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Learning Optimal Features for Polyphonic
Audio-to-Score Alignment

Cyril JODER, Slim ESSID, Gaël RICHARD

Abstract—This paper addresses the design of feature functions
for the matching of a musical recording to the symbolic rep-
resentation of the piece (the score). These feature functions are
defined as dissimilarity measures between the audio observations
and template vectors corresponding to the score. By expressing
the template construction as a linear mapping from the symbolic
to the audio representation, one can learn the feature functions by
optimizing the linear transformation. In this paper, we explore
two different learning strategies. The first one uses a best-fit
criterion (minimum divergence), while the second one exploits a
discriminative framework based on a Conditional Random Fields
model (maximum likelihood criterion).

We evaluate the influence of the feature functions in an audio-
to-score alignment task, on a large database of popular and
classical polyphonic music. The results show that with several
types of models, using different temporal constraints, the learned
mappings have the potential to outperform the classic heuristic
mappings. Several representations of the audio observations,
along with several distance functions are compared in this align-
ment task. Our experiments elect the symmetric Kullback-Leibler
divergence. Moreover, both the spectrogram and a CQT-based
representation turn out to provide very accurate alignments,
detecting more than 97% of the onsets with a precision of 100 ms
with our most complex system.

I. INTRODUCTION

In many automatic music analysis tasks, such as audio-to-
score alignment [1], automatic transcription [2], main melody
extraction [3] or chord recognition [4], one needs to match
the audio information (or a low-level representation directly
extracted from it) with a symbolic description of the music.

In this paper, we focus on the audio-to-score alignment
problem, which consists in synchronizing an audio recording
of a musical piece with symbolic score. In a real-time context,
this task is known as score following [5], which achieves the
tracking of a musician’s performance. Such a tracking allows
for the automation of some processes to be synchronized
with the performer, for example “hands-free” page turning
[6] or synthetic accompaniment [7] of a live soloist. On the
other hand, off-line audio-to-score matching is expected to be
more precise, and can be applied to multi-modal browsing of
musical pieces [8], automatic identification of musical works
[9] or even informed source separation [10], [11].
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An audio-to-score alignment system relies in particular on
a measure of the “instantaneous match” between each audio
observation and each position in the score. In many works,
this correspondence is evaluated by a template-based approach,
where observations are directly compared to template vectors
corresponding to the score [12]. Even in this framework, the
template design has seldom been addressed and most systems
resort to heuristic forms [13], [14]. İzmirli and Dannenberg
[15] study a similar construction in the case where both
the score and the audio observations are transformed into a
“chroma-like” 12-dimension space.They show that the classic
“canonical mapping” is not the most effective one for the task
of discriminating aligned and non-aligned frames. However,
their work is focused on one special type of representation,
since the dimension is fixed to 12, and the evaluation is
performed on a classification task.

In the present paper, we extend the work reported in
[16] and explore the automatic learning of the templates on
several common representations of the audio signal, as well as
several distance functions for their comparison. The obtained
low-level layers are evaluated in an audio-to-score alignment
task, by integrating them into Conditional Random Fields
(CRF) models as in [17]. The experiments, conducted on
a large database of popular and classic polyphonic music,
using two different temporal models, show that the learning
of the mapping can significantly improve the accuracy of
an alignment system. Furthermore, we propose two different
learning strategies: a best fit criterion (minimum divergence)
or a discriminative criterion, which takes advantage of the
CRF model employed (maximum likelihood). We compare the
efficiency of these approaches, and experimentally show that
the discriminative strategy has the potential to reach a finer
level of precision.

The rest of this paper is organized as follows. The global
structure of an alignment system is presented in Section II, and
Section III exposes the form of the template-based matching
measure. Heuristic mappings used in the literature are detailed
in IV, before our strategies for the learning of the templates are
proposed in the following two sections. Finally, we evaluate
the impact of these mappings on the alignment accuracy of
two state-of-the-art systems in Section VII, and conclude in
suggesting some perspectives.

II. STRUCTURE OF AN AUDIO-TO-SCORE ALIGNMENT
SYSTEM

Audio-to-score alignment systems are traditionally split into
two main layers. A low-level layer first calculates features
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Figure 1. Structure of an audio-to-score alignment system. The audio and the
score are converted into vectors of the same domain (here chroma vectors).
Features are calculated by comparing these vectors, and then combined with
temporal constraints by the high-level layer to perform the alignment.

associated to each element of the symbolic representation (i.e.
position in the score), for each audio frame observation. Note
that, following [18], the word feature denotes in this work a
value which characterizes the correspondence between a score
position and an audio observation. They distinguish from the
audio descriptors, which characterize some properties of the
audio observations alone. These local matching measures are
then used by a high-level layer, which incorporates possible
constraints or penalties on the temporal evolution of the score
position. These constraints are designed to favor a smooth
progression in the score. Finally, the output of the system
is a sequence of score positions which locally match the
audio observation and whose rhythmic structure conforms to
the indications of the score. Figure 1 summarizes the global
structure of an audio-to-score alignment system.

The alignment systems of the literature can be divided into
two main groups, depending on their high-level layers. In
the first one, the alignment is searched for by minimizing
a cumulative cost function, based on the local matching
measure, using dynamic programming techniques. This group
encompasses early works on real-time score following as well
as most off-line systems (for example [1], [19]). The Dynamic
Time Warping (DTW) algorithm is quite extensively used [13],
[20], [21], since it is efficient and computationally simple.
In these systems, the feature measuring the correspondence
between a symbolic element and an audio frame is calculated
as a distance between the audio descriptor and a template
associated to the symbolic representation.

