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Converging outer approximations to global
attractors using semidefinite programming

May 14, 2020

Corbinian Schlosser1, Milan Korda1,2

Abstract

This paper develops a method for obtaining guaranteed outer approximations for
global attractors of continuous and discrete time nonlinear dynamical systems. The
method is based on a hierarchy of semidefinite programming problems of increasing size
with guaranteed convergence to the global attractor. The approach taken follows an
established line of reasoning, where we first characterize the global attractor via an infi-
nite dimensional linear programming problem (LP) in the space of Borel measures. The
dual to this LP is in the space of continuous functions and its feasible solutions provide
guaranteed outer approximations to the global attractor. For systems with polynomial
dynamics, a hierarchy of finite-dimensional sum-of-squares tightenings of the dual LP
provides a sequence of outer approximations to the global attractor with guaranteed
convergence in the sense of volume discrepancy tending to zero. The method is very
simple to use and based purely on convex optimization. Numerical examples with the
code available online demonstrate the method.

Keywords: Global attractor, outer approximations, dynamical systems, infinite-dimensional
linear programming, sum-of-squares, semidefinite programming, occupation measures

1 Introduction

The global attractors, i.e., sets to which all trajectories converge asymptotically, are typical
and important objects in the analysis of dynamical systems. These sets have many intriguing
and desirable properties; for instance, all trajectories can be approximated by trajectories
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on the global attractor asymptotically (see [29] or Remark 2 2.). In terms of applications
for control, the global attractor determines the set of all states to which trajectories asymp-
totically converge under a given feedback control law. This set may be a single point in the
state-space or a more complicated object such as a periodic orbit, either by design or due to
nonlinearities (e.g., dead-zone, backlash, quantization etc.) that prevent stabilization to a
single point [3]. Localizing this set in the state-space is therefore important for determining
the asymptotic performance of the controller.

We approach the problem of state-space localization of the attractor from a convex optimiza-
tion viewpoint, utilizing the so-called occupation measures (primal problem) or continuous
functions (dual problem) defined on the state space; both of these problems are infinite-
dimensional linear programs (LPs). The approach builds on the work [10] that characterizes
and approximates computationally the maximum positively (or control) invariant set; the
second ingredient of our approach is the characterization of the global attractor as the largest
set that is invariant both forward and backward in time. This leads to an infinite dimensional
LP characterization of the global attractor. In order to solve the resulting infinite dimen-
sional linear program we apply the moment-sum-of-squares hierarchy (see, e.g., [15] and [17]),
leading to a sequence of finite-dimensional semidefinite programming problems (SDPs). So-
lutions to these SDPs provide guaranteed enclosures of the global attractor which are proven
to converge in terms of volume discrepancy tending to zero. We treat both the continuous
and discrete time systems, with the latter being more challenging theoretically due to time
reversal issues. The approach is very simple to use, with the outer approximations obtained
from the solution to a single convex SDP without any iteration or complicated initialization.

Historically, the idea of transforming various problems from nonlinear dynamical systems and
control into infinite-dimensional LPs dates back at least to the work [30] dedicated to optimal
control. Solving these problems by a hierarchy of semidefinite problems (SDPs) with proven
convergence was proposed in [16], although SDP approximations to infinite-dimensional LPs
were used already in [27] for the problem of global stabilization. Since then, this approach
was used to tackle a number of problems, including the region of attraction [8], maximum
(control) invariant and reachable sets [10, 21] or, more recently, analysis and control of
nonlinear partial differential equations [6, 11, 22], to name just a few. Closest to our work
from this line of research is [5], treating the problem of estimating the maximum of a given
function on the attractor.

A classical approach to attractors is via Lyapunov functions (see, e.g., [4]). There are many
ansätze for constructing Lyapunov functions. Some use partial differential equations, like
Zubov’s equation, whose solutions give Lyapunov functions. A partial differential inequality
of a Lyapunov type also occurs in our approach and partial differential equation appears in
one of our proofs as a technical tool. Sum-of-squares methods have been systematically used
for stability analysis of given fixed points or attractors through searching for polynomial
Lyapunov functions (e.g., [24, chapter 7]). However, the goal of this work is not stability
analysis of a given attractor but rather localization of an unknown attractor in the state-
space. Other possible approaches for approximating global attractors are, for example, the
set oriented methods [1].
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2 Notations

The natural numbers are with zero included and denoted by N. The function dist(·, K)
denotes the distance function to K and dist(K1, K2) denotes the Hausdorff distance of two
subsets of Rn. The set of positive measures on Rn supported on X are denoted by M(X).
The support of an element µ ∈ M(X) is denoted by supp(µ). The space of continuous
functions on X is denoted by C(X) and the space of continuously differentiable functions on
Rn by C1(Rn). The Lebesgue measure will always be denoted by λ and its restriction to X
by λ

∣∣
X

. The indicator function for a set C ⊂ X is denoted by IC : X → R and is given by
IC(x) = 1 if x ∈ C and IC(x) = 0 else. The ring of multivariate polynomials in variables
x = (x1, . . . , xn) is denoted by R[x] = R[x1, . . . , xn] and for k ∈ N the ring of multivariate
polynomials of total degree at most k is denoted by R[x]k. We will denote the open ball of
radius r with respect to the euclidean metric by Br(0).

3 Setting and preliminary definitions

Let X ⊂ Rn be compact and f : Rn → Rn have locally Lipschitz continuous derivative. Let
ϕt(x0) be the solution at time t of

ẋ = f(x), x(0) = x0 ∈ Rn (1)

The set of all initial values x0 ∈ X such that ϕt(x0) ∈ X for all t ∈ R+ is called the maximal
positively invariant (MPI) set and will be denoted by M+ in the following.

Definition 1 (Global attractor) A compact set A ⊂ X is called a global attractor if it is
minimal uniformly attracting, i.e., it is the smallest compact set A such that

lim
t→∞

dist(ϕt(M+),A) = 0,

where M+ is the MPI set.

Remark 1 Initial conditions of trajectories that leave X at some point (even though they
may return to X) are not part of the global attractor A. However, all trajectories that stay
in X for all positive times converge to A uniformly as t→∞. A global attractor is maximal
invariant (forward and backward) [29], i.e., for all t ∈ R+ the flow ϕt(x) is defined for all
x ∈ A and we have ϕt(A) = A. Further, if a global attractor exists it is unique. This is an
immediate consequence of being minimal attractive [29].

