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Abstract

Although having a long history of scrutiny in experimental psychology, it is
still controversial whether wilful inner speech (covert speech) production is
accompanied by specific activity in speech muscles. We present the results
of a preregistered experiment looking at the electromyographic correlates of
both overt speech and inner speech production of two phonetic classes of
nonwords. An automatic classification approach was undertaken to
discriminate between two articulatory features contained in nonwords
uttered in both overt and covert speech. Although this approach led to
reasonable accuracy rates during overt speech production, it failed to
discriminate inner speech phonetic content based on surface
electromyography signals alone. However, exploratory analyses conducted
at the individual level revealed that it seemed possible to distinguish
between rounded and spread nonwords covertly produced, in two
participants. We discuss these results in relation to the existing literature
and suggest alternative ways of testing the engagement of the speech
motor system during wilful inner speech production.

Introduction 1

As you read these words, you may be experiencing the presence of a familiar 2

speechlike companion. This internal speech production may accompany 3

daily activities such as reading (see [1–4], but see [5,6]), writing ([7]), 4

memorising ([8,9]), future planning [8], problem solving [9,10] or musing (for 5

reviews see [11–14]). Several studies using experience sampling or 6

questionnaires (e.g.,[15,16]) have shown that by deliberately paying 7

attention to this internal speech, one can examine its phenomenological 8

properties such as identity (whose voice is it?) or other high-level 9

characteristics (e.g., is it gendered?). Moreover, it is often possible to 10

examine lower-level features like the tone of the inner speech, its pitch or its 11

tempo. This set of basic observations leads to some important insights about 12

the nature of inner speech. The simple fact that we can make sensory 13
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judgements about our inner speech tautologically reveals that inner speech 14

is accompanied by sensory percepts (e.g., speech sounds, kinaesthetic 15

feelings). Some of these introspective accounts have been examined, tested 16

and complemented using empirical methods from cognitive neuroscience. 17

As summarised in [17], behavioural and neuroimaging data reveal that some 18

variants of inner speech are associated with auditory and/or somatosensory 19

sensations that are reflected by auditory and/or somatosensory cortex 20

activations. Visual representations may also be at play, typically for inner 21

language in the deaf population. Inner verbalising therefore involves the 22

reception of imaginary multisensory signals. This leads to other fundamental 23

questions: where do these percepts come from? Why do they sound and feel 24

like the ones we experience when we actually (overtly) speak? 25

Two main classes of explanatory theories have been offered to answer 26

these questions. A first class of theories, that derives from Vygotky’s views 27

on language and thought, and that we describe as the abstraction view [18], 28

suggest that inner speech is profoundly internalised, abbreviated and 29

condensed in form. Vygotsky suggested that inner speech evolved from 30

so-called egocentric speech (i.e., self-addressed overt speech or private 31

speech), via a gradual process of internalisation during childhood [19]. 32

According to him, the properties of speech are transformed during this 33

internalisation, and inner speech cannot be merely be described as a 34

weakened form of overt speech (as claimed for instance by [20]). This has 35

led some scholars to conceive of inner speech as predominantly pertaining 36

to semantics, excluding any phonological, phonetic, articulatory or even 37

auditory properties (e.g., [18,21,22]). The property of abbreviation and 38

condensation is supported by several psycholinguistic experiments on the 39

qualitative and quantitative differences between overt and covert speech, as 40

concerns rate and error biases (e.g., [18,22–24], but see [25]). Such 41

condensation implies that the auditory qualities mentioned above would only 42

rarely be observed during introspection and would merely be the result of 43

learned associations between abstract linguistic representations and 44

auditory percepts. A second class of theories is described under the 45

umbrella term of motor simulation view. These theories suggest that inner 46

speech can be conceived as a kind of action on its own [26,27], produced in 47

the same way as overt speech is, except that the last stage of articulatory 48

execution is only simulated. Most theories under this view share the 49

postulate that the speech motor system is involved (to some extent) during 50

inner speech production and that the auditory and somatosensory 51

consequences of the simulated articulatory movements constitute the inner 52

speech percepts referred to in subjective studies. 53

As explained in the ConDialInt model [28], these two views can be 54

reconciled if various degrees of unfolding of inner speech are considered. 55

Fully condensed forms of inner speech only involve semantics, and are 56

deprived of the acoustic, phonological and syntactic qualities of overt 57

speech. Expanded forms inner speech, on the other hand, presumably 58

engage prosodic and morpho-syntactic formulation as well as phonological 59

specification, articulatory simulation and the perception of an inner voice. 60

Between the fully condensed abstract forms and the expanded 61

articulation-ready form, it can be assumed that various semi-condensed 62

forms may exist, with morphosyntactic properties and perhaps even 63

phonological features, depending on the stage at which the speech 64

production process is truncated. Such a view was also taken by [29] who has 65
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suggested that inner speech varies with cognitive demands and emotional 66

