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Abstract In this work, an enriched model describing the longitudinal wave propagation is estab-

lished based on Mindlin’s Second Strain Gradient (SSG) theory, which can describe the heterogene-

ity caused by the micro-structure interactions in the frame of continuum mechanics. The governing

equation and associated boundary conditions are derived based on Hamilton’s principle, then the

dispersion relation of non-classical longitudinal wave together with the extra-waves appearing

exclusively in SSG theory model are investigated. The investigations are based on the modal den-

sity, energy flow, and forced response of the rod. Wave transmission and reflection through planar

interfaces based on the proposed model have been calculated. Finally, the results of the enriched

model are well interpreted by comparing with the classical theory results, and some useful conclu-

sions are derived on the SSG theory based model in the wave propagation characterization.
� 2019 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In conventional continuum mechanics theory, the strain

energy density for the material is assumed to depend only on
the classical strain, and the material is modeled to be a contin-
uous mass rather than as discrete particles. In reality, no mate-
rial is an ideal continuum. Both natural and man-made

materials have a complicated internal structure characterized
by micro-structural details. Hence, it is not possible to describe
the more complex interactions occurring in generalized
continua by means of the sole Cauchy stress tensor.1 This is

particularly true for the long-range interactions and micro-
structural deformations, which leads to the failing of conven-
tional theory in many situations.2 One solution is to describe

each micro-particle separately with classical continuum theory
as in atomistic models, but it requires enormous time and com-
putational resource, moreover, the numerical simulation of

large structures with high mechanical and geometrical con-
trasts is also facing to ill-conditioned problems.

To bridge the gap between atomistic models and classical
continuum mechanics, a number of theories and approaches

have been developed as extensions of the conventional contin-
uum mechanics. Among them, ‘Couple Stress theory’ (CS the-
ory) was firstly suggested in 1962 by Toupin et al.3,4 In CS
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theory, the gradient of the rotation vector is introduced into
the strain energy density function. Subsequently, the ‘Strain
Gradient theory’ (SG theory) was developed by introducing

all the components of strain gradient into the strain energy
density function.5 In 1965, Mindlin6 established the ‘Second
Strain Gradient theory’ (SSG theory), in which the strain

energy density is considered to depend on the second and third
derivatives of the displacement, along with the classical strain
tensor. In 2002, Modified Couple Stress (MCS) theory is devel-

oped with an additional equilibrium relation to govern the
behavior of the ‘couple’.7,8 Another approach to describe the
micro-structural deformation effect is by increasing the degrees
of freedom of the practices.9,10,11 In this catalogue, the micro-

polar theory and the micro-stretch theory, investigated by
Eringen 12,13, a location vector and a rigid vector representing
the inner rotation are introduced. Generalized elasticity theory

formulations enrich the classical elasticity theory by means of
additional higher order spatial derivatives of relevant state
variables (e.g. strains, stresses). These higher order terms are

usually accompanied with additional length scale parameters
(or higher order constants) in order to measure the scale effects
which results from the underlying micro-structure

interactions.14

The generalized mechanic theory already has some success-
ful applications, namely, being capable of capturing the scale
effects of experimentally observed mechanics behaviors where

the specimen characteristic length or the wavelength of the dis-
turbance are comparable to the lengths of the micro-structure
in the media.15 To be specific, the enriched model can be devel-

oped with the utilization of Hamilton principle, and the
derived models are employed to investigate a broad range of
problems related to various beam and plate structures.16,17,18

One can cite the static deflection and bending stiffness analy-
ses,19,20 fracture behaviors,21,22 structural free vibration and
forced vibration,23,24,25 nonlinear deformation and nonlinear

dynamic performances,26,27,28 flexoelectricity property29 and
functionally graded structure property analysis30,31, etc.

Furthermore, these generalized continuum theories intro-
duce different deformation behaviors for the particles and also

more complex modal solutions. A known consequence is the
existence of new wave modes which could not be observed in
the classical elastic solids. Recent work by Suiker et al.31,32 pre-

dicted ‘dispersive’ body waves based on the proposed second
gradient micro-polar formulation. When the wavelength
reaches the order the particle size, the dispersion becomes

more prominent. Wave propagation characteristics are also
investigated by Gopalakrishnan33 using the Erigen’s Stress
Gradient model and Mindlin’s Strain Gradient model, as well
as by Li et al.34 with nonlocal strain gradient theory. Atomistic

length scale parameters are brought into the continuum gov-
erning equations. These scale parameters are proven to signif-
icantly affect the wave propagation referring to not only the

dispersion relation, but also the escape frequency, phase speeds
and group speeds in the structures, and the prediction results34
match very well with those predicted using atomistic

simulation.
The micro-structure effect not only lead to different body

wave modes in the solid but also cause different waves reflec-

tion and transmission on a discontinuous surface of general-
ized continua. In the context of generalized continua, Placidi
et al.35 studied compression and shear wave propagation in
second gradient continua. They noticed that the effect of the
second gradient parameter are important for the reflection
and transmission coefficients at surfaces of discontinuity. Del-

l’Isola et al.36 deduced the mechanical energy equilibrium for
second gradient material, based on which they estimated that
the reflection and transmission coefficients at plane displace-

ment discontinuity surfaces are significantly frequency-
dependent. According to the research of Li et al.,37,38 the
reflection and transmission coefficients at the interface of

two generalized medias are not only dependent of the
microstructure’s parameters, but also of the incident angular
frequency. This phenomenon is owing to the dispersive nature
of the reflected and transmitted waves, and also to the addi-

tional surface waves resulting from the micro-structure effect,
and this phenomenon only becomes pronounced when the inci-
dent wavelength is close to the characteristic length of the

micro-structure.
Mindlin’s SSG theory is considered as one of the most

effective gradient elasticity theories. Even though the lack of

available experimental measurement techniques for second
gradient elastic moduli and being short of the physical inter-
pretation of the higher order constants yield some criticisms,

one can note that the CS theory and SG theory are particular
cases of the SSG theory with less high order constants. There-
fore, this theory is more general than the CS and SG theories.
Furthermore, the research works involving both the SSG the-

ory and wave propagation are seldom in the published litera-
ture. The most detailed wave propagation features such as
the modal density, the energy flux, have not been discussed,

and the reflection and transmission waves based on SSG the-
ory at an interface have not reported so far.

