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The Schur degree of additive sets

Introduction

A subset of Z is sumfree if it contains no elements x, y, z such that x+y = z. The problem of partitioning [1, N] into as few sumfree parts as possible was initiated by Schur [START_REF] Schur | Uber die Kongruenz x m + y m ≡ z m (mod p), Jahresber[END_REF]. Given n ∈ N + , Schur established the existence of a number S(n) such that [1, N] can be partitioned into n sumfree parts if and only if N ≤ S(n). The S(n) are called the Schur numbers and, despite more than a century in existence, remain poorly understood at the time of writing. Their only currently known values are S(1), S(2), S(3), S(4), S(5) = [START_REF] Adhikari | Equation-regular sets and the Fox-Kleitman conjecture[END_REF][START_REF] Eliahou | An adaptive upper bound on the Ramsey numbers R[END_REF][START_REF]Mathematica, Version[END_REF]44,160).

(1)

1 See Section 5.2 for more details. In his paper, Schur proved the following upper bound and recursive lower bound on the S(n) for n ≥ 2, namely 3S(n -1)

+ 1 ≤ S(n) ≤ n!e, (2) 
leading in particular to S(n) ≥ (3 n -1)/2 for all n ≥ 2.

For n ≥ 1, the n-color Ramsey number R n (3) = R(3, . . . , 3) denotes the smallest N such that, for any n-coloring of the edges of the complete graph K N on N vertices, there is a monochromatic triangle. See [START_REF] Radziszowski | Small Ramsey numbers[END_REF] for an extensive dynamic survey on this topic. Only three of the numbers R n (3) are currently known, namely (3,[START_REF] Fettes | An upper bound of 62 on the classical Ramsey number R[END_REF]17).

R 1 (3), R 2 (3), R 3 (3) =
(

) 3 
As for n = 4, the presently known bounds are 51 ≤ R 4 (3) ≤ 62. It is conjectured in [START_REF] Xu | On some open questions for Ramsey and Folkman numbers[END_REF] that R 4 (3) equals 51. Similarly to the upper bound in [START_REF] Baumert | Sum-free sets[END_REF], it was shown in [START_REF] Greenwood | Combinatorial relations and chromatic graphs[END_REF] that R n (3) ≤ n!e + 1 for all n ≥ 1. This bound has later been improved to

R n (3) ≤ n!(e -1/6) + 1
for all n ≥ 4 in [START_REF] Xu | Upper bounds for Ramsey numbers R n (3) and Schur numbers[END_REF]. See also [START_REF] Eliahou | An adaptive upper bound on the Ramsey numbers R[END_REF], where the conjecture R 4 (3) = 51 is shown to imply R n (3) ≤ n!(e -5/8) + 1 for all n ≥ 4.

In fact, there is a well known relationship between the Schur and the Ramsey numbers, namely

S(n) ≤ R n (3) -2. ( 4 
)
See e.g. [START_REF] Soifer | The mathematical coloring book[END_REF]. That is, if the set [1, N] admits a partition into n sumfree parts, then N ≤ R n (3) -2.

We shall show here that (4) holds in a more general context. Let (G, +) be an abelian group. As in Z, a subset of G is sumfree if it contains no elements x, y, z such that x + y = z. Given a finite sequence A = (a 1 , . . . , a N ) in G, let us denote by  the set of all block sums a k +

• • • + a of A, where 1 ≤ k ≤ ≤ N. For instance, if A = (1, . . . , 1) of length N in G = Z, then  = [1, N].
In this paper, we are concerned with partitioning subsets of G of the form  into as few sumfree parts as possible. As just noted, this includes Schur's original problem for the integer intervals [1, N]. Our extension of (4) to this more general setting states that if A is a sequence in G of length |A| = N and if  can be covered by n sumfree parts, then N ≤ R n (3) -2.

Currently, the best available theoretical upper bound on S(n) for n ≥ 4 is the one provided by [START_REF] Eliahou | An adaptive upper bound on the Ramsey numbers R[END_REF]. While the Ramsey numbers R n (3) satisfy the well known recursive upper bound Theorem 6,p. 6], no similar statement is known yet for the S(n).