conditions on a continuum between extremely condensed and expanded 67

forms (see also [11,27]). Therefore, the two views of inner speech 68

(abstraction vs. simulation) can be construed as descriptions of two opposite 69

poles on the condensation dimension. On the most expanded side of the 70

continuum, inner speech entails full phonetic specification and articulatory 71

simulation. It might therefore be expected that speech motor activity could 72

be detectable. If the motor simulation view is correct, then motor activity 73

could be recorded during expanded forms of inner speech. If, on the other 74

hand, the abstraction view applies to all forms of inner speech, then no 75

motor activity should be present, even in phonologically-expanded forms. 76

Previous research has demonstrated that it is possible to record 77

muscle-specific electromyographic correlates of inner speech (e.g., [30,31]). 78

However, these studies mostly focused on small samples of participants and 79

sometimes used invasive intramuscular electromyography. In contrast, more 80

recent research studies using surface electromyography lead to mixed 81

results (e.g.,[32]). Building upon previous work, we describe an 82

experimental set-up using surface electromyography with the aim of testing 83

the involvement of specific speech muscle groups during the covert 84

production of phonologically expanded speech forms. 85

Inner speech as motor imagery of speech 86

Speech production is a complex motor action, involving the fine-grained 87

coordination of more than 100 muscles in the upper part of the body [33]. In 88

adult humans, its covert counterpart (referred to as inner speech or verbal 89

imagery) has developed to support a myriad of different functions. In the 90

same way as visual imagery permits to mentally examine visual scenes, 91

verbal imagery can be used as an internal tool, allowing –amongst other 92

things– to rehearse or to prepare past or future conversations [11,14]. 93

Because speech production results from sequences of motor commands 94

which are assembled to reach a given goal, it belongs to the broader 95

category of motor actions [34]. Therefore, a parallel can be drawn between 96

verbal imagery and other forms of motor imagery (e.g., imagined walking or 97

imagined writing). Accordingly, studies on the nature of inner speech might 98

benefit from insights gained from the study of motor imagery and the field of 99

motor cognition [34,35]. 100

Motor imagery can be defined as the mental process by which one 101

rehearses a given action, without engaging in the physical movements 102

involved in this particular action. One of the most influential theoretical 103

accounts of this phenomenon is the motor simulation theory [34,36,37]. In 104

this framework, the concept of simulation refers to the “offline rehearsal of 105

neural networks involved in specific operations such as perceiving or acting” 106

[34]. The MST shares some similarities with the theories of embodied and 107

grounded cognition [38] in that both account for motor imagery by appealing 108

to a simulation mechanism. However, the concept of simulation in grounded 109

theories is assumed to operate in order to acquire specific conceptual 110

knowledge [39], which is not the concern of the MST. In other words, we 111

should make a distinction between embodiment of content, which concerns 112

the semantic content of language, and embodiment of form, which concerns 113

“the vehicle of thought”, that is, proper verbal production [40]. 114

A second class of explanatory models of motor imagery are concerned 115
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with the phenomenon of emulation and with internal models [41]. Internal 116

model theories share the postulate that action control uses internal models, 117

that is, systems that simulate the behaviour of the motor apparatus [42,43]. 118

The function of internal models is to estimate and anticipate the outcome of 119

a motor command. Among the internal model theories, motor control 120

models based on robotic principles [44,45] assume two kinds of internal 121

models (that are supposed to be coupled and regulated): a forward model 122

(or simulator) that predicts the sensory consequences of motor commands 123

from efference copies of the issued motor commands, and an inverse model 124

(or controller) that calculates the feedforward motor commands from the 125

desired sensory states [17,41]. 126

Emulation theories [46,47] borrow from both simulation theories and 127

internal model theories and provide operational details of the simulation 128

mechanism. In the emulation model proposed by [46], the emulator is a 129

device that implements the same input-output function as the body (i.e., the 130

musculoskeletal system and relevant sensory systems). When the emulator 131

receives a copy of the control signal (which is also sent to the body), it 132

produces an output signal (the emulator feedback), identical or similar to the 133

