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Comparison of uncertainty quantification process using statistical and data mining algorithms

Keywords: Global Sensitivity Analysis, Random Forest, FAST, Sound Transmission Loss, Sandwich panel, Composite material

Uncertainty quantification has always been an important topic in model reduction and simulation of complex systems.

In this aspect, Global Sensitivity Analysis (GSA) methods such as Fourier Amplitude Sensitivity Test (FAST) are well recognized as effective algorithms. Recently, some data-based meta-modeller such as Random Forest (RF) also developed their own variable importance selection solutions for parameters with perturbations. This paper proposes a visual comparison of these two uncertainty quantification methods, using datasets retrieved from vibroacoustic models. Their results have a lot in common and are capable to explain many results. The remarkable agreement between methods under fundamentally different definitions can potentially improve their compatibility in various occasions.

Introduction

The trend of increasing complexity of mathematical models in various domains has resulted increasing parametric uncertainties for their inputs. Whereas these uncertainties may often impact directly the output, the need for model uncertainty quantification has been greatly raised. Focusing on analytical expressions, Sensitivity Analysis (SA) is a traditional way to get the uncertainty of output explained by the uncertainties of inputs. Fixing all variables except one to observe its influence on the output, which is exactly the spirit of Local Sensitivity Analysis (LSA), has already been performed by scientists and engineers through thousands of years. Later entering the information age, with the support of computational calculation capability, some more stochastic algorithms and data-based algorithms have been developed and have got apparent advantage towards old LSA methods.

Global Sensitivity Analysis (GSA), namely being distinguished as the opposite conception of Local Sensitivity Analysis, is a category of advanced SA methods. The key idea of GSA is to vary all the inputs together and to study
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simultaneously their sensitivity using the same datasets. This approach makes it possible to estimate the interaction effects among variables [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates[END_REF] and to avoid the curse of dimensionality [START_REF] Bellman | Dynamic Programming[END_REF]. Literally, GSA methods can be applied on 13 most kind of mathematical models with quantitative inputs and outputs. Beginning by some applications in chem-14 istry [3], GSA has been proved effective in civil engineering [START_REF] Gaspar | Methodology for a probabilistic analysis of an RCC gravity dam construction[END_REF], climate change [START_REF] Zheng | Spatiotemporal pattern of the global sensitivity of the reference evapotranspiration to climatic variables in recent five decades over China[END_REF], safety measurements [START_REF] Borgonovo | Comparison of global sensitivity analysis techniques and importance measures in psa[END_REF], and among others. Fourier Amplitude Sensitivity Test (FAST) algorithm, firstly proposed by Cukier et al. [START_REF] Cukier | Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. i theory[END_REF], is one of 16 the most efficient GSA algorithms. Improved by Saltelli and Bolado [START_REF] Saltelli | An alternative way to compute fourier amplitude sensitivity test (fast)[END_REF], FAST has now been perfectly integrated into

17
the sensitivity indices proposed in the paper of Sobol' [START_REF] Sobol | On sensitivity estimation for nonlinear mathematical models[END_REF], with a rather brief computational approach [START_REF] Xu | Understanding and comparisons of different sampling approaches for the fourier amplitudes sensitivity test (fast)[END_REF]. It can 18 calculate Sensitivity Indices (SIs) based on a unique analytical expansion of ANOVA (ANalysis Of VAriance), and its application has been introduced into vibro-acoutstic domain since recent year [START_REF] Christen | Global sensitivity analysis of analytical vibroacoustic transmission models[END_REF]. In general, GSA methods help to [START_REF] Saltelli | Sensitivity analysis in practice: a guide to assessing scientific models[END_REF] indicate the variables which should get fixed or be paid on attention with priority in case of model optimization and 21 condensation.

22

Since GSA mainly serves for metamodelling, data mining models themselves are metamodels based on great 23 number of samples. As other metamodels, data mining models can do estimations and predictions (classifiers and regressioners), and are also capable for some extra functions such as clustering. Generally the implementation of 25 these models do not rely on preliminary studies such as GSA: they often regard the uncertainty of inputs as part of the 26 models themselves. For some algorithms such as Random Forest (RF), they can further rank the importance of inputs 27 after the constructions of metamodels, based on how easily the estimation will get wrong if some certain inputs get 28 disturbed. With the explosion of data size on the Internet, these data-based methods become highly recommended.