R n (3) ≤ n(R n-1 (3) -1) + 2 for all n ≥ 2 [8,
Here we fill this gap, at least conjecturally, as an outcome of our study of sumfree partitions of sets of the form Â. Indeed, as we shall see, that study leads us to conjecture the following recursive upper bound, for all n ≥ 2:

S(n) ≤ n(S(n -1) + 1). ( 5 
)
The contents of this paper are as follows. In Section 2, we introduce the Schur degree and the basic notions and tools needed in the sequel. In Section 3, we prove initial properties of the Schur degree and illustrate them with selected examples in Z. Our main result, an extension of (4) to sets  bounding their Schur degree with the Ramsey numbers R n (3), is proved in Section 4. The material developed so far leads us in Section 5 to the conjectural recursive upper bound (5), a substantial would-be improvement over (4).

Basic notions and tools

Here is the main notion introduced and studied in this paper. Definition 2.1. Let (G, +) be an abelian group. Let X ⊆ G be a subset. We define the Schur degree of X, denoted sdeg(X), as the smallest n ≥ 1 such that X can be covered by n sumfree subsets. If no such n exists, we set sdeg(X) = ∞.

For instance, sdeg(X) = 1 if and only if X is sumfree, whereas sdeg(X) = ∞ whenever 0 ∈ X, as {0} is not sumfree. As another instance, in N we have

sdeg([1, S(n)]) = n, sdeg([1, S(n) + 1]) = n + 1 (6) by definition of S(n). Equivalently, sdeg([1, N]) ≤ n ⇐⇒ N ≤ S(n).
Measuring the Schur degree of most subsets is likely to remain an extremely difficult task, even for the integer intervals [1, N] as witnessed by the still highly mysterious Schur numbers S(n). In this paper, we focus on subsets of a certain form Â, generalizing the intervals [1, N] and introduced below.

Block sums

Let (G, +) be an abelian group. Let A = (a 1 , . . . , a N ) be a finite sequence in G. We denote by |A| = N its length and by σ(A) = ∑ i a i the sum of its elements.

A block in A is any nonempty subsequence of consecutive elements of A. That is, any subsequence of the form B = (a i , . . . , a j )

for some 1 ≤ i ≤ j ≤ N. A block sum in A is a sum σ(B) where B is any block in A, i.e. any element in G of the form a i + • • • + a j for some 1 ≤ i ≤ j ≤ N.
Notation 2.2. Let A = (a 1 , . . . , a N ) be a sequence in G. We denote by

 = {σ(B) | B is a block in A}, the set of block sums in A. For instance, if A = (1, . . . , 1) of length N in Z, then  = [1, N] as noted above.
In this paper, we initiate the study of the Schur degree of subsets of the form  for finite sequences A in G, with the hope to shed some light on the basic case [1, N] in Z. Our main result is Theorem 4.1, an extension of (4) to this context.

Minors

We show here that the association A → Â is monotone with respect to taking minors, as defined below.

Definition 2.3. Let A = (a 1 , . . . , a N ) be a sequence in the abelian group G.

• An elementary contraction of A is any sequence A obtained by replacing a block B in A by its sum σ(B). That is, if B = (a i , . . . , a j ) for some 1 ≤ i ≤ j ≤ N, then A = (a 1 , . . . , a i-1 , σ(B), a j+1 , . . . , a N ).

• A contraction of A is any sequence obtained from A by successive elementary contractions.

For instance, let A = (1, 2, 3, 4). Then (3, 3, 4), [START_REF] Fettes | An upper bound of 62 on the classical Ramsey number R[END_REF][START_REF] Eliahou | An adaptive upper bound on the Ramsey numbers R[END_REF] and (3, 7) are contractions of A, the first two ones being elementary. See also [START_REF] Adhikari | Equation-regular sets and the Fox-Kleitman conjecture[END_REF].

Definition 2.4. Let A = (a 1 , . . . , a N ) be a sequence in G. A minor of A is either a block B in A or a contraction A of A. Proposition 2.5. Let G be an abelian group. Let A be a finite sequence in G. If B is a minor of A, then B ⊆ Â.
Proof. The stated inclusion clearly holds if B is a block in A, since any block sum of B is a block sum of A. If B is an elementary contraction of A then again, any block sum of B is a block sum of A. Therefore, the same holds if B is obtained from A by successive elementary contractions.

