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Abstract. Audio-visual representation learning is an important task
from the perspective of designing machines with the ability to understand
complex events. To this end, we propose a novel multimodal framework
that instantiates multiple instance learning. We show that the learnt
representations are useful for classifying events and localizing their char-
acteristic audio-visual elements. The system is trained using only video-
level event labels without any timing information. An important feature
of our method is its capacity to learn from unsynchronized audio-visual
events. We achieve state-of-the-art results on a large-scale dataset of
weakly-labeled audio event videos. Visualizations of localized visual re-
gions and audio segments substantiate our system’s efficacy, especially
when dealing with noisy situations where modality-specific cues appear
asynchronously.

Keywords: Audio-visual fusion, multimodal deep learning, multiple in-
stance learning, event classification, audio-visual localization

1 Introduction

We are surrounded by events that can be perceived via distinct audio and visual
cues. Be it a ringing phone or a car passing by, we instantly identify the audio-
visual (AV) components that characterize these events. This remarkable ability
helps us understand and interact with our environment. For building machines
with such scene understanding capabilities, it is important to design algorithms
for learning audio-visual representations from real-world data. This work is a
step in that direction, where we aim to learn such representations through weak
supervision.

Specifically, we deal with the problem of event classification and character-
istic audio-visual element localization in videos. Obtaining precisely annotated
data for doing so is an expensive endeavor, made even more challenging by mul-
timodal considerations. The annotation process is not only error prone and time
consuming but also subjective to an extent. Often, event boundaries in audio,
extent of video objects or even their presence is ambiguous. Thus, we opt for a
weakly-supervised learning approach using data with only video-level event la-
bels, that is labels given for whole video documents without timing information.
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Fig. 1. Pictorial representation of the problem: Given a video labeled as “train
horn”, we would like to: (i) identify the event, and (ii) localize both, its visual presence
and the characteristic sound in the audio recording. Note that the train horn may sound
before the train is visible. Our network can deal with such unsynchronized audio-visual
events.

To motivate our tasks and method, consider a video labeled as “train horn”,
depicted in Fig. 1. Assuming that the train is both visible and audible at some
time in the video, in addition to identifying the event, we are interested in
learning representations that help us answer the following questions:

– Where is the visual object or context that distinguishes the event? In this
case it might be the train (object) or tracks, platform (context) etc. We are
thus aiming for their spatio-temporal localization in the image sequence.

– When does the sound event occur? Here it is the train horn. We thus want
to temporally localize the audio event.

The variety of noisy situations that one may encounter in unconstrained
environments or videos adds to the difficulty of this very challenging problem.
Apart from modality-specific noise such as visual clutter, lighting variations
and low audio signal-to-noise ratio, in real-world scenarios the audio and visual
elements characterizing the event are often unsynchronized in time. This is to say
that the train horn may sound before or after the train is visible, as in previous
example. In the extreme, not so rare case, the train may not appear at all. We
are interested in designing a system to tackle the aforementioned questions and
situations.

Prior research has utilized audio and visual modalities for classification and
localization tasks in various contexts. Fusing modality-specific hand-crafted or
deep features has been a popular approach for problems such as multimedia event
detection and video concept classification [1,2,3,4]. On the other hand, audio-
visual correlations have been utilized for localization and representation learning
in general, through feature space transformation techniques such as canonical
correlation analysis (CCA) [5,6] or deep networks [7,8,9,10,11]. However, a uni-
fied multimodal framework for our task, that is learning data representations for
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simultaneously identifying real world events and the audio-visual cues depicting
them has not been extensively studied in the literature.

Such tasks can be naturally interpreted as multiple instance learning (MIL)
problems [12]. MIL is typically applied to cases where labels are available over
bags (sets of instances) instead of individual instances. The task then amounts
to jointly selecting appropriate instances and estimating classifier parameters.
In our case, a video can be seen as a labeled bag, containing a collection of
image regions (also referred to as image proposals) and audio segments (also re-
ferred to as audio proposals). This principle step is at the core of our approach.
Interestingly, Jiang et al. [1] deal with the broader task of video concept detec-
tion using an MIL formulation. Unlike us, they consider video segments to be
bags of short-term audio-visual atoms (S-AVA). S-AVAs are multimodal feature
vectors composed by concatenating hand-crafted appearance, motion and audio
descriptors from image region trajectories and audio. Their method’s reliance on
a computationally expensive image segmentation procedure limits its application
to large-scale datasets.