29

Instead of traditional mathematical tools, data mining and deep learning have become the main tools for data analysts 30 either in industry or in academia. The current RF algorithm in use is almost the same as it was proposed [START_REF] Breiman | Random Forests[END_REF], and has 31 been validated to be parametrically robust [START_REF] Coulston | Approximating prediction uncertainty for random forest regression models[END_REF], and compatible for various data types [START_REF] Hengl | Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables[END_REF]. Apart from informational 32 industries, the use of RF can be found, among others, in the following domains: ecology [START_REF] Cutler | Screening for maternal depression in a low education population using a two item questionnaire[END_REF], medicine [START_REF] Klassen | Impact of caring for a child with cancer on parents' health-related quality of life[END_REF], trans- paper, some publications can be referred to: application of FAST on analytical models of sound transmission [START_REF] Christen | Global sensitivity analysis and uncertainties in sea models of vibroacoustic systems[END_REF] 39 and application of RF on numerical datasets of sound emission [START_REF] Morizet | Classification of acoustic emission signals using wavelets and random forests: Application to localized corrosion[END_REF] for example. Conducted from these research 40 cases, some impressive properties can be drawn on FAST and RF. In the aspect of theoretical basis, FAST seems to 41 be more analytically solid while RF gives a more practical definition of sensitivity indicator. In the aspect of scientific 42 applications, FAST is a tool of preliminary study while RF is a metamodeler. In terms of advantage/disadvantage,
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FAST is fast yet too statistical, and RF is functionally strong but without a convincing theoretical basis. Witnessing 44 the pros and cons of both algorithms, a comparison between them on their uncertainty quantification abilities could

V(Y) ≈ 2 (N-1)/2 j=1 (A 2 j + B 2 j ), ( 3 
)
where N is the total sampling number chosen to accord to the value of M and

A j = 1 2π π -π f (x 1 , x 2 , ..., x n ) cos( js)ds, B j = 1 2π π -π f (x 1 , x 2 , ..., x n ) sin( js)ds.
In FAST, the discrete sampling vector X i is generated by

x ( j) i = 1 2 + 1 π arcsin(sin(ω i s ( j) + φ i )), (4) 
where ω i is the characteristic frequency particularly chosen for each X i , depending on the value of M. φ is a set 76 of random numbers generated for this quasi-random sampling process. Then the V i used for the estimation of S i is 77 approximated by:

78 V i ≈ 2 M j=1 (A 2 jω i + B 2 jω i ). (5) 
The proof of results uniqueness and model convergence can be found in [START_REF] Saltelli | A quantitative model-independent method for global sensitivity analysis of model output[END_REF]. and is placed at the root of the tree. The selected variable divides the observations in hand into two groups with a given 92 variance for each group. CART method chooses the variable that minimizes the weighted sum of these variances. The 93 same procedure is recursively applied to each group. There may be many conditions to stop partitioning a node. When a node is no more partitioned, it is called a leaf node.

95

Noted that for RF algorithm to build one CART, an important point is the subsampling (with replacement) of data 96 points during the tree construction. Another point is to choose a subset of attributes to be used in that tree. This type 97 of data operation is called 'bagging', thus its specific cross-validation algorithm is named as Out-Of-'Bag' (OOB) CART has a statistical explanation. For a dataset S with n elements, if n randomly drawn are taken with replacement, 114 the expectation of total unique elements to be drawn when n become large enough is: 

115 (1 -(1 -1/n) n )n ≈ (1 -e -1 )n ≈ 0.632n. ( 6 
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The most obvious defect for this results comparison is that the curve in 4 is not as smooth as the one in 3, one 212 possible explanation lies in the random permutation of the variables. In real 'random' case, a 1% error and a -20% 213 error will eventually make a difference. Besides, the fact that all inputs have taken uniform distribution instead of 214 Gaussian distribution may also have an impact on these oscillations. The comparison between Fig. 5 to Fig. 3 shows that the two models reflect eventually to the same problem, 219 although a minor difference can be observed. Most of the particular points mentioned in last part can also be found in 220 these graphs, such as the critical frequency, the point of property transfer and even the fact that E s is only influential 221 around the critical frequency.