The systems of the second group are based on probabilistic
models, in particular Hidden Markov Models (HMMs), which
consider the score positions as hidden random variables [22],
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Figure 2. Creation of a concurrency template as a mapping from the symbolic
to the audio observation domain (here a power spectrum representation).

[23]. Recently, other structures have been proposed in order
to better model the note durations by introducing additional
hidden variables representing the tempo [12], [24]. These
models are generative: the high-level layer corresponds to the
prior model, which determines the prior probability of each
symbolic sequence. Hence, the low-level layer calculates the
conditional probability of each observation, given each score
position. However, probably because of the high number of
possible note combinations in a polyphonic musical score, an
estimation of these conditional probability distributions has
been seldom considered. To our knowledge, only [25] and
[26] describe a learning of observation distributions in the
context of audio-to-score alignment, and they are limited to
monophonic music. Nevertheless, most of the systems exploit
heuristic forms for the conditional probabilities, which often
boil down to the use of some distance between the observation
and a template, as in the dynamic programming systems (for
example [24]). In a previous paper [17], we showed that
these models can be transposed into the Conditional Random
Fields (CRF) framework, which is a class of discriminative
undirected graphical models. One of the main advantages of
CRFs over HMMs is the possibility to use a more flexible
low-level layer. Indeed, in such a model, any feature can be
employed, as it does not need to have the form of a conditional
probability distribution.

The templates used in the literature are often constructed
as the superposition of elementary templates corresponding to
single notes. As we will see in Section III-A, this can be seen
as the result of a linear mapping from what we call the “pitch
vector”, containing the number of notes played at each pitch
value, to the observation domain.

As far as the template creation is concerned, two main
strategies can be followed. Some works use an audio synthesis
of the score and extract the corresponding score observations
[27]. However, it has been reported by the same authors [13]
that a direct mapping from the symbolic domain to the obser-
vation domain has little impact on the alignment results using
the chroma (or pitch class) representation, while avoiding the
computational cost of the MIDI synthesis. Figure 2 illustrates
this approach, which directly associates to each concurrency a
template vector in the same domain as the audio descriptors.
This is the strategy that we are interested in.

III. THE FEATURE FUNCTION

A. General Form

For the matching of an audio recording with a symbolic
representation, the low-level layer is intended to quantify the
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“instantaneous match” between each frame of the recording
and each element of the symbolic description. We focus here
on a comparison performed on the basis of the instantaneous
pitch content, i.e. the notes which are currently played. As
in [17], we adopt a linear representation of the score as a
sequence of concurrencies, defined as the units of constant
pitched content (sometimes also referred to as chords). Hence,
the audio observations are to be matched with the concurren-
cies, which are associated to each position in the score1.

As represented in Figure 1, the features are calculated
by first creating template vectors, which correspond to the
score concurrencies and are in the same domain as the
audio descriptors. These templates can then be compared to
the audio observations by a simple distance function. The
concurrency templates are constructed as the superposition of
elementary vectors, associated to each note of the concurrency.
As we will see, this can be expressed as a linear mapping
from what we call the “pitch vector” representation of the
concurrencies.

Let us first define this representation. Assuming that the
range of a musical piece does not exceed the range of the
grand piano (from A0 to C8), we number the possible pitches
from 1 to 88, following the chromatic scale. The pitch vector hc
of a concurrency c is defined as an 88-dimension vector whose
components are the number of notes of the corresponding
pitches in the concurrency. Fig. 3 illustrates the construction
of this pitch vector representation. In some cases where the
score also provides loudness factors for the notes (such as
MIDI files), the value of the pitch vector could also be defined
by these factors, as in [13]. However, we choose to use the
number of notes, so as to simulate the case where the midi
files result from a graphical score (as an export of a score
editor, or the output of an optical music recognition system
[28]). In order to take into account the portions of the signal
where no note is played (in the case of silence or unpitched
sounds), we introduce an additional component on the pitch
vector, which is equal to 1 if and only if all the other notes
are inactive. Thus, the dimension of a pitch vector is J = 89.

Now, let W be the matrix whose columns are the elementary
single-note templates. As mentioned earlier, the template uc
corresponding to the concurrency c is the superposition of the
elementary templates associated to the notes of c. This can be
expressed in the form of a matrix multiplication:

uc = Whc. (1)

Hence, the matrix W operates a linear mapping from the pitch
vector domain to the observation domain.

Let vn be an observation vector for frame n, representing
the short-time frequency content over this frame. The value
of the concurrency feature f(c, vn) for concurrency c and
observation vn has the form:

f(c, vn) = D (vn,Whc) , (2)

where D(·, ·) is some distance or divergence function, W is a
I×J matrix, I being the dimension of the observation vectors.

1In this works, the scores used are MIDI files, which explicitly specify the
position of each played note. Thus, ornaments like trills or mordents are not
taken into account as such, but as explicit sequences of notes.

C8

A4

A0

Figure 3. Illustration of the pitch vector representation. Left: pitch range,
in the form of a grand piano keyboard; Middle: graphical representation of a
concurrency, in western classical notation; Right: pitch vector representation
of the same concurrency. Note that the notes of the concurrency may be played
by different instruments, therefore there can be several notes of the same pitch
(A4 in this example).