To study the wave propagation features of rod structure hav-

ing heterogeneity caused by inner micro-structure interactions,
in the meantime avoid the enormous time and computational
resource that atomistic simulation method requires, in the pre-

sent work, we resort to SSG theory to describe the heterogeneity
caused by the micro-structure interactions in the frame of con-
tinuum mechanics. The governing equation and associated
boundary conditions for the enriched model are derived based

on Hamilton’s principle in Section 3.1. Then the enriched wave
propagation features of the structure are studied in Section 3.2.
Investigations are then conducted on the modal density (Sec-

tion 3.3), the energy flow (Section 3.4), and the forced response
of the rod (Section 3.5). In Section 4, the wave transmission and
reflection at a planar surface between two waveguides of second

gradient material are analyzed for the considered model.
Numerical applications of the above are discussed in Section 5
and conclusions are drawn in Section 6. This work not only aims
to contribute to the analysis of wave propagation in SSG theory

based media, but also aims at providing an original solution to
analyze the wave dispersion characteristics of complex media
with micro-scale periodicity.
2. Overview of the SSG theory

According to Mindlin’s research,6 in SSG theory, the potential

energy density u
�
is assumed to be a function of three tensors e,

g and n, in which e is the classical symmetric strain tensor, g
and n are respectively the second gradient of the displacement
vector and the third gradient of the displacement vector,
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e ¼ 1
2
ruþ urð Þ

g ¼ rru

n ¼ rrru

8><
>:

Since the media is composed of numerous crystals with ran-
dom orientation, the material can be considered homogeneous
and isotropic, then strain energy density of the material is

expressed as

u
�¼ 1

2
keiiejjþleijeijþa1gijjgikkþa2giikgkjjþa3giikgjjkþa4gijkgijk

þa5gijkgkjiþb1niijjnkkllþb2nijkknijllþb3niijknjkllþb4niijknllkjþb5niijknlljk

þb6nijklnijklþb7nijklnjkliþ c1eiinjjkkþ c2eijnijkkþ c3eijnkkij

ð1Þ
where eij, gijk and nijkl i; j; k; l ¼ 1; 2; 3ð Þ are the components of

tensors e, g and n, their expressions can be written in terms
of the components of displacement vector as

eij ¼ 1
2

@uj
@xi

þ @ui
@xj

� �
¼ 1

2
@jui þ @iuj
� �

gijk ¼ @2uk
@xi@xj

¼ @i@juk

nijkl ¼ @3ul
@xi@xj@xk

¼ @i@ j@kul

8>>>><
>>>>:

ð2Þ

k and l are the usual Lame’s constants. Parameters ai, bi
and ci are higher order material constants which particularly
appear in SSG theory. If the potential energy density is
assumed to depend on the strain and the gradient of the strain,

setting bi ¼ 0 and ci ¼ 0, then it results the strain gradient the-
ory. The conjugate stresses are defined by differentiating the

strain energy density u
�

to the corresponding strain
components,

r ¼ @ u
�

@e

s ¼ @ u
�

@g

p ¼ @ u
�

@n

8>><
>>: ð3Þ

It should be noted here, even though the stress tensors r, s
and p are respectively named with the classical stress, the first
higher order stress and the second higher order stress, their

values could be related with all three order strains as,6

rpq ¼ keiidpqþ2lepqþ c1niijjdpqþc2npqiiþ 1
2
c3 niipqþniiqp
� �

spqr ¼ a1 gpiidqrþgqiidpr
� �þ 1

2
a2 giipdqrþ2griidqpþgiiqdpr
� �

þ2a3giirdpqþ2a4gpqrþa5 grqpþgrpq
� �

ppqrs ¼ 2
3
b1niijjdpqrsþ 2

3
b2njkiidjkpqrsþ 1

6
b3 niijkþniikj

� �
djkpqrsþ2njsiidjpqr

� �
þ 2

3
b4niisjdjpqrþ 2

3
b5niijsdipqrþ2b6npqrsþ 2

3
b7 nqrspþnrspqþnspqr
� �

þ 1
3
c1eiidpqrsþ 1

3
c2eijdijpqrsþ 1

3
c3eisdipqr

8>>>>>>>>><
>>>>>>>>>:
in which dij is the Kronecker delta function and

dpqrs ¼ dijdklþdikdjlþdjkdil;dijklmn ¼ dikdjldmnþdikdjmdlnþdildjmdkn
Fig. 1 Coordinate system and kinematic parameters of rod.
3. Analysis of wave dispersion characteristics, energy flow and

modal density

3.1. The derivation of governing equation and boundary
conditions

The multi-scale modeling begins with establishing the motion

equation of the rod for free vibration. The coordinate system
and kinematic parameters of the model are illustrated in
Fig. 1. The rod is assumed to be uniform, homogeneous and
initially straight along the x-direction with length L. r denotes

the radius of the circular cross section, and q x; tð Þ denotes the
resultant of external forces acting on the rod in x direction as
force per unit axial length.