In this work, we decompose a video into image regions and temporal audio
segments, dealing with each in separate visual and audio sub-modules. The key
idea is to extract features from generated proposals and transform them for: (1)
scoring each according to their relevance for class labels; (2) aggregating these
scores in each modality and fusing them for video-level classification. This allows
us to train both the sub-modules together through weak-supervision and learn
representations for event classification and localization. Moreover, use of both
the modalities makes the system robust against noisy scenarios.

Our main contributions are as follows: (1) we propose a new multimodal
framework that allows jointly classifying videos and localizing both audio and
visual cues responsible for this classification; (2) our approach, by construction,
allows dealing with difficult cases when those cues are not synchronized in time;
(3) we validate the system’s performance, both quantitatively and qualitatively
over a large-scale weakly-labeled dataset for audio events. State-of-the-art per-
formance is achieved on the task of event classification. We also show, through a
careful analysis of each sub-module, the useful complementary information held
in each modality. Qualitative localization results confirm our technique’s abil-
ity to identify event-specific AV cues. Moreover, localization in noisy situations,
especially with regard to unsynchronized AV events, underlines our system’s
effectiveness.

We begin by discussing related work in the areas of computer vision, machine
listening and multimodal representation learning in Section 2. This is followed
by a detailed description of our pipeline for AV representation learning and
classification, dealing with possibly asynchronous events in Section 3. Finally,
we validate the usefulness of the learnt representations with a thorough analysis
in Section 4.
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2 Related work

Researchers in computer vision and machine listening have independently ap-
plied several techniques for weakly supervised classification and localization of
visual objects and audio events, respectively. Recent progress in the area of multi-
modal deep representation learning has also led to several successful fusion-based
approaches. To position our work, we briefly discuss most relevant developments
in each of these domains.

Object Localization and Classification. There is a long history of works
in computer vision applying weakly supervised learning for object localization
and classification. MIL techniques have been extensively used for this purpose
[13,14,15,16,17,18,19]. Typically, each image is represented as a set of regions.
Positive images contain at least one region from the reference class while negative
images contain none. Latent structured output methods, e.g., based on support
vector machines (SVMs)[20] or conditional random fields (CRFs)[21], address
this problem by alternating between object appearance model estimation and
region selection. Some works have focused on better initialization and regular-
ization strategies [22,17,23] for solving this non-convex optimization problem.

Owing to the exceptional success of convolutional neural networks (CNNs)
in computer vision, recently, several approaches have looked to build upon CNN
architectures for embedding MIL strategies. These include the introduction of
operations such as max pooling over regions [18], global average pooling [19] and
their soft versions [24]. Another line of research consists in CNN-based localiza-
tion over class-agnostic region proposals [15,14,25] extracted using a state-of-the-
art proposal generation algorithm such as EdgeBoxes [26], Selective Search [27]
etc. These approaches are supported by the ability to extract fixed size feature
maps from CNNs using region-of-interest [28] or spatial pyramid pooling [29].
Our work is related to such techniques. We build upon ideas from two-stream
architecture [15] for classification and localization.

Audio Event Detection. A significant amount of literature exists on
supervised audio event detection (AED) [30,31,32,33]. However, progress with
weakly labeled data in the audio domain has been relatively recent. An early
work [34] showed the usefulness of MIL techniques to audio using SVM and
neural networks.

The introduction of the weakly-labeled audio event detection task in the
2017 DCASE challenge1, a challenge on Detection and Classification of Acoustic
Scenes and Events, along with the release of Google AudioSet data2 [35], has
led to accelerated progress in the recent past. AudioSet is a large-scale weakly-
labeled dataset of audio events collected from YouTube videos. A subset of this
data was used for the DCASE 2017 task on large-scale AED for smart cars
[36].3 Several submissions to the task utilized sophisticated deep architectures

1 http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/
2 https://research.google.com/audioset/
3 http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/

task-large-scale-sound-event-detection

http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/
https://research.google.com/audioset/
http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-large-scale-sound-event-detection
http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-large-scale-sound-event-detection
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with attention units [37], as well as max and softmax operations [38]. Another
recent study introduced a CNN with global segment-level pooling for dealing
with weak labels [39]. While we share with these works the high-level goal of
weakly-supervised learning, apart from our multimodal design, our audio sub-
module, as discussed in the next section, is significantly different.

