking the initial distribution of agents to the ergodic state. We specialize
moreover to the case of a narrow initial condition, of width Σ0 � ν, for the distribution
of agents. It should also be noted that we will assume that the maximum of the external
gain U0 coincides with the center of mass of the initial distribution, so that we do not
have to take its motion into account. The system will, therefore, initially go through an
expansion phase, during which we will neglect the individual gain / potential U0(x), and
will successively traverse the large ν and the small ν regimes before reaching the ergodic
state. Our goal here is to understand how to connect those.

In this con�guration, the energy E is completely �xed by the ergodic state

E = Eer =
g

2

∫
R
m2

erdx+

∫
R
merU0dx . (68)

The initial �large ν� expansion phase is therefore completely �xed by E and Σ0 through
Eq. (47), which in turn �xes the transition time ttr between the large and the small ν
regimes through Eq. (64).

Once in the large ν regime, the energy E again �xes the duration T̃IV of the e�ective
game of section 4.2. The only parameter that remains to be �xed is the e�ective beginning
time tpara

0 of that e�ective game which is given by Eq. (67) (with, according to Eq. (62),
z∗ = 3g/10E).

Naturally, because one has to take the external gain into account when nearing the
ergodic state, the �nal extension of the e�ective game z∗ does not correspond to the
extension the ergodic state zer and its duration T̃IV does not correspond to typical duration
τer of the transient time leading to the ergodic state. However, those respective quantities
are of same order as long as, in the ergodic state, interaction energy and potential energy
are comparable. No matter the external gain, as mentioned in section 3.2

Eer
int ∼

g

zer
. (69)

Hence, if interaction energy represents a set proportion p of the total energy, Eer
int = pEer,

zer should be of order z∗/p. And, noting that T̃IV ∼ z
3/2
∗ , we can infer that τer should

not be too far-o� from T̃IV /p
3/2. In the particular case of a quadratic external gain

U0(x) = −µω2
0x

2/2, we can easily compute the ratio between Eer
int and E

er
pot

Eer
int

Eer
pot

= 2 ⇒ Eer
int =

2

3
E , (70)
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Figure 5: Time evolution of the variance (a) and the width of the parabola (b). The
numerical solution for the density of players has been numerically �tted with a Gaussian
and an inverted parabola, full curves are obtained through the extraction of the �tting
parameters. Dashed curves are obtained using either the Gaussian or parabolic ansatz with
energy E = −9.95× 10−3 computed through the self-consistent condition. Parameters for
this �gure are g = −2, σ = 1.2, µ = 1, ν = 1, Σ0 = 0.2 and T = 300. One can check that
the Gaussian ansatz produces satisfactory results for small times, up to Σ ≈ 2ν, while the
parabolic ansatz yields good results for large z.
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Figure 6: Density of players at di�erent times, numerical results are plotted (solid line)
along with the Gaussian (dotted line) and the parabolic ansatz (dashed line). At the
beginning of the game, Figs (6a) and (6b), the Gaussian ansatz is the most accurate.
Then in the middle of the game, Figs (6c) and (6d), the parabolic constitutes a better
approximation. At the end of the game, Figs (6e) and (6f), the parabolic ansatz becomes
less and less accurate as we near the terminal condition. Here g = −2, σ = 1.2, µ = 1,
ν = 1, Σ0 = 0.2 and T = 300, while E = −9.95 × 10−3 has been computed through the
self-consistent condition.
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Figure 7: The full blue line represents the numerical density of players, the dashed green
line is obtained through a parabolic ansatz of intrinsic time τ = T̃IV (3/2)3/2 = 2.5 and the
dashed red line corresponds to the ergodic density. In the inset the full line shows the time
evolution of the maximum of the player density m(x = 0, t), while the dashed horizontal
line is set at mer(0), maximum of the density during the ergodic state, and the dotted
vertical at t = τ = 2.5. Here g = −2, σ = 0.4, µ = 1, ω2

0 = 0.2, E = −0.36 and T = 15.

result which is completely independent of the values of g, µ or ω0. The ergodic density is
then an inverted parabola of width zer = 3z∗/2 and τer is of order T̃IV (3/2)3/2. This is
illustrated Fig. (7).

What the e�ective game provides, in this context, is not a quantitatively precise de-
scription but a good qualitative estimation of what actually happens during the beginning
of the game.

6 Conclusion

Mean Field Games constitute a challenge because of their unusual forward-backward struc-
ture. In this paper we presented a simple, heuristic, yet e�cient method to describe nega-
tively coordinated Mean Fields Games in one dimension, leaning heavily on the notion of
ergodic state introduced by Cardaliaguet [34]. The existence of this ergodic state proves
to be of paramount importance as it allows the initial and �nal conditions to essentially
decouple. The problem of �nding a way to link initial and �nal conditions, both arbitrary,
simpli�es as it becomes a problem of �nding a way to link either to a generic ergodic state.
Making �rst use of the mapping to the non-linear Schrödinger equation as introduced
in [32], and then of the hydrodynamic representation from [35], we were able to identify
di�erent regimes of approximation and put forward adequate ansätze to reconstruct the
whole game. Results from those ansätze have been compared to numerical solutions, for
parameters in their domain of application, and are highly satisfactory as well as easily
computed.
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A Derivation of the semi-classical approximation for quadra-

tic external potential

Deriving a semi-classical approximation for the (linear) Schrödinger equation amounts to
solving Eq. (27) up to second order in σ, assuming a solution of the form ΨSC(x) =

ψ(x) exp

(
S(x)√
µσ4

)
.