It is worth mentioning some differences between the global attractor and the weak attractor
Aw given by the smallest closed set that attracts all trajectories, i.e. for all x ∈M+

dist(ϕt(x),Aw)→ 0 as t→∞. (2)

Obviously we have Aw ⊂ A but those sets can differ significantly. A typical example that
illustrates many differences is a dynamical system that is given by a heteroclinic orbit Γ,
connecting an unstable equilibrium point x0 with a stable equilibrium point x1, e.g.,

ẋ = (x+ 1)(1− x), x ∈ R.
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The weak attractor is given by Aw = {x0, x1} = {−1, 1} while the global attractor is given by
A = Γ = [−1, 1]. The latter is due to ϕt(Γ) = Γ because x0 = −1 is an unstable equilibrium
point. The topological differences in this case are obvious. But one might wonder why it
is of interest to work with the much larger set A instead of Aw. This question is of course
very reasonable and has good answers. We refer to [29] for an exhaustive treatment of global
attractor and state some results from there here.

Remark 2 The global attractor has the following properties

1. The global attractor is Lyapunov stable.
An example for an unstable weak attractor is a heteroclinic orbit or Vinograd’s exam-
ple [23, p. 115].

2. “The global attractor approximates trajectories” [29]: For all x ∈M+, T > 0 and ε > 0
there exists a t0 = t0(T, ε) ∈ R+ (independent of x) and x0 = x0(x, T, ε) ∈ A such that

‖ϕt(x)− ϕt(x0)‖22 < ε for all t ∈ [t0, t0 + T ].

Weak attractors have a similar property but in case of a weak attractor the time t0
cannot be chosen uniformly in x, i.e. t0 depends on x in general. An example is given
by a simplified version of the system from [9] p. 287 and [13] given by

θ̇ = sin(θ)2

on the set X = [0, 2π) identified with the unit circle. The weak attractor is given by the
equilibrium points, i.e. Aw = {0, π}. Both equilibrium points are unstable and hence
t0 cannot be chose uniformly in the initial value.

3. The global attractor is upper semicontinuous (see [29] for the result and related defini-
tions). That means small changes of the vector field cannot cause drastic increase in
the global attractor.
An example of a weak attractor that explodes by a small change of the vector field can
be found in [29] p. 267, where a spiraling trajectory turns into a periodic orbit.

4. There exists a smooth Lyapunov function V : M+ → R such that d
dt
V (ϕt(x)) < 0 for

all x ∈M+ \ V −1({0}) and V −1({0}) = A.
Since the existence of such a Lyapunov function implies stability for the set V −1({0})
a weak attractor that is not stable (as in the first statement) does not allow such a
Lyapunov function.

5. If there exists a strict Lyapunov function V , i.e. V is strictly decreasing in time except
in equilibrium points, then by Lasalle’s invariance principle A is given by the unstable
manifold of all equilibrium points, i.e. the points that are repelled by the equilibrium
points. While the weak attractor is given by just the equilibrium points.

The last theorem should not be understood as critic on weak attractors. Weak attractors
still have interesting and good properties and tend to be much smaller sets than the global
attractors. If the notion of a weak attractor fits the application this is definitely desireable.
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The purpose of stating the above theorem is in pointing out why we have a special interest
in global attractors.

It seems reasonable that the global attractor is contained in the MPI set M+ because it
only cares about trajectories in the closed set M+. On the other hand for any x ∈M+ such
that ϕ−t(x) ∈ X for all t ∈ R+ (i.e. solving the differential equation backward in time) we
know that x = ϕt(ϕ−t(x)) has to be close to the global attractor for t ∈ R+ large enough
(because A is uniformly attracting). This motivates point 3) in the following theorem but
also introducing the maximal negatively invariant (MNI) set M− that consists of all points
x ∈ X such that ϕ−t(x) ∈ X for all t ∈ R+. In other words the MNI set is the MPI set for
the time reversed differential equation (i.e., for the ODE ẋ = −f(x)).
We will recall the following theorem on the existence of global attractors and connect the
global attractor to M+ and M−.

Theorem 1 Assume X ⊂ Rn is compact and f : X → Rn is (locally) Lipschitz then

1. The global attractor A exists.

2. The dynamical system is invertible on the global attractor, i.e. for all x ∈ A we can
define ϕt(x) for all t ∈ R and ϕ is continuous in (t, x).

3. The global attractor consists of all orbits of the solutions that exist for all times t ∈ R.

4. The global attractor is the maximal set that is positively invariant forward and backward
in time, i.e. A = M+ ∩M−.

Proof: A very good reference for the above result is [29] chapter 10 where the first three
statements can be found. The last statement is just a reformulation of the third statement.
�

4 A linear program for global attractors

In [10] a linear program (LP) for approximating the maximal positively invariant set was
presented. Theorem 1 shows that the global attractor is characterized as the largest set
that is positively invariant forward and backward in time. Hence combining the LP for
the maximal positively invariant set (in forward time) with the same LP in reversed time
direction gives the global attractor. This is the LP we will derive next. For an initial measure
µ0 ∈ M(X) and a discount factor β > 0 let µ be the discounted occupation measure, i.e.,
for a measureable set C ⊂ X the value µ(C) is defined by

µ(C) :=

∫
X

∞∫
0

e−βtIC(ϕt(x)) dµ0(x). (3)

Then µ is a well defined measure on X that measures the discounted average time spent
in C where the averaging is weighted by the initial measure µ0 (one can think of sampling
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initial conditions at random from the probability distribution given by µ0). By (3) and
integration by parts we get the following relation for all v ∈ C1(Rn), which we refer to as the
(continuous-time) Liouville’s equation∫

X

∇v · f dµ =

∫
X

∞∫
0

e−βt∇v(ϕt(x))f(ϕt(x)) dt dµ0(x) =

∫
X

∞∫
0

e−βt
∂

∂t
v(ϕt(x)) dt dµ0(x)

= −
∫
X

v dµ0 + β

∫
X

∞∫
0

e−βtv(ϕt(x)) dµ0(x) = β

∫
X

v dµ−
∫
X

v dµ0. (4)

The above equation is also a direct application of basic semigroup theory. For v ∈ C1(Rn),
Av := ∇v · f is the action of the generator of the Koopman semigroup Ttv := v ◦ ϕt whose
adjoint is called Perron-Frobenius semigroup and is given by the push forward Ptµ(C) :=

µ(ϕ−1t (C)) for measureable sets C ⊂ X. Hence the Laplace transform
∞∫
0

e−βtPtµ0 dt gives

the resolvent (Id− βPt)−1µ0 ([2] Theorem 1.10).

