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Abstract. The Permuted Congruential Generators (PCG) are popular conventional
(non-cryptographic) pseudo-random generators designed in 2014. They are used by
default in the NumPy scientific computing package. Even though they are not of
cryptographic strength, their designer stated that predicting their output should be
nevertheless be "challenging".
In this article, we present a practical algorithm that recovers all the hidden parameters
and reconstructs the successive internal states of the generator. This enables us to
predict the next “random” numbers, and output the seeds of the generator. We have
successfully executed the reconstruction algorithm using 512 bytes of challenge input;
in the worst case, the process takes 20 000 CPU hours.
This reconstruction algorithm makes use of cryptanalytic techniques, both symmetric
and lattice-based. In particular, the most computationally expensive part is a guess-
and-determine procedure that solves about 252 instances of the Closest Vector
Problem on a very small lattice.
Keywords: Pseudo-random number generator, guess-and-determine attack, truncated
congruential generator, euclidean lattices, closest vector problem, practical attack

Any one who considers arithmetical
methods of producing random digits is,
of course, in a state of sin.

John von Neumann, 1949

1 Introduction
Pseudo-random generators (PRG) are well-studied primitives in symmetric cryptography.
A PRG is an efficient deterministic algorithm that stretch a small random seed into a
longer pseudo-random stream. To achieve cryptographic-grade pseudo-randomness, a PRG
must ensure that the pseudo-random stream is computationally indistinguishable from
a “truly” random sequence of bits by efficient adversaries. Alternatively, it is possible to
define pseudo-randomness by asking that no efficient algorithm is capable of predicting
the next pseudo-random bit with non-negligible accuracy. The two definitions are in fact
equivalent.
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u128 a;
u64 m = 0xda942042e4dd58b5;

u64_t lehmer64()
{

a *= m;
return a >> 64;

}

u32 a, b, c, d;

u32 xorshift128()
{

u32 t = d;
u32 s = a;
d = c;
c = b;
b = s;
t ^= t << 11;
t ^= t >> 8;
s ^= s >> 19;
a = t ^ s;
return a;

}

u64 a, b;

u64 xorshift128plus()
{

u64 s1 = a
u64 s0 = b;
a = s0;
s1 ^= s1 << 23;
s1 ^= s1 >> 17;
s1 ^= s0;
s1 ^= s0 >> 26;
b = s1;
return a + b;

}

Figure 1: Some conventional pseudo-random generators, designed for speed and simplicity.

It is well-known that pseudo-random generators can be turned into symmetric encryption
algorithm, by generating “random” masks to be used in the one-time pad. This is precisely
what stream ciphers do.

Not all pseudo-random generators are of cryptographic strength. In some applications,
it is simply not necessary: to be used in Monte-Carlo numerical simulations or generate
random choices in games, a relaxed, non-cryptographic notion of pseudo-randomness may
be sufficient. This allows for faster algorithms. For instance, python standard library’s
random module uses the Mersenne Twister [MN98]. The C library that comes along gcc
(the glibc) uses a (poor) truncated linear congruential generator by default to implement
the rand function.

In the realm of non-cryptographic random generators, a PRG is deemed “good enough”
it is passes some efficient statistical tests — whereas the cryptographic notion of pseudo-
randomness asks that it passes any efficient test. There are de facto statistical test suites;
an initial battery of randomness tests for RNGs was suggested by Knuth in the 1969
first edition of The Art of Computer Programming. In 1996, Knuth’s tests were then
supplanted by Marsaglia’s Diehard tests. In 2007, L’Ecuyer proposed the TestU01 [LS07]
library, whose “BigCrush” test is considered state-of-the-art by the relevant community,
to the best of our knowledge. In 2010, the NIST proposed its own statistical test suite
(Special Publication 800-22), to which improvements were later suggested [ZML+16]. We
understand that the PractRand test suite also has a good reputation.

In any case, designers of conventional pseudo-random generators try to obtain the
simplest and fastest algorithm that passes the day’s favourite test suite. A few selected ones
are shown in Fig. 1. lehmer64 is a truncated linear congruential generator, touted as “the
fastest PRNG that passes BigCrush” [Lem19]. xorshift128 is a clever implementation
of a 128-bit LFSR with period 2128 − 1 due to Marsaglia [Mar03], using only a few simple
32-bit operations. xorshift128+ is a improved version due to Vigna [Vig17] that returns
the sum of two consecutive outputs of a Xorshift LFSR; it passes the “BigCrush” test suite
and is the default PRNG in many Javascript implementations, including that in Google’s
V8 engine (Chrome), Firefox and Safari.

Failures in cryptographic pseudo-random generators have catastrophic security implica-
tions. Let us mention for instance the well-known problem in Debian Linux from 2008,
where a bug in the OpenSSL package led to insufficient entropy gathering and to practical
attacks on the SSH and SSL protocols (the only remaining source of entropy comes from
the PID of the process, i.e. 16 bits or less of effective entropy) [YRS+09].
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However, problems in non-cryptographic random number generators can also have dire
consequences (barring the obvious case where they are used in lieu of their cryptographic
counterparts). When they are used in scientific computing for Monte-Carlo methods,
their defects have the potential to alter the results of numerical simulations. Ferrenberg
et al. [FLW92] ran a classical Ferromagnetism Ising model Monte-Carlo simulation, in
a special case where the exact results could be computed analytically, and compared
the results of the simulation with the “true” answer. They used several conventional
pseudo-random generators: a 32-bit linear congruential generator, two LFSRs, various
combinations thereof, etc. They observed that changing the source of random numbers
significantly altered the outcome of the numerical simulation. Different generators produced
different biases: in particular a given LFSRs yielded energy levels that were systematically
too low and critical temperatures that were always too high, while another kind of generator
yielded the opposite (in many, repeated, trials).

The scientific computing community also realized that the need for fast parallel random
number generation could be satisfied by the use of block ciphers in counter mode [SMDS11].
The need for speed then leads to the use of weakened cryptographic primitives (round-
reduced AES or custom and presumably weak block-ciphers)

In most cases, it is fairly easy to see that a given conventional PRG does not meet
the cryptographic notion of pseudo-randomness, and there are few exceptions. Most are
fairly easy to predict, meaning that after having observed a prefix of the output, it is easy
to produce the next “pseudo-random” bits. This makes a good source of exercises for
cryptology students.

In this paper, we study the PCG family of non-cryptographic pseudo-random generators
proposed by O’Neil [O’N14b, O’N14a]. She did not claim that the algorithm has crypto-
graphic strength, but that predicting its output ought to be “challenging”. We therefore
took up the challenge.

PCG stands for “Permuted Congruential Generator”: it essentially consists in applying a
non-linear filtering function on top of a linear congruential generator (in a way reminiscent
to the venerable filtered LFSRs). The resulting combination is fast and passes current
statistical test suites. The PCG family contains many members, but we focus on the
strongest one, named either PCG64 or PCG-XSL-RR. It has a 128-bit internal state and
produces 64 bits when clocked. It is the default pseudo-random number generator in the
popular NumPy [vCV11] scientific computing package for Python.