B. Relation with a Generative Model
This form can also be related by the generative probabilistic

model exposed in [29]. Indeed, let us assume that an ob-
servation vector is the superposition of independent random
vectors corresponding to the active notes. Let us suppose a
Poisson distribution for each (independent) component of these
one-note random vectors and let Wi,j be the distribution
parameter for the component i of pitch j. The distribution
parameters along the observation bins, given a note of pitch
j, are then the values of the jth column of W, denoted by
W:,j . Let hj be the pitch vector corresponding to this single
note. Since its values are: hj(k) = δk,j , where δ denotes
the Kronecker delta function, the vector of parameters can be
written as:

W:,j = Whj . (3)

A sum of Poisson variables also follows a Poisson distribu-
tion, whose parameter is the sum of the individual parameters.
Thus, the observations on each bin, given a concurrency c,
follow independent Poisson distributions, and the parameters
are the sum of the one-note parameters. Let uc be the vector
of parameters corresponding to this concurrency. The value
of uc is then given by: uc = Whc, as in (1). Let V
be a random variable representing an observation vector2.
The overall probability distribution of V , given the played
concurrency, is then:

P (V |c) =

I∏
i=1

e−uc(i) uc(i)
V (i)

Γ(V (i)+1)

= exp
{
−DKL

(
V
∥∥Whc

)
+ Z(V )

}
(4)

where Z(V ) is a term depending only on the observation
vector V , Γ denotes the gamma function and DKL is the
generalized Kullback-Leibler divergence. If we choose this
particular divergence as the distance function D of (2), the
conditional probability of (4) can be written as:

P (V |c) ∝ e−f(c,V ). (5)

2As a convention in this paper, capital letters denote random variables and
the corresponding lower case letters denote realizations of the variables.
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C. Distance Functions

Any dissimilarity function (which we will call distance,
even if it is not a proper metric, in the mathematical sense)
can be used as the matching measure of (2). In the present
work, we investigate different versions of the generalized
Kullback-Leibler (KL) divergence. This choice is motivated by
the generative model of Section III-B. Moreover, the results
of a previous study [30] as well as some preliminary tests
have shown that other distances, including the Itakura-Saito
divergence and the cosine distance did not outperform the KL
divergence.

The first version already presented in (4), is referred to as
“KL1”. Its expression is :

DKL (v‖u) =

I∑
i=1

v(i) log

(
v(i)

u(i)

)
− v(i) + u(i). (6)

Note that, in order to make the concurrency feature robust
to signal level dynamics, the observation and pitch vectors
are normalized, so that the sum of the components is unity.
However, we do not constrain the columns of W to be
normalized, as this would result in a more complex (non-
convex) estimation problem in Section V. This is why we use
the generalized version of the KL divergence.

The formulation of (2) does not require the distance function
to correspond to a generative model. Hence, we test the
symmetric counterpart of the KL1 distance, referred to as
“KL2”, whose expression is

DKL (u‖v) =

I∑
i=1

u(i) log

(
u(i)

v(i)

)
− u(i) + v(i). (7)

Finally, we test the symmetric version of the divergence,
denoted by “KLs”.

DKLs (v, u) = DKL (v‖u) +DKL (u‖v) . (8)

D. Pitch Representations Used

Three types of observations have been used in the audio
alignment literature in order to characterize the musical
content of each frame of the audio signal, namely power spec-
trum, ‘semigram’ and ‘chromagram’ representations. They are
summed up in Table I. In this work, the musical recordings
were sampled at 16-kHz. The observations used here are
computed with a 20-ms hop-size, in order to have a fine
temporal resolution.

1) Power Spectrum: The Short-Term Fourier Transform
(STFT) of the audio signal is used in many score following
works [31], [12], [24], because of the low complexity of this
transform. In this work, we exploit the power spectrum drawn
from the STFT calculated on 100-ms windows. In order to
reduce noise due to percussion in the high and low frequencies,
we only consider the frequencies between 100 Hz and 4 kHz.

2) Semigram Representation: The semigram representation
[15] is a spectrum representation with logarithmically spaced
frequency bins corresponding to the semitones of the musical
scale (12 bins per octave). Two methods for calculating this
representation are tested here. The first one, called FilterBank

Acronym Meaning
PS Power Spectrum

FBSG FilterBank Semigram
CQTSG CQT Semigram
MPCP Müller’s PCP (from filterbank)
ZPCP Zhu’s PCP (from CQT)

Table I
SUMMARY OF THE PITCH REPRESENTATIONS TESTED.

SemiGram (FBSG) consists of the short-term energy at the
output of elliptic filters as in [32].

We also use the magnitude of a constant Q transform
(CQT), with a quality factor set to one semitone. In this case,
in order to maintain a good temporal precision, the values
corresponding to the two lowest octaves are not computed.
The longest transform is then limited to about 170-ms length,
corresponding to a frequency of 100 Hz. We also limit the
highest frequency bin to 4 kHz. This representation is referred
to as CQT Semigram (CQTSG).