The displacement field in a rod model is written as,

ux x; y; z; tð Þ ¼ w x; tð Þ
uy x; y; z; tð Þ ¼ 0

uz x; y; z; tð Þ ¼ 0

8><
>: ð4Þ

where ux, uy, and uz denote the displacement components of

the rod particles along x, y, and z directions respectively.
According to Eq. (2), the nonzero components of the strain
tensor e; g; and; n can be depicted as

e11 ¼ @w
@x

g111 ¼ @2w
@x2

n1111 ¼ @3w
@x3

8>><
>>: ð5Þ

Substituting the nonzero components of e; g; and; n, as men-

tioned in Eq. (5) into Eq. (1), the strain energy density u
�
for the

SSG theory rod can be simplified as

u
� ¼ 1

2
ke112 þ le112 þ a1 þ a2 þ a3 þ a4 þ a5ð Þg1112
þ b1 þ b2 þ b3 þ b4ð þb5 þ b6 þ b7Þn11112
þ c1 þ c2 þ c3ð Þe11n1111

ð6Þ

Lame’s constants k and l are related to the the Young’s

modulus E and the Poisson’s ratio m, as
k ¼ mE= 1þ mð Þ 1� 2mð Þ, l ¼ E=2 1þ mð Þ, so the Lame’s con-
stants here can be determined with experimentally tested E

and m. However, there are still not yet standard experiments
to determine the higher order material constants ai, bi, and
ci, so many scientists and engineers resorted to atomistic sim-
ulation method. In present model, the higher order material

constants refer to the article by Shodja et al. (2012)39 with ato-
mistic approach. The strain energy of the rod is calculated by
integrating its density over its volume. Combination of Eq. (5)

and Eq. (6), the strain energy of the SSG theory based rod
model can be simplified as

U ¼
Z L

0

Z
A

u
�
dAdx ¼ 1

2

Z L

0

vEA
@w

@x

� 	2

þ B1

@2w

@x2

� 	2

þ B2

@3w

@x3

� 	2
"

þB3

@w

@x
� @

3w

@x3



dx ð7Þ

in which,

B1 ¼ 2A a1 þ a2 þ a3 þ a4 þ a5ð Þ
B2 ¼ 2A b1 þ b2 þ b3 þ b4 þ b5 þ b6 þ b7ð Þ
B3 ¼ 2A c1 þ c2 þ c3ð Þ

8><
>:
with parameter A as the area of the rod cross section, and

v ¼ 1� tð Þ= 1þ tð Þ 1� 2tð Þ. To avoid the Poisson effect, the
results in the present work will be calculated with setting v ¼ 1.
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From the displacement field represented in Eq. (4), the
kinetic energy of the rod can be written as,

T ¼ 1
2

R L

0

R
A
q @w

@t

� �2
dAdx ¼ 1

2

R L

0
m0

@w
@t

� �2
dx ð8Þ

where m0 ¼ qA,q denotes density.
The virtual work done by available loads on the rod,

including body loads and boundary surface loads, during
occurrence a variation in the geometrical state of the beam

at given time t > 0 is expressed as

dW ¼ R L

0
qdwð Þdxþ P0dwþ P1d @w

@x

� �þ P2d @2w
@x2

� �h i x ¼ L

x ¼ 0

����
ð9Þ

in which Pi are the end-sectional loads dual to corresponding

kinematic parameters in performing work, and these loads
are resultants of not only classical stresses but also higher
order stresses on the surface of an end section.

Until here, the strain energy, the kinetic energy and the vir-
tual work done by available loads for the SSG theory rod have
been expressed out. To derive the motion equation and the
associated boundary conditions, the Hamilton principle is

employed asR t2
t1

dT� dUþ dWð Þ dt ¼ 0 ð10Þ
where dT and dU are the variation of kinetic energy and the

variation of strain energy which both have been described in
previous formulas. Substituting Eq. (7), Eq. (8) and Eq. (9)
into Eq. (10), and doing some mathematical operations in

accordance with the variation calculus, the governing equation
of the enriched model can be expressed as,

E
l � @

2 w
�

@x
�2 þ B3�B1ð Þ

lAL2 � @4 w�
@x
�4 þ B2

lAL4 � @6 w
�

@x
�6 þ q

�� m0L
2

lAk2t
� @2 w�
@s2 ¼ 0 ð11Þ

and the associated boundary conditions at the rod ends
(i.e.x ¼ 0;L) as

P0 ¼ EA @w
@x
þ B3 � B1ð Þ @3w

@x3
þ B2

@5w
@x5

or dw ¼ 0

P1 ¼ B1 � B3

2

� �
@2w
@x2

� B2
@4w
@x4

or d @w
@x

� � ¼ 0

P2 ¼ B3

2
� @w
@x
þ B2

@3w
@x3

or d @2w
@x2

� �
¼ 0

8>>><
>>>:

ð12Þ

In each boundary condition, there are two kinds: a loading
type or a geometric type, only one type is required to be con-
sidered at an end-section of the rod in each case. From the
expressions of the governing equation and boundary condi-

tions, we can also see if we set the higher order material con-
stants ai ¼ 0, bi ¼ 0 and ci ¼ 0, the classical theory results
can be achieved.41

For further exploration and parametric study of the
enriched mechanical properties of SSG theory based rod, nor-
malization of the governing equations and the associated

boundary conditions is necessary, so the following normaliza-
tion parameters are defined,

x
� ¼ x

L

w
� ¼ w

L

x
� ¼ x

xk

s ¼ t
tk

8>>>><
>>>>:

ð13Þ

the term xk is defined as
xk ¼
ffiffiffiffiffiffi
E

q
�

s
j
L

which is the normalization parameter for angular frequency x.
In this case, it is set to be one nature frequency of the structure.

j is a constant determined by the boundary conditions of the
model. In the presented model, j is set to be p. The normaliza-
tion parameter for time t is expressed as

tk ¼ 1

xk

¼
ffiffiffiffiffiffi
q
E
�

r
L

j

Substituting the newly defined variables into the governing

equation and boundary conditions, we can have the normal-
ized model as

E
l � @

2 w
�

@x
�2 þ B3�B1ð Þ

lAL2 � @4 w�
@x
�4 þ B2

lAL4 � @6 w
�

@x
�6 þ q

�� m0L
2

lAk2t
� @2 w�
@s2 ¼ 0 ð14Þ

in which q
� ¼ qL=lA is the dimensionless body load intensity.