The internal state of the PCG64 generator is made of a 128-bit “state” and a 128-bit
“increment”, whose intended use is to provide several pseudo-random streams with the
same seed (just as the initialisation vectors do in stream ciphers). A default increment is
provided in case the end-user just want one pseudo-random stream with a single 128-bit
seed.

Contribution. We describe an algorithm that reconstructs the full internal state of the
strongest member of the PCG family. This allows to predict the pseudo-random stream
deterministically and clock the generator backwards. The original seeds can also easily be
reconstructed. The state reconstruction algorithm is practical and we have executed it in
practice. It follows that predicting the output of the PCG should be considered practically
feasible.

While the PCG pseudo-random generator is not meant as a cryptographic primitive,
obtaining an actual prediction algorithm requires the use of cryptanalytic techniques.
Making it practical requires in addition a non-trivial implementation effort.

Our algorithm reconstruct the internal state using a “guess-and-determine” approach:
some bits of the internal state are guessed ; assuming the guesses are correct, some other
information is computed ; a consistency check discards bad guesses early on ; then candidate
internal states are computed and fully tested. The problem actually come in two distinct
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flavors.
When the increment is known (for instance when it is the default value), a simplified

prediction algorithm recovers the internal state from 192 bits of pseudo-random stream.
The process runs in 20 CPU minutes. It guesses 37 bits of the internal state, then solves an
instance of the Closest Vector Problem (CVP) in a 3-dimensional euclidean lattice.
This requires about 50 arithmetic operations in total and reveals the entire internal state
if the guesses are correct.

When the increment is unknown, things are a bit more complicated. This is the
default situation in NumPy, where both the state and the increment are initialised using
an external source of entropy. In this case, our prediction algorithm requires 4096 bits of
pseudo-random stream ; it guesses between 51 and 55 bits, then for each guess it solves an
instance of CVP in dimension 4 (using about 75 arithmetic operations). This recovers 64
more bits of information about the difference between two successive states, and this is
enough to filter the bad guesses. This information can then be used in a subsequent and
comparably inexpensive phase to recover the entire internal state. On average, the whole
process requires a bit less than 20 000 CPU hours to complete.

We implemented our algorithms, then asked the designer of the PCG family to send us
“challenge” pseudo-random streams ; we ran our code and emailed back the (correct) seeds
used to generate the challenge streams the next day.

Related Work. Deterministic pseudo-random generators can be traced back to the work
of Von Neumann and Metropolis on the ENIAC computer [vN51]; they suggested around
1946 to use the “middle-square” method: if un is a k-digit number, form un+1 by taking the
square of the k

2 middle digits of un. This is a venerable precursor of the Blum-Blum-Shub
“provably secure” PRNG. The main problem of this method is that it produces sequences
that quickly enters short cycles.

Lehmer later proposed linear congruential generators in 1949, also for use on the
ENIAC computer [Leh49]. He gave the sequence defined by u0 = 47594118, un+1 =
23un mod 108 + 1 and proved that it had period 5882353, a clear improvement compared
to the middle-square approach. More details on early pseudo-random generators can be
found in [Knu98].

Knuth discussed whether truncated linear congruential generators could be good stream
ciphers; he therefore studied the problem of recovering the internal state of a truncated
linear congruential generator xi+1 = axi + c mod 2k when a and c are unknown [Knu85];
he gave an algorithm exponential in the number of truncated bits.

Boyar studied further the problem [Boy89] and presented an algorithm which could
predict a linear congruential generator when all the parameters (multiplier, increment,
modulus and initial state) are unknown; she extended her idea to the case of truncated
linear congruential generators, under the condition that the number of bit unrevealed is
really small in comparison to the size of the modulus.

Frieze et al [FHK+88] improved the efficiency of reconstruction algorithms in simpler
cases. They supposed that the multiplier a and the modulus 2k were known and used
lattice-based techniques to recover a truncated linear congruential generator with more
truncated bits.

Later on, Joux and Stern extended this result to the case where the multiplier a and
the modulus 2k are unknown, also using lattice techniques [JS98].

2 The PCG Pseudo-Random Number Generator Family
This section introduces some notations and describes the PCG64 non-cryptographic pseudo-
random number generator (a.k.a. PCG-XSL-RR in the designer’s terminology).
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If x ∈ {0, 1}n is an n-bit string, then x[i:j] denotes the bit string xixi+1 . . . xj−2xj−1,
where x = x0 . . . xn−1 (this is the “slice notation” used in Python). The set Z2k of integers
modulo 2k is seen as the set of k-bit strings. If x is a floating point number, then bxe
denotes the nearest integer (using the “rounding half to even” tie-breaking rule — this
is the default in IEEE754 arithmetic). If U is a vector or a sequence, then Ui is the i-th
element (we use capital letters for these). If U is such a sequence, we denote by U mod M
the sequence (U0 mod M,U1 mod M, . . . ). The XOR operation is denoted ⊕, left and
right rotations are denote≪ and≫ respectively. Modular addition is denoted + (or �
to make it even more explicit).

PCG64 has an internal state of 128-bit, which operate as a linear congruential generator
modulo 2128. More precisely:

Si+1 = aSi + c mod 2128,

Where the “multiplier” a is a fixed 126-bit constant. The first initial state S0 is the seed
of the generator. The increment c may be specified by the user of the PRNG to produce
different output streams with the same seed (just as the IV acts in a stream cipher). If no
value of c is specified, then a default increment is provided. Note that c must be odd. The
default values are:

a = 47026247687942121848144207491837523525 (fixed)
c = 117397592171526113268558934119004209487 (default value, user-definable)

Each time the PRNG is clocked, 64 output bits are extracted from the internal state
using a non-linear function that makes use of data-dependent rotations, in a way reminiscent
of the RC5 block cipher [Riv94]. The six most significant bits of the internal state encode
a number 0 ≤ r < 64. The two 64-bit halves of the internal state are XORed together,
and this 64-bit result is rotated right by r positions.

The successive 64-bit outputs of the generator are X0, X1, . . . where:

Xi = (Si[0:64]⊕ Si[64:128]︸ ︷︷ ︸
Yi

)≫ Si[122:128]︸ ︷︷ ︸
ri

. (1)

For the sake of convenience, we denote by Yi the XOR of the two halves of the state (before
the rotation) and by ri the number of shifts of the “i-th rotation”.

Fig. 2 summaries the process. The overall design strategy is similar to that of a filtered
LFSR: the successive states of a weak internal generator with a strong algebraic structure
are “filtered” by a non-linear function.

Updating the internal state requires a 128× 128→ 128 multiplication operation. In
fact, this can be done with three 64× 64→ 128 multiplication and two 64-bit additions.
High-end desktop CPUs all implement these operations in hardware, so the generator is
quite fast on these platforms.