Heuristically the constraint that µ is a measure on X (and not on a larger set) enforces that
µ0 cannot be supported on a larger set than the MPI set M+; otherwise those points will
flow out of X in finite time, thereby making the support of µ larger than X.

A formal proof of the fact that whenever (µ, µ0) satisfies (4), then supp(µ0) is contained
in M+ is given in [10]. On the other hand we can always choose µ0 to be the restriction
of the Lebesgue measure to M+ and µ its corresponding occupation measure (3). Hence
maximizing the support of a measure µ0 satisfying the Liouville equation gives M+. However,
direct maximization of the support is computationally challenging. In order to circumvent
this challenge, we follow the same strategy as in [10]. Instead of maximizing the support we
will maximize the mass µ0(X) under the condition that µ0 is dominated by the Lebesgue
measure which is equivalent to µ0 + µ̂0 = λ

∣∣
X

for a µ̂0 ∈ M(X). That gives the following
linear program

sup µ0(X)
s.t. µ0, µ̂0, µ ∈M(X)∫

X

βv −∇v · f dµ =
∫
X

v dµ0 ∀v ∈ C1(Rn)

µ0 + µ̂0 = λ
∣∣
X

(5)

The invariance conditions for the reversed time direction is imposed by adding the Liouville
equation (4) induced by the vector field −f . This yields the following LP

sup µ0(X)
s.t. µ0, µ̂0, µ+, µ− ∈M(X)∫

X

βv1 −∇v1 · f dµ+ =
∫
X

v1 dµ0 ∀v1 ∈ C1(Rn)∫
X

βv2 +∇v2 · f dµ− =
∫
X

v2 dµ0 ∀v2 ∈ C1(Rn)

µ0 + µ̂0 = λ
∣∣
X

(6)

We have the following proposition.

Proposition 1 λ(A) is a lower bound for (6).
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Proof: For a measureable set C let µ0(C) := λ(A∩C) and µ̂0(C) := λ ((X \ A) ∩ C). Then
µ0, µ̂0 ∈M(X) and µ0+µ̂0 = λ

∣∣
X

. Let µ+ and µ− be the corresponding occupation measures
with discount factor β > 0 defined by (3) forward and backward in time. So (µ0, µ̂0, µ+, µ−)
is feasible and has objective value µ0(X) = λ(A ∩X) = λ(A) = λ

∣∣
X

(A). �

Unfortunately, for the primal approach, it is typical that the global attractor has vanishing
Lebesgue volume. This is the case for globally asymptotically stable fixed points or periodic
orbits but also for more complex dynamical systems as the Lorenz system. In such cases the
trivial measure µ = 0 is a minimizer of the primal LP. Although the primal LP gives the
correct volume, it is not of much (direct) help of finding the global attractor. But the dual
LP gives more insight into the global attractor as we will see in the next section.

5 The dual LP

The dual LP of (6) is given by

inf
∫
X

w dλ

s.t. (w, v1, v2) ∈ C(Rn)× C1(Rn)× C1(Rn)
−v1 − v2 + w ≥ 1
w ≥ 0
βv1 −∇v1 · f ≥ 0
βv2 +∇v2 · f ≥ 0

(7)

The following lemma is a direct generalization of a corresponding result from [10]. We state
the proof taken from [10] as well because it is crucial for the paper.

Lemma 1 We have v1 ≥ 0 on M+, v2 ≥ 0 on M− and hence w ≥ 1 on A.

Proof: It suffices to show v1(x) ≥ 0 on M+ because then the same arguments apply to v2

(in reversed time direction). The fact that w ≥ 1 on A follows then from −v1 − v2 + w ≥ 1
and A = M+ ∩M−.
Let us proof v1 ≥ 0 on M+. Feasibility implies

βv1(x) ≥ ∇v1(x)f(x) =
d

ds
v1(ϕs(x))

∣∣∣∣
s=0

.

Hence we get for all x ∈M+ and t ∈ R+

βv1(ϕt(x)) ≥ d

ds
v1(ϕs(ϕt(x))

∣∣∣∣
s=0

=
d

ds
v1(ϕs+t(x))

∣∣∣∣
s=0

=
d

dt
v1(ϕt(x))

Gronwall’s lemma gives v1(ϕt(x)) ≤ eβtv1(x) for all t ∈ R+, i.e.

v1(x) ≥ e−βtv1(ϕt(x)). (8)

But since ϕt(x) ∈ X for all t ∈ R+ because x ∈ M+ the right-hand side in (8) converges to
0 as t→∞. Hence v1(x) ≥ 0 for all x ∈M+. �
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The above lemma indicates how a solution of the dual LP should look like, i.e., that w = IA.
Since IA is not continuous on X (if A 6= X)), this implies that the solution to (7) is not
attained; however, a minimizing sequence exists and its infimum is equal to the supremum
in the primal problem (6), i.e., there is not duality gap. This is formalized in the following
crucial result.

Theorem 2 For all β > 0 there is no duality gap and the optimal value of (6) and (7)
is given by λ(A). The infimum in the dual program is not attained unless A = X. For a
feasible solution (v1, v2, w) of the dual problem we have A ⊂ w−1([1,∞)).