Multimodal Deep Learning. Lately, rapid progress in the application of
deep learning methods to representation learning has motivated researchers to
use them for fusing multimodal data.

The use of artificial neural networks for audio-visual fusion can be traced back
to Yuhas et al. [40]. The authors proposed to estimate acoustic spectral shapes
from lip images for audio-visual speech recognition. In a later work, Becker
and Hinton [41] laid down the ideas for self organizing neural networks, where
modules receiving separate but related inputs aim to produce similar outputs.
Owing to the advent of large scale datasets and training capabilities, each of
these formulations has recently emerged in broader contexts for audio-visual
fusion in generic videos. Notably, Owens et al. [7] train a CNN and Recurrent
Neural Network (RNN) based architecture to predict audio using visual input. In
another work, this idea is extended to predict the audio category of static images
[8]. Transfer learning experiments on image classification confirm that ambient
audio assists visual learning [8]. This is reversed by [42] to demonstrate how
audio representation learning could be guided through visual object and scene
understanding using a teacher-student learning framework. Herein the authors
use trained visual networks to minimize the Kullback-Leibler divergence between
the outputs of visual and audio networks. The resulting features are shown to be
useful for audio event detection tasks. Subsequently, these ideas were extended
to learning shared audio-visual-text representations [43].

In some very recent works, useful audio-visual representations are learnt
through the auxiliary task of training a network to predict audio-visual cor-
respondence [9,10]. Indeed, the learnt audio representations in [9] achieve state-
of-the-art results on audio event detection experiments. By design, such systems
do not deal with the case of unsynchronized AV events as discussed earlier. Other
notable approaches include multimodal autoencoder architectures [44] for learn-
ing shared representations even for the case where only a single view of data
is present at training and testing time. Another interesting work extends CCA
to learning two deep encodings, one for each view, such that their correlation is
maximized [11].

Our work is significantly different from earlier studies on several counts:
Contrary to prior work, where unsupervised representations are learnt through
audio–image correlations, we adopt a weakly-supervised learning approach us-
ing event classes. Unlike [10,7,8], we focus on localizing discriminative audio and
visual components for real-world events. We formulate the problem as a multi-
ple instance learning task using class-agnostic proposals from both video frames
and audio. This allows us to simultaneously solve the classification and localiza-
tion problems. Most importantly, by construction, our framework deals with the
difficult case of asynchronous audio-visual events.
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Fig. 2. Proposed approach: Given a video, we consider the depicted pipeline for
going from audio and visual proposals to localization and classification. Here Wcls and
Wloc refer to the fully-connected classification and localization streams respectively;
σ denotes softmax operation over proposals for each class, � refers to element-wise
multiplication; Σ to a summation over proposals and `2 to a normalization of scores.

3 Proposed Approach

An overview of our approach is provided in Fig. 2. We model a video V as a bag
of M selected image regions, R = {r1, r2, . . . , rM}, obtained from sub-sampled
frames and T audio segments, S = {s1, s2, . . . , sT }. Given N such training ex-
amples, V = {V (n)}Nn=1, organized into C classes, our goal is to learn a repre-
sentation to jointly classify and localize image regions and audio segments that
characterize a class. We begin by computing features over proposals in respec-
tive modalities, which are then passed through independent scoring networks.
Finally, audio and visual sub-module scores are combined for classification. Each
of these components is discussed below in detail.

3.1 Generating and Extracting Features from Proposals

Visual Proposals. Generating proposals for object containing regions from
images is at the heart of various visual object detection algorithms [45,46]. As
our goal is to spatially and temporally localize the most discriminative region
pertaining to a class, we choose to apply this technique over sub-sampled video
frame sequences. In particular, we sub-sample the extracted frames of each video
at a rate of 1 frame per second. This is followed by class-agnostic region pro-
posal generation on the sub-sampled images using EdgeBoxes [26]. This proposal
generation method builds upon the insight that the number of contours entirely
inside a box is indicative of the likelihood of an object’s presence. Its use in our
pipeline is motivated by experiments confirming better performance in terms of
speed/accuracy tradeoffs over most competing techniques [47]. EdgeBoxes addi-
tionally generates a confidence score for each bounding box which reflects the
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box’s “objectness”. To reduce the computational load and redundancy, we use
this score to select the top Mimg proposals from each sampled image, I, and use
them for feature extraction. Hence, given a 10 second video, the aforementioned
procedure would leave us with a list of M = 10×Mimg region proposals.