With the same method, dimensionless boundary conditions
can be obtained as,

P
�
0 ¼ E

l � @ w
�

@ x
� þ B3�B1

lAL2 � @3 w�
@x
�3
þ B2

lAL4 � @5 w
�

@x
�5

or dw
� ¼ 0

P
�
1 ¼ 2B1�B3

2lAL2 � @2 w�
@x
�2
� B2

lAL4 � @4 w
�

@x
�4

or d @ w
�

@ x
�

� �
¼ 0

P
�
2 ¼ B3

2lAL2 � @ w
�

@ x
� þ B2

lAL4 � @3 w
�

@x
�3

or d @2 w
�

@x
�2

� �
¼ 0

8>>>><
>>>>:

ð15Þ
3.2. Dispersion relation

For the material with heterogeneity due to micro-structures
effects, long range interaction has great influences on the
deformation process, especially when the wavelength is of
the same order with the heterogeneity, and the classical elastic-

ity theory is clearly not capable of describing these physical
properties. In the following section, the dispersion relation of
the waves propagating in the rod structure will be investigated

based on the proposed model.

Assuming the external loading q
� ¼ 0, the free wave propa-

gation modes in the proposed enriched model can be achieved
by injecting the general exponential form of wave propagation
solution:

w ¼ w0e
i xt�kxð Þ ð16Þ

into the governing equation, one 6th-order dispersion relation

can be obtained as

EAk2 � B3 � B1ð Þk4 þ B2k
6 �m0x2 ¼ 0 ð17Þ

For parametric study, wavenumber k should also be nor-

malized with k
�
¼ kL, then the normalized dispersion relation

is shown

B2

L4 k
�
6 � B3�B1

L2 k
�
4 þ EAk

�
2 � m0x

�2
L2

t2
k

¼ 0 ð18Þ

According to the form of the dispersion relation, we can
predict that three different modes can be generated in second
strain gradient elastic solid.

3.3. Modal density

When a structure or a system is subject to excitation of high
frequencies, its response may involve a large number of high-
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order modes. Meanwhile in high frequency range, wavelength
tends to be more comparable to the length of inner micro-
structure, and its influence on wave propagation becomes more

pronounced. The modeling of such systems leads the problem
of ‘high frequency’ vibration analysis, and Statistical Energy
Analysis (SEA) is one of the most common methods for high

frequency vibration analysis. In this section, one important
parameter in SEA method, namely ‘modal density’, is studied
based on the proposed model. Modal density is one statistics

based measurement representing the distribution of modal nat-
ural frequencies in the frequency domain. Modal density of a
structure at frequency x is denoted as n xð Þ, which means the
number of resonant frequencies in a neighborhood Dx local

to that frequency. It may also be interpreted as the expected
number of natural frequencies per radiant per second as

n xð Þ ¼ dN
dx ð19Þ

in which the mode count N represents the number of resonant
frequencies below that given frequency x. The propagating
wave at any frequency is characterized by the wavenumber k
¼ 2p=wavelengthð Þ, which can be interpreted as the phase dif-

ference per unit distance in wave propagation direction. As the
wave propagates from the left-end of the rod to the right-hand
end, the total phase change is kL. Then wave is reflected by the

right-hand end, and back towards the left-hand end. Phase dif-
ference will be introduced by the Wave reflection at each end,
and that difference varies with different boundary conditions.

Assuming c represent the total phase change introduced by
reflecting boundaries, the total phase changes as the wave trav-
els one complete circuit around the structure can be expressed

as 2kL� c. The ‘‘phase-closure principle” states that if the
total phase change is an integral number of 2p0s, the condition
is satisfied for a natural mode, and the frequency at which it
occurs is a natural frequency of the system. This principle

can be written as

2kL� c ¼ N � 2p
Then we have

N kð Þ ¼ kL�c=2
p

As the mode order increases, the number of resonances
NðkÞ in frequency domain become increasingly less sensitive
to the boundary conditions. Hence we may consider the mode

count as,

N kð Þ ¼ kL
p ð20Þ

so the Eq. (19) can be simplified as

n xð Þ ¼ dN
dx ¼ dN

dk
� dk
dx ¼ L

p � 1
cg

ð21Þ
in which, the term cg denotes the group velocity of the studied

wave mode

cg ¼ dx
dk
3.4. Energy flux analysis

In this section, the approach to predict the energy velocity at
one point in the SSG theory based rod structure is presented.
At one observation point M, the instantaneous kinetic energy

density EkðM; tÞ, potential energy density EsðM; tÞ and the
instantaneous active energy flow EpðM; tÞ based on the classi-

cal elasticity theory are defined as42,43

Ek ¼ q
2
Re Vð Þ � Re Vð Þ

Es ¼ 1
2
Re rð Þ � Re eð Þ

Ep ¼ �Re rð Þ � Re Vð Þ

8><
>: ð22Þ

where q is the mass density, V is the velocity vector, and r and
e are the classical stress and strain tensors respectively. As the

strain and stress tensor are defined differently in the SSG the-
ory, potential energy density is enriched with the higher order
components as6

Es ¼ 1
2
Re rð Þ � Re eð Þ þ Re sð Þ � Re gð Þ þ Re pð Þ � Re nð Þ½ � ð23Þ

where s and g are the first higher order strain and stress tensor,
p and n are second higher order strain and stress tensor. The
sum of the kinetic and potential energy density yields the

instantaneous total energy density:

Etotal ¼ Ek þ Es ð24Þ
In the following investigations, the time will be removed by

time-averaging. A physical quantity H, which represents here

an energy or a power density, can generally be expressed as

H ¼ f � g
where f and g are complex harmonic physical variables which

denote stress, strain, or displacement in the formulation. Thus
the time averaged of H is given by

Hh i ¼ x
2p

Z2p
0

Re fð Þ �Re gð Þdt ¼ 1

2
Re f � g�ð Þ

where ‘*’ denotes conjugation. For the classical theory, the
time averaged kinetic energy, potential energy and active
energy flux through the observed cross section A are given as,

Th i ¼ q
4

R
A
Re V � V�ð ÞdA

Uh i ¼ 1
4

R
A
Re r � e�ð ÞdA

Ph i ¼ � 1
2

R
A
Re r � V�ð ÞdA

8><
>: ð25Þ

For the SSG theory, the time averaged potential energy of
the observed cross section A is given as,

Uh i ¼ 1

4

Z
A

Re r � e� þ s � g� þ p � n�ð ÞdA ð26Þ

Combined with Eq. (8) and Eq. (6), the time averaged

kinetic energy and enriched time averaged potential energy
of the studied rod through the observed section A is defined as