The discrete derivative

For subsets X,Y of a group (G, +), their sumset is X + Y = {x + y | x ∈ X, y ∈ Y }. Thus, X is sumfree if and only if (X + X) ∩ X = / 0; equivalently, if and only (X -X) ∩ X = / 0, where -X = {-x | x ∈ X}. In this section, for X ⊂ Z finite, we relate X -X with a subset of the form  for a certain sequence A closely linked to X. This is done with a variant of the discrete derivative, associating to a subset X ⊂ Z its sequence of successive jumps. See also [START_REF] Adhikari | Equation-regular sets and the Fox-Kleitman conjecture[END_REF].

Definition 2.6. Let X ⊂ Z be a finite subset. Let the elements of X be x

0 < x 1 < • • • < x r . The discrete derivative of X is the sequence ∆X = (x 1 -x 0 , x 2 -x 1 , . . . , x r -x r-1 )
of successive jumps in X.

The interesting point for our purposes here is that X -X can be read off from the block sums of ∆X.

Proposition 2.7. Let X ⊂ Z be a nonempty finite subset, and let A = ∆X.

Then  = (X -X) ∩ N + . Proof. Denote by x 0 < x 1 < • • • < x r the elements of X. Then (X -X) ∩ N + = {x t -x s | 0 ≤ s < t ≤ r}.
Let A = ∆X = (a 1 , . . . , a r ), where a i = x ix i-1 for 1 ≤ i ≤ r. For any indices 0 ≤ s < t ≤ r, let B = (a s+1 , . . . , a t ) be the corresponding block in A. Then

x t -x s = σ(B). (7) Indeed, σ(B) = ∑ t i=s+1 a i = ∑ t i=s+1 (x i -x i-1 ) = x t -x s . Hence x t -x s ∈ Â.
This concludes the proof of the proposition.

The next proposition bounds the Schur degree of certain subsets  in Z. We start with a lemma. Lemma 2.8. Let X be a sumfree subset of [1, N] 

for some N ∈ N + . Let A = ∆(X). Then  ⊆ [1, N -1] \ X. Proof. Denote X = {x 0 , . . . , x n } with 1 ≤ x 0 < x 1 < • • • < x n ≤ N. Then A = (a 1 , . . . , a n ) where a i = x i -x i-1 for all 1 ≤ i ≤ n. Let s ∈ Â. Then s = a i + • • • + a j = x j -x i-1 for some 1 ≤ i ≤ j ≤ n. Therefore 1 ≤ s ≤ N -1, and s / ∈ X since s + x i-1 = x j and X is sumfree. That is, s ∈ [1, N -1] \ X, as desired. Proposition 2.9. Let N ≥ 1, and let X 1 • • • X n be a sumfree partition of [1, N]. Let A i = ∆(X i ) for all i. Then sdeg( A i ) ≤ n -1. Proof. Let i ∈ [1, n]. It follows from Lemma 2.8 that A i is contained in X 1 • • • X i-1 X i+1 • • • X n .
This induces a partition of A i into at most n -1 sumfree parts.

Basic properties of the Schur degree

In this section, we compute the Schur degree in a few examples after giving its first basic properties. Let us start with the monotonicity of the Schur degree with respect to set inclusion. Proof. Let n = sdeg(Y ). If n = ∞, we are done. Otherwise, Y admits a partition into n sumfree parts, inducing a partition of X into at most n sumfree parts.

Here is a useful consequence. Proposition 3.2. Let A be a finite sequence in the abelian group G. If B is a minor of A, then sdeg( B) ≤ sdeg( Â).

Proof. We have B ⊆ Â by Proposition 2.5. Now apply Lemma 3.1.

Note also that if A denotes the reverse sequence of A, then sdeg( Â) = sdeg( A ). Indeed, A and A have identical block sums, i.e. Â = A .