222

Also, from the comparison between Fig. 6 and Fig. 4, no similar unsmoothness can be found in common. This 223 detail shows that the unsmoothed curves are likely to be caused by random errors, rather than some systematic singular 224 points. Slight vibration on the curve can even also be observed in Fig. 5 at high frequency. In case of the TMD system excited by a base acceleration ÿb , the structural response is determined by the following 234 motion equation [START_REF] Igusa | Vibration control using multiple tuned mass dampers[END_REF]:

235 Mÿ(t) + Cẏ(t) + Ky(t) = -Mrÿ b (7) 
where the state space y = y s 1 , . . . , y s p , y T 1 , . . . , y T q T , r = [1, 1, . . . , 1] T 1×(p+q) . M is the mass matrix, C the damping 236 matrix, K the stiffness matrix. In this test, the simplest form of TMD system is chosen for the sake of computational cost, with only 2 DOFs and 239 1 TMD resonator. Uncertainties are given to 6 of these structural parameters: 

X = m s 1 , c s 1 , k s 1 , m s 2 , c s 2 , k s 2 , ,

266

The fact that the bias ordinarily occurs can be intuitively explained. As RF gives an estimation made by a large 267 group of regressive decisioners, the results will always tend to become closer to the global average value. An example 268 of how these phenomena can ruin the estimation can be seen in Fig. 10:

269

The quasi-continuous output design of the RF and the CARTs yields to make estimation results to vary very smoothly along the variation of some certain inputs. This property is responsible some serious distortion towards the 271 discontinuity of original data.

272

Meanwhile, the error could be reduced as the values are graphically distributed along a biased line, as shown in 273 Fig. 9. Therefore, a good opportunity actually exists to improve its estimation using some geometrical corrections 
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 22 Difficulties during interpretation of sensitivity indices

Figure 1 :

 1 Figure 1: A simple diagram of Random forest estimation process [25].
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 31 Classification And Regression Tree (CART)108CART is one category of decision trees capable to treat continuous inputs and outputs for regression problems. In 109 an RF model, several dozens of trees are required to obtain convergent results. For the purpose of 'randomize' the 110 'forest', each CART is randomly parameterized. 111 Firstly, each CART randomly selects about 60% of the total training data as its own training data, and the rest will 112 later be used in the OOB validation phase. Such convention of taking about 60% of the total training data for each 113
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 41 Acoustic transmission loss of sandwich panels 160The Transmission Loss (TL) is a very important criterion of material's sound isolation capacity. This value gener-161 ally represents how much the power of the sound wave can be decreased after travelling through the piece of material.
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Figure 2 :

 2 Figure 2: A model of sandwich panel with honeycomb structures.
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 524 Figure 4: Variable importance sorted by RF OOB validation and normalized with the results of FAST, samples from analytical model.

225Figure 5 :Figure 6 :

 56 Figure 5: Sensitivity indices obtained by FAST, samples from WFE model.

Figure 7 :

 7 Figure 7: A TMD system composed of a main structure with p DOFs (Degrees Of Freedom), and a TMD structure with q DOFs.
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 61 Testing preset 238

Figure 9 :

 9 Figure 9: A mapping of estimated values towards original sampling values.

Figure 10 :

 10 Figure 10: An example of how RF estimations (orange points) mistreat function discontinuity and lost extreme values(blue edge).

  Secondly, to ensure the efficiency, all CARTs used in RF are binary trees, which means that at each node the 118 training data will be divided into two parts satisfying the least square criterion. Normally, all the input datasets need 119 to be screened in order to find the optimized split point of decision trees. While for RF, in order to avoid local Lastly, in cases of continuous output, the nodes are considered to be enough converged and become a leaf node After normalization, each S OOB i represents the percentage of wrong estimations caused by the 141 uncertainty of x i . Compared to FAST, though the reliability of this index can hardly be proven in analytical means, This section details the methodology of uncertainty quantification methods applied on vibroacoustic models with 149 all input-output variables justified. The datasets being used in this research are retrieved from a former study on 150 acoustic sandwich materials. Being a model with 13 inputs and 1 output, each dataset contains 20 000 samples in 151 form of y = f (x 1 , x 2 , ..., x 13 ).For an acoustic model, the frequency response, as the model output, must be repetitively evaluated on a continuous 153 frequency interval. 100 frequencies are taken in this test to fit a curve from 100Hz to 10 000Hz. Under each frequency, 154 the 20 000 {x 1 , x 2 , ..., x 13 } input vectors are the same while their corresponding y values are different.In addition, for this simple acoustic models, the y value can be obtained either by analytical model or Wave Finite-