Th i¼ q
4

R
A
Re _w � _w�ð ÞdA

Uh i¼ 1
4
EA @w

@x

� �
@w
@x

� �� þB1
@2w
@x2

� �
@2w
@x2

� ��
þB2

@3w
@x3

� �
@3w
@x3

� ��
þB3

@w
@x

@3w
@x3

� ��h i
8<
:

ð27Þ
When it comes to energy flow, the higher order stress

should be taken into account. Based on the definition of virtual
work, the expression of active energy flux in x direction

through the observation section is assumed to be as

Ph i ¼ � 1
2
Re P0 � _w� þ P1 � @ _w

@x

� �� þ P2 � @2 _w
@x2

� ��h i
ð28Þ

where P0, P1, and P2 are the loads dual to the corresponding
kinematic parameters, and ‘ _w’ denotes the time derivative of
the displacement w.
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P0 ¼ EA @w
@x
þ B3 � B1ð Þ @3w

@x3
þ B2

@5w
@x5

P1 ¼ B1 � B3

2

� �
@2w
@x2

� B2
@4w
@x4

P2 ¼ B3

2
� @w
@x
þ B2

@3w
@x3

8>><
>>:

The energy velocity of the wave propagation equals the
time averaged active energy flux Ph i over the time averaged
total energy Etotalh i, which can be expressed as

Ve ¼ Ph i
Etotalh i ð29Þ
3.5. Frequency response analysis

As shown in Fig. 2, a fix-free rod subject to a harmonic load

q ¼ q0e
ixt at the free end is considered for frequency response

function analysis. To be specified here, according to the
boundary condition of this case, the frequency normalized

parameter is set to be xk ¼
ffiffiffi
E
q

q
� 2j
L
to match the first resonant

frequency at x
� ¼ 1. The observation point is at x ¼ 0:78L. The

radius of the cross-section r ¼ 3a0 and the length L ¼ 8r.

The solution for the displacement can be given by the
superposition of the progressive and retrograde contribution

from all wavenumbers (k
�
1; k

�
2 and k

�
3). The general expressions

of the dimensionless displacement w
�
can be expressed as

w
�

x
�
;s

� �¼ A
�
e�ik

�
1 x
� þB

�
eik

�
1 x
� þC

�
e�ik

�
2 x
� þD

�
eik

�
2 x
� þE

�
e�ik

�
3 x
� þF

�
eik

�
3 x
�� �

eix
�
s

ð30Þ
From the normalized dispersion relation, which is obtained

by the governing equation in Section 3.2, all the wavenumbers

k
�
1; k

�
2 and k

�
3 on each frequency can be obtained. Then the

value of the normalized displacement on one frequency only

depends on the amplitudes (A
�
; B

�
; C

�
; D

�
; E

�
; F

�
). Normalizing

the harmonic excitation as q
� ¼ q0e

ixt=lA, then based on the

dimensionless boundary conditions as

w
�

0; sð Þ ¼ 0 at x
� ¼ 0

P
�
1 0; sð Þ ¼ 2B1�B3

2lAL2 � @2 w�
@x
�2 � B2

lAL4 � @4 w
�

@x
�4 ¼ 0 at x

� ¼ 0

P
�
2 0; sð Þ ¼ B3

2lAL2 � @ w
�

@ x
� þ B2

lAL4 � @3 w
�

@x
�3

¼ 0 at x
� ¼ 0

P
�
0 1; sð Þ ¼ E

l � @ w
�

@ x
� þ B3�B1

lAL2 � @3 w�
@x
�3
þ B2

lAL4 � @5 w
�

@x
�5

¼ - q0
lA e

ix
�
s at

x
� ¼ 1

P
�
1 1; sð Þ ¼ 2B1�B3

2lAL2 � @2 w�
@x
�2
� B2

lAL4 � @4 w
�

@x
�4

¼ 0 at x
� ¼ 1

P
�
2 1; sð Þ ¼ B3

2lAL2 � @ w
�

@ x
� þ B2

lAL4 � @3 w
�

@x
�3 ¼ 0 at x

� ¼ 1

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð31Þ
These boundary conditions physically means: at the fixed

end x
� ¼ 0, the displacement equals zero, and the higher order
Fig. 2 A fixed-free micro-rod with loading in free end.
forces equal zero; at the loading end x
� ¼ 1, the produced clas-

sical force follows the force equilibrium, and the higher order

forces equal zero. The extra kinematic parameters @ w
�

@ x
� and @2 w

�

@x
�2

represent the inner micro-rotation and micro-curvature of the
adjacent micro-structures, and the corresponding generalized

loads P2 and P3 represent the inner force interactions of the

adjacent micro-structures dual to @ w
�

@ x
� and @2 w

�

@x
�2
. There are also

two kinds of boundary conditions for the enriched model: a

loading type and a geometric type. In this case, at x
� ¼ 0, the

possible force produced by the fixed attachment is only classical
force, so the higher order force P2 and P3 should be set to zero.

At x
� ¼ 1, P0 follows the force equilibrium on that section, and

the higher order force P2 and P3 are set to zero because there is

not external higher order force applied on that section.
Following the boundary conditions, six equilibrium with

the amplitudes of each progressive and retrograde wave

(A
�
; B

�
; C

�
; D

�
; E

�
; F

�
) as variables are established. With some

numerical calculation, the amplitude at observation point on
each frequency can be obtained.

4. Wave reflection and the transmission through planar interface

based on the enriched model

According to Section 3.2, it can be predicted that the body
wave modes are different in second strain gradient continua
due to the micro-structure effect, and that will lead to signifi-

cant differences in elastic transmitted and reflected waves. In
this section, the reflection and transmission coefficients on a
discontinuous surface as well as the energy transmitted ratio

are discussed based on the proposed formulation. Fig. 3 shows
rod 1 and rod 2, which are connected together with same cir-
cular cross section but different materials.