feedback signal produced by the body, yielding mock sensory percepts (e.g., 134

visual, auditory, kinaesthetic) during motor imagery. 135

By building upon models of speech motor control [45,48], a recent model 136

describes wilful (voluntary) expanded inner speech as “multimodal acts with 137

multisensory percepts stemming from coarse multisensory goals” [17]. In 138

other words, in this model the auditory and kinaesthetic sensations 139

perceived during inner speech are assumed to be the predicted sensory 140

consequences of simulated speech motor acts, emulated by internal forward 141

models that use the efference copies of motor commands issued from an 142

inverse model [46]. In this framework, the peripheral muscular activity 143

recorder during inner speech production is assumed to be the result of 144

partially inhibited motor commands. It should be noted that both simulation, 145

emulation, and motor control frameworks can be grouped under the motor 146

simulation view and altogether predict that the motor system should be 147

involved to some extent during motor imagery, and by extension, during 148

inner speech production. We now turn to a discussion of findings related to 149

peripheral muscular activity during motor imagery and inner speech. 150

Electromyographic correlates of covert actions 151

Across both simulationist and emulationist frameworks, motor imagery has 152

consistently been defined as the mental rehearsal of a motor action without 153

any overt movement. One consequence of this claim is that, in order to 154

prevent execution, the neural commands for muscular contractions should 155

be blocked at some level of the motor system by active inhibitory 156

mechanisms [49]. Despite these inhibitory mechanisms, there is abundant 157

evidence for peripheral muscular activation during motor imagery [49–51]. 158

As suggested by [36], the incomplete inhibition of the motor commands 159

would provide a valid explanation to account for the peripheral muscular 160

activity observed during motor imagery. This idea has been corroborated by 161

studies of changes in the excitability of the motor pathways during motor 162

imagery tasks [52]. For instance, [53] measured spinal reflexes while 163

participants were instructed to either press a pedal with the foot or to 164

simulate the same action mentally. They observed that both H-reflexes and 165
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T-reflexes increased during motor imagery, and that these increases 166

correlated with the force of the simulated pressure. Moreover, the pattern of 167

results observed during motor imagery was similar (albeit weaker in 168

amplitude) to that observed during execution, supporting the motor 169

simulation view of motor imagery. Using transcranial magnetic stimulation, 170

several investigators observed muscle-specific increases of motor evoked 171

potentials during various motor imagery tasks, whereas no such increase 172

could be observed in antagonist muscles [54,55]. 173

When considered as a form of motor imagery, inner speech production is 174

also expected to be accompanied with peripheral muscular activity in the 175

speech muscles. This idea is supported by many studies showing peripheral 176

muscular activation during inner speech production [10,30,31,56–58], during 177

auditory verbal hallucinations in patients with schizophrenia [59], or during 178

induced mental rumination [60]. Some authors also recently demonstrated 179

that it is possible to discriminate inner speech content based on surface 180

electromyography (EMG) signals with a median 92% accuracy [61]. However, 181

other teams failed to obtain such results [32]. 182

Many of these EMG studies concluded on the involvement of the speech 183

motor system based on a difference in EMG amplitude by contrasting a 184

period of inner speech production to a period of rest. However, as 185

highlighted by [62], it is usually not enough to show an increase of speech 186

muscle activity during inner speech to conclude that this activation is related 187

to inner speech production. Indeed, three sorts of inference can be made 188

based on the studies of electromyographic correlates of inner speech 189

production, depending on the stringency of the control procedure. The 190

stronger sort of inference is permitted by highlighting a discriminative 191

pattern during covert speech production, as for instance when 192

demonstrating a dissociation between different speech muscles during the 193

production of speech sounds of different phonemic class (e.g, contrasting 194

labial versus non-labial words). According to [62], other (weaker) types of 195

control procedures include i) comparing the EMG activity during covert 196

speech production to a baseline period (without contrasting phonemic 197

classes in covert speech utterances), or ii) comparing the activity of 198

speech-related and non-speech related (e.g., forearm) muscle activity. 199

Ideally, these controls can be combined by recording and contrasting speech 200

and non-speech related muscles in different conditions (e.g., rest, covert 201

speech, overt speech) of pronunciation of different speech sounds classes 202

(e.g., labial versus non-labial). 203

Previous research studies carried out using the preferred procedure 204

recommended by [62] suggest a discriminative patterns of 205

electromyographic correlates according to the phonemic class of the words 206

being covertly uttered [30,31], which would corroborate the motor 207

simulation view of inner speech. However, these studies used limited 208

sample sizes (often less than ten participants) and worked mostly with 209

children. These factors limit the generalisability of the above findings 210

because i) low-powered experiments provide biased estimates of effects, ii) 211

following the natural internalisation process, inner speech muscular 212

correlates are expected to weaken with age and iii) a higher sensitivity could 213

be attained by using modern sensors and signal processing methods. 214

The present study intends to bring new information to the debate 215

between the motor simulation view and the abstraction view of inner speech, 216

by focusing on an expanded form of inner speech, wilful nonword covert 217
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production. This work can be seen as a replication and extension of previous 218