This statement shows that the global attractor can be approximated by superlevel sets of
functions w obtained from the dual problem and as the feasible solutions approach the
optimum this approximation gets tight.
Before we prove the theorem we want to mention the following. Since the global attractor
is given by the intersection of M+ and M− set we can first apply the linear program from
[10] to find M+ and in the next step apply the same problem to the dynamical system with
reversed time direction to find the part of M− laying in M+. Since it was shown in [10] that
there is no duality gap in each step there will be no duality gap for the LP given here. The
arguments used in [10] use infinite-dimensional LP theory while we will give a constructive
proof.
In the case of regularizing discount factor β > Lip(f) we will construct a sequence of feasible
solutions (v1m, v

2
m, wm)m∈N such that wm → IA in L1(X,λ); in particular this is a minimizing

sequence by Lemma 1.
Before proving Theorem 2, let us state the following classical result [18, Theorem 2.29].

Proposition 2 For each closed set C ⊂ Rn there exists a bounded function p ∈ C∞(Rn)
such that p−1({0}) = C and p(x) ≥ 0 for all x ∈ Rn.

Proof: of Theorem 2. We start with the easy part, namely that the superlevel sets
w−1([1,∞)) give outer approximations of the global attractor A. By Lemma 1 we have
w(x) ≥ 1 on A. This also shows that the infimum can only be attained if IA is continuous
on X which is the case if and only if A is one connected component of X. But since A
has non-empty intersection with every connected component of X (see [29]) it follows that
A = X. And in that case we can choose w = 1 everywhere and v1 = v2 = 0.
For the rest we only cover the case β > Lip(f). We need this technical assumption in order
to guarantee that our construction gives a sufficient regular function (namely C1). Note that
the general case is covered by applying the arguments from [10] twice, once forward in time
and once in reversed time direction.
The idea is that we will define suitable functions v1m, v

2
m that satisfy the equation βv1m −

∇v1mf ≥ 0 and βv2 + ∇v2 · f ≥ 0 respectively and build a minimizing sequence based on
those functions.
Let us start with a technical construction motivated by a similar construction in [12]. We
want to recognize which points leave X. Without loss of generality we can assume f being
globally Lipschitz with globally Lipschitz derivative since, under our assumptions, one can
always modify f outside of X in this fashion. This does not affect the result because the
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global attractor is only determined by the dynamics in X. We denote the corresponding flow
also by ϕ. We note that this flow exists for all (t, x) ∈ Rn+1 and we have x /∈M+ if and only
if ϕt(x) /∈ X for some t ∈ R+. Let us choose p ∈ C∞(Rn) bounded such that p−1({0}) = X
and p > 0 everywhere else. For x ∈ Rn define

v1(x) := −
∞∫
0

e−βtp(ϕt(x)) dt. (9)

Then v1(x) < 0 if and only if there exists a time t ∈ R+ for which we have ϕt(x) /∈ X. In
particular v1 < 0 on X \M+. We will see that v1 satisfies βv1 − ∇v1 · f ≥ 0 on X. We
have ‖∂xϕt(x)‖ ≤ MeLip(f)t for some M > 0 and all t ∈ R+. Thanks to β > Lip(f) we can
interchange integration and differentiation and get for all x ∈ Rn

Dv1(x) = −
∞∫
0

e−βt∂x (p(ϕt(x))) dt = −
∞∫
0

e−βtDp(ϕt(x))∂xϕt(x) dt.

Further

βv1(x) = −β
∞∫
0

e−βtp(ϕt(x)) dt
p.i.
= −p(x) +

∞∫
0

e−βtDp(ϕt(x))f(ϕt(x)) dt

= −p(x)−
∞∫
0

e−βtDp(ϕt(x))∂xϕt(x)f(x) dt = −p(x) +Dv1(x)f(x).

where we have used in the third line the following relation

∂x0ϕt(x0) · f(x0) = ∂tϕt(x0) = f(ϕt(x0)).

This relation is the only part where we need f to have a locally Lipschitz continuous deriva-
tive.
Since p is vanishing on X we have βv1 −∇v1 · f = 0 on X and v1(x) < 0 for x /∈M+. Pro-
ceeding similarly backward in time we find v2 ∈ C1(Rn) that satisfies βv2 +∇v2 ·f ≥ 0 on X
and v2(x) < 0 for x /∈M−. In particular the triple (v1m, v

2
m, wm) := (m · v1,m · v2,max{0, 1 +

m · v1 +m · v2}) is feasible and as m→∞ we have wm ↘ IA. It follows from the monotone
convergence theorem that

∫
X

wm dλ →
∫
X

IA dλ = λ(A). By Proposition 1 we know that

λ(A) is a lower bound for the primal problem while the above shows that λ(A) is an upper
bound of the dual problem. Weak duality gives that λ(A) is the optimal value for both the
primal and dual LP. �

Note that for β > Lip(f) we have constructed a feasible solution (v1, v2, w) such that
w−1([1,∞)) = w−1({1}) = A.

6 Discrete time

In this section we consider discrete-time systems of the form

x+ = f(x).
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The main difference between continuous and discrete time is that continuous time systems
that are induced by ordinary differential equations with locally Lipschitz right-hand side
enjoy unique solutions forward and backward in time, which corresponds to injectivity of
the flow functions ϕt. Discrete-time systems do not have this property in general; these
systems are also well defined for maps f : X → Rn that are not injective. The problem
for our approach occurs when we want to invert time; for non-injective systems it means
that we may have multiple predecessors. Before we state the analogue result of Theorem 2
we will define the MNI set M− for discrete time systems and proceed analogously as in the
continuous time. The definition of the MPI set M+ does not change because the problem of
multiple successors does not occur. We will give an analogue LP that gives outer bounds for
the global attractor for discrete systems. If f is injective those outer bounds get sharp. From
now on we will always refer to a dynamical system of the form (X, (fm)m∈N) for a compact
subset X ⊂ Rn and a continuous map f : Rn → Rn, where f 0 := Id and fm+1 := f ◦ fm for
m ∈ N.

Definition 2 (Global attractor) A global attractor for the discrete time dynamical system
(X, (fm)m∈N) is a minimal compact set A such that

lim
m→∞

dist(fm(M+),A) = 0.

As for continuous time dynamical systems global attractors are unique, f(A) = A and they
enjoy many interesting properties. We refer to [29] for such properties and the following
result.

Theorem 3 (Existence of the global attractor) If X is compact the global attractor ex-
ists.

Definition 3 For a discrete time dynamical system (X, (fm)m∈N) we define the maximal
negatively invariant set as M− := {x ∈ X : ∀m ∈ N ∃xm ∈ X with fm(xm) = x}.