From the dispersion relation in Sections 3.2, we know that

3 modes can be created in second gradient continua. Assuming
modes k1; k2; k3 can propagate on rod 1 while k4; k5; k6 propa-
gate on rod 2, and the incident wave wave k1 vertically inject

on the discontinuous surface with amplitude A1, then the dis-
placement caused by incident wave U1þ can be expressed as

U1þ ¼ A
�
1 � ei xt�k1xð Þ ð32Þ

The incident wave k1 will diffuse out these six wave modes

on the discontinuous surface which propagate along the nega-
tive x direction and positive x direction respectively. Assuming
the amplitudes of the reflected k1; k2; k3 wave modes are

denoted by B
�
1;C

�
1;D

�
1; the amplitudes of transmitted wave

modes k4; k5; k6 are denoted by B
�
2;C

�
2;D

�
2, then the displace-

ment caused by the reflected waves U1� and transmitted waves

U2þ can be written as (omitting the time component eixt)
Fig. 3 Reflection and transmission of longitudinal wave.
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U1� ¼ B
�
1 � eik1x þ C

�
1 � eik2x þD

�
1 � eik3x

U2þ ¼ B
�
2 � e�ik4x þ C

�
2 � e�ik5x þD

�
2 � e�ik6x

(
ð33Þ

in which ‘1’ indicates the medium, ‘+’, ‘–’ indicates the wave
propagation direction. The displacement on the left of inter-

face UL and the displacement on the right of the interface
UR are given by the superposition of the contribution from
all wave modes as

UL ¼ A
�
1 � e�ik1x þ B

�
1 � eik1x þ C

�
1 � eik2x þD

�
1 � eik3x

UR ¼ B
�
2 � e�ik4x þ C

�
2 � e�ik5x þD

�
2 � e�ik6x

(
ð34Þ

in which ‘L’, ‘R’ indicate the left media and right media. The
force and higher order forces on the left of the interface in

medium 1 can be expressed with the displacement UL as

P0jw¼UL
¼ EA @UL

@x
þ B3 � B1ð Þ @3UL

@x3
þ B2

@5UL

@x5

P1jw¼UL
¼ B1 � B3

2

� �
@2UL

@x2
� B2

@4UL

@x4

P2jw¼UL
¼ B3

2
� @UL

@x
þ B2

@3UL

@x3

8>><
>>: ð35Þ

While the force and higher order forces on the right of the

interface in medium 2 can also be expressed with the displace-
ment UR as

P0jw¼UR
¼ EA @UR

@x
þ B3 � B1ð Þ @3UR

@x3
þ B2

@5UR

@x5

P1jw¼UR
¼ B1 � B3

2

� �
@2UR

@x2
� B2

@4UL

@x4

P2jw¼UR
¼ B3

2
� @UR

@x
þ B2

@3UR

@x3

8>><
>>: ð36Þ

Assuming the interface does not dissipate energy, and the

mass of the rod between x ¼ 0þ and x ¼ 0� is infinitesimal,

the force equilibrium can be developed at x ¼ 0. Amplitudes
of each transmitted waves and reflected waves can be estimated
based on the continuity of displacement, the first derivative of
the displacement, and the second derivative of the displace-

ment along with the equilibrium of the force and higher order
forces as

w; @w
@x
; @

2w
@x2

;P0;P1;P1

h i���
w¼UL

¼ w; @w
@x
; @

2w
@x2

;P0;P1;P1

h i���
w¼UR

ð37Þ
In the following numerical calculation, the amplitudes of

the reflected waves and transmitted waves can be calculated

and expressed with A
�
1, thus the reflection coefficients and

transmission coefficients for wave k1, k2 and k3 are presented

in the form of amplitude ratios as follows.

R1 ¼ B
�
1

A
�
1

; R2 ¼ C
�
1

A
�
1

; R3 ¼ D
�
1

A
�
1

;T1 ¼ B
�
2

A
�
1

; T2 ¼ C
�
2

A
�
1

; T3 ¼ D
�
2

A
�
1

: ð38Þ

R1, R2 and R3 are the reflection coefficients for wave k1, k2 and

k3; T1, T2 and T3 denote the transmission coefficients for wave
k4, k5 and k6.
Table 1 High-order material constants for aluminum.40

a1 eV=Að Þ
0:1407

a2 eV=Að Þ
0:0027

a3 eV=Að Þ
�0:0083

a4 eV=ð
0:0966

b1 eV=Að Þ
0:7927

b2 eV=Að Þ
0:0644

b3 eV=Að Þ
�0:1943

b4 eV=ð
�0:000

c1 eV=Að Þ
0:5041

c2 eV=Að Þ
0:3569

c3 eV=Að Þ
0:1782
According to Section 3.4, energy flux in second strain gra-
dient continua is coupled with the classical force and the higher
order forces, hence the reflected energy flux and transmitted

energy flux based on the proposed SSG model can be
expressed out as

Jreflection ¼ � 1
2
Re P0 � _U

�
1� þ P1 � @ _U1�

@x

� ��
þ P2 � @2 _U1�

@x2

� ��h i���
w¼U1�

ð39Þ
and

Jtransmission ¼�1
2
Re P0 � _U

�
2þþP1 � @ _U2þ

@x

� ��
þP2 � @2 _U2þ

@x2

� ��h i���
w¼U2þ

ð40Þ
P0, P1 and P2 in the expressions are in dependence on the

displacement in each media. The energy distributed in trans-
mitted and reflected waves can be achieved by the calculating

the ratio between the transmitted energy as well as the reflected
energy with the incident energy flux.

Until here, the formulation of the governing equation and

the associated boundary conditions of the SSG theory based
rod model are fully established. The characterization of wave
dispersion relation and modal density, the frequency response
of bounded SSG theory based rod, the energy flux in second

gradient continua and wave reflection and transmission coeffi-
cients on the discontinuous surface are all completed.
5. Numerical application and discussions

In this section, cases are studied to illustrate enriched wave
properties based on SSG theory model. The structure of the

rod is shown as in Fig. 140. The material is assumed to be alu-
minum with l ¼ 26GPa, and the higher order material con-
stant values are given in Table 1 with lattice parameter

a0 ¼ 4:04A. The rod has a circular cross section with radius
r ¼ 3a0, and length L ¼ 8r.