3) Chromagram Representations: Chromagram (also
called Pitch Class Profile) is probably the most popular
representation for offline audio-to-score and audio-to-audio
synchronization [13], [1]. It consists of a 12-component
vector corresponding to the spectral energies of the 12
musical pitch classes (A, A#,. . . ). Many methods have been
proposed to calculate such representations and two of them
are selected in this work, based on the results of our previous
study on low-level descriptors [30]. The first one, proposed
by Müller [32] is the integration of the FBSG features over
the different octaves. The second chroma representation is
calculated according to Zhu’s method [33], which performs
a peak-picking on the CQT, and then sums the amplitudes
corresponding to all the octaves. These representations are
denoted respectively by MPCP (for Müller’s Pitch Class
Profile) and ZPCP (Zhu’s).

IV. HEURISTIC TEMPLATES

In the music-to-score alignment literature, the concurrency
templates are built by following a simple heuristic. We detail
here the heuristic templates that we retain in this work, for
the three types of representation presented above.

A. Chromagram Templates
The heuristic chroma vector templates are derived from the

canonical mapping from the pitch domain to the chroma do-
main [15]. For a pitch number j (as defined in Section III-D),
let pc(j) be the pitch class of j, that is the index of the
corresponding chromatic class (C, C#, . . . , B) in the chroma
vector representation. The one-note template of pitch j is
a binary template whose only non-zero component is the
pc(j)-th. The template is superposed to a uniform distribution
accounting for noise. This uniform component can also be seen
as a smoothing filter, preventing zeros in the templates (which
would be a problem with the divergence used). The importance
of this noise term is controlled by the parameter q ∈ [0, 1).
The values of the matrix W are then:

Wi,j = (1− q)δi,pc(j) +
q

I
, . (9)
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Figure 4. Heuristic mapping matrices for three of the representations. (a):
spectrogram; (b): FBSG semigram; (c): ZPCP chromagram. The values of the
matrix coefficients are represented as gray levels.

B. Semigram Templates

In the case of the semigram representation, the mapping
used is very straightforward: the non-zero components of the
binary template for pitch j correspond to the first harmonics
of the note, as in [34]. In this work, we use two harmonics.
Hence the matrix W is defined as:

Wi,j =
(1− q)

2
(δi,j + δi,j+12) +

q

I
. (10)

C. Power Spectrum Templates

For the power spectrum representation, the templates are
constructed as in [12]. A pitch is represented as a Gaussian
mixture whose components correspond to the first K harmon-
ics. Formally, let b(j) be the fundamental frequency of the
pitch j, expressed in the scale of the STFT bins. We write:

Wi,j = (1− q)
K∑

k=1

wkN
(
i; kb(j), σ2

j,k

)
+
q

I
, (11)

where N (·;µ, σ2) denotes the normal density function with
mean µ and variance σ2. The weight parameters wk are
proportional to 1/k2 and scaled so that

∑K
k=1 wk = 1. The

“bandwidth” parameters σ2
j,k are set to 30 cents (30% of a

semitone) and we consider K = 5 harmonics.
For all these representations, the “noise template”, corre-

sponding to the absence of pitched sound, is set to the uniform
value 1

I .

D. Estimation of the smoothing parameter

The “learning” of these heuristic projection matrices here
only consists in a setting of the smoothing parameter q of
equations (9) to (11). This can be done by a grid search
: alignments are computed on a training database, using a
set of possible values and the value leading to the highest
performance is chosen.

V. MINIMUM DIVERGENCE (MD) LEARNING

The heuristic templates presented in the previous subsection
may seem somehow arbitrary. Indeed, since they are heuristic,
the main motivation for the chosen values of the parameters

is the fact that they give good results in an audio-to-score
alignment application. This is the reason why we now address
the problem of learning the matrix Wcontrolling the mapping
from the pitch to the observation domain, using a database of
real aligned music.

A. Formulation

For the training process, a grid search strategy would be
intractable, due to the dimensionality of the problem. There-
fore, another criterion than the alignment performance has to
be chosen for determining the optimal value of W. As already
mentioned in Section III-A, the formulation of (2) with the KL1
divergence function can be derived from a generative Poisson
model for each note. In this generative model, maximizing
the log-likelihood of the ground-truth concurrency sequence
is equivalent to minimizing the cumulative divergence between
observations and templates along this sequence.

Following this idea, we adopt the Minimum Divergence
(MD) criterion. For each musical piece s of the training set,
let Ns be the total length of the piece, in number of frames. Let
vs1:Ns

= vs1 . . . v
s
Ns

and cs1:Ns
= cs1 . . . c

s
Ns

be respectively the
pitch observations and the ground-truth concurrencies of this
sequence. For notation simplicity, we write hsn = hcsn for the
pitch vectors corresponding to the annotated concurrencies.
The optimal matrix ŴMD is then defined by:

ŴMD = argmin
W

∑
s

Ns∑
n=1

D (vsn,Whsn) . (12)

The obtained cost function is convex if the distance function
used is convex. Hence, with the three divergences presented in
Section III-C, we have a convex minimization problem, which
can be solved by numerous strategies. The chosen iterative
algorithm is a variant of Newton’s method, based on the
trust region concept, in which the inversion of the Hessian
is approximated by the method of [35]. We exploited the
implementation of the optimization toolbox for MATLAB. The
initialization point of the algorithm was the heuristic template,
whose value of the smoothing parameter was determined by a
grid search as in Section IV-D. The optimization algorithm
stopped when the decrease of the objective-function was
smaller than 10−6, or when the absolute variation of the norm
‖W‖ was smaller than the same threshold.