Remark 3 M− is given by
⋂
m∈N

fm(X) and hence is closed since f is continuous and X

compact.

Next we show that the global attractor in discrete time is also given by all the points that
stay in X for all positive and negative times.

Proposition 3 The global attractor for the discrete time dynamical system (X, (fm)m∈N) is
given by M+ ∩M−.

Proof: By Theorem 3 the global attractor exists. Let A be the global attractor. The
condition f(A) = A implies that A ⊂ M+ ∩M−. On the other hand the set M+ ∩M−
satisfies f(M+∩M−) = M+∩M−. This can checked as follows. Let x ∈M−∩M+. Then the
orbit of f(x) is contained in the orbit of x; hence f(x) ∈ M+ and for a sequence of points
xm such that fm(xm) = x we have fm(xm−1) = f(x) for all m ∈ N with x0 := x, hence also
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f(x) ∈M−. On the other hand obviously x = f(x1). Which shows f(M+∩M−) = M+∩M−.
Hence A ⊃M+ ∩M− by definition of the global attractor. �

The occupation measure with discount factor α ∈ [0, 1) is defined by

µ(C) :=

∫
X

∞∑
m=0

αmIC(fm(x)) dµ0(x), (10)

where the discount factor α ∈ [0, 1) plays the role of e−β in continuous time. And in an
analogous way to the continuous time case we get a primal LP for the MPI set M+ (see [10]
problem (6))

sup µ0(X) = sup

∫
X

1 dµ0

s.t. µ0, µ̂0, µ ∈M(X)∫
X

v − αv ◦ f dµ =

∫
X

v dµ0 ∀v ∈ C(Rn)

µ0 + µ̂0 = λ
∣∣
X
.

In the continuous time case we reversed time by making the vector field point in the reverse
direction. In discrete time we reverse time by considering the map f−1 but this might be
multivalued. In order to reverse the time direction we switch the position of f in the discrete
Liouville equation

p∗ := sup µ0(X) = sup

∫
X

1 dµ0

s.t. µ0, µ̂0, µ+, µ− ∈M(X)∫
X

v − αv ◦ f dµ+ =

∫
X

v dµ0 ∀v ∈ C(Rn)

∫
X

v ◦ f − αv dµ− =

∫
X

v dµ0 ∀v ∈ C(Rn)

µ0 + µ̂0 = λ
∣∣
X
. (11)

This gets clearer in the dual program that is given by

d∗ := inf

∫
w dλ (12)

s.t. v1, v2w ∈ C(Rn)

− v1 − v2 + w ≥ 1

w ≥ 0 (13)

v1 − αv1 ◦ f ≥ 0 (14)

v2 ◦ f − αv2 ≥ 0 (15)
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If f is invertible on X then the reversed time equation would read v2(y)− αv2(f−1(y)) ≥ 0
and the substitution x = f−1(y), i.e. y = f(x), gives v2(f(x)) − αv2(x) ≥ 0. But this is
exactly the term in the last line.
Again we start with stating a lower bound.

Lemma 2 Each feasible solution (v1, v2, w) satisfies v1 ≥ 0 on M+ and v2 ≥ 0 on M− and
w ≥ 1 on A. In particular w−1([1,∞)) ⊃ A and d∗ ≥ λ(A).

Proof: For feasible (v1, v2, w) we have for each x ∈ M+ that v1(x) ≥ αv1(f(x)) ≥ . . . ≥
αmv1(fm(x))→ 0 as m→∞ and for each x ∈M− with xm ∈ X such that fm(xm) = x that
v2(x) = v2(fm(xm)) ≥ αmv2(xm)→ 0 as m→∞. Hence for w we get w ≥ 1 + v1 + v2 ≥ 1
on A = M+ ∩M− and

∫
X

w dλ ≥ λ(A) since w ≥ 0 everywhere on X by (13). �

Next we solve the discrete dual Liouville equation with a right-hand side.

Lemma 3 Let α ∈ [0, 1). Let p ∈ C(Rn) be bounded and F : Rn → Rn be continuous . Then

v : Rn → R, v(x) :=
∞∑
k=0

αkp(F k(x)) (16)

is continuous and solves
v − αv ◦ F = p. (17)

The proof is just the discrete analogue of the calculations from the proof of Theorem 2.
Now we have everything we need to state the main theorem in the discrete case. But we
need an additional technical condition on f in order to reverse time direction.

Theorem 4 Let X ⊂ Rn be compact and f : Rn → Rn be continuous and injective on
X. Then for all α ∈ (0, 1) the optimal values p∗ and d∗ of the above LPs are given by
λ(A). For each feasible solution (v1, v2, w) of the dual problem we have A ⊂ w−1([1,∞))
and λ(w−1m ([1,∞))→ λ(A) for any minimizing sequence (v1m, v

2
m, wm) of feasible solutions.

Proof: The idea is again to construct a minimizing sequence for the dual problem, with
objective value converging to λ(A), explicitly. This then together with Lemma 2 and an
explicit construction of λ(A) as a lower bound for the primal LP guarantees that the optimal
value of both LPs are given by λ(A).
We choose any bounded function p ∈ C(Rn) such that p−1({0}) = X and p(x) < 0 for x /∈ X
(Proposition 2) and apply Lemma 3 to find a function v1 that satisfies v1 − αv1 ◦ f = p.
The function v1 solves the discrete Liouville inequality (14) since p = 0 on X. And further
by construction of v1 in (16) we have v1(x) < 0 if and only if x /∈ M+. We want to do
something similar for the time reversed equation. Therefore let us start with constructing
a “time reversed” system. Since X is compact and f is continuous and injective on X the
restriction f

∣∣
X

is a homeomorphism onto its image, i.e. f
∣∣
X

: X → f(X) is continuously
invertible. Let g̃ : f(X)→ X be its inverse. By Tietze’s extension theorem let g : Rn → Rn
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be a continuous extension of g̃. Let now q ∈ C(Rn) be any bounded continuous function.
Again applying Lemma 3 we get a function v2 that solves

v2(y)− αv2(g(y)) = q(y) for all y ∈ Rn. (18)

If we plug in y = f(x) to (18) for x ∈ X we get

q(f(x)) = q(y) = v2(y)− αv2(g(y)) = v2(f(x))− αv2(g(f(x)) = v2(f(x))− αv2(x).