works carried out by McGuigan and collaborators [30,31]. We aimed to 219

demonstrate similar dissociations by using surface electromyography 220

recorded over the lip (orbicularis oris inferior, OOI) and the zygomaticus 221

major (ZYG) muscles. More precisely, given that rounded phonemes (such as 222

/u/) are articulated with orbicular labial contraction, whereas spread 223

phonemes (such as /i/) are produced with zygomaticus contraction, if the 224

motor simulation view is correct, we should observe a higher average EMG 225

amplitude recorded over the OOI during both the overt and inner production 226

of rounded nonwords in comparison to spread nonwords. Conversely, we 227

would expect a lower average EMG amplitude recorded over the ZYG during 228

both the inner and overt production of rounded nonwords in comparison to 229

spread nonwords. In addition, we would not expect to observe 230

content-specific differences in EMG amplitude concerning the non 231

speech-related muscles (i.e., forehead and forearm muscles). 232

Methods 233

In the Methods and Data analysis sections, we report how we determined our 234

sample size, all data exclusions, all manipulations, and all measures in the 235

study [63]. A pre-registered version of our protocol can be found on OSF: 236

https://osf.io/czer4/. 237

Participants 238

As previous studies of the electromyographic correlates of inner speech were 239

mostly carried out with samples of children or young adults, used different 240

kinds of EMG measures (surface EMG or needle EMG), and different kinds of 241

signal processing methods, it was impractical to determine the effect size of 242

interest for the current study. Therefore, we used sequential testing as our 243

sampling procedure, based on the method described in [64] and [65]. We 244

fixed a statistical threshold to BF10 = 10 and BF10 = 1/10 (i.e., BF01 = 10), 245

testing the difference between the inner production of labial items versus 246

the inner production of non-labial items on the standardised EMG amplitude 247

of the lower lip (orbicularis oris inferior). In order to prevent potential 248

experimenter and demand biases during sequential testing, the 249

experimenter was blind to BFs computed on previous participants [66]. All 250

statistical analyses have been automatised and a single instruction was 251

returned to the experimenter (i.e., “keep recruiting participants” or “stop the 252

recruitment”). We fixed the maximum sample size to 100 participants. 253

As a result of the above sampling procedure, a total of 25 254

French-speaking female undergraduate students in Psychology from the Univ. 255

Grenoble Alpes (mean age = 19.57, SD = 1.1). took part in this experiment, 256

in exchange for course credits. It should be noted that this procedure did not 257

work optimally because we later spotted an error in the EMG signal 258

processing workflow. Thus, the sequential testing stopped earlier than it 259

should have. These participants were recruited via mailing list, online 260

student groups, and posters. Each participant provided a written consent 261

and the present study was approved by the local ethics committee (Grenoble 262

CERNI agreement #2016-05-31-9). 263
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Material 264

EMG recordings 265

EMG activity was recorded using TrignoTM Mini sensors (Delsys Inc.) with a 266

sampling rate of 1926 samples/s, a band pass of 20 Hz (12 dB/ oct) to 450 267

Hz (24 dB/oct) and were amplified by a TrignoTM 16-channel wireless EMG 268

system (Delsys Inc.). These sensors consist of two 5 mm long, 1 mm wide 269

parallel bars, spaced by 10 mm, which were attached to the skin using 270

double-sided adhesive interfaces. The skin was cleaned by scrubbing it with 271

70% isopropynol alcohol. EMG signals were synchronised using the 272

PowerLab 16/35 (ADInstrument, PL3516). Raw data from the EMG sensors 273

were then resampled at a rate of 1 kHz and stored in digital format using 274

Labchart 8 software (ADInstrument, MLU60/8). 275

EMG sensors were positioned over five muscles: the corrugator supercilii 276

(COR), the frontalis (FRO), the zygomaticus major (ZYG), the orbicularis oris 277

inferior (OOI), and the flexor carpi radialis (FCR).1 The two speech-related 278

muscles (OOI and ZYG) were chosen to show speech-specific EMG correlates, 279

whereas the two non-speech related facial muscles (ZYG and FRO) were 280

chosen to control for overall facial muscular activity. We also recorded the 281

activity of the FCR of the non-dominant forearm to control for overall (body) 282

muscular activity. 283

As reviewed in [67], the dominant side of the face displays larger 284

movements than the left side during speech production, whereas the 285

non-dominant side is more emotionally expressive. Therefore, we recorded 286

the activity of control and emotion-linked muscles (i.e., COR and FRO) that 287

were positioned on the non-dominant side of the face (i.e., the left side for 288

right-handed participants), while sensors recording the activity of the speech 289

muscles (i.e., ZYG and OOI) were positioned on the dominant side of the face. 290