3 Tools
In the rest of this paper, we often perform arithmetic operations on integers where only
some bits are known. This leads to generation of unknown carries. If a, b are integers
modulo 2128 and 0 ≤ i < j < 128, then there is a carry 0 ≤ γ ≤ 1 (resp. a borrow
0 ≤ β ≤ 1) such that:

(a� b)[i:j] = a[i:j]� b[i:j]� γ, (2)
(a� b)[i:j] = a[i:j]� b[i:j]� β. (3)
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×a+ c mod 2128

Si

128

Si+1

128

064122128

⊕64 64

≫
ri

6 Yi

Xi

64

Figure 2: PCG64: Internal state update and output process.

3.1 Linear Congruential Generators and Lattices
Given an integer k, a fixed multiplier a, an increment c and a “seed” x, define the sequence:

U0 = x, Ui+1 = aUi + c.

When reduced modulo 2k, the sequence U form the successive states of a linear congruential
generator (LCG). Let LCGk(x, c) denote the vector (u0, u1, u2, . . . ) of integers modulo 2k.
It is easy to check that:

LCGk(x+ y, c+ d) = LCGk(x, c) + LCGk(y, d), (4)
LCGk(λx, λc) = λLCGk(x, c). (5)

Let L denote the euclidean lattice spawned by the rows of the following n× n matrix:

Gn,k =


1 a a2 . . . an−1

0 2k 0 . . . 0
0 0 2k . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 2k


This lattice contains all n-terms geometric progressions of common ratio a modulo 2k;
therefore the first n terms of the sequence LCGk(x, 0) give the coordinates of a vector in
this lattice.

Reconstructing the state of a truncated linear congruential generator can generally
be seen as the problem of finding a point of this lattice given only an approximation
thereof, for instance when the least-significant bits of each components have been dropped.
The “lattice approach” to truncated linear congruential generators is due to Frieze et
al. [FHK+88].

Let U be a vector of n integers modulo 2k such that Ui+1 = aUi mod 2k; it is a
geometric progression of common ratio a, modulo 2k, therefore (U0, . . . , Un−1) ∈ L. Let
Ti = Ui[k − `:k] denote the top ` bits of Ui, and let N denote an arbitrary “noise vector”
such that Ni ∈ {−1, 0, 1}. Finally, set T̃i = Ti +Ni mod 2`. We will be facing the following
problem (“reconstructing noisy truncated geometric series”) several times:
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INPUT T̃ = (T̃0, . . . , T̃n−1) ∈ (Z2`)n, a (noisy) version of U truncated to the top ` bits.

OUTPUT U0 mod 2k, the first term of the (non-truncated) geometric sequence.

We will be facing a “high-dimension” instance in section 5.3 and many “low-dimension”
in sections 4 and 5. The rest of this section discusses algorithmic tools to solve these
problems. We first claim that 2k−`T̃ is “close” to a point of the lattice Ln,k.

Lemma 1. There exists U ′ ∈ L such that U ′i ≡ Ui mod 2k and
∥∥∥U ′ − 2k−`T̃

∥∥∥ ≤ 2
√
n2k−`.

Proof. We first observe that U belongs to the lattice L. We start by setting U ′ ← U , and
we examine all coordinates of U :

• If T̃i = Ti +Ni (without modulo), then we have:∣∣∣2k−`T̃i − Ui

∣∣∣ =
∣∣2k−`(Ti +Ni)− Ui

∣∣ =
∣∣2k−`Ni − Ui[0, k − `]

∣∣
≤
∣∣2k−`Ni|+ |Ui[0, k − `]

∣∣ ≤ 2k−`+1.

• Otherwise, there are two possible “wraparound” cases:

– Either Ti = 0 and Ni = −1, which leads to T̃i = 2` − 1. In this case, we have
Ui = Ui[0, k − `] and we set U ′i = Ui + 2k (note that this amount to adding a
lattice vector to U ′, so U ′ stays in the lattice). We have:∣∣∣2k−`T̃i − (Ui + 2k)

∣∣∣ =
∣∣2k−` + Ui[0, k − `]

∣∣ ≤ 2k−`+1.

– Or Ti = 2` − 1 and Ni = +1, which leads to T̃i = 0. This implies that
Ui = 2k − 2k−` +Ui[0, k− `]; we set U ′i = Ui− 2k (again, with this modification
U ′ stays in the lattice), and we find:∣∣∣2k−`T̃i − (Ui − 2k)

∣∣∣ =
∣∣2k − 2k−` + Ui[0, k − `]− 2k

∣∣ ≤ 2k−`+1.

In the end, we have
∥∥∥U ′ − 2k−`T̃

∥∥∥ ≤ 2
√
n2k−`, and U ′ ≡ U mod 2k.

3.2 Reconstruction in “High” Dimension Using an Exact CVP Solver
Lemma 1 tells us that the approximation of a geometric sequence obtained by dropping
least-significant bits cannot be arbitrarily far from a lattice point which reveals U0 mod 2k.
Therefore, we may possibly reconstruct truncated geometric series by finding the lattice
vector closest to the approximation we have. This means solving instances of the well-
known Closest Vector Problem (CVP), a fundamental hard problem on lattices. It
is NP-hard, and all known algorithms are exponential in the dimension of the lattice, yet
they can be fairly practical up to dimension ≈ 70.

Let CVP(L, x) denote the vector of L closest to the input vector x. Using the same
notations as above, we want to know if CVP

(
L, 2k−`T̃

)
is indeed U ′. This will necessarily

be the case when ‖2k−`T̃ −U ′‖ is smaller than the length of the shortest non-zero vector of
L — this quantity, the first minimum of the lattice, is denoted by λ1(L). By the triangular
inequality, we have:

|CVP(L, 2k−`T̃ )− U ′| ≤
∣∣∣CVP

(
L, 2k−`T̃

)
− 2k−`T̃

∣∣∣+
∣∣∣2k−`T̃ − U ′

∣∣∣ .
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But, as the vector U ′ belongs to the lattice, by definition of the closest vector and by
lemma 1:

|CVP(L, 2k−`T̃ )− U ′| ≤ 2
∣∣∣2k−`T̃ − U ′

∣∣∣ ≤ 4
√
n2k−`.

If we can prove that the right side of this inequality is smaller than the first minimum
of the lattice λ1(L), then we would have proved that CVP(L, 2k−`T̃ ) indeed reveals
U0 mod 2k.

In section 5.3, we will be facing the problem of reconstructing a geometric sequence
modulo 2128 given arbitrarily many (noisy versions of the) most-significant 6 bits of
successive elements of the sequence. Therefore we have k = 128 and ` = 6, and we wish to
determine the required number of samples, i.e. the value of n. This means finding the
values of n such that

√
n2124 ≤ λ1 (L).

Starting from n = d122/6ee, we computed the length of the shortest vector of the
lattice spanned by Gn,128 for each successive n until the condition holds. The Shortest
Vector Problem (SVP) is another well-known lattice NP-hard problem; we used the
(almost) off-the-shelf G6K library [ADH+19], which gave results very quickly by sieving.
fplll [dt16] was too slow above dimension 50, in the default settings.