A fixed-length feature vector, xv(rm;V ) ∈ Rdv is obtained from each image
region proposal, rm in V , using a convolutional neural network altered with a
region-of-interest (RoI) pooling layer. RoI layer works by computing fixed size
feature maps (e.g. 6× 6 for caffenet [48]) from regions of an image using max-
pooling [28]. This helps ensure compatibility between convolutional and fully
connected layers of a network when using regions of varying sizes. Moreover, un-
like Region-based CNN (RCNN) [45], shared computation for different regions
of the same image using Fast-RCNN implementation [28] leads to faster process-
ing. In Fig. 2 we refer to this feature extractor as the base visual network. In
practice, feature vectors xv(·) are extracted after RoI pooling layer and passed
through two fully connected layers, which are fine-tuned during training. Typ-
ically, standard CNN architectures pre-trained on ImageNet [49] classification
are used for the purpose of initializing network weights.

Audio Proposals. We first represent the raw audio waveform as a log-Mel
spectrogram. Each proposal is then obtained by sliding a fixed-length window
over the obtained spectrogram along the temporal axis. The dimensions of this
window are chosen to be compatible with the audio feature extractor. For our
system we set the proposal window length to 960ms and stride to 480ms.

We use a VGG-style deep network known as vggish for base audio feature
extraction. Inspired by the success of CNNs in visual object recognition Hershey
et al. [50] introduced this state-of-the-art audio feature extractor as an audio
parallel to networks pre-trained on ImageNet for classification. vggish has been
pre-trained on a preliminary version of YouTube-8M [51] for audio classification
based on video tags. It stacks 4 convolutional and 2 fully connected layers to
generate a 128 dimensional embedding, xa(st;V ) ∈ R128 for each input log-Mel
spectrogram segment st ∈ R96×64 with 64 Mel-bands and 96 temporal frames.
Prior to proposal scoring, the generated embedding is passed through a fully-
connected layer that is learnt from scratch.

3.2 Proposal Scoring Network and Fusion

So far, we have extracted base features for each proposal in both the modalities
and passed them through fully connected layers in their respective modules.
Equipped with this transformed representation of each proposal, we use the two-
stream architecture proposed by Bilen et al. [15] for scoring each of them with
respect to the classes. There is one scoring network of the same architecture
for each modality as depicted in Fig. 2. Thus, for notational convenience, we
generically denote the set of audio or visual proposals for each video by P and
let proposal representations before the scoring network be stacked in a matrix
Z ∈ R|P|×d, where d denotes the dimensionality of the audio/visual proposal
representation.
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The architecture of this module consists of parallel classification and local-
ization streams. The former classifies each region by passing Z through a linear
fully connected layer with weights Wcls, giving a matrix A ∈ R|P|×C . On the
other hand, the localization layer passes the same input through another fully-
connected layer with weights Wloc. This is followed by a softmax operation over
the resulting matrix B ∈ R|P|×C in the localization stream. The softmax oper-
ation on each element of B can be written as:

[σ(B)]pc =
ebpc∑|P|
p=1 e

bpc
, ∀(p, c) ∈ (1, |P|)× (1, C). (1)

This allows the localization layer to choose the most relevant proposals for
each class. Subsequently, the classification stream output is weighted by σ(B)
through element-wise multiplication: D = A�σ(B) . Class scores over the video
are obtained by summing the resulting weighted scores in D over proposals. Note
that the dataset we use, by construction, allows a region or segment to belong to
multiple classes. Hence, we do not opt for softmax on the classification stream,
as done in [15].

After performing the above stated operations for both audio and visual sub-
modules, in the final step, the global video-level scores are `2 normalized and
added. In preliminary experiments we found this to work better than addition
of unnormalized scores. We hypothesize that the system trains better because
`2 normalization ensures that the scores being added are in the same range.