The experiment was video-monitored using a Sony HDR-CX240E video 291

camera to track any visible facial movements. A microphone was placed 292

20–30 cm away from the participant’s lips to record any faint vocal 293

production during the inner speech and listening conditions. Stimuli were 294

displayed using the OpenSesame software [68] on a 19-inch colour monitor. 295

Linguistic material 296

We selected ten rounded and ten spread bi-syllabic nonwords (cf. Table 1). 297

Each class of nonwords was specifically designed to either induce a greater 298

activation of the lip muscle (rounded items) or a greater activation of the 299

zygomaticus muscle (spread items). These stimuli were selected based on 300

phonetic theoretical constraints, with the aim of maximising the differences 301

between the two classes of non-words in their involvement of either the OOI 302

or the ZYG muscle. More precisely, rounded items consisted in the repetition 303

of a syllable containing a bilabial consonant followed by a rounded vowel, 304

whereas spread items consisted in the repetition of a syllable containing a 305

lingual consonant followed by a spread vowel. 306

1Given that the activity of the orbicularis oris inferior and orbicularis oris superior muscles
has previously been observed to be strongly correlated and that the activity of the OOI was
more strongly affected by the experimental manipulation [59,60], we decided to record only the
activity of the OOI in this study.
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Table 1. List of bisyllabic
nonwords used in the test
session.

rounded items spread items

/mumu/ /gigi/
/pupu/ /sese/
/fofo/ /lele/
/mymy/ /sisi
/pypy/ /didi/
/byby/ /nini/
/vøvø/ /ʒiʒi/*
/pøpø/ /lili/
/bøbø/ /ʁiʁi/
/mɔ̃mɔ̃/ /gege/

Note. *Because the production of
the French palato-alveolar frica-
tive in /ʒiʒi/ may involve a protru-
sion of the lips, this item theoreti-
cally slightly deviates from other
items of this class.

Procedure 307

Participants were seated in front of a computer screen while audio stimuli 308

(when applicable) were presented through speakers on both sides of the 309

screen. A video camera was positioned on one side of the screen to monitor 310

facial movements. A microphone was positioned at approximately 10cm of 311

the participant to record possible speech sounds. After positioning of the 312

EMG sensors, each participant underwent a relaxation session aiming to 313

minimise pre-existing inter-individual variability on facial muscle contraction 314

(approximate duration was 330s). This relaxation session was recorded by a 315

trained professional sophrology therapist. Baseline EMG measurements were 316

performed during the last minute of this relaxation session, resulting in 60s 317

of EMG signal at baseline. By using this relaxation period as a baseline, we 318

made sure that participants were all in a comparable relaxed state. In 319

addition, several previous EMG studies have argued for the use of a 320

relaxation period as a baseline, since mere resting periods may include some 321

inner speech production (e.g.,[69,70], for a review). 322

Subsequently, participants went through a training session, during which 323

they could get familiar with the main task. They trained with 8 stimuli in 324

total (4 rounded nonwords and 4 spread nonwords, cf. supplementary 325

materials). Each training stimulus appeared in three conditions (for all 326

participants): overt speech, inner speech and listening. Nonwords to be 327

produced (covertly or overtly) were visually presented on the screen. Then, 328

a central fixation appeared on the screen, indicating to the participant that 329

s•he should utter the nonword (either overtly or covertly). This aimed to 330

ensure that participants were actually producing a nonword, not just simply 331

visually scanning it. In the overt speech condition, participants were asked 332

to produce the nonword “just after the word disappeared from the screen”, 333
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with “the most neutral intonation possible”. In the inner speech condition, 334

participants were asked to “innerly produce the nonword” (cf. the 335

supplementary materials for precise instructions in French), with “the most 336

neutral intonation possible” and while remaining as still as possible. In the 337

listening condition, the order of these two screens was reversed. A fixation 338

dot was first presented (for 1 second), followed by a blank screen (for 1 339

second). The audio stimulus was presented when the blank screen appeared, 340

while participants were asked to remain as still as possible. 341

After the training, participants moved to the experimental part, that 342

included a novel list of 20 nonwords (cf. Table 1). Each nonword was 343

presented 6 times in each condition for each participant. The EMG activity 344

was recorded during the entire experiment. The periods of interest consisted 345

in one-second portions, after each stimulus presentation and during either 346

production or listening. This resulted in 60 observations (60 periods of 1 347

second) for both classes of nonword in each test condition. The total 348

duration of the experiment ranged between 30 min and 40 min. 349

EMG signal processing 350

EMG signal pre-processing was carried out using Matlab r2014a (Version 351

8.3.0.532, www.mathworks.fr). We first applied a 50Hz frequency comb filter 352

to eliminate power noise. Then, we applied a 20 Hz – 450 Hz bandpass filter 353

to the EMG signals, in order to focus on the 20–450 Hz frequency band, 354

following current recommendations for facial EMG studies [71,72]. 355

Although participants were explicitly asked to remain still during inner 356

speech production or listening, small facial movements (such as swallowing 357

movements) sometimes occurred. Such periods were excluded from the final 358

sample of EMG signals. To remove these signals, we first divided the portions 359

of signals of interest into periods of 1 second. The baseline condition was 360

therefore composed of 60 trials of 1-second. The periods of interest in all the 361