The stopping conditions correspond to variations of the
objective-function or of the norm ‖W‖ being less than 10−6.

B. Training and Evaluation Database

In this work, we use two datasets. The first one contains 59
classical piano pieces (about 4 h 15 of audio data), from the
MAPS database [2]. The recordings are renditions of MIDI
files played by a Yamaha Disklavier piano. The alignment
ground-truth is given by these MIDI files. The second corpus
consists of 90 pop songs (about 6 h) from the RWC database
[36], with aligned MIDI scores. Since the percussion track of
the MIDI files often contain errors, we choose to discard the
percussion in the scores.

The training database is composed of 50 randomly selected
pieces (220 min), 20 from MAPS and 30 from the RWC corpus.
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(a) Heuristic matrix (b) Matrix learned by MD criterion
with KLs distance

Figure 5. Comparison of two mapping matrices, for the MPCP representation.
The gray scale is the same on both images.

In order to reduce overfitting to specific pitches or keys, 12
versions of each piece are used in the training process, by
jointly transposing the observations and the pitch vectors up
to −6 and +5 semitones. Thus, the number of training samples
for a pitch template is homogeneous over a whole octave.
This transposition is performed by a circular permutation for
the chromagram representation, a simple ’shift’ of the values
in the case of the semigram representation and a frequency
scaling for the spectrogram. In the latter case, the new
’scaled frequency bins’ do not always correspond to original
frequencies. Therefore, the values affected to these new bins
are estimated by a linear interpolation of the spectrogram. The
remainder of both datasets is used for the evaluation.

C. Results

1) Obtained Mapping Matrix: The learned mapping ma-
trix for the MPCP representation with the KLs distance is
displayed in Fig. 5 and compared with the corresponding
heuristic mapping. In this example, it is visible that the one-
note templates (i.e. the rows of the matrix) select not only the
fundamental frequency and the first harmonic as the heuristic
templates do, but also higher partials. Moreover, the weights
given to these partials are not uniform since they depend on
the note. One can also observe that for the lowest pitches,
higher weights are allocated to the high partials. This can be
explained by a greater energy in the higher partials of the
low notes, but also by the correlation between the notes in
the training database. Indeed, low notes often correspond to
the bass of a chord. Hence they frequently occur concurrently
with notes corresponding to their harmonic partials, resulting
in heavier weightings of these partials. These behaviors are
common to all the settings.

However, the three distance functions do not result in exactly
the same mapping matrices. The results of the minimisation
of the KL1 and KL2 distances, for the CQTSG representa-
tion are compared in Fig. 6. One can first notice that bins
corresponding to lower octaves are selected for the highest
notes. This is due to the phenomenon just described. Indeed,
high pitches often occur concurrently with the lower octave.
Thus, the presence of this lower octave is learned in the
template. Another observation is that the absolute weights of
the templates are almost always greater after learning with
the KL1 distance than with KL2. This is due to the fact that
the KL1 version (6) strongly penalizes the templates bins u(i)
whose values are small compared to the observation v(i),
as pointed out in [4]. Thus, the templates learned with KL1
tend to be overestimated. Symmetrically, KL2-learning tends

(a) KL1 distance (b) KL2 distance

Figure 6. Comparison of two mapping matrices learned by the MD criterion
with different distance functions, for the CQTSG representation. The gray
scale is the same on both images.

Distance KL1 KL2 KLs
Mapping H MD H MD H MD

PS 57.7 67.9 55.5 13.6 66.3 69.9
CQTSG 63.1 67.1 63.6 67.9 64.9 68.2
FBSG 55.8 59.7 59.2 61.5 60.4 61.7
ZPCP 56.7 58.4 56.6 58.7 56.9 58.6
MPCP 51.4 53.5 51.8 53.8 52.4 54.6

Table II
RECOGNITION RATES (IN %) OBTAINED WITH HEURISTIC (H) AND
MD-LEARNED MAPPINGS (MD) FOR THE TESTED DISTANCES AND

REPRESENTATIONS.

to underestimate the values of the mapping matrix and the
KLs version constitutes a trade-off between both behaviors.

2) Alignment Accuracy with a simple System: We evaluate
the influence of the low-level layers in an alignment task. To
this purpose, a simple strategy is chosen. Given the sequence
of observation vector v1:N (of length N ) corresponding to the
audio recording, the alignment is performed by searching for
the optimal concurrency sequence ĉ1:N , defined by:

ĉ1:N = argmin
C1:N∈C

N∑
n=1

f (Cn, vn) , (13)

where C is the set of acceptable concurrency sequences, that is
the concurrency sequences following the same order as in the
score. The optimal sequence can be easily computed thanks
to a dynamic programming technique. This simple method is
not expected to provide very precise alignment, since it does
not take into account any duration information. It is rather
intended to emphasize the differences between the low-level
layers tested.

The precision of an alignment is evaluated using the align-
ment rate, defined as the fraction of onsets which are correctly
detected (i.e. onsets which are detected less than a tolerance
threshold θ away from the ground truth onset time). In this
paper, the results are presented for θ = 100 ms. However, the
relative behaviors of the different systems have been observed
to be the same for values θ = 300 ms and θ = 50 ms: only the
absolute values of the alignment rate change.