3.3 Classification Loss and Network Training

Given a set of N training videos and labels, {V (n),y(n)}, we solve a multi-label
classification problem. Here y ∈ Y = {−1,+1}C with the class presence denoted
by +1 and absence by −1. To recall, for each video V (n), the network takes as
input a set of image regions R(n) and audio segments S(n). After performing
the described operations on each modality separately, the `2 normalized scores
are added and represented by φ(V (n);w) ∈ RC , with all network weights and
biases denoted by w. All the weights including and following fully-connected
layer processing stage for both the modalities are included in w. Note that both
sub-modules are trained jointly. The network is trained using the multi-label
hinge loss:

L(w) =
1

CN

N∑
n=1

C∑
c=1

max
(

0, 1− y(n)c φc(V
(n);w)

)
. (2)

4 Experimental Validation

Dataset. We use the recently introduced dataset for DCASE challenge on
large-scale weakly supervised sound event detection for smart cars [36]. This
is a subset of Audioset [35] which contains a collection of weakly-annotated
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unconstrained YouTube videos of vehicle and warning sounds spread over 17
classes. It is categorized as follows:

– Warning sounds: Train horn, Air horn, Truck horn, Car alarm, Reversing
beeps, Ambulance (siren), Police car (siren), Fire engine fire truck (siren),
Civil defense siren, Screaming.

– Vehicle sounds: Bicycle, Skateboard, Car, Car passing by, Bus, Truck, Mo-
torcycle, Train.

This multi-label dataset contains 51,172 training samples, 488 validation and
1103 testing samples. Despite our best efforts, due to YouTube and video down-
loader issues, some videos were unavailable, not downloaded or contained no
audio. This left us with 48,715 training, 462 validation and 1103 testing clips. It
is worth mentioning that the training data is highly unbalanced with the num-
ber of samples for the classes ranging from 175 to 24K. To mitigate the negative
effect of this imbalance on training, we introduce some balance by ensuring that
each training batch contains at least one sample from some or all of the under-
represented classes. Briefly, each batch is generated by first randomly sampling
labels from a specific list, followed by fetching examples corresponding to the
number of times each label is sampled. This list is generated by ensuring higher
but limited presence of classes with more examples. We use a publicly available
implementation for this purpose [37]. 4

Baselines. To our knowledge, there is no prior work on deep architectures
that perform the task of weakly supervised classification and localization for
unsynchronized audio-visual events. Our task and method are substantially dif-
ferent from recently proposed networks like L3 [9,10] which are trained using
synchronous AV pairs on a large collection of videos in a self-supervised manner.
However, we designed several strong baselines for comparison and an ablation
study. In particular, we compare against the following networks:

1. AV One-Stream Architecture: Applying MIL in a straight-forward manner,
we could proceed only with a single stream. That is, we can use the classifi-
cation stream followed by a max operation for selecting the highest scoring
regions and segments for obtaining global video-level scores. As done in [15],
we choose to implement this as a multimodal MIL-based baseline. We replace
the max operation by the log-sum-exponential operator, its soft approxima-
tion. This has been shown to yield better results [13]. The scores on both the
streams are `2 normalized before addition for classification. This essentially
amounts to removing from Fig. 2 the localization branches and replacing
the summation over proposals with the soft-maximum operation described
above. To avoid any confusion, please note that we use the term ‘stream’ to
refer to classification and localization parts of the scoring network.

2. Visual-Only and Audio-Only Networks: These networks only utilize one
of the modalities for classification. However, note that there are still two

4 https://github.com/yongxuUSTC/dcase2017_task4_cvssp/blob/master/data_

generator.py

https://github.com/yongxuUSTC/dcase2017_task4_cvssp/blob/master/data_generator.py
https://github.com/yongxuUSTC/dcase2017_task4_cvssp/blob/master/data_generator.py
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streams for classification and localization, respectively. For a fair compari-
son and ablation study we train these networks with `2 normalization. In
addition, for completeness we also implement Bilen et al.’s architecture for
weakly supervised deep detection networks (WSDDN) with an additional
softmax on the classification stream. As the scores are in the range [0,1],
we train this particular network with C binary log-loss terms [15]. When
discussing results we refer to this system as WSDDN-Type.

3. CVSSP Audio-Only [37]: This state-of-the-art method is the DCASE 2017
challenge winner for the audio event classification sub-task. The system is
based on Gated convolutional RNN (CRNN) for better temporal model-
ing and attention-based localization. They use no external data and train-
ing/evaluation is carried out on all the samples. We present results for both
their winning fusion system, which combines prediction of various models
and Gated-RCNN model trained with log-Mel spectrum.