speech conditions consisted of the 1 second interval during which the 362

participants either produced speech or listened to speech. It is possible that 363

the nonword took less than 1 second to be produced, but since there was no 364

way to track when production started and ended in the inner speech 365

condition, the entire 1-second period was kept. Therefore, the overt speech 366

condition was composed of 6 repetitions of each nonword, that is 6x20 trials 367

of 1 second. The “inner speech” and “listening” conditions were similarly 368

composed of 6x20 trials of 1 second. Then, we visually inspected the EMG 369

signals recorded during each trial and listened to the audio signal 370

simultaneously recorded. In all conditions, any time a non-speech noise 371

(such as coughing or yawning) was audible in a trial, the trial was discarded 372

(i.e., we did not include this trial in the final analysis, for any of the recorded 373

muscles). In the listening and overt speech conditions, if a burst of EMG 374

activity was present after the relevant audio speech signal, then the trial was 375

discarded. In the overt speech condition, if the participant started too early 376

or too late and only part of the nonword was recorded in the audio signal, 377

then the corresponding trial was discarded. In the inner speech and listening 378

condition, if a large EMG burst of activity was present, potentially associated 379

with irrelevant non-speech activity, we excluded the trial. The fact that the 380

artefact rejection procedures slightly differ in the various conditions is not an 381

issue since we do not directly compare between conditions. Instead, we 382

compare the EMG correlates of the two classes of nonwords within each 383
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condition. 384

This inspection was realised independently by two judges. Subsequently, 385

we only kept the trials that were not rejected by any of these two judges (i.e., 386

we removed a trial as soon as it was rejected by at least one judge). The 387

agreement rate between the two judges was of 87.82% (with a moderate 388

Cohen’s κ of approximately 0.48). The overall procedure led to an average 389

(averaged over participants) rejection rate of 22.96% (SD = 6.49) in the 390

baseline condition and 18.49% (SD = 6.48) in the other conditions. 391

After pre-processing and artefact rejection, we computed the by-trial 392

average amplitude of the centred and rectified EMG signal. This provided a 393

score for each muscle of interest (OOI, ZYG, FRO, COR, FCR) in each 394

condition (Baseline, Overt Speech, Inner Speech, Listening) and for each 395

participant. Absolute EMG values are not meaningful as muscle activation is 396

never null, even in resting conditions, due in part to physiological noise. In 397

addition, there are inter-individual variations in the amount of EMG activity in 398

the baseline. To normalise and standardise for baseline activity across 399

participants, we thus expressed the EMG amplitude as a z-score from 400

baseline activity (i.e., we subtracted the mean amplitude of the centred and 401

rectified baseline signal and divided the result by the standard deviation of 402

the centred and rectified baseline signal), thereafter referred to as δ. 403

Data analysis 404

Statistical analyses were conducted using R version 3.5.3 [73], and are 405

reported with the papaja [74] and knitr [75] packages. To assess the effects 406

of the condition and the class of nonwords on the standardised EMG 407

amplitude, we analysed these data using Condition (3 modalities: speech, 408

inner speech, and listening) and Class of nonwords (2 modalities, rounded 409

and spread, contrast-coded) as within-subject categorical predictors, and the 410

standardised EMG amplitude as a dependent variable in a multivariate (i.e., 411

with multiple outcomes) Bayesian multilevel linear model (BMLM). An 412

introduction to Bayesian statistics is outside the scope of this paper. 413

However, the interested reader is referred to [76] for an introduction to 414

Bayesian multilevel modelling using the brms package. 415

In order to take into account the dependencies between repeated 416

observations by participant, we also included in this model a varying 417

intercept by participant. Contrary to what we pre-registered, we used a 418

multivariate model (instead of separate models by muscle). This allowed us 419

to estimate the correlation between each pair of muscles. Models were fitted 420

with the brms package [77] and using weakly informative priors (see the 421

supplementary materials for code details). Two Markov Chain Monte-Carlo 422

(MCMC) were run for each model to approximate the posterior distribution, 423

including each 5.000 iterations and a warmup of 2.000 iterations. Posterior 424

convergence was assessed examining trace plots as well as the 425

Gelman-Rubin statistic ̂R. Constant effect estimates were summarised via 426

their posterior mean and 95% credible interval (CrI), where a credible 427

interval can be considered as the Bayesian analogue of a classical 428

confidence interval. When applicable, we also report Bayes factors (BFs), 429

computed using the Savage-Dickey method, which consists in taking the 430

ratio of the posterior density at the point of interest divided by the prior 431

density at that point. These BFs can be interpreted as an updating factor, 432

from prior knowledge (what we knew before seeing the data) to posterior 433
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knowledge (what we know after seeing the data). 434