5.1. Dispersion curves

Employing the parameters above for the dispersion Eq. (18),
one arrives six solutions, which indicates 3 positive going
modes and 3 negative going modes on each frequency. The

results are shown in Fig. 4 and Fig. 5.
Fig. 4. and Fig. 5. illustrate the dispersion relation of pos-

itive going waves and negative going waves, respectively. It

should be noticed here, the wavenumber k3, with negative
imaginary part and negative real part is considered as a
positive-going wave, and k6 with positive imaginary part and

positive real part as a negative-going wave. In a periodic
waveguide with unit-cell’s dimension d, k is 2mp=d -periodic,
the positive- or negative-going waves can have arbitrary
AÞ a5 eV=Að Þ
0:2584

AÞ
9

b5 eV=Að Þ
�0:0009

b6 eV=Að Þ
16:1566

b7 eV=Að Þ
48:5291



Fig. 4 Dispersion relation of positive-going waves kþðxÞ.

Fig. 5 Dispersion relation of negative-going waves k�ðxÞ.

2570 G. ZHU et al.
Real kð Þ sign. The direction of propagation is defined by the
Imag kð Þ, which corresponds to the wave attenuation.

Fig. 4 has two subfigures, Fig. 4 (a) and Fig. 4 (b), which

display the real part and imaginary part of the dimensionless
wavenumbers for the positive-going waves in frequency range
½0; 10xk�. Different from the classical theory results, 3 modes

k1; k2; k3ð Þ are predicted by the enriched model, in which the
non-classical longitudinal wave k1 is propagating in a disper-
sive manner. Real part of k1 is smaller than classical one and

the gap become wider with the increasing frequency. The other
two wave k2 and k3 appear exclusively in SSG theory model,
and they are both evanescent waves. These results agree with

the Refs. 32,33,44,45.
In order to study the scale-effect of the dispersive feature,

wavenumbers of mode k1 propagating in rod structures of dif-
ferent size are investigated. The results are illustrated in Fig. 6.

As dimension goes up, length to radius ratio of the struc-
ture is fixed as L ¼ 5r, hence the resulting dispersion curve
of classical model is linear correlated with angular frequency.

Whereas the dispersion curve of SSG theory is observed to
keep changing and approaching the classical result as the
radius r goes from 3a0 to 8a0. When the radius increase, the

structural characteristic length grows longer. Therefore, this
phenomenon reflects that the influence of micro-structure
interaction become weaken as the structural characteristic
length goes up.
The above outcomes are all calculated without energy dissi-
pation. However, in practical applications, there are always
damping in the system. Energy dissipation can significantly

influence wave propagation features. Assuming the damping
is viscous, then E ¼ 52 ð1þ ifÞGPa can be utilized with f indi-
cating the loss factor of the system. To analyze the influence of

damping for the proposed enriched model, the dispersion
curves with f ¼ 0:005 is shown in Fig. 7.

In relatively low frequency range ½0; 2xk�, the results of SSG
model and classical model are similar. In higher frequency
range ½2xk; 10xk�, wave number is evidently influenced for
the non-classical wave k1, as the absolute value of imaginary

parts decrease and draw near to zero. Energy dissipation
through viscous damping for non-classical longitudinal wave
k1 become negligible compared with the classical model.

5.2. Modal density

Fig. 8 depicts modal density of non-classical wave k1 compared
with classical result, which keeps still in frequency domain.

The influence of micro-structure effect is quite obvious as the
non-classical result is size and frequency dependent. Modal
density of k1 decrease significantly compared with classical

results. The contrast becomes more serious as the model’s
radius decreasing gradually to r ¼ 3a0. The present SSG the-
ory model can clearly capture the micro-structure effect. This



Fig. 6 Wavenumber changing with rod dimension.
Fig. 8 Modal density.

Fig. 9 Energy velocity of longitudinal wave.

Wave propagation analysis for a second strain gradient rod theory 2571
phenomenon is similar to the observation in the case of
wavenumber characterization.

5.3. Energy velocity

In Section 3.4, we established the energy flux expression for
SSG theory based rod model. The validation of energy flux

expression is important for the following researches which
are developed from energy equilibrium. In this section, energy
velocity Ve and group velocity cg are illustrated for non-

classical wave k1. If the formulation Eq. (27) and Eq. (28)
are validated, group velocity cg should be identical to the

energy velocity Ve without damping in the system.

From Fig. 9, as expected, the formulation and for energy
flux in SSG theory based rod model are proved to be correct
with cg ¼ Ve in the whole frequency range. In addition, group

velocity cg and phase velocity cph of k1 in SSG theory model

are clearly different from each other, which confirms the dis-
persive property of non-classical k1.

5.4. Frequency response function

For frequency response analysis, one harmonic force

q ¼ 0:05lAeixt is applied on free end of the structure. Based
on the previous formulation, the amplitude of each mode at

observation point x
� ¼ 0:78 are calculated out on each fre-

quency, and the displacement magnitudes are obtained by
the superposition of each mode.
Fig. 7 Wavenumber changing with damping.
Fig. 10 displays the normalized displacement magnitudes at
observation point based on SSG theory and classical theory.
We notice that resonances can be well predicted by both mod-

els. In lower frequency range, the results of these two models
math well, but in higher frequency, the values of SSG theory
shift to higher frequencies compared to classical ones, and less

resonance peaks are observed in frequency range 0:1xk; 10xk½ �
(7 for SSG theory and 10 for classical theory). Due to the influ-
ence of micro-structure interactions, wave propagation is sig-
nificantly affected, vibration energy is not only conserved in

the propagating longitudinal wave, but also converted into
the other two evanescent modes. This can be the explanation
for the reduction of resonance peaks. In higher frequency,

micro-structure effect could cause more energy conversion into
the extra evanescent waves.
Fig. 10 Frequency response function at x ¼ 0:78L.