After this computation, we found that the minimal possible n is 63: with n = 63, the
shortest vector of L has length greater than 2127.02, which is high enough. This vector can
be obtained by bootstrapping the geometric sequence with

U0 = 12144252875850345479015002205241987363

then reducing the terms modulo 2128 in zero-centered representation (subtracting 2128 to
Ui if Ui > 2127). It follows that when n ≥ 63, k = 128 and ` = 6, any CVP oracle will
return a vector congruent to the original U when given T̃ .

3.3 Reconstruction in Low Dimension Using Babai’s Rounding
In sections 4 and 5.1 we will need to reconstruct billions of noisy truncated geometric
series modulo 264 with very few terms, of which a large fraction of most-significant bits
are known. In this setting, the CVP problem becomes much easier. This enables us to use
faster and more ad hoc methods, such as Babai’s rounding algorithm [Bab86].

If M is a square matrix, we denote by ~M~ the induced matrix norm :

~M~ = sup
x∈Rn

‖xM‖
‖x‖

In the case of the ‖ · ‖2 norm used throughout this paper, ‖M‖ is the largest singular value
of G; equivalently, it is the square root of the absolute value of the largest eigenvalue of
M tM .

Denote again by L the n-dimensional lattice spanned by the rows of Gn,64, and let H
denote the LLL-reduction of Gn,64. The same lattice is also spanned by the rows of H.
For instance, with n = 3:

H =

 −1241281756092 3827459685972 −728312298332
−5001120657083 −2117155768935 5479732607037

8655886039732 3303731088004 6319848582548


Set S = 2k−`T̃H−1; as 2k−`T̃ is not a priori an element of the lattice, S need not be an
integer vector. Let then R denote the rounding of S, i.e. Ri = bSie. Then RH is an
element of the lattice. Under the right conditions, it will be the vector of the lattice closest
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to 2k−`T̃ . Indeed:

‖U ′ −RH‖ =
∥∥∥U ′ − (R− 2k−`T̃H−1 + 2k−`T̃H−1

)
H
∥∥∥

=
∥∥∥U ′ − 2k−`T̃ −

(
R− 2k−`T̃H−1

)
H
∥∥∥

≤
∥∥∥U ′ − 2k−`T̃

∥∥∥+
∥∥∥R− 2k−`T̃H−1

∥∥∥× ~H~.

By definition, R is the closest integer vector to 2k−`T̃H−1. But as U ′ is an element of the
lattice, U ′H−1 is an integer vector. Thus R−2k−`T̃G−1 is shorter than U ′G−1−2k−`T̃G−1.
Hence :

‖U ′ −RH‖ ≤
∥∥∥U ′ − 2k−`T̃

∥∥∥+
∥∥∥R− 2k−`T̃H−1

∥∥∥× ~H~

≤
∥∥∥U ′ − 2k−`T̃

∥∥∥+
∥∥∥U ′H−1 − 2k−`T̃H−1

∥∥∥× ~H~

≤
∥∥∥U ′ − 2k−`T̃

∥∥∥+
∥∥∥U ′ − 2k−`T̃

∥∥∥× �

�H−1�

�× ~H~

≤
∥∥∥U ′ − 2k−`T̃

∥∥∥× (1 + ~H−1~× ~H~
)
.

Note that ~H−1~× ~H~ is the condition number of the matrix H. Lattice reduction
has the side effect of reducing the condition number, therefore it makes sense to use
an LLL-reduced basis. If we can prove that the right side of the inequality is smaller
than the first minimum of the lattice, then we would have proved that RH is indeed the
closest vector we were searching for. Because we have fixed k = 64, by lemma 1 we have∥∥∥2k−`T̃ − U ′

∥∥∥ ≤ 2
√
n264−` − 1. So, if we fix n we can search for the minimum number `

of known most-significant bits such that:(
1 + ~H~×

�

�H−1�

�

)
2
√
n264−` ≤ λ1(L)

Table 1: minimal ` needed for a given n
n ~H~×

�

�H−1
�

� λ1(L) minimum `

3 2.87 4.09e12 ' 241.9 26
4 2.06 2.44e14 ' 247.8 20
5 3.77 1.72e15 ' 250.6 18
6 2.69 1.03e16 ' 253.2 15

When ` is greater than the values given in table 1, then Babai’s rounding technique
will always return the closest vector, and allow us to reconstruct a truncated geometric
series.

3.4 Application to the lehmer64 generator
Adapting the previous reasoning enables an efficient state reconstruction algorithm for
the lehmer64() generator shown in Fig. 1. When clocked, it outputs the top 64 bits of
a geometric sequence (k = 128 and ` = 64). Three successive outputs are sufficient to
reconstruct the internal state using Babai’s rounding technique. This yields the following
reconstruction algorithm:
def reconstruct(X):

"""
Produce the internal state of the generator given three consecutive outputs of lehmer64().
16 multiplications, 1 division, 11 additions and 3 roundings only.
"""
a = 0xda942042e4dd58b5
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r = round(2.64929081169728e-7 * X[0] + 3.51729342107376e-7 * X[1] + 3.89110109147656e-8 * X[2])
s = round(3.12752538137199e-7 * X[0] - 1.00664345453760e-7 * X[1] - 2.16685184476959e-7 * X[2])
t = round(3.54263598631140e-8 * X[0] - 2.05535734808162e-7 * X[1] + 2.73269247090513e-7 * X[2])
u = r * 1556524 + s * 2249380 + t * 1561981
v = r * 8429177212358078682 + s * 4111469003616164778 + t * 3562247178301810180
state = (a*u + v) % (2**128)
return state

4 State Reconstruction for PCG64 With Known Increment
We first consider the easier case where the “increment” (the c term in the definition of
the underlying linear congruential generator) is known — recall that a default value is
specified in case the user of the pseudo-random generator does not want to provide one.

In this case, reconstructing the 128-bit internal state Si of the generator is sufficient to
produce the pseudo-random flow with 100% accuracy (the generator can also be clocked
backwards if necessary, so that the seed can be easily reconstructed). We therefore focus
on reconstructing S0 (the seed) from X0, X1, X2, . . . . A very simple strategy could be the
following:

1. Guess the 64 upper bits of S0 (this includes the rotation).

2. Compute the missing 64 lower bits using (1), with:

S0[0:64] = S0[64:128]⊕ (X0 ≪ S[122:128]).

3. Compute S1 then extract X1; if X1 is correct, then output S0.

This “baseline” procedure requires 264 iterations of a loop that does a dozen arithmetic
operations; it always output the correct value of S0, and may output a few other ones
(they can be easily discarded by checking X2). An improved “guess-and-determine” state
reconstruction algorithm is possible, which essentially amounts to expose a truncated
version of the underlying linear congruential generator, and attack it using the tools
exposed in section 3. This is possible by combining the following ingredients:

• The underlying linear congruential generator uses a power-of-two modulus, therefore
the ` low-order bits of Si+1 are entirely determined by the ` low-order bits of Si.
More precisely, we have:

Si+1 = aSi + c mod 2`, for all 0 ≤ ` ≤ 128 (6)

Therefore, guessing the least-significant bits of S0 yields a “long-term advantage”
that holds for all subsequent states.