Results 435

The Results section is divided into two parts. First, we present results from 436

confirmatory (preregistered) analyses, aiming to test whether it is possible to 437

dissociate the activity of the OOI and the ZYG during inner speech 438

production, according to the content of inner speech (here, the class of 439

nonword). More precisely, we expected an increased EMG activity of the OOI 440

during the inner production of rounded nonwords in comparison to spread 441

nonwords. Conversely, we expected elevated EMG activity of the ZYG during 442

the inner production of spread nonwords in comparison to rounded nonwords. 443

Second, we present results from exploratory (non-preregistered) analyses. 444

To foreshadow the results, we did not observe such a clear dissociation 445

between the EMG activity of the OOI and the ZYG muscles, neither in the 446

inner speech condition nor in the overt speech condition. Contrary to 447

theoretical expectations based on phonetics and speech production theory 448

[78–81], the activity of both muscles was of higher amplitude for the 449

pronunciation of rounded nonwords (as compared to spread nonwords) 450

during overt speech production. Additionally, the EMG amplitude on both 451

muscles of interest was similar during the inner production (or listening) of 452

the two classes of nonwords. However, in the exploratory analyses section, 453

we report results from supervised machine learning algorithms (classification 454

using random forests), showing a reasonable accuracy to classify EMG 455

signals according to the class of nonwords during overt speech production. 456

This strategy was however unsuccessful for the inner speech and the 457

listening conditions. 458

Before moving to the statistical results, we represent the distribution of 459

the whole dataset, by class, by condition and by muscle for the two main 460

muscles of interest (OOI and ZYG) in Fig 1. More precisely, the first row of 461

this figure represents the distribution of the standardised EMG scores in the 462

inner speech condition, the second row depicts the distribution of these 463

scores in the listening condition, whereas the third row depicts the 464

distribution of the standardised EMG scores in the overt speech condition. 465

The first column depicts the distribution of the standardised EMG scores 466

recorded over the OOI muscle whereas the second one represents the 467

distribution of the standardised EMG scores recorded over the ZYG muscle. 468

Each individual data point is represented as a vertical bar along the x-axis of 469

each panel whereas the vertical coloured line represents the class-specific 470

median. Additionally, a vertical dashed line is plotted at zero, which 471

represents the baseline level. Thus, a positive value on the x-axis represents 472

EMG standardised scores that are higher than baseline. 473

Overt speechOOIOvert speechZYGListeningOOIListeningZYGInner speechOOIInner speechZYG020400.02.55.07.510.00.02.55.07.50.00.40.80.02.55.07.510.00.00.51.01.5012301230.00.20.40.60.80.00.20.40.00.20.40.000.020.040.06Standardised EMG amplitudeDensityroundedspread

Fig 1. Distribution of standardised EMG scores by class and by muscle. The
first row corresponds to the inner speech condition, the second one to the
listening condition, and the third one to the overt speech condition. The first
column depicts the EMG amplitude recorded over the OOI muscle while the
second column represents the EMG amplitude recorded over the ZYG muscle.
Each individual data point is represented as a vertical bar along the x-axis.
The vertical coloured line represents the by-class median. Please note that
the scale of the x-axis may differ considerably between panels.
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In Table 2, we report the mean standardised EMG amplitude of all 474

recorded muscles in each condition. Given the skewness of the distribution 475

of these scores, the mean and the standard deviation (SD) are not the best 476

indicators of the central tendency and dispersion of these distributions. 477

Therefore, we also report the median, the median absolute deviation (MAD), 478

and the inter-quartile range (IQR). 479

Table 2. Descriptive statistics of the standardised EMG amplitude for
each muscle in each condition.