Table 2 High-order material constants for copper.40

a1 eV=Að Þ
0:1833

a2 eV=Að Þ
0:0103

a3 eV=Að Þ
0:0010

a4 eV=Að Þ
0:0717

a5 eV=Að Þ
0:1891

b1 eV=Að Þ
0:6612

b2 eV=Að Þ
0:0663

b3 eV=Að Þ
�0:2062

b4 eV=Að Þ
�0:0015

b5 eV=Að Þ
�0:0015

b6 eV=Að Þ
12:6254

b7 eV=Að Þ
37:9402

c1 eV=Að Þ
0:8448

c2 eV=Að Þ
0:5732

c3 eV=Að Þ
0:3465

Fig. 12 Size effect of reflection coefficients.

Fig. 13 Energy transmission and reflection.
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5.5. Reflection and transmission coefficients

Numerical calculation for the reflected and transmitted wave
at the discontinuous surface through different SSG theory
based structures is conducted in this section. As shown in

Fig. 3, rod 1 and rod 2 are connected with same cross section
radius r ¼ 3a0. Rod 1 is made of aluminum and the material
constants have been illustrated in previous section. Rod 2 is

copper with l ¼ 40GPa, and the higher order material con-
stants are shown in Table 240.

Substitute these values into the formulations in Section 4,

we can easily achieve the reflection and transmission coeffi-
cients as well as the energy transmission situation.

Fig. 11 depicts the transmission and reflection coefficients

based on SSG theory and classical theory. Compared with
the classical transmission coefficient Tc and reflection coeffi-
cients Rc which stay still in whole frequency range, the SSG
theory results are frequency dependent and change signifi-

cantly especially for R1. In higher frequency, R1 decrease dra-
matically compared with the classical result, while T1 changes
slightly. Transmission and reflection coefficients T2; T3, R2

and R3 all grow up as frequency goes up.
In order to verify the size effect for the wave reflection fea-

tures, reflection coefficients of wave k1 propagating in these

two SSG theory based rods with increasing dimensions are
analyzed and the results are illustrated in Fig. 12. We can
see the reflection coefficient of k1 increase and approach to

the classical result as the cross section radius r increasing from
5a0 to 15a0.

Based on the previous formulation, it is admitted that the
energy converted to the extra evanescent waves k2 and k3 leads

to great differences in energy transmission. To achieve more
information, we intended to calculate the energy conserved
in all three modes separately, but it is impossible due to the
Fig. 11 Transmission and
strong coupling between these three modes refer to energy flux.

Therefore, in order to investigate the energy transmission ratio
in SSG theory model, Fig. 13 is plotted.
reflection coefficients.
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Fig. 13 shows the distribution of transmitted energy and
reflected energy conserved in all 3 modes. We notice that even
though the energy transmitted ratio with SSG theory formula-

tion is increasing and reflected ratio is decreasing, the summa-
tion of them is still ‘1’, which indicates the previous
formulations are valid. With the enriched model, energy is pre-

dicted to transmit more and reflect less. Combined with Fig. 11
(a), we noted that that the transmitted energy diffuse quite
large percentage to wave modes k2 and k3, so T1, the transmis-

sion coefficient of wave k1 is actually decreasing. Conversely,
the total reflected energy decreases slightly, but with consider-
ing the energy diffusion into k2 and k3, the reflection coefficient
for wave k1 decreases dramatically.
6. Conclusions

Wave propagation in SSG theory based media with consider-
ation of the heterogeneity caused by micro-structure effect is
different from the conventional one. In order to analyze this
special behavior, we established an enriched model based on

Mindlin’s Second Strain Gradient (SSG) theory. This formula-
tion allows the micro-structure’s effect to be captured by con-
sidering the higher order strains and the heterogeneity to be

described in the frame of continuum mechanics. From the
numerical calculations, one can see that the proposed SSG the-
ory based rod model is effective in predicting the non-classical

dispersive behaviors in complex media, and that results are in
good agreement with some literature.32,33,44,45 Apart from the
dispersion characteristics, this research also highlighted a num-
ber of interesting features of the modal density, the energy flux

and the resulting forced response of the rod. Wave transmis-
sion and reflection between two different waveguides in second
gradient material was also investigated. Some conclusions can

be drawn from the numerical calculation and discussions as
follows:

(1) There are three waves in second gradient rod, one is the
propagating non-classical longitudinal wave k1 which
exhibits dispersive feature, and the dispersive behavior

become more prominent in higher frequency. The other
two waves k2 and k3 are both evanescent. In higher fre-
quency, energy dissipation through viscous damping for
wave k1 become negligible compared with classical

result. As dimension goes up, micro-structural effect is
weaken for the reason that the length of inner hetero-
geneity is less comparable to the increasing structural

characteristic length, and wave k1 become less
dispersive.

(2) The proposed formulation of the energy flux is vali-

dated, as the energy V e and group cg velocities of wave

k1 are proved to be identical in all the frequency range.

Energy flux is coupled with one classical force and two
higher order forces, which are respectively the resultants
of classical and higher order stresses through the surface

of the section.
(3) The statistical value of the modal density for the non-

classical longitudinal wave k1 decreases drastically com-

pared with classical results. This is due to the influence
of micro-structure. This phenomenon becomes more
pronounced as the model characteristic size decreases.
From the FRF analysis, the resonant frequencies are dif-
ferent, the values of SSG theory shift to higher frequen-

cies compared to classical ones. These unusual behaviors
can be explained with different energy transfer through
the extra evanescent waves k2 and k3 especially in higher

frequency range when the wavelength and the structural
characteristic length are in the same order.

(4) Wave reflection and transmission on a discontinuous
surface based on the enriched model are highly different

from the classical theory ones. Vibration energy of the
incident wave is predicted to transmit more and reflect
less, while the transmitted and reflected energy is con-

served in all three modes. Due to the influence of modes
k2 and k3, energy attenuation increases to some extent.
Therefore, the transmission coefficient of the propagat-

ing wave k1 decrease slightly and the reflection coeffi-
cient decreases drastically. The higher the frequency
becomes, the greater the impact of micro-structure.
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