The obtained alignment rates are displayed in Table II. The
number of onsets in the test set is approximately 120 000. It
is clear from these results that learning the mapping matrix
does improve the alignment accuracy. Indeed, for all the tested
settings except one, the alignment rates significantly increase
compared to the heuristic templates.
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The only exception is the case of the power spectrum
representation with the KL2 divergence, where the alignment
rate drops from 55.5% to 13.6%. This can be explained by
the bias of the “no-note template” learned with this distance:
as already mentioned, the KL2 divergence strongly penalizes
template values which are small compared to the observations.
Thus, as the power spectrum observations associated to the
noise template are very diverse, the learning process tends
to reduce the values of all the bins. This results in a bias
toward this template, which exhibits a relatively small distance
with virtually any observation. As a consequence, the obtained
alignments tend to be “stuck” in the initial or final noise
states. This problem does not appear with the other features,
probably because of the dimension reduction, which reduce
the discrepancy between the observations of the “noise state”
as well as the integration of the energy over relatively large
frequency bands, which generally prevents the feature values
from being too small.

As already mentioned, the KLs distance seems to operate a
good trade-off between the biases of both KL1 and KL2 di-
vergences. Hence, for each representation, it always performs
at least as well as the other distances. We will then consider
only this distance in the rest of our experiments.

We can also compare the performances of the tested rep-
resentations. The best results are obtained by the power
spectrum representation (69.9%). Then the semigram repre-
sentations induce a higher accuracy than the chromagrams.
This is due to the reduction of the dimensionality and the
fact of discarding the octave data, which entail a loss of
useful information. Nevertheless, the chroma representation
may still be useful in the case of scores which are not truly
reliable, since it has the potential for improved robustness to
octave errors, as shown in [30] where the database contains
such errors. Finally, the representations based on a CQT
(CQTSG and ZPCP) seem to outperform the filterbank-based
representations (FBSG and MPCP). This can be explained by
the smaller bandwidth of the used filters, which can overly
penalize pitch imprecisions. Another possible reason is the
noise level in the low frequencies, which can be very high when
a bass drum is present. Thus, a good solution is sometimes to
completely discard very low frequencies, which is the case in
our CQT.

VI. DISCRIMINATIVE LEARNING

In this section, we expose another strategy for the dis-
criminative learning of the mapping matrix, thanks to a
Conditional Random Fields (CRF) model [18]. In this method,
the alignment model is taken into account in the learning
process.

A. Markovian Conditional Random Fields (MCRF) Model

The alignment strategy of (13) can be derived from a special
case of a Markovian Conditional Random Fields (MCRF)
model as presented in [17]. The MCRF model is a discrimina-
tive probabilistic model which allows for the calculation of any
concurrency sequence probability c1:N , given a sequence of
observation vectors v1:N . In order to clarify the presentation,

the boundary indices 1:N will be omitted in the following when
no ambiguity is introduced. The probability of the concurrency
sequence is given by:

P (c|v) =
1

Z(v)
φ(c1, v1)

N∏
n=2

ψ(cn, cn−1)φ(cn, vn), (14)

where Z(v) is a normalization factor and ψ and φ are non-
negative potential functions. The observation function φ is here
defined by

φ(cn, vn) = exp
{
− µf (cn, vn)

}
, (15)

where µ is a positive weight parameter. The transition function
ψ used here only constrains c to be an acceptable concur-
rencies sequence, i.e. to follow the score order3. With these
definitions, the value of µ does not influence the decoding
of the model and the most probable concurrency sequence is
given by (13).

B. Maximum Likelihood (ML) Criterion
Since the MCRF is a probabilistic model, a natural frame-

work for learning the parameters is to employ the Maximum
Likelihood (ML) criterion, i.e. to maximize the probability
of the ground truth concurrency sequences. We write Θ =
(µ,W) for the parameters of the model. The value of µ
is learned as well as W, since it has an influence on the
probabilities. The optimal parameters are then defined by:

Θ̂ML = argmax
Θ

∏
s

P
(
cs
∣∣vs; Θ

)
(16)

where P (·|v; Θ) denotes the probability given by the model
with parameters Θ. We define:

F1(c1:N , v1:N ) = −
N∑

n=1

f (cn, vn) . (17)

Then, the log-likelihood can be written:

L(Θ) =
∑
s

{
µF1 (cs, vs)− logZ (vs)

}
. (18)

This function is concave with respect to µ and the correspond-
ing derivative is

∂L(Θ)

∂µ
=
∑
s

{
F1 (cs, vs)− E

[
F1

(
Cs, vs

)∣∣∣vs; Θ
]}

, (19)

where Cs is a random variable representing the concurrency
sequence of the s-th training sample and E[·|vs; Θ] denotes
the expectation with respect to the conditional distribution
P
(
Cs
∣∣vs; Θ

)
. The expectation term can efficiently be computed

thanks to a variant of the forward-backward algorithm [37],
making it tractable to calculate this derivative.

Unfortunately, the log-likelihood is not concave with respect
to W. Nevertheless, the gradient can be expressed in a
relatively simple form:

∂L(Θ)

∂Wi,j
=µ

∑
s

{
∂F1

∂Wi,j
(cs, vs)− E

[
∂F1

∂Wi,j
(Cs, vs)

∣∣∣vs; Θ

]}
.