Our next proposition shows that the Schur degree is also monotone with respect to inverse images under group morphisms. We start with a lemma. Lemma 3.3. Let G 1 , G 2 be abelian groups and let f :

G 1 → G 2 be a morphism. Let Y ⊆ G 2 . If Y is sumfree then f -1 (Y ) also is. Proof. Assume that f -1 (Y ) is not sumfree. Then there exist x 1 , x 2 , x 3 ∈ f -1 (Y ) such that x 1 + x 2 -x 3 = 0. Hence f (x 1 ) + f (x 2 ) -f (x 3 ) = 0, implying that Y is not sumfree either. Proposition 3.4. Let G 1 , G 2 be abelian groups and let f : G 1 → G 2 be a mor- phism. Let Y ⊆ G 2 . Then sdeg( f -1 (Y )) ≤ sdeg(Y ). Proof. Let n = sdeg(Y ). Then there exist sumfree subsets Y 1 , . . . ,Y n ⊆ Y such that Y = Y 1 • • • Y n . Therefore f -1 (Y ) = f -1 (Y 1 ) • • • f -1 (Y n ), and f -1 (Y i ) is sumfree for all i by Lemma 3.3. Hence sdeg( f -1 (Y )) ≤ n.

Examples

As an illustration, we determine the Schur degree of a few selected subsets of Z. In some cases, the results were obtained using specially written functions in Mathematica 10 Example 3.6. Let A = (2 i ) 0≤i≤13 . Then here also, sdeg( Â) = 3. But with one more term, i.e. for B = (2 i ) 0≤i≤14 , it is no longer the case as sdeg( B) = 4.

Example 3.7. This example is an application of Proposition 3.4. Let x, y be positive integers, and let A = (x, y, . . . , x, y) be the 2-periodic sequence of length 14. Then sdeg( Â \ {7x + 7y}) = 3. Indeed, here are three sumfree classes covering that set: C 1 : x, y, 2x + 2y, 5x + 5y, 7x + 6y, 6x + 7y. C 2 : x + y, 2x + y, x + 2y, 6x + 5y, 5x + 6y, 6x + 6y. C 3 : 3x + 2y, 2x + 3y, 3x + 3y, 4x + 3y, 3x + 4y, 4x + 4y, 5x + 4y, 4x + 5y.

Mapping x, y to 1 yields a sumfree 3-partition of [START_REF] Adhikari | Equation-regular sets and the Fox-Kleitman conjecture[END_REF][START_REF]Mathematica, Version[END_REF]. In fact, the partition C 1 ,C 2 ,C 3 was constructed to do exactly that, using Proposition 3.4. Indeed, this is shown by the following sumfree 3-partition of this set:

C 1 : 1, 6, x, x + 3, x + 7, x + 10. C 2 : 2, 5, x + 1, x + 2, x + 8, x + 9. C 3 : 3, 4, x + 4, x + 5, x + 6, x + 11, x + 12, x + 13.
However, adjoining 7 to it, one has sdeg( [START_REF] Adhikari | Equation-regular sets and the Fox-Kleitman conjecture[END_REF][START_REF] Sweet | Symmetric sum-free partitions and lower bounds for Schur numbers[END_REF] 

∪ [x, x + 13]) = 4.
Example 3.9. Let G be an abelian group containing Z and let x ∈ G \ Z. Then

sdeg({1, 2} ∪ [x, x + 3]) = 2, sdeg({1, 2} ∪ [x, x + 4]) = 3.
Indeed, as easily seen, the only sumfree 2-coloring of {1, 2} ∪ [x, x + 3] is given by the two color classes {1, x, x + 3} and {2, x + 1, x + 2}. Hence, it is impossible to add x + 4 to either class while maintaining the sumfree property. 

Comparison with R n (3)

Recall that, for n ≥ 1, the Ramsey number R n (3) denotes the smallest N such that, for any n-coloring of the edges of the complete graph K N , there is a monochromatic triangle. There is a well known relationship between the Schur and the Ramsey numbers, namely

S(n) ≤ R n (3) -2. ( 8 
)
Using the Schur degree of [1, N], this may be expressed as follows:

N ≥ R n (3) -1 =⇒ sdeg([1, N]) ≥ n + 1.
Theorem 4.1 below extends this relationship to the Schur degree of  for any finite sequence A in an abelian group.