		4. Experimental design and datasets generation
	120		
	152		
	121	optimums, only limited randomly picked inputs are chosen to be screened for each split. Normally for a dataset with
		√	
	122	K features,	K features will be chosen for a classification case and K/3 features will be chosen for a regression case.
	123	In this way the trees can have a much larger variety of 'personalities' without being dominated by certain variables
		with dominant influence on the output.
	144		
	145	possibly because of its low calculation efficiency. But theoretically it works on all types of samples that FAST is
	146	capable to treat, and supports better the models with correlated datasets and strong non-linearities. Compared with
	147	ANOVA and FFT, the logistic binary trees are perfectly compatible with sampling continuity.
			6

) basis for generating trees with different 'backgrounds'. 117 124 125

when split training samples already meet the convergence criterion. The criterion can either be a certain amount of 126 depth of the tree, a small margin of value bounds, or a rather low threshold of group variance. All these criteria have 127 been proved to be statistically stable and capable to reduce the total variance. Logically each CART will take average 128 of leaf node sample values as a single-tree estimation value, then the whole RF will again calculate the average of all 129 these estimation values to make a final decision of classification or prediction. These procedures makes an RF with 130 'democratic' semi-continuous outputs. 131 3.2. Out-Of-Bag (OOB) validation

132

The OOB validation refers to the techniques of using unbagged samples as validation sets for each CART, giving an 133 all-over percentage of correct estimation P, where higher value generally means better approximation. The importance 134 selection mechanism is exactly based on this notation P of OOB validation. Each time all the sampling values of a 135 certain feature x i will be randomly permuted, so that this value will become some irrelative noise value. The difference 136 S OOB i = P -P(x i randomly permuted) is defined in this case the importance factor of x i . Or it can also be called 137 'OOB-based sensitivity index'. A greater value of this index means more serious estimation error would be made if 138 this input gets disturbed, so more importance should be given to quantify its uncertainty. 139 This 'sensitivity index' has very direct practical meaning as the probability of causing RF estimation error when 140 facing uncertainty. 142 much fewer restrictions of application is one important advantage for this method.

143 OOB validation is an essential component of RF, while it rarely serves independently as an uncertainty indicator, 155 156 Element (WFE) model. These two models give slightly different results and are also taken into comparison in this 157 research. So in total there are two 20000 × 13 × 100 3d-matrices of input values x and two 20000 × 100 matrices of 158 output values y.

Table 1 : 167 Table 1 :

 11671 Table of variables and their distributions (Uniform[minvalue, maxvalue] and Exponential[minvalue, maxvalue])The mean values of these variables are mostly obtained from experiments while some other parameters such as air sound speed are fixed as constant.

	Notation	Variable	Value distribution Unit
	Inputs			
	E c	Core material Young's modulus	U[13.6, 20.4]	GPa
	E s	Face-plate Young's modulus	U[56, 84]	GPa
	h c	Core layer thickness	U[16, 24]	mm
	h s	Face-plate thickness	U[0.8, 1.2]	mm
	l	Non-vertical meso-structural length U[2.08, 3.12]	mm
	l h	Vertical meso-structural length	U[2.08, 3.12]	mm
	t	Meso-structural wall thickness	U[0.08, 0.12]	mm
	η	Structural damping factor	U[0.004, 0.006]	-
	θ	Meso-structural angle	U[24, 36]	deg
	ν c	Core material Poisson's ratio	U[0.272, 0.408]	-
	ν s	Face-plate Poisson's ratio	U[0.16, 0.24]	-
	ρ c	Core material density	U[2160, 3240]	kg/m 3
	ρ s	Face-plate density	U[2440, 3760]	kg/m 3
	Output			
	TL	Acoustic Transmission Loss	-	dB
	Parameter			
	f	Frequency	Exp[100, 10000] Hz
		8		

s Figure 3: Sensitivity indices obtained by FAST, samples from analytical model.