Implementation Details. All systems, including variants, are implemented
in Tensorflow. They were trained for 25K iterations using Adam optimizer [52]
with a learning rate of 10−5 and a batch size of 24. We use the matlab implemen-
tation of EdgeBoxes for generating region proposals, obtaining approximately
100 regions per video with K = 10 and a duration of 10 sec. The implementa-
tion is used with default parameter setting. Base visual features, xv ∈ R9216 are
extracted using caffenet with pre-trained ImageNet weights and RoI pooling
layer modification. With 6 × 6 RoI pooling we get a 9216 (= 256 × 6 × 6) di-
mensional feature vector. For this, the Fast-RCNN Caffe implementation is used
[28]. The fully connected layers, namely fc6 and fc7, each with 4096 neurons,
are fine-tuned, with 50% dropout during training.

For audio, each recording is resampled to 16 kHz before processing. Log-
Mel spectrum over the whole file is computed with a window size of 25ms and
10ms hop length. The resulting spectrum is chunked into segment proposals
using a 960ms window with a 480ms stride. Note that the window and hop-
length used for log Mel-spectrum computation is different from the one used for
segment proposal extraction. For a 10 second recording, this yields 20 segments
of size 96 × 64. We use the official Tensorflow implementation of vggish.5 The
base audio features extracted from vggish are run through a fully connected
layer with 128 neurons. This layer is learnt from scratch along with the scoring
networks during training.

Metrics. The baselines and proposed systems are evaluated on the micro-
averaged F1 score. The term micro-averaging implies that the F1 score is com-
puted using a global count of total true positives, false negatives and false pos-
itives. This was the official metric used by DCASE 2017 smart cars task for
ranking systems. The score thresholds for each system are determined by tuning
over validation data to maximize F1 score for each class. They are then applied
to the test data for final predictions. For further insight, we also report here the
F1 scores for each class.
5 https://github.com/tensorflow/models/tree/master/research/audioset

https://github.com/tensorflow/models/tree/master/research/audioset
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Results and Discussion

Quantitative Results. We show in Table 1 the micro-averaged F1 scores
for each of the systems described in the paper. In particular, systems (a)-(e) in
Table 1 present various baselines (and also variants) of our audio-visual two-
stream approach, (f)-(g) denote results from CVSSP team [37], winners of the
DCASE AED for smart cars audio event tagging task. We outperform all the
approaches by a significant margin. Among the multimodal systems, the two-
stream architecture performs much better than the one-stream counter-part,
designed with only a classification stream and soft-maximum for region selection.
On the other hand, the state-of-the-art CVSSP fusion system, which combines
predictions of various models, achieves a better precision than the other methods.
Several important and interesting observations can be made by looking at these
results in conjunction with the class-wise scores reported in Table 2.

Most importantly, the results emphasize the complementary role of visual and
audio sub-modules for this task. To see this, we could categorize the data into two
sets: (i) classes with clearly defined audio-visual elements, for instance car, train,
motorcycle; (ii) some warning sounds such as, e.g., reverse beeping, screaming,
air horn, where the visual object’s presence is ambiguous. The class-wise results
of the video only system are a clear indication of this split. Well-defined visual
cues enhance the performance of the proposed multimodal system over audio-
only approaches, as video frames carry vital information about the object. On
the other hand, in the case of warning sounds, frames alone are insufficient as
evidenced by results for the video-only system. In this case, the presence of audio
assists the system in arriving at the correct prediction. The expected audio-visual
complementarity is clearly established through these results.

Note that for some warning sounds the CVSSP method achieves better re-
sults. In this regard, we believe better temporal modeling for our audio system
could lead to further improvements. Particularly, currently we operate with a
coarse temporal window of 960ms, which might not be ideal for all audio events.
RNNs could also be used for further improvements. We believe such improve-
ments are orthogonal and were not the focus of this study. We also observe that
results for under-represented classes in the training data are relatively lower.
This can possibly be mitigated through data augmentation strategies.

Qualitative Results. Fig. 3 displays several video frames from different
evaluation videos where we achieve good visual localization for various objects.
The heatmaps shown below the images denote image region (top) and audio
segment detection scores (bottom) for the reference class in sub-figure captions.
The x-axis for the former denotes all the proposals from the subsampled images
arranged in temporal order, whereas for audio it denotes the overlapping segment
time-stamps. The display uses ‘hot’ colormap where black is 0 and white 1, as
depicted in Fig. 4. We see that the discriminative proposals are found at different
time instants for each modality.