(20)

3The expression of ψ is: ψ(cn, cn−1) = I {cn−1 − cn ∈ {0, 1}} with I
the indicator function.
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(a) Minimum Divergence (MD)
criterion

(b) Maximum Likelihood (ML)
criterion

Figure 7. Comparison of the mapping matrices learned by our two criteria,
for the CQTSG representation with KLs distance. The gray scale is the same
on both images.

Some preliminary experiments using a Limited memory BFGS
(L-BFGS) algorithm [38] did not prove very conclusive.
Therefore, we resort to a simple algorithm where µ and W
are alternatively updated in the direction of their gradient,
with an adaptive step. Because of the complexity of the
gradient calculation, we limit the iteration number to 100. The
initialization is done with the result of the MD learning, based
on the intuition that this value is close to the optimum. We also
suppose that this initialization does not overly favor the ML
learning strategy compared with MD, since the optimization
criteria are different.

C. Results

The experiments are conducted with all the representations
presented in Section III-D. However, we only exploit here the
KLs distance, since it proves to be the most efficient whatever
the representation. The learning process is run on the same
learning database as in the previous experiment.

Figure 7 compares the mapping matrices learned with both
criteria. We can observe that the ML strategy yields a smoother
distribution of the ‘energy’ along the observation bins, with
fewer small values. This can be explained by the notion of
maximum entropy, on which CRFs are based [37]. Indeed,
the ML learning does not aim at fitting the observations, but
rather at discriminating the concurrencies. Intuitively, extreme
values are then given only to the bins which are really useful
for the discrimination of the concurrencies, and the other bins
are given ’medium’ values.

Alignment experiments using the same approach as in
Section V-C2 are also run. Since the ML learning strategy
takes into account the alignment model, one could expect
an increase of the obtained precision. However, whereas the
PS and FBSG representations are further improved compared
to the use of the MD learning, the results of the other
representations are dramatically reduced. For example, the
alignment rate of the CQTSG semigram drops from 58.2%
to 10.4% on the RWC corpus. A reason for this is the fact
that the used strategy maximizes the probability of the ground-
truth sequence, but does not limit the probability of the other
sequences, which may also benefit from the optimization.
Thus, nothing ensures that the ground-truth will be the most
probable sequence and the alignment rates are not guaranteed
to increase, even on the training set.

Mapping PS CQTSG FBSG ZPCP MPCP
H 66.3 64.9 60.4 56.9 52.4

MD 69.9 68.2 61.7 58.6 54.6
ML 70.3 71.0 63.8 57.6 52.3

Table III
RECOGNITION RATES OBTAINED WITH THE BASIC MODEL, FOR THE KLS

DISTANCE.

By a precise examination of the results, we noticed a number
of aberrant alignments, where most of the piece was decoded
as the ‘silence/noise’ state (which is present at the beginning
and the end of each score). The feature function indeed
introduces a bias toward this state. This is due to the form
of the optimized likelihood. The partial derivative of (20) can
be developed as:

∂L(Θ)

∂Wi,j
= µ

∂

∂Wi,j

(∑
s

Ns∑
n=1

{
E
[
f (Cn, v

s
n)
∣∣vs; Θ′

]
−

f (csn, v
s
n)

})∣∣∣∣∣
Θ′=Θ

.

(21)

Hence, the ML learning strategy aims at maximizing the
difference between the feature function of the ground-truth
label and the expectation of this feature function (computed
over all the possible labels). While intuitive, this process can
lead to a specific issue. Indeed, a label probability is the sum
of the probabilities of all the sequences containing this label.
Thus, more emphasis can be put on a label enclosing many
sequences of moderate probability than on a label which is
contained in an isolated high-probability sequence. Hence, in
our alignment model, some labels ‘far’ from the ground truth
path are given little importance in the discriminative learning.
This is the case for the ‘silence’ states which receive very low
weights, resulting in an overestimation of the corresponding
feature function. These labels can then accept virtually any
observation. On the other hand, the templates of the pitched
concurrencies are trained to ‘reject’ the other probable labels.
Hence, the corresponding feature functions are much more
selective, and thus more sensitive to noise or pitch imprecision.

In order to overcome this problem, we adopt an ad hoc
strategy which modifies the feature function of the ‘silence’
labels in the decoding phase, so that it has the same order of
magnitude as for the other labels. The value is not calculated
using the corresponding template, but as the mean of the
feature function of the 10 surrounding concurrencies in the
score. The alignment results are displayed in Table III and
compared to the other learning strategies. It must be noted
that the modification of the feature function has also been
applied to the other mapping matrices, without introducing a
significant variation of the results. One can observe that the
ML criterion allows for an improvement of the alignment rates
for the spectrogram and semigram representations. The chro-
magrams, however, do not benefit from this learning approach,
probably because of a more limited ‘discriminative power’ due
to their smaller dimension. The results are nevertheless at least
as good as with the heuristic mapping.
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Mapping PS CQTSG FBSG ZPCP MPCP
H 73.9 73.6 72.0 67.5 64.5

MD 76.4 75.6 72.5 69.3 65.3
ML 76.7 77.5 73.5 68.9 64.9

Table IV
RECOGNITION RATES OBTAINED WITH THE MCRF MODEL WITH ONSET

FEATURE, FOR THE KLS DISTANCE.

VII. INFLUENCE OF THE LEARNED MAPPINGS ON
STATE-OF-THE-ART ALIGNMENT SYSTEMS

We now evaluate the influence of the projection learning on
the accuracy of two alignment systems which exploit additional
pieces of information to the pitch observation vectors. These
systems have been presented in details in [17].