Theorem 4.1. Let G be an abelian group. Let A be a finite sequence in G. If

|A| ≥ R n (3) -1 then sdeg( Â) ≥ n + 1. Proof. Let N = |A| ≥ R n (3) -1. Denote b(i, j) = x i + • • • + x j-1 for all 1 ≤ i < j ≤ N + 1. Then  = {b(i, j) | 1 ≤ i < j ≤ N + 1}.
Let χ : Â → [1, n] be an arbitrary n-coloring of Â. Consider the complete graph

K N+1 = (V, E) on the vertex set V = [1, N + 1]. Then χ induces an n-coloring χ : E → [1, n] on E defined by χ ({i, j}) = χ(b(i, j)) for all 1 ≤ i < j ≤ N + 1. Since N + 1 ≥ R n (3)
, there is a monochromatic triangle under χ in K N+1 , say with vertices i, j, h for some 1 ≤ i < j < h ≤ N + 1. This yields, under χ, the monochromatic subset

{b(i, j), b( j, h), b(i, h)} ⊂ Â.
Since b(i, j) + b( j, h) = b(i, h), the corresponding color class in  is not sumfree. Since χ was an arbitrary n-coloring of Â, we conclude that sdeg( Â) ≥ n + 1.

In particular, for n = 2, 3 and 4, one has the following consequences. 

| Â| ≤ 1 + 2 + • • • + N = N + 1 2 .
The case of equality, where all block sums in A are pairwise distinct, is of interest. It occurs for instance if A is Z-free, i.e. generates a subgroup isomorphic to Z N . be a sumfree partition. By the pigeonhole principle, one of the X i 's has cardinality at least

L(n) + 1, say |X 1 | ≥ L(n) + 1. Let A = ∆(X 1 )
. Then |A| ≥ L(n), and sdeg( Â) ≤ n -1 by Proposition 2.9. Let B be a block of A of length |B| = L(n).

Since B is a minor of A, Proposition 2.5 implies

sdeg( B) ≤ sdeg( Â) ≤ n -1. ( 13 
)
Let s = min(X 1 ), t = max(X 1 ). Then σ(A) = ts by ( 7), and ts ≤ nL(n) since [START_REF] Soifer | The mathematical coloring book[END_REF]. Hence σ(B) ≤ nL(n) and so µ(B) = σ(B)/L(n) ≤ n.

X 1 ⊆ [1, nL(n) + 1] by
Since |B| = L(n), the defining property of L(n) implies sdeg( B) ≥ n, contradicting [START_REF]Mathematica, Version[END_REF]. This concludes the proof of the theorem.

Remark 5.5. Proposition 5.3 and Theorem 5.4 imply the upper bound

S(n) ≤ n(R n-1 (3) -1)
for all n ≥ 2. However, this also follows by combining (8) and (10), namely S(n Proposition 5.3 then implies 14 ≤ L(4) ≤ 16. We conjecture that L(4) = 14 and, more generally, that the lower bound on L(n) in ( 11) is optimal.

) ≤ R n (3) -2 and R n (3) ≤ n(R n-1 (3) -1) + 2.

Conjectures

Conjecture 5.6. Let n ≥ 2. Then L(n) = S(n -1) + 1. That is, every sequence A in N + of length |A| = S(n -1) + 1 and average µ(A) ≤ n satisfies sdeg( Â) ≥ n.

As shown below, this has very interesting consequences for the Schur numbers themselves.

We have seen above that Conjecture 5.6 holds for n = 2 and 3. Does it hold for n = 4? That is, is it true that for any sequence A in N + of length 14 and average µ(A) ≤ 4, one has sdeg( Â) ≥ 4? We do not know yet. In any case, some hypothesis bounding µ(A) from above cannot be completely dispensed of. For instance, consider the sequence 

Comparisons

Let us now compare this conjectural upper bound on S(n) with the general currently known ones given by ( 8) and ( 10), namely

S(n) ≤ R n (3) -2, R n (3) ≤ n(R n-1 (3) -1) + 2. ( 15 
)
The currently known bounds on R 4 (3) are 51 ≤ R 4 (3) ≤ 62, established in [3] and [START_REF] Fettes | An upper bound of 62 on the classical Ramsey number R[END_REF], respectively. Starting with R 4 (3) ≤ 62, the bounds (15) yield S(5) ≤ R 5 (3) -2 ≤ 305, S(6) ≤ R 6 (3) -2 ≤ 1836.

• For n = 4, the equality S(4) = 44 was established by computer [START_REF] Baumert | Sum-free sets[END_REF]. But, as far as theory is concerned, nothing better than S(4) ≤ R 4 (3) -2 ≤ 60 is currently known. A proof of Conjecture 5.6 for n = 4 would yield S(4) ≤ 56, still far away from the true value 44, yet a little closer to it.