This means v2 is satisfies (15) for the dual problem if q(f(x)) ≥ 0 for all x ∈ X. Hence
let us take a bounded function q ∈ C(Rn) such that q ≤ 0 and q−1({0}) = f(X). Let us
check when v2 does not vanish. By construction of v2 from Lemma 3 we have v2(x) = 0
if and only if gm(x) ∈ q−1({0}) = f(X) for all m ∈ N. This means x ∈ f(X) and hence

X 3 f
∣∣−1
X

(x) = g(x) ∈ f(X). By induction it follows gm(x) ∈ X for all m ∈ N, i.e. x ∈M−,
and x ∈ f(X). It looks like the additional condition x ∈ f(X) is restrictive, but it is not
since we are interested in the global attractor A that satisfies A = f(A) ⊂ f(X). Let us
construct a minimizing sequence of feasible solutions to the dual LP. As in the continuous
time case let

(v1m, v
2
m, wm) := (m · v1,m · v2,max{0, 1 +m · v1 +m · v2}.

Since v1 and v2 are solutions of the discrete dual Liouville equation the triple (v1m, v
2
m, wm)

is feasible. Since v1 is vanishing only on M+ and v2 on f(X) ∩M− and both functions are
negative everywhere else we get wm(x) ≤ 1 and wm(x) = 1 exactly for f ∈M+∩f(X)∩M− =
A by Proposition 3 and wm ↘ IA pointwise as m→∞. Hence by the monotone convergence
theorem it follows

∫
X

wm dλ→ λ(A). By Lemma 2 it follows for all m ∈ N that (v1m, v
2
m, wm)

is a minimizing sequence. Let now (v1m, v
2
m, wm) be any minimizing sequence. By Lemma 2

we get λ(A) ≤ λ(w−1m ([1,∞)) ≤
∫
X

wm dλ→ λ(A) as m→∞.

To check that λ(A) is also the optimal value of the primal LP we proceed as in the continuous
time case by showing that λ(A) is a lower bound for the primal LP. Then it follows that the
optimal value is given by λ(A) by weak duality, i.e. from

λ(A) ≤ p∗ ≤ d∗ = λ(A).

To see p∗ ≥ λ(A) we will find a feasible point (µ0, µ̂0, µ+, µ−) = (λ
∣∣
A, λ

∣∣
X\A, µ+, µ−). Then

the objective value is µ0(X) = λ(A). Let µ+ be defined by the right-hand side of (10)
with µ0 = λ

∣∣
A. In order to find µ−, we first let ν be the defined by the right-hand side

of (10) with µ0 = λ
∣∣
A and f replaced by g. This relates to reversing time direction. Note

that from f(A) = A it follows that also g(A) = A and hence that supp(ν) = A. Set
µ−(C) := ν(g−1(C)), i.e., µ− is the pushforward measure of ν by g. Since measures defined

by (10) solve the discrete Liouville equation (first constraint of (11)) and g
∣∣
A = f

∣∣−1
A we get

for all v ∈ C(Rn)∫
X

v dλ
∣∣
A =

∫
X

v − αv ◦ g dν =

∫
supp(ν)

v − αv ◦ g dν =

∫
A

v ◦ f ◦ g − αv ◦ g dν

=

∫
g(A)

v ◦ f − αv dµ− =

∫
X

v ◦ f − αv dµ−,
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where we used the fact that supp(µ−) = g(A) = A ⊂ X. Therefore, µ− solves the reversed
time Liouville equation (second constraint of (11)). It follows that (λ

∣∣
A, λ

∣∣
X\A, µ+, µ−) is

feasible with objective value λ(A) which is what remained to be shown. �

The infimum in the dual program is not attained unlessA is a union of connected components
of X, because only then IA is continuous. But we have seen in the proof that there exist
feasible solutions (v1, v2, w) such that A = w−1([1,∞)) even before their objective value
approaches the optimal value.

7 Solving the linear programs

If we assume algebraic structure of the problem this can be exploited to solve the infinite
dimensional primal LP by a hierarchy of finite dimensional semidefinite programs whose
optimal values converge to the solution of the infinite dimensional LP. The resulting SDPs
are relaxations of the original LP since they describe truncated versions of the moment
problem. The SDPs can be solved by freely available software. Similarly the dual LP
tightens to a sum-of-squares problem, which also leads to a hierarchy of SDPs. This is a
standard procedure and we refer to [17] for details.

Assumption: The vector field f is polynomial and X is a compact basic semi-algebraic set,
that is, there exist polynomials p1, . . . , pj ∈ R[x1, . . . , xn] such that X = {x ∈ Rn : pi(x) ≥
0 for i = 1, . . . , j}. Further we assume that one of the pi is given by pi(x) = R2

X − ‖x‖22 for
some large enough RX ∈ R.

If there is no such pi then by compactness of X we can add the redundant inequality pk+1 :=
RX − ‖x‖22 ≥ 0 for the smallest radius RX such that BRX

(0) contains X. This will be
useful in order to apply Putinar’s Positivstellensatz (see [28]). We will only state the dual
tightenings of the problems because these provide guaranteed outer approximations of the
global attractor, while this may not be true for the primal problem. In order to solve the
infinite dimensional problem we first replace the space of continuous functions by the space of
polynomials; this is justified by the Stone-Weierstraß theorem. Then we truncate the degree
of the polynomials to get tightenings of the dual problem in form of finite dimensional SDPs.
The idea is to replace all variables, i.e. functions, in the LP by elements of R[x]k, polynomials
of degree at most k, and apply Putinar’s Positivstellensatz to reformulate positivity as a sum-
of-squares constraint. The corresponding tightenings truncated at degree k for the problem
in continuous time read as

dk := inf
v1,v2,w,{qi},{ti},{ri},{si}

w′l

s.t. −v1 − v2 + w − 1 = q0 +
j∑
i=1

qipi

w(x) = t0 +
j∑
i=1

tipi

βv1 −∇v1 · f = r0 +
j∑
i=1

ripi

βv2 +∇v2 · f = s0 +
j∑
i=1

sipi

(19)
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and for discrete time systems respectively

dk := inf
v1,v2,w,{qi},{ti},{ri},{si}

w′l

s.t. v1, v2, w ∈ R[x]k

w − v1 − v2 − 1 = q0 +
j∑
i=1

qipi

w = t0 +
j∑
i=1

tipi

v1 − αv1 ◦ f = r0 +
j∑
i=1

ripi

v2 ◦ f − αv2 = s0 +
j∑
i=1

sipi,

(20)

where w′ is the vector of coefficients of the polynomial w and l is the vector of the moments
of the Lebesgue measure over X (i.e., lα =