A by-product of our design is the ability to deal with asynchronous audio-
visual events. We present in Fig. 4 two examples to demonstrate this. In the
first case A, the sound of a car’s engine is heard in the first two seconds followed
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System F1 Precision Recall

(a) Proposed AV Two Stream 64.2 59.7 69.4
(b) TS Audio-Only 57.3 53.2 62.0
(c) TS Video-Only 47.3 48.5 46.1
(d) TS Video-Only WSDDN-Type [15] 48.8 47.6 50.1

(e) AV One Stream 55.3 50.4 61.2

(f) CVSSP - Fusion system [37] 55.6 61.4 50.8
(g) CVSSP - Gated-CRNN-logMel [37] 54.2 58.9 50.2

Table 1. Results on DCASE smart cars task test set. We report here the micro-
averaged F1 score, precision and recall values and compare with state-of-the-art. TS is
an acronym for two-stream.

System Vehicle Sounds Warning Sounds

bik bus car car-pby mbik skt trn trk air-hrn amb car-alm civ-def f-eng pol-car rv-bps scrm trn-hrn

Proposed AV TS 75.7 54.9 75.0 34.6 76.2 78.6 82.0 61.5 40.0 64.7 53.9 80.4 64.4 49.2 36.6 81.1 47.1

TS Audio-Only 42.1 38.8 69.8 29.6 68.9 64.9 78.5 44.0 40.4 58.2 53.0 79.6 61.0 51.4 42.9 72.1 46.9

TS Video-Only 72.5 52.0 61.2 15.0 54.1 64.2 73.3 49.7 12.0 33.9 13.5 68.6 46.5 19.8 21.8 44.1 32.1

AV OS 68.2 53.6 74.1 25.6 67.1 74.4 82.8 52.8 28.0 54.7 20.6 76.6 60.4 56.3 18.8 49.4 36.2

CVSSP - FS 40.5 39.7 72.9 27.1 63.5 74.5 79.2 52.3 63.7 35.6 72.9 86.4 65.7 63.8 60.3 91.2 73.6

Table 2. Class-wise comparison on test set using F1 scores. We use TS, OS and FS as
acronyms to refer to two-stream, one-stream and fusion system, respectively.

by music. The normalized audio localization heatmap at the bottom displays
the scores assigned to each temporal audio segment, st by the car classifier. The
video frames placed above are roughly aligned with the audio temporal axis to
show the video frame at the instant when the car sounds and the point where the
visual network localizes. The localization is displayed through a yellow bounding
box. To better understand the system’s output, we modulate the opacity of the
bounding box according to the system’s score for it. Higher the score, more
visible the bounding box. As expected, we do not observe any yellow edges in
the first frame. Clearly, there exists temporal asynchrony, where the system locks
onto the car, much later, when it is completely visible. B depicts an example,
where due to extreme lighting conditions the visual object is not visible. Here
too, we localize the audio object and correctly predict the ‘motorcycle’ class.6

5 Conclusion

We have proposed a novel approach based on a deep multimodal architecture for
audio-visual events localization and classification. A particular strength of our
system is its capability to deal with asynchronous audio-visual events for which
typical visual and audio cues appear at different time instants. The proposed

6 Localization examples with audio can be found at https://youtu.be/C-jrZ9SDMDY

https://youtu.be/C-jrZ9SDMDY
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(a) Train

(b) Bicycle

(c) Car

(d) Truck

(e) Motorcycle

Fig. 3. Examples of localization on video frames for a few categories from the test data.
The localization results are shown in green. Below each image we display the scaled
region proposal (top) and audio segment scores for labels referred to in the caption.
The visual heatmap is a concatenation of proposals from all the sub-sampled frames,
arranged in temporal order.
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Fig. 4. Qualitative results for unsynchronized AV events. For both the cases A and
B, the heatmap at the bottom denotes audio localization over segments for the class
under consideration. For heatmap display, the audio localization vector has been scaled
to lie between [0,1]. The top row depicts video frames roughly aligned to the audio
temporal axis. (A) Top: Here we show a video where the visual object of interest
appears after the audio event. This is a ‘car’ video from the validation split. The video
frames show bounding boxes where edge opacity is controlled by the box’s detection
score. In other words, higher score implies better visibility (B) Bottom: This is a case
from the evaluation data where due to lighting conditions, the visual object is not
visible. However the system correctly localizes in audio and predicts the ‘motorcycle’
class.

experiments have demonstrated the merits of our approach compared to several
benchmark methods but have also shown that a more accurate audio tempo-
ral modeling would be needed to better cope with situations where the visual
modality is inefficient.
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