• Guessing a 6-bit rotation ri gives access to Yi (the XOR of the two halves of the
internal state). Thus, if a part of the state is known, then this transfers existing
knowledge to the other half.

In figure 3, we see that guessing S0[0:`] and a few 6-bit rotations ri give access to
Si[58:64 + `] for the corresponding states. Therefore, looking at Si[`:64 + `], we are facing
a truncated linear congruential generator on 64 bits, where we have access to the most
6 + ` bits of each state (denoted by T ), for a few consecutive states. This is sufficient to
reconstruct entirely the successive states of this truncated linear congruential generator.
This reveals S0[`:64 + `], and using (1) the entire S0 can be reconstructed. The precise
details follow.

We consider the sequence of internal states S = (S0, S1, . . . ) = LCG128(S0, c). We will
guess the ` least-significant bits of S0, therefore let us assume that their value is known
and denote it by w. We define S′ = LCG128(S0 − w, 0) and K = LCG128(w, c) — this



Charles Bouillaguet, Florette Martinez and Julia Sauvage 11

r0 wS0

64 bits 64 bits

???????????????????T0

r1 w1S1

???????????????????T1

r2 w2S2

???????????????????T2

` bits 6
64 bits ` bits

Figure 3: A guess-and-determine algorithm to reconstruct the first internal state S0.
Magenta bits are guessed; cyan bits are obtained using the linear congruence relation (6)
modulo 2`; yellow bits are obtained from the output and the guessed rotations using (1).

is Known. By (4), we have S′ = S − K. The point is that the elements of S′ follow
a geometric progression of common ratio a; in addition, the ` least significant bits of
each components are equal to zero. It follows that S′[`:64 + `] also follows a geometric
progression of common ratio a, this time modulo 264. The crux of the reconstruction
algorithm is to find S′[`:64 + `].

We know Ki[58:64 + `] for all i, and for each guessed rotation ri we have access to
Ti

def= Si[58:64 + `]. We want T ′i
def= (Si �Ki)[58:64 + `], which is the truncation of S′i.

Thanks to (3), we know that there is an unknown vector B of borrows, whose components
are either 0 or 1, such that T ′ = S[58:64 + `]�K[58:64 + `]�B. Because the borrows are
unknown, we in fact compute T̃ ′ = S[58:64 + `]�K[58:64 + `], and clearly T̃ ′ = T ′ �B.
We are thus in the context of the problem discussed in section 3, namely reconstructing a
geometric sequence given 6 + ` (noisy) most-significant bits. The “noise” is the unknown
vector B of borrows.

We will guess n rotations and ` least-significant bits of the state, for a total of 26n+`

guessed bits. Table 1 gives a lower-bound on ` given n, and we see that the total number
of guessed bits reaches a minimum of 38 when n = 3 and ` = 20. Therefore, success is
guaranteed if we guess ` = 20 low-order bits of the state and three consecutive rotations.

The algorithm that reconstructs the internal state of the PCG64 generator with known
increment proceeds as shown in algorithm 1. The point is that when the guesses are
correct, then from the truncated geometric series T ′, the solution of the CVP instance
reveals Uj = S′j [`:64 + `]. From there, the correction of the algorithm is easily established.

The procedure is completely practical. More details are given in section 6. Let us just
mention that the procedure often works (twice faster) with ` = 19 or even four times faster
with ` = 18 (with a reduced success probablity).
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Algorithm 1 State reconstruction Algorithm (case where c is known)
1: procedure ReconstructState`(X0, X1, X2)
2: // Statement involving j must be repeated for j = 0, 1, 2.
3: H ← LLL reduction of G3,64
4: `← 20
5: for 0 ≤ w < 2` do . Guess least-significant bits of S0
6: Kj ← ajw + c(aj − 1)(a− 1)−1 mod 2128 . Known part
7: for 0 ≤ r0, r1, r2 < 64 do . Guess rotations
8: Yj ← Xj ≪ rj . Undo rotations
9: Tj ← (rj ⊕ Yj [58:64]) + 64 · (Kj ⊕ Yj) [0:`] . Truncated LCG output

10: T̃ ′j ← Tj �Kj [58:64 + `] . Truncated geometric series on 6 + ` bits
11: (U0, U1, U2)←

⌊
258−` · (T̃ ′0, T̃ ′1, T̃ ′2) ·H−1

⌉
·H . CVP (Babai rounding)

12: S0[0:64]← K0[0:64] + 2` · U0[0:64− `] . Reconstruct S0
13: S0[64:128]← S0[0:64]⊕ Y0
14: S1 ← aS0 + c . Recompute X1
15: Ŷ1 = S1[0:64]⊕ S1[64:128]
16: if Ŷ1 = Y1 then . Check consistency
17: output S0 as a candidate internal state.

5 State Reconstruction for PCG64 With Secret Increment
The algorithm of section 4 does not apply directly to the general case where the value of c
is unknown. A “baseline” procedure would consist in guessing S0[64:128] and S1[64:128];
using eq. (1), this would reveal S0 and S1; from there, the increment c is easily to obtain,
and every secret information has been reconstructed. This would take 2128 iterations of a
very simple procedure, which is completely infeasible.

Set ∆Si = Si+1�Si; it is easily checked that ∆Si is a geometric progression of common
ratio a. Therefore, reconstructing both S0 and ∆S0 is sufficient to compute all subsequent
states (and recover the unknown increment c). The global “guess-and-determine” strategy
is essentially the same as before: gaining access to a truncated version of ∆Si, solving a
small SVP instance, reconstructing ∆S0, then checking consistency.

Let us set:

∇Si
def= Si − S0 ≡

i−1∑
j=0

∆Sj ≡ ∆S0 ·
i−1∑
j=0

aj ≡ ∆S0
ai − 1
a− 1 mod 2128 (7)

Note that ∇S0 = 0 and ∇S1 = ∆S0. Therefore, knowledge of ∆0 entails that of the whole
sequence of ∇Si. The prediction algorithm we propose proceeds in three phases:

1. Reconstruct ∆S0[0:64 + `] from X0, . . . , X4, check consistency with X5, . . . , X63.

2. Reconstruct all rotations ri from this partial knowledge.

3. Fully reconstruct ∆S0 from the rotations.

4. Reconstruct S0 from ∆S0 and the rotations.

Only the first phase is computationally intensive. The four steps are discussed in the next
four subsections.

5.1 Partial Difference Reconstruction
In order to access to a part of ∆Si, we use the same “guess-and-determine” strategy
as in section 4: we guess the least significant bits of S0 and some rotations, then check
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consistency. The difference is that, since c is unknown, we must in addition guess the least
significant bits of c to obtain the same “long-term advantage” (c is always odd; this makes
one less bit to guess). We must also guess k + 1 successive rotation to get information on
k successive differences ∆Si.

Confirming that the guesses are correct is less immediate. When c was known, we
could reconstruct the internal state; from there, filtering out the bad guesses was easy.
When c is unknown, the same strategy does not work, but a very strong consistency check
can still be implemented.