∫
X
xα dλ(x), α ∈ Nn,

∑
i αi ≤ k), both indexed

in the same basis of R[x]k; hence w′l =
∫
X

w(x) dλ(x). The decision variables v1, v2, w are

polynomials in R[x]k whereas q0, . . . , qj, r0, . . . , rj, s0, . . . , sj, t0, . . . , tj are sums of squares of
polynomials with degrees such that q0, t0, r0, s0, qipi, tipi, ripi, sipi are all in R[x]k for
all i = 1, . . . , j. These sum-of-squares optimization problems translate directly to convex
SDPs (see, e.g., [17, 24]) with high-level modeling software available (e.g., Yalmip [19],
Gloptipoly [7]).

Theorem 5 For all k ∈ N we have dk ≥ dk+1 and dk → λ(A) as k →∞.

Proof: We cover both discrete and continuous time simultaneously because the arguments
are the same. The inequality dk ≥ dk+1 follows immediately since the set of feasible elements
is monotonically increasing with k. To prove convergence note first that any triple (v1, v2, w)
that is feasible for the relaxed problem (19) and (20) is feasible for the original dual LPs (7)
and (12), hence we have dk ≥ d∗ for all k ∈ N. By Theorem 2 or Theorem 4 respectively
we have d∗ = λ(A). To prove that lim

k→∞
dk ≤ d∗ = λ(A) let ε > 0 and (v1, v2, w) be feasible

for the dual LP. Then (v1 + ε, v2 + ε, w + ε) is strictly feasible and by compactness and
the Stone-Weierstraß theorem we can find polynomials ν1, ν2, ω ∈ R[x1, . . . , xn] such that
max{‖v1−ν1‖∞, ‖∇v1−∇ν1‖∞},max{‖v2−ν2‖∞, ‖∇v2−∇ν2‖∞} < β

1+β
ε in the continuous

time case and ‖v1− ν1‖∞, ‖v2− ν2‖∞ < 1−α
1+α

ε in the discrete time case and ‖w−ω‖∞ < ε in
both cases. By the triangle inequality we see that (ν1, ν2, ω) is strictly feasible with objective
value

∫
X

ω dλ ≤
∫
X

w dλ + ελ(X). Since ε > 0 was arbitrary we see that the optimal value

is unchanged when restricting the decision variable to polynomials. The convergence then
follows from Putinar’s Positivstellensatz [28]. �

7.1 Converging outer approximations

In this section, we use solutions to the sum-of-squares program (19) for continuous time
systems and (20) for discrete time systems to define semialgebraic outer approximations to
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the global attractor A and prove their convergence to A. Specifically, we define

Yk := {x ∈ X : wk(x) ≥ 1} (21)

and
Xk := {x ∈ X | min{v1k(x), v2k(x)} ≥ 0}, (22)

where (v1k, v
2
k, wk) is a solution to (19) or (20) respectively. We will see that Xk provides

a better approximation of A than Yk. We did not use those approximations before because
they were not needed in the proofs and we think that the superlevel set w−1([1,∞)) is easier
recognized as a reasonable outer approximation of the global attractor closely connected to
the optimal value of the dual LP.

Theorem 6 For each k ∈ N we have Yk ⊃ Xk ⊃ A. In addition,

lim
k→∞

λ(Yk \ A) = lim
k→∞

λ(Xk \ A) = 0.

Proof: For any feasible triple (v1, v2, w) (of the dual LP as well as the tightened problems)
the condition min{v1(x), v2(x)} ≥ 0 for some x ∈ X, i.e. v1(x), v2(x) ≥ 0, implies, by
feasibility, that w(x) ≥ 1 + v1(x) + v2(x) ≥ 1. This gives Yk ⊃ Xk for any k ∈ N. From
Lemma 1 and Lemma 2 respectively it follows for all x ∈ A that v1(x), v2(x) ≥ 0, hence also
Xk ⊃ A for any k ∈ N. To check convergence it suffices to show only λ(Yk \A)→ 0 because
A ⊂ Xk ⊂ Yk. From Yk ⊃ A we get λ(Yk \ A) = λ(Yk) − λ(A) and it also suffices to check
λ(Yk)→ λ(A). Let dk be the optimal value of the tightening SDP (19) or (20) respectively
and (v1k, v

2
k, wk) a corresponding minimizer. We have by non-negativity of wk

dk =

∫
X

wk dλ ≥
∫

w−1
k ([1,∞))

wk dλ ≥
∫
Yk

1 dλ = λ(Yk) ≥ λ(A).

By Theorem 5 we have dk → λ(A), and it follows λ(Yk)→ λ(A). �

Remark 4 (Discount factor) The asymptotic convergence to the global attractor was proven
for all parameters β > 0 and α ∈ (0, 1) respectively. The limit case β = 0 and α = 1 respec-
tively corresponds to the problem of finding an invariant measure (which depends only on
the asymptotic behavior of the dynamics), while large values of β respectively low values of α
give high discounting in which case the occupation measure puts most weight on short-term
behavior. When computing an outer approximation, the choice of the discount factor has a
quantitative effect; this is corroborated and exploited in the numerical examples section.