Some graphical details can also be found in both results. Around 350Hz, the sensitivity index of h c gradually 200 decreases and then re-increase into the most influential parameter, similarly for h s at 400Hz. Further analysis shows 201 that at 340Hz, TL and h c turn from negative correlation to positive correlation. At that point, TL is almost irrelevant 202 to h c , no matter other parameters' values are. A similar property can also be observed for h s , but as h s has a much 203 smaller value than h c , its evolution is less evident. Noteworthy, around 700Hz, the sum of variance-based sensitivity 204 indices becomes suddenly very small. This frequency corresponds to the coincidence (i.e. critical) frequency of the 205 panel, where the acoustic model gets insensitive to inputs' uncertainties at this point. Under this frequency, a small 206 sum of S i indicates that large error is present and FAST can no longer guarantee the effectiveness of its SA results.
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Under the methodology of sensitivity analysis, it means that the uncertainty of model output is quantified but unable 208 to be apportioned to model inputs. At similar frequency slightly below 700Hz, the RF OOB error curve also reaches 209 a peak above 50%, meaning horrible approximation by RF, so the results of OOB importance selection can neither be 210 trusted.

  6. Supplementary test case on Tuned Mass Damper (TMD) systems 230In order to test the rigidity of both methods, another comparison of their application on Tuned Mass Damper 231 (TMD) system is given in this section. TMD systems are classical solutions for the absorption of vibration energy in 232 huge-volume structures, a typical one can be presented in Fig.7.
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			Main structure Main structure		TMD structure TMD structure

Table 2 :

 2 for this 240 system excited by a white noise with a power spectral density of 015m 2 /s 3 , and the maximum displacement response Structural parameters Then, looking at the values of SIs obtained by FAST and RF, both methods indicate that m s 1 and m s 2 are the most Generally FAST tend to under estimate the sensitivity of m s 1 and m s 2 and overestimate c s 1 . In previous studies, FAST has often been found to tend to underestimate SIs, while the overestimate is quite difficult to

	241	
	242	of y s 1 is studied as model output.
	243	2000 independent datasets of 6 inputs and 1 output are generated by the classic solution using Finite Element
	244	Analysis (FEA), and will be evaluated separately by FAST and RF to get a comparison. Also, as the maximum
	245	structural displacement is calculated upon Gaussian noise excitation, multiple noise samples are also prepared to
		avoid their random effects on SA results.

246 253 257

As for the comparison between FAST and RF, some differences are observed, but both give similar order of 258 parametric importance.

  This paper presents a comparison between two uncertainty quantification algorithms of different categories, namely277FAST and RF, with their applications on vibroacoustic models. FAST is a classic statistic global sensitivity analysis 278 method, with well-established theory basis and high calculation efficiency, while sometimes its results can be difficult 279 to interpret in industrial cases. Random Forest is an upcoming data mining based regressionier and classifier, capable 280 to build metamodels in various cases. With the OOB design, RF is also capable to tell the importance of each variable, 281 but its selection feature is still intuitively defined and can not be recognized when not using RF. These are two different 282 methods with different theoretical structures while both capable to achieve the goal of uncertainty quantification.By comparing their numerical experiment results it is demonstrated that the two differently defined sensitivity 284 indicators S i and S OOB i can numerically reach a great agreement. Such results show a potential of numeric tools 285 being applied together in specific cases. The variance-based sensitivity indices can hardly be explained in engineering 286 word, which is the advantage of RF OOB variable importance indicator. A run of constructing and evaluating a RF 287 takes comparably long time but FAST can save the time and even give a reasonable proof for the results. The potential of combining the advantages of each tools may worth investigation for researchers and engineers.289 Furthermore, with a vibroacoustic background, the special properties of sandwich composite panel also helps to 290 find out some weakness of the mentioned algorithms. More study on this problem can make further improvements on On behalf of all authors, the corresponding author states that there is no conflict of interest.Results presented in this paper can be replicated by applying standard FAST and Random Forest algorithms on 296 vibroacoustic models that estimate the TL of sandwich panels. The model for the homogenization of the honeycomb 297 structure can either be the analytical model (Gibson-Malek) or the WFE model (J.-L. Christen).
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The present paper is organized as follows: In sec. 2, the basis of variance-based GSA are presented, along with