• For n = 5, the bound S(5) ≥ 160 was first established in [START_REF] Exoo | A lower bound for Schur numbers and multicolor Ramsey numbers of K 3[END_REF], with equality later conjectured to hold in [START_REF] Sweet | Symmetric sum-free partitions and lower bounds for Schur numbers[END_REF]. Inded, the exact value S(5) = 160 has recently been established by massive computer calculations with a certified SAT solver [START_REF] Heule | Schur Number Five[END_REF]. A proof of Conjecture 5.6 for n = 5, namely that every sequence A in N + such that |A| = 45 and µ(A) ≤ 5 satisfies sdeg( Â) ≥ 5, would imply S(5) ≤ 225. Here again, it would still be far away from the true value, yet it would provide a marked improvement over the currently best known theoretical upper bound S(5) ≤ 305.

• For n = 6, on the one hand we have S(6) ≥ 536 by [START_REF] Sweet | Symmetric sum-free partitions and lower bounds for Schur numbers[END_REF], while at the time of writing, the best known upper bound is again the one given above, namely S(6) ≤ R 6 (3) -2 ≤ 1836.

By sharp contrast, using the true value S(5) = 160, Conjecture 5.7 implies the following substantial improvement. Conjecture 5.8. S(6) ≤ 966.

• As for n = 7, Conjectures 5.7 and 5.8 yield the conjectural upper bound S(7) ≤ 6769, to be compared with the known ones given by [START_REF] Xu | Upper bounds for Ramsey numbers R n (3) and Schur numbers[END_REF], namely S(7) ≤ R 7 (3) ≤ 12861. For a lower bound, the best we currently have is S(7) ≥ 1680, by [START_REF] Sweet | Symmetric sum-free partitions and lower bounds for Schur numbers[END_REF] again.

For

  a, b ∈ Z, let [a, b] = {z ∈ Z | a ≤ z ≤ b} and [a, ∞[= {z ∈ Z | a ≤ z}denote the integer intervals they span. Denote N = {0, 1, 2, . . . } and N + = N \ {0}.

Lemma 3 . 1 .

 31 Let G be an abelian group. If X ⊆ Y ⊆ G then sdeg(X) ≤ sdeg(Y ).

Example 3 . 5 .

 35 Let B = [1, 2] ∪ [m, m + 4]. We claim that sdeg(B) = 3 for all m ≥ 3. Indeed, let A = (1, 1, m, 1, 1). Then  = B, and sdeg( Â) ≥ 3 by Corollary 4.2 in the next section. Equality is obvious here.

Example 3 . 8 .

 38 For each integer x ≥ 8, one has sdeg([1, 6] ∪ [x, x + 13]) = 3.

Example 3 . 10 .

 310 Let G be an abelian group containing Z. Let x ∈ G \ Z be such that {1, x} is Z-free, i.e. spans a free-abelian subgroup of rank 2 of G. Then sdeg([1, 6] ∪ (x + N)) = 3. Indeed, consider the 3-partition of Example 3.8 and extend it periodically as follows: C 1 : 1, 6, x, x + 3, x + 7, x + 10, x + 14, x + 17, . . . C 2 : 2, 5, x + 1, x + 2, x + 8, x + 9, x + 15, x + 16, . . . C 3 : 3, 4, x + 4, x + 5, x + 6, x + 11, x + 12, x + 13, x + 18, x + 19, x + 20, . . . One can also extend it towards the left. Thus in fact, sdeg([1, 6] ∪ (x + Z)) = 3. But here again, adjoining 7 to it, one has sdeg([1, 7] ∪ (x + Z)) = 4.

Corollary 4 . 2 .