A. Introduction of an Onset Feature

The first system tested is the simplest system of [17]. It
is a Markovian CRF using an additional onset feature for
discriminating between the attack and sustain phases of each
concurrency. Similar to (15), the weight given to this onset
feature is controlled by a parameter denoted by ν.

For this experiment, µ is learned by the Maximum Likeli-
hood criterion presented in Section VI-B. The same strategy
has been attempted for learning the optimal value of ν. How-
ever, as already mentioned, ML learning does not necessarily
lead to optimal parameter values, in the sense of the alignment
rate. We then resort to a coarse grid search in order to adjust
this parameter, in the same way as in Section IV-D.

The obtained results are presented in Table IV. The introduc-
tion of the onset feature allows for a significant improvement
(at least +6% absolute) in the accuracy of all the tested
systems, whereas the ranking of the representations does not
change. One can also observe the advantage of the learning
of the mapping matrix W. Indeed, for every representation,
both learning strategies outperform the heuristic mappings.

B. Alignment with the Hidden Tempo CRF Model

In a final set of experiments, we employ the Hidden Tempo
CRF (HTCRF) model exposed in [17]. The HTCRF extends the
Markovian CRF used previously by incorporating an explicit
and very precise temporal model. Hence, the potential function
ψ of (14), controlling the label transitions, depends on the
concurrency durations. Furthermore, the value of this potential
function also depends on an additional hidden variable repre-
senting the current tempo of the piece. In our experiment, we
only use the best representation of each type, namely the power
spectrum, the CQTSG semigram and the ZPCP chromagram.
The three considered mappings are tested.

The HTCRF model requires a discrete set T of possible
tempi. The values used here are, in beat per minute:

T ={28, 30, 34, 40, 48, 56, 64, 72, 80, 88, 96, 104,

112, 120, 132, 146, 160, 176, 192, 208, 224, 240}.
(22)

Due to the high complexity of the HTCRF model, a learning
of all the parameters with the ML criterion is not possible.
Thus, we use the values estimated in the previous experiment

Learning PS CQTSG ZPCP
H 96.8 96.9 95.9

MD 96.7 97.0 95.8
ML 96.9 97.7 96.0

Table V
RECOGNITION RATES OBTAINED WITH THE HTCRF MODEL WITH KLS

DISTANCE.

(Section VII-A) with the MCRF model for µ and ν, and the
other parameters have been set through a grid search strategy.
In these experiments, the modified version of the ‘silence’
feature proved slightly more effective than the original one,
for both ML and MD learning strategies. Therefore, the results
presented in Table V correspond to these settings.

As expected, the introduction of a precise temporal model
greatly improves the performance of all the tested systems.
The obtained alignments are then very accurate, since more
than 95% of the onsets are correctly recognized within a
100 ms tolerance threshold, for all the tested systems. Since the
HTCRF system adds strong constraints on the alignments, the
differences between the tested systems are smaller than with
the MCRF model. Nevertheless, the impact of the learning is
visible on the CQTSG representation, where the ML strategy
allows for a significant improvement of the alignment rate
compared to the heuristic mapping (97.7% against 96.9%).

VIII. CONCLUSION AND PERSPECTIVES

In this paper, we have described a template-based fea-
ture function for the matching of a symbolic and an audio
representation of a musical piece. We have proposed two
strategies for the learning of the mapping from the symbolic
to the observation domain, when it can be written as a
linear transformation. The evaluations, performed on a large
database of polyphonic music, indicate that this learning can
lead to a significant increase of the precision of several
CRF alignment systems. The results also show that in many
cases, the minimum divergence learning criterion leads to a
good alignment accuracy. However, with the most complex
CRF model, the highest performance is obtained using the
Maximum Likelihood (ML) criterion, indicating that this dis-
criminative learning algorithm has the potential to improve the
matching of the symbolic elements, at a fine precision level.

Furthermore, we have compared several representations of
the audio performance as well as several distance functions,
for this alignment task. Our results indicate that the symmetric
Kullback-Leibler divergence is a good choice of distance,
and that both the spectrogram and the CQT-based semigram
representations provide very accurate alignments.

Many perspectives can be imagined for the continuation
of this work. First, one can investigate the use of other
kinds of features, through other distance functions, but also
different observations, e.g. the output of a Non-negative Matrix
Factorization algorithm such as in [22]. In this work, we
have only investigated the exploitation of a single “pitch
feature function”. Nevertheless, the CRF framework allows
for any number of features. In fact, the symmetric Kullback-
Leibler divergence used here is already constructed as the
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superposition of two distance functions. In the same way,
any mixture of features can be imagined, whose respective
weights can be learned. Features related to other points than
the current frame could also be exploited, such as in [17].

Some results show that the ML learning criterion does
not always yield the best alignment accuracy. Thus, other
criteria could be investigated, both for the learning of the
features and for the decoding of the label sequence, such as
the minimum segmentation error proposed in [25]. Finally,
the use of a single template for each pitch in the construction
of all the concurrency template is a rather strong constraint.
Indeed, it disregards the possibly large variations due to
different instruments and recording conditions. Hence, one
can imagine an adaptive approach which would adjust the
projection matrix to the characteristics of each piece, and
possibly to each of the present instruments.
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