We consider again the sequence of internal states S = (S0, S1, . . . ) = LCG128(S0, c).
We will guess the ` least-significant bits of S0 and of c, therefore let us assume that their
value is known and denote it by w0 and c0. We define S′ = LCG128(S0 − w, c− c0) and
K = LCG128(w0, c0) — again, K is Known and S′ = S−K. This time, the components of
S′ do not follow a geometric progression; but we still have that the ` least significant bits
of each S′i are zero. Set ∆S′i

def= S′i+1 − S′i; ∆S′[`:64 + `] follows a geometric progression of
common ratio a modulo 264 (again). This time, we have to find ∆S′0[`:64 + `].

As in section 4, we have access to Ti
def= Si[58:64 + `]. We want to subtract the

known part to obtain T ′i
def= (Si � Ki)[58:64 + `], which is the truncation of S′i. This

again introduces an unknown vector B of borrows, and in fact we can only compute
T̃ ′ = S[58:64 + `] � K[58:64 + `], with T̃ ′ = T ′ � B. As explained above, to access a
geometric sequence, we would like to obtain ∆T ′i

def= T ′i+1 − T ′i , but we can only compute:

∆T̃ ′i
def= T̃ ′i+1 − T̃ ′i = (T ′i+1 � T

′
i )� (Bi+1 �Bi)

We are thus still in the context of the problem discussed in section 3, but this time the
“noise” caused by the carries is given by Bi+1 −Bi. When the guesses are correct, then
Babai’s rounding will reconstruct ∆S̃′[`:64+ `] from ∆T̃ ′. This in turn yields ∆S0[0:64+ `].

Once we have found ∆S0[0:64 + `], we can compute ∇Si[0:64 + `] for any i because
eq. (7) holds modulo 264+`; because we have guessed the first rotation and the ` least
significant bits of the state, using (1) we gain access to S0[58:64 + `]; combined with the
“differences” ∇Si, this reveals Si[58:64 + `] for any i (and we already had Si[0:`]). This
allows us to compute Yi[0:`] = Si[0:`]⊕ Si[64:64 + `] for any i. Given a “fresh” output Xi,
and assuming that the guesses are correct, then we should have:

Si[0:`]⊕ Si[64:64 + `] = (Xi ≪ ri)[0:`]. (8)

In particular, if the guesses were correct, then we should have for any i:

Si[0:`]⊕ Si[64:64 + `] ∈
{

(Xi ≪ r)[0:`] | 0 ≤ r < 64
}
. (9)

If none of the 64 possible rotations yields a match, then the guesses made beforehand
have to be wrong. As a consequence, bad guesses can be filtered with an arbitrarily low
probability of false positives, by trying several indices i.

A few details still need to be fleshed out. To be precise, let us assume that we have
guessed the ` least-significant bits of S0 (we denote them by w0) and the first rotation
r0. Set Y0 = X0 ≪ r0. We obtain the i-th state by Si ≡ ∇Si � S0; however, because
the “middle” of S0 is unknown, then an unknown carry may cross the 64-th bit during
the addition and perturb Si[64:64 + `]. As a result, there is an unknown vector C, whose
components are either 0 or 1, such that such that:

Si[64:64 + `] = Ci �∇Si[64:64 + `]� (w0 ⊕ Y0[0:`]︸ ︷︷ ︸
S0[64:64+`]

)
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Algorithm 2 Partial difference reconstruction algorithm (when c is unknown).
1: procedure ConsistencyCheck(∆S0, w0, Y0, X5, . . . , Xk)
2: v0 = w0 ⊕ Y0[0:`] . v0 = S0[64:64 + `]
3: for i = 5, . . . , k do
4: ui ← ∆S0(ai − 1)(a− 1)−1 mod 264+` . ui = ∇Si[0:64 + `]
5: wi = w0 � ui[0:`] . wi = Si[0:`]
6: vi = v0 � ui[64:64 + `] . Si[64:64 + `] ∈ {vi, v

′
i}

7: v′i = vi � 1
8: Ci ← {wi ⊕ (Xi ≪ ri)[0:`] | 0 ≤ ri < 64} . Check eq. (9)
9: if {vi, v

′
i} ∩ Ci = ∅ then

10: return False . Bad Guesses
11: return True . No inconsistency
12:
13: procedure ReconstructPartialDifference(X0, . . . , Xk)
14: // Statement involving j must be repeated for j = 0, 1, 2, 3, 4.
15: H ← LLL reduction of G4,64
16: `← 14
17: for 0 ≤ w0 < 2` and 0 ≤ c0 < 2`−1 do . Guess least-significant bits
18: Kj ← ajw0 + (2c0 + 1)(aj − 1)(a− 1)−1 mod 2128 . Known part
19: for 0 ≤ r0, r1, r2, r3, r4 < 64 do . Guess rotations
20: Yj ← Xj ≪ rj . Undo rotations
21: Tj ← (rj ⊕ Yj [58:64]) + 64 · (Kj ⊕ Yj) [0:`] . Truncated LCG
22: T̃ ′j ← Tj �Ki[58:64 + `] . Cancel known part
23: ∆T̃ ′j = T̃ ′j+1 � T̃

′
j . Difference (truncated geom. seq.)

24: (∆U0, . . . ,∆U3)←
⌊
(∆T̃ ′0, . . . ,∆T̃ ′3) · 258−` · H̃−1

⌉
· H̃ . CVP

25: ∆S0[0:64 + `]← (K1 �K0) [0:`] + 2` ·∆U0[0:64] . Check
26: if ConsistencyCheck(∆0, w0, Y0, X5, . . . , Xk) then
27: return (w0, c0, r0, . . . , r4,∆S0).
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In algorithm 2, ConsistencyCheck uses eq. (9) combined with this observation to
discard bad guesses.

The heart of the algorithm is again the reconstruction of a truncated geometric
progression. Looking at table 1, we see that the best choice consists in guessing 5 consecutive
rotations and ` = 14 least-significant bits. Therefore, ReconstructPartialDifference
does 257 iterations of the inner loop, and succeeds deterministically.

5.2 Predicting all the Rotations
Knowing the values of ∆S0[0:64 + `] as well as the ` least-significant bits of S0 and c
is sufficient to get rid the nastier feature PCG64: armed with this knowledge, we can
determine all the subsequent rotations deterministically, at negligible cost, using eq (8).
For each index i, it suffices to try the 64 possible values of ri; only one should satisfy
eq (8). The complete pseudo-code is shown in algorithm 3.

It is unlikely that several possible values of ri match: each value is “checked” on ` bits,
so an accidental match happens with probability 2`−6. The total number of lists returned
by ReconstructRotations then follows a binomial distribution of parameters 2`−6, k.
With ` = 14 and k = 64, then only one rotation vector should pass the test for 0 ≤ i < 64
on average.