Remark 5 (Intersections) Although we know that the optimal values dk =
∫
wk from the

SDP tightenings monotonically decrease to λ(A), it is not guaranteed that the sets Xk and
Yk are monotonically decreasing. This can be exploited to obtain refined approximations by
taking intersections for several values of k. Another possibility to refine the outer approx-
imations is to take intersections of the outer approximations obtained for several values of
the discount factor. Both of these are demonstrated in the numerical examples section.
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8 Numerical examples

We present three numerical examples with code available online from

https://homepages.laas.fr/mkorda/Attractor.zip

Two of the examples have strange attractors and one example has a stable limit cycle. The
systems with strange attractors are the Lorenz system (continuous time)

ẋ = 10(y − x), ẏ = x(28− z)− y, ż = xy − 8

3
z (23)

scaled such that the attractor is inside the unit box. For discrete time, we consider the
Hénon map

xm+1 =
2

3
(1 + ym)− 2.1x2m, ym+1 = 0.45xm. (24)

The third example is the Van–der–Pol oscillator

ẋ = 2y, ẏ = −0.8x− 10(x2 − 0.21)y. (25)

The SDP problems (19) or (20) providing the outer approximations Xk were modeled in
Yalmip [19] and solved using MOSEK. We also generated very long trajectories and discarded
initial portions of them, thereby obtaining numerical approximations of the global attractor,
serving as visual comparison.

Lorenz system The outer approximation Xk with v1 and v2 of degree 8 of the global
attractor for the Lorenz system is shown in red in Fig. 1. The figure shows that already
degree 8 SDP tightenings are able to capture the global attractor very well.

Figure 1: Outer approximations (red) for the Lorenz attractor (black) obtained by degree 8 polynomials
with discount factor β = 1 from two angles.

Hénon map Figure 2 shows the results for the Hénon map; the outer approximations are
shown in grey color. The left pane depicts an outer approximation Xk with v1 and v2 of
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Figure 2: Outer approximations (grey) for the Hénon attractor (red). Left: α = 0.05 and degree 8
polynomials. Right: Intersection of the approximations for degrees 6, 8 and 10 and twelve values of α
between 0.01 and 0.6.

degree 8 whereas the right pane shows the intersection of the outer approximations obtained
from (20) for degrees 4, 6 and 8 and twelve values of α between 0.01 and 0.6 (see Remark 5).

In general we expect that more complicated topological structures, such as holes, require
higher degree polynomials to be identified by our approach and further, since we only gave a
guaranteed convergence in terms of Lebesgue measure, we may not have a full control of all
topological properties of the outer approximations of the global attractor1. However, for the
Hénon map, even degree 8 outer approximations are able to localize well the rather intricate
shape of the attractor.

Van-der-Pol The Van-der-Pol oscillator is an example where the global attractor is given
by an asymptotically stable limit cycle. Therefore, the solutions to the SDP tightenings have
to detect the limit cycle which is connected to the task of finding holes as discussed for the
Hénon map.
Here it is important to choose the set X more carefully. For the left pane in Figure (3) we
chose X = {(x1, x2) ∈ R2 : 0.4 ≤ ‖(x1, x2)‖2 ≤ 2} so that the limit cycle is included in X
but the initial value (0, 0) corresponding to the trivial solution x(t) = y(t) = 0 for all t is
not included. We see that the grey approximation captures the limit cycle very accurately.
On the other hand, if (0, 0) is in X, then the limit cycle and its whole interior is the global
attractor. This is detected by our approach as shown in the right pane of Figure 3. The
reason why in that case the attractor is the much larger set is that the interior of the limit
cycle is the unstable manifold of the equilibrium point (0, 0), hence contained in the global
attractor.

1Getting a guaranteed asymptotic control for the topological properties of the attractor would require
convergence in the Hausdorff metric. Proving such convergence remains a challenging and so far elusive task
for the moment-sum-of-squares approach, here as well as in previous works (e.g., [10, 8])
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Figure 3: Outer approximations (grey) of the Van-der-Pol oscillator attractor (red). Left: approximation
with X = {x | 0.4 ≤ ‖x‖2 ≤ 2} (fixed point (0, 0) not included), degree 12 polynomials and β = 0.05. Right:
approximation with X = {x | ‖x‖2 ≤ 2} (fixed point included), degree 12 polynomials and β = 2.

Numerical aspects The largest of the SDP problems (19) or (20) solved was the one for
the Lorenz system; the time to solve it was 0.67 s with MOSEK 8.1 running on a machine
with 4,2 GHz Intel Core i7 and 32 GB 2400 MHz DDR4 RAM. Our numerical examples
also showed that one has to be careful with numerical issues because, in the case of the
Van–der–Pol oscillator for lower degree polynomials, the graph of min{v1, v2} is very flat
around the global attractor which leads to possible round off issues when depicting the
superlevel set Xk = min{v1, v2}−1([0,∞)). In such situations, in order to obtain provable
outer approximation, a more careful postprocessing of the solutions to the SDP may be
required, e.g., using the methods of [20, 25].

9 Conclusion

We presented a linear programming characterization of global attractors as well as a hierarchy
of semidefinite programming problems providing asymptotically sharp outer approximations
of the global attractor. The approach is simple to use, with freely available solvers available
both for high-level modeling of the problems (e.g., Yalmip [19] or Gloptipoly [7]) and for
the numerical solution (e.g., SeDuMi [26] or MOSEK). In its core, the method builds on
and extends the work of [10] from invariant sets to global attractors, providing explicit
constructions and proofs in our setting as well as treating the more subtle discrete time case.

A price for the linear structure or semidefinite structure respectively lays in the dimension
of the problem. The size of the largest block of the SDP relaxations scales as O(

(
n+k/2
n

)
)

where n is the state space dimension and k the degree bound for the polynomials in the SDP
relaxations. A possible approach to tackle this problem is to exploit symmetries or sparsity
of the problem. While symmetry exploitation comes at no cost of accuracy [14, Theorem 2],
obtaining a lossless (or at least convergence-preserving) sparse relaxation in this dynamical
context is currently an open challenge (see [31, 32] for results in this direction).

Although there are further interesting topological properties to the global attractor some of
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them are invisible to our approach due to the fact that the primal linear program we use
can only identify the global attractor up to a set of Lebesgue measure zero which excludes
that we have control of certain topological properties. On the other hand, the dual problem
is defined on continuous functions and hence allows more topological insights.

A future perspective might be proving convergence without the injectivity assumption for
discrete systems. In addition, it is an interesting open question whether global attractors
of partial differential equations could be approached in this way. A preliminary work on
analysis and control gives promise [11, 22], although tractably characterizing subsets of the
infinite-dimensional state space is likely to be more challenging.
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