 42 Let A be a sequence in an abelian group G. If |A| ≥ 5, then sdeg( Â) ≥ 3. If |A| ≥ 16, then sdeg( Â) ≥ 4. If |A| ≥ 61, then sdeg( Â) ≥ 5. Proof. Follows from Theorem 4.1 and the well-known values R 2 (3) = 6, R 3 (3) = 17 and current upper bound R 4 (3) ≤ 62. The converse of Theorem 4.1 does not hold in general. For instance, for n = 3 and A = (1, . . . , 1) of length 14 in Z, by (6) we have sdeg( Â) ≥ 4 since  = [1, 14] and S(3) = 13, yet |A| ≤ R 3 (3) -2 = 15. However, here is a partial converse showing that Theorem 4.1 is best possible. First observe that if |A| = N, then

Given n ≥ 2 ,

 2 what is the exact value of L(n)? It follows from Proposition 5.3 that if S(n -1)+ 1 = R n-1 (3) -1 then L(n) = S(n -1) + 1. (14)This occurs for n = 2 and 3, since by (1) and (3), we have (S(1), R 1 (3)) = (1, 3) and (S(2), R 2 (3)) = (4, 6). Thus L(2) = 2 as already seen, and L(3) = 5. As for n = 4, we have (S(3), R 3 (3)) = (13, 17).

A

  = (23, 375, 23, 209, 209, 60, 60, 60, 23, 1, 60, 261, 209, 23) of length 14. Then | Â| = 83, and sdeg( Â) = 3 as can be verified. But this does not contradict Conjecture 5.6 for n = 4, since µ(A) = 114 here. Such exotic examples in length 14 are hard to come by. This one was found with a semi-random search by computer. See also Example 3.6 with the powers of 2, also of length 14 but with a still higher average.Here is a worthwhile consequence of Conjecture 5.6 for the Schur numbers, potentially the first known recursive upper bound for them. Conjecture 5.7. S(n) ≤ n(S(n -1) + 1) for all n ≥ 2. This directly follows from Theorem 5.4 and Conjecture 5.6.

Table 1

 1 shows that Conjecture 5.7 actually holds for 2 ≤ n ≤ 5.

	n S(n) n(S(n -1) + 1)
	1	1	
	2	4	4
	3	13	15
	4	44	56
	5 160	225

Table 1 :

 1 

S(n) ≤ n(S(n -1) + 1) for 2 ≤ n ≤ 5

Theorem 4.3. Let A be a finite sequence in an abelian group G. If |A| ≤ R n (3) -2 and A is Z-free, then sdeg( Â) ≤ n.

Proof. Denote A = {x 1 , . . . , x N }. Reusing the notation introduced in the proof of Theorem 4.1, we have

Again, let K N+1 = (V, E) be the complete graph on the vertex set

for all 1 ≤ i < j ≤ N + 1. Since |E| = | Â| and the b(i, j) are pairwise distinct by assumption, the map f is a bijection.

We claim that under this n-coloring of Â, every color class is sumfree. Indeed, let u 1 , u 2 , u 3 be any triple in  satisfying u 1 + u 2 = u 3 . We claim that it cannot be monochromatic under χ• f -1 . We have

We may freely assume i 1 ≤ i 2 . Since the sequence x 1 , . . . , x N is Z-free by hypothesis, the above equality is only possible if i 1 = i 3 , j 1 = i 2 and j 2 = j 3 . That is, if the three edges {i 1 , j 1 }, {i 2 , j 2 }, {i 3 , j 3 } form a triangle in K N+1 . Since that triangle is not monochromatic under χ, the triple

. Hence sdeg( Â) ≤ n, as claimed.

Remark 4.4. The hypothesis that A be Z-free is not strictly needed in Theorem 4.3. For instance, let A = (1, 3, 3 2 , . . . , 3 N-1 ). Even though A is not Zfree, it is still true that if N ≤ R n (3) -2 then sdeg( Â) ≤ n. This derives from the above proof and the fact that the only triples u, v, u + v in  are those of the form b(i, j), b( j, h), b(i, h).

A recursive upper bound on S(n)?

The Ramsey numbers admit well-known recursive upper bounds, including 

. This yields  = {1, 2}, {1, 2, 3}, {1, 3, 4}, {2, 4}, respectively. As none is sumfree, we have sdeg( Â) ≥ 2 in all cases, as required.

Let us now establish the existence of L(n) in full generality. Here is our upper bound on S(n) involving L(n).

Theorem 5.4. We have S(n) ≤ nL(n) for all n ≥ 2.

Proof. We claim that [1, nL(n) + 1] has Schur degree at least n + 1. This will imply nL(n) + 1 ≥ S(n) + 1, the desired conclusion. Assume for a contradiction that nL(n) + 1 ≤ S(n). Let then