Algorithm 3 Rotations and full difference reconstruction algorithm
1: function ReconstructRotations(∆S0, v0, i, k)
2: // Return a list of potential [ri, ri+1, . . . , rk]; assume that v0 = S0[64:64 + `]
3: if i > k then
4: return [] . End recursion
5: T ← ReconstructRotations(∆S0, v0, i+ 1, k) . Find all the (ri+1, . . . , rk)
6: H ← [] . List of possible ri’s
7: ui ← ∆S0(ai − 1)(a− 1)−1 mod 264+` . ui = ∇Si[0:64 + `]
8: wi = w0 + ui[0:`] mod 2` . wi = Si[0:`]
9: vi = v0 + ui[64:64 + `] mod 2` . Si[64:64 + `] ∈ {vi, v

′
i}

10: v′i = vi + 1 mod 2`

11: for 0 ≤ r < 64 do . Try all rotations
12: if wi ⊕ (Xi ≪ r)[0:`] ∈ {vi, v

′
i} then . Check eq. (8)

13: H ← r::H . New candidate ri

14: return {h::t | h ∈ H, t ∈ T } . Return H× T

5.3 Full Difference Reconstruction
Using X0, X1, . . . , X63, we recover all rotations and thus we recover the 6 most-significant
bits of S0, S1, . . . , S63. This allows us to compute the 6 most significant bits of the
differences ∆Si between consecutive states (up to missing carries), and we are faced with
the problem of reconstructing a 128-bit geometric progression using 63 consecutive outputs
truncated to their 6 most-significant bits. There is again an unknown vector of borrows B
such that ∆Si[122:128]� Ci = ri+1 � ri.

Reconstructing ∆S0 from the ri is exactly the problem discussed in section 3.2. This
can be done by solving an instance of CVP in dimension 63. We use the off-the-shelf CVP
solver embedded in fplll: it runs in no measurable time.

5.4 Complete State Reconstruction
Once all the rotations have be recovered and ∆S0 has been found entirely, the only thing
that remain is to actually find the entire S0. For this, we use again eq. (1), coupled with
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the “differences”:

Si = S0 �∇Si

Yi = Si[0:64]⊕ Si[64:128].

The Yi and ∇Si are known, ∇S0 = 0, and the problem consists in recovering S0. We
could probably encode it as an instance of SAT, feed it to a SAT-solver and be done with
it.

Nevertheless, here is a detailed recovery procedure which obtain all bits of S0, from
right to left, by exploiting the non-linearity of modular addition. It takes negligible time.
Let Ci the vector of (incoming) carries generated during the addition of S0 and ∇Si:

Si[j] = S0[j]⊕∇Si[j]⊕ Ci[j]

Ci[j] =
{

0 if j = 0
MAJ(S0[j − 1],∇Si[j − 1], Ci[j − 1]) if j > 0

Combining all the above, we have:

Yi[j] = Y0[j]⊕
(
∇Si[j]⊕∇Si[64 + j]

)
⊕
(
Ci[j]⊕ Ci[64 + j]

)
(10)

This useful equation enables an induction process.

• When j = 0, the 0-th carries are zero, and therefore eq. (10) reveals the 64-th carries:

Ci[64 + j] =
(
Y0[j]⊕ Yi[j]

)
⊕
(
∇Si[j]⊕∇Si[64 + j]

)
.

• Next, suppose that Ci[0:j], S0[0:j − 1], Ci[64:64 + j] and S0[64:64 + j − 1] are known,
for all i. We can compute Ci[j]⊕ Ci[64 + j] for any i using eq. (10). We then look a
a specific index i > 0 such that

∇Si[j − 1] 6= Ci[j − 1] and ∇Si[64 + j − 1] = Ci[64 + j − 1].

The point is that, thanks to the majority functions, Ci[j] = S0[j− 1] and Ci[64 + j] =
∇Si[64 + j − 1]. It follows that:

S0[j − 1] = Y0[j − 1]⊕ Yi[j − 1]⊕
(
∇Si[j − 1]⊕∇Si[64 + j − 1]⊕∇Si[64 + j − 1]

)
From there, we also have S0[64 + j − 1] = Y0[64 + j − 1]⊕ S0[j − 1], and the j-th
carry bits can be computed normally.

The whole procedure is shown in algorithm 4. Note that once S0 has been found, then
all subsequent states can be computed with error using Si = S0 � ∇Si. In particular,
computing S1 gives c by c← S1 � aS0. This complete the reconstruction procedure for
PCG64.

6 Implementation and Practical Results
We have implemented the state reconstruction algorithms described above using a mixture
of C (for the computationally expensive parts) and Python (for the rest). We used the
fplll library [dt16] to solve CVP instances exactly in dimension 63.

In this section, we briefly outline important aspects of our implementations and present
practical results. Our codes are available in the supplementary material as well as online
at:
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Algorithm 4 Full state reconstruction algorithm
1: function ReconstructState(∆S0, r0, . . . , rk, X0, . . . , Xk)
2: for i = 0, 1, . . . , k do . Setup
3: ∇Si ← ∆S0(ai − 1)(a− 1)−1 mod 2128

4: Yi ← Xi ≪ ri . Undo rotations
5: Ci[0]← 0 . Bootstrap induction
6: Ci[64]←

(
Yi[0]⊕ Yi[j]

)
⊕
(
∇Si[j]⊕∇Si[64 + j]

7: for j = 1, 2, . . . , 64 do . Induction
8: i← ⊥ . Find good index
9: for k = 1, 2, . . . , k do

10: if ∇Sk[j − 1] 6= Ck[j − 1] ∧∇Sk[64 + j − 1] = Ck[64 + j − 1] then
11: i← k
12: if i = ⊥ then . No suitable indice found?
13: Abort with Failure
14: . Compute next state bit
15: S0[j−1]← Y0[j−1]⊕Yi[j−1]⊕

(
∇Si[j−1]⊕∇Si[64+ j−1]⊕∇Si[64+ j−1]

)
16: S0[64 + j − 1]← Y0[64 + j − 1]⊕ S0[j − 1]
17: for i = 0, 1, . . . , k do . Compute next carries
18: Ci[j]← MAJ(S0[j − 1],∇Si[j − 1], Ci[j − 1])
19: Ci[64 + j]← MAJ(S0[64 + j − 1],∇Si[64 + j − 1], Ci[64 + j − 1])
20: return S0

Table 2: Empirical success probabilities with smaller parameters.
n = 3 (section 4) n = 4 (section 5.1)
` Success proba. ` Success proba.
16 ≈ 0.125 10 ≈ 0.12
17 ≈ 0.25 11 ≈ 0.64
18 ≈ 0.5 12 ≈ 0.995
19 1 13 1
20 1 (proved) 14 1 (proved)

https://github.com/cbouilla/pcg/

The designer of PCG was kind enough to send us two sets challenge inputs: one with
the default (known) increment and one with a random secret increment. She generated
random seeds and provided us with the first outputs of the pseudo-random generator. We
were able to reconstruct the seed with an extremely high confidence level, because they
re-generate the same outputs. We emailed back the seeds and received confirmation that
they were indeed correct.

We have therefore successfully taken the challenge of predicting the output of the
PCG64 generator.