Order σ0

At zeroth order Eq. (27) reduces to the Hamilton-Jacobi equation

(∂xS)2

2
+ (U0(x) + λ) = 0 , (71)

which, for the kind of one dimensional problem we consider here, can be reduced to a simple
quadrature. Taking once again the example of a quadratic potential U0(x) = −µω2

0x
2/2,

with a turning point located at X =
√

2λ/µω2
0, we get

S(x) =

∫ x

X

√
2 (−U0(s)− λ)ds

=
λ√
µω2

0

[
x

√
µω2

0

2λ

√
x2
µω2

0

2λ
− 1− argcosh

(
x

√
µω2

0

2λ

)]
.

(72)

We note that the −(U0 + λ) term under the square root is positive on the right of the
turning point, and thus for the whole range of validity of Eq. (28), x� X.

In the case of a Langer-type uniform approximation, however, one has to specify how
to analytically continue the square root for negative value of (U0 + λ) on the left side of
the turning point. We therefore introduce the notations

Sright(x) = S(x) , (73)

valid for x > X and

Sleft(x) =

∫ X

x

√
2 (λ+ U0(s))ds

=
λ√
µω2

0

[
π

2
− x
√
µω2

0

2λ

√
1− x2

µω2
0

2λ
− arcsin

(
x

√
µω2

0

2λ

)]
,

(74)

valid for x < X. We will not provide the details of the computations for the uniform
approximation, rather referring the reader to Langer's seminal paper [42]. The result of
this uniform approximation is expressed in terms of Sright and Sleft as Eq (29).

Order σ2

At �rst order in σ2, Eq. (27) becomes

∂xxS(x)ψ(x) + 2∂xS(x)∂xψ(x) = 0 , (75)

which is solved as

ψ(x) =
C1/4√
∂xS(x)

=

[
C

2(−U0(x)− λ)

]1/4

, (76)

where the last equality derives from Eq. (71), and C is a constant that has to be obtained
numerically.
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B Proof that the operator D̂ has only real non-negative eigen-

values

In this appendix, we prove that the operator D̂ introduced in Eq. (35) has only real non-
negative eigenvalues.

Consider any two function with compact support (ϕ,ϕ′). Integrating by part twice
gives that 〈ϕ|D̂|ϕ′〉 =

∫
dxϕ(x)D̂[ϕ′(x)] =

∫
dxD̂[ϕ(x)][ϕ′(x)] = 〈ϕ′|D̂|ϕ〉. D̂ is therefore

a real symmetric operator, and has only real eigenvalues.
Furthermore, introducing εi eigenvalue of D̂, and ϕi(x) the corresponding eigenvector,

we have 〈ϕi|D̂|ϕi〉 = εi
∫
dxϕ2

i (x) =
∫
dx[∇ϕ(x)]2mer(x). Since ϕ(x)2, [∇ϕ(x)]2, and

mer(x) are all positive quantities, this implies that εi, too, has to be positive.

C Positive energy solutions

For completeness, we also provide solution of Eq. (44) in the case of positive energy,

Etot > 0. De�ning α+ = 1
8
√
π
|g|

νEtot
, the time dependent width Σt, solution of Eq. (44) can

be written implicitly as

Gα+

(
Σt

ν

)
=

√
2Etot

µ ν2
t+ C+ , (77)

where Gα+(ξ) is de�ned as

Gα+(ξ) =



√
ξ2 + 2α+ξ +

√
πα+ − α+argsinh

[
ξ + α+√

α+(
√
π − α+)

]
if α+ <

√
π

√
ξ2 + 2α+ξ +

√
πα+ − α+argcosh

[
ξ + α+√

α+(α+ −
√
π)

]
if α+ >

√
π

, (78)

and C+ = Gα+(Σ0
ν ) is the integration constant.

D Decreasing solutions of the e�ective game

As mentioned in section 4.2 we provide here expressions for the decreasing families of
solutions of the e�ective game

z(t) =


z∗ξ

+(αz
−3/2
∗ (t0 − t)) if ε = 1

ξ0(α(t0 − t)) if ε = 0

z∗ξ
−(αz

−3/2
∗ (t0 − t)) if ε = −1

. (79)

Contrary to increasing solutions, decreasing solutions can only be de�ned on [0, t0], and

with t0 < πz
3/2
∗

2α if ε = −1. Using those properties we can also construct a mixed type
solution by patching together an increasing "-" type solution with a decreasing one of
same z∗

z(t) =

z∗ξ
−(
π

2
+ αz

−3/2
∗ (t− Tm)) for 0 ≤ t ≤ Tm

z∗ξ
−(
π

2
− αz−3/2

∗ (t− Tm)) for Tm ≤ t ≤ T
, (80)
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with Tm the the time at which the solutions starts decreasing, with T − πz
3/2
∗

2α ≤ 0 ≤ Tm ≤
πz

3/2
∗

2α .
Increasing "+", decreasing or mixed type solutions can all be observed numerically.

They refer to con�gurations where variations of the terminal cost are important in front of
ũ = µσ2 and can be used to describe the end of the game, just like increasing "-" solutions
can be used as approximations of its beginning. For these reasons they fall outside the
scope of this article, still we mention them, once again, for the sake of completeness.
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