The analysis of section 3 yields parameters that guarantee that the reconstruction
procedure always succeeds. In most cases, these parameters are pessimistic. We ran a series
of experiments to determine more practical choices: using smaller-than-guaranteed values
of ` (the number of guessed least-significant bits), we measured the success probability of
the state reconstruction procedure. The results are shown in table 2.

6.1 Known Increment
When the increment c is known, algorithm 1 is all it takes to reconstruct the internal
state of the generator and predict it (or output the seed). We implemented it in C, using

https://github.com/cbouilla/pcg/
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OpenMP to parallelize the outer loop that guess the least-significant bits of the state. This
yields a simple multi-core implementation. We used the gcc 8.3.0 compiler.

From section 3.3, we know that guessing ` = 20 least-significant bits ensures deter-
ministic success. However, we observed empirically that ` = 19 works with probability
≈ 1, and runs twice as fast. ` = 18 and ` = 17 run with probability ≈ 1/2 and ≈ 1/4
respectively, therefore are much less useful. In practice, we used ` = 19.

We ran it on a server equipped with two 16-core Intel Xeon Gold 6130 CPU @ 2.10GHz
(“Skylake”) CPUs. The inner loop does 237 iterations and terminates in 42.3s, which makes
23 core minutes.

These processors operate at a different frequency depending on the number of cores
used and the type of instructions executed. Our code uses only scalar instructions, so the
CPUs runs at the highest frequency tier when executing it. Using a single software thread
per physical core (each core presents two hardware execution contexts, commercially called
HyperThreads) allows the CPU to run at 2.8Ghz, the maximum “Turbo” frequency on all
cores. Using one software thread per hardware thread reduces the frequency to ≈ 2.6Ghz,
but allows to better saturate the execution units of the CPU and yields a nearly 20%
speedup overall.

Therefore the algorithm requires 241.67 CPU cycles in total; this makes less than 5
cycles per iteration of the inner loop. We used several implementation tricks to reach this
level of efficiency:

• We used the __uint128_t type provided by most C compilers to do 128-bit arithmetic
when computing S1 from S0. Apart from that, the algorithm has been designed to
do mostly 64-bit arithmetic, for the sake of efficiency.

• Looking at the algorithm, it is clear that U1 and U2 are actually not needed, so we
just don’t compute them.

• T̃J is a function of w, j and rJ (with j = 0, 1, 2). therefore, for each new value of
w, we precompute once and for all an array indexed by (J,RJ) of the 192 possible
values of T̃J .

• Pushing the same idea a bit further, we precompute parts of the matrix-vector
product inside the rounding: this computes a linear combination of the rows of G−1

3 ,
in which T̃j is the coefficient of the j-th row. So we precompute the 576 possible
products T̃j ·G−1

3 [j, k].

• We enumerate the possible rotations in lexicographic order. This means that T̃0
changes in each iteration while T̃1 (resp T̃2) changes every 64 (resp 4096) iterations.
Therefore, in 98% of the iterations, two-thirds of the matrix-vector product inside the
rounding are the same as from the previous iteration. Therefore, we fully compute
the matrix-vector product only when r1 changes and only update it when r0 changes.

• The rounding operation, when done naively by writing llround(x), is actually a
bottleneck: it calls a library function that accounted for about 20% of the total
running time. We instead used the following technique, which correctly returns bxe
whenever |x| < 251:

long long fast_round(double x)
{

union { double d; long long l; } magic;
magic.d = x + 6755399441055744.0;
magic.l <<= 13;
magic.l >>= 13;
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return magic.l;
}

This hack exploits the IEEE754 representation of double-precision floats: the mantissa
lies in bits [0:52] while the sign bit and the exponents take the 12 most significant
bits. Adding 252 + 251 forces the mantissa to shift to the correct position and inserts
an extra 1 bit at position 51. The two shifts clear the extra bit and the exponent,
while correctly expanding the sign bit.

6.2 Unknown Increment
When the increment c is known, the internal state of PCG64 can be practically recon-
structed from X0, . . . , X63 using the algorithms shown in section 5. Only algorithm 2 is
computationally expensive; we implemented it in C, while we implemented algorithms 3
and 4 in Python.

We have shown that algorithm 2 is correct when ` = 14. The procedure does 229+2`

iterations of the inner loop, so decreasing ` would really be interesting. Looking at table 2,
we settle for ` = 13 in the worst case; let T denotes the running time when ` = 13.

It seems that the most promising strategy consists in choosing ` = 11; if the recon-
struction procedure fails, then we try again with different inputs. The expected running
time of this approach number of trials is T/(16× 0.64) ≈ T/10.25. In our implementation,
T = 200, 000 CPU hours, so the expected running time of the reconstruction procedure is
about 20, 000 CPU hours. In fact we were lucky: on the challenge input, the first attempt
with ` = 11 succeeded, so the whole process took only 12, 500 CPU hours.

It actually ran in 35 wall-clock minutes using 512 cluster nodes, each equipped with
two 20-cores Intel Xeon Gold 6248 @ 2.5Ghz (“Cascade Lake”). The actual machine is the
jean-zay computer located at the IDRIS national computation center. Note that on this
particular parallel computer, running the algorithm with ` = 13 would take 10 hours using
the same amount of resources, so the whole procedure is practical, even in the absolute
worst case.

The outer loop of algorithm 2 makes 22`−1 iterations while the inner loop makes 230

iterations. Using a single hardware execution context, we measured that one of the outer
loop takes between 41.5s and 44s (apparently not all nodes of the cluster are running at
exactly the same speed, potentially because of “turbo boost” adjustments and thermal
constraints). Because of this variability, we implemented a master-slave work distribution
pattern, in which a master process dispatches iterations of the outer loop to slave processes.
This also made checkpointing very easy. We used MPI for inter-process communication.

With ` = 11, the whole process took 256.74 CPU cycles, which makes less than 6 cycles
per iteration of the inner loop. We used essentially the same implementation tricks discussed
above. However, this time we had to additionally implement the ConsistencyCheck
procedure, which is called in the inner loop. We observed that the set of possible candidate
values C only depends on w0 (the variable of the outer loop). Therefore, before entering the
inner loop, we precompute a bit field of size 2` describing Ci. To simplify the implementation,
we flatten them by computing C = ∪iCi. This slightly increase the probability of false
positives, but makes our code slightly simpler.

7 Conclusion
We have presented a practical state reconstruction algorithm for the PCG64 conventional
pseudo-random number generator, the default in the NumPy library. In the worst case,
we recovers all the secret information using 512 consecutive output bytes, using 2.3 CPU
years of computation. We have executed the algorithm in practice using a large parallel
computer. The PCG64 generator is fast and not intended for cryptographic purposes; we
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have shown that, in practice, this comes at the price of strong pseudo-randomness. It
should absolutely not be used when unpredictability of the random numbers is required,
for fear of practical attacks.

On the other hand, our results do not mean that PCG64 should be deprecated for
scientific computing. But they do mean that its output has detectable properties. Whether
these properties may affect the results of Monte-Carlo numerical simulations is another
matter entirely.
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