Condition Item Muscle Mean Median SD MAD IQR

innerspeech rounded COR 0.34 0.17 0.54 0.42 0.65

innerspeech spread COR 0.32 0.16 0.54 0.40 0.63

listening rounded COR 0.22 0.09 0.46 0.36 0.57

listening spread COR 0.24 0.11 0.46 0.37 0.58

speech rounded COR 0.29 0.17 0.52 0.40 0.56

speech spread COR 0.25 0.13 0.52 0.37 0.52

innerspeech rounded FCR -0.01 -0.04 0.18 0.09 0.13

innerspeech spread FCR 0.00 -0.04 0.19 0.09 0.12

listening rounded FCR -0.01 -0.04 0.15 0.09 0.12

listening spread FCR 0.00 -0.03 0.15 0.09 0.12

speech rounded FCR -0.01 -0.03 0.14 0.08 0.11

speech spread FCR -0.01 -0.03 0.13 0.09 0.12

innerspeech rounded FRO 0.63 0.47 0.68 0.66 0.95

innerspeech spread FRO 0.62 0.47 0.67 0.64 0.95

listening rounded FRO 0.59 0.40 0.67 0.57 0.82

listening spread FRO 0.60 0.41 0.67 0.58 0.85

speech rounded FRO 0.66 0.48 0.71 0.62 0.88

speech spread FRO 0.62 0.46 0.72 0.60 0.81

innerspeech rounded OOI 1.31 0.72 1.63 0.94 1.80

innerspeech spread OOI 1.24 0.64 1.67 0.85 1.61

listening rounded OOI 1.11 0.62 1.40 0.85 1.44

listening spread OOI 1.11 0.62 1.42 0.83 1.40

speech rounded OOI 12.01 10.99 6.44 6.22 8.75

speech spread OOI 11.71 8.88 9.13 6.56 10.25

innerspeech rounded ZYG 0.01 -0.04 0.17 0.11 0.17

innerspeech spread ZYG 0.00 -0.03 0.18 0.11 0.16

listening rounded ZYG 0.01 -0.02 0.17 0.12 0.17

listening spread ZYG 0.00 -0.02 0.16 0.12 0.18

speech rounded ZYG 1.57 1.33 1.10 0.92 1.29

speech spread ZYG 0.69 0.56 0.78 0.51 0.70

We also created a shiny application [82] allowing for further visual 480

exploration of the data by muscle, by condition, and by participant, in the 3D 481

space formed by three (to be chosen) muscles. This application is available 482

online (https://barelysignificant.shinyapps.io/3d_plotly/) and the associated 483

code is available in the OSF repository (https://osf.io/czer4). 484

Confirmatory (preregistered) analyses 485

Bayesian multivariate multilevel Gaussian model 486

We then compared the standardised EMG amplitude δ for each muscle in 487

each condition (Overt Speech, Inner Speech, Listening) by fitting a 488
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multivariate multilevel Gaussian model (as detailed previously in the 489

Methods section). We predicted a higher increase of OOI activity during the 490

production of rounded items in comparison to spread items and conversely, 491

a higher increase of ZYG activity during the inner production of rounded 492

items in comparison to spread items. These predictions should also apply to 493

the overt speech condition (and to the listening condition). We should not 494

observe any by-class differences of FRO and COR activity in any condition. 495

Table 3. Estimates from the Gaussian BMLM concerning the OOI and the ZYG.

Response Term Estimate SE Lower Upper Rhat BF01

OOI Inner Speech 1.21 0.27 0.67 1.75 1.00 0.04

OOI Listening 1.09 0.23 0.65 1.53 1.00 <0.001

OOI Overt Speech 11.59 1.28 9.08 14.18 1.00 <0.001

OOI Inner Speech x Class 0.07 0.14 -0.20 0.34 1.00 64.45

OOI Listening x Class -0.08 0.20 -0.47 0.32 1.00 47.05

OOI Overt Speech x Class 0.02 0.19 -0.35 0.39 1.00 52.11

ZYG Inner Speech 0.00 0.03 -0.05 0.06 1.00 379.5

ZYG Listening 0.01 0.02 -0.04 0.05 1.00 388.4

ZYG Overt Speech 1.15 0.15 0.86 1.43 1.00 <0.001

ZYG Inner Speech x Class 0.01 0.02 -0.03 0.04 1.00 532.81

ZYG Listening x Class 0.00 0.03 -0.06 0.05 1.00 389.12

ZYG Overt Speech x Class 0.86 0.03 0.81 0.91 1.00 <0.001

Note. For each muscle (response), the first three lines represent the estimated average am-

plitude in each condition, and its standard error (SE). The three subsequent rows represent

the estimated average difference between the two classes of nonwords in each condition

(i.e., the interaction effect). The ’Lower’ and ’Upper’ columns contain the lower and upper

bounds of the 95% CrI, whereas the ’Rhat’ column reports the Gelman-Rubin statistic. The

last column reports the Bayes factor in favour of the null hypothesis (BF01).

The results of the Bayesian Gaussian multivariate model are summarised 496

in Table 3. This table reports the estimated average EMG amplitude in each 497

condition and the corresponding BF. As they are not the main focus of 498

interest here and for the sake of clarity, descriptive results for the other two 499

facial muscles and for the forearm muscle are reported in the supplementary 500

materials. This analysis revealed that the EMG amplitude of the OOI was 501

higher than baseline (the standardised score was above zero) in every 502

condition whereas it was only the case in the overt speech condition for the 503

ZYG. Moreover, in all conditions, the EMG amplitude of the ZYG was lower 504

than that of the OOI. Crucially, we did not observe the hypothesised 505

difference according to the class of nonwords on the OOI during inner speech 506

production (β = 0.071, 95% CrI [-0.204, 0.342], BF01 = 64.447) nor on the 507

ZYG (β = 0.005, 95% CrI [-0.031, 0.041], BF01 = 532.811). 508

Fig 2 depicts these results by representing the distribution of the raw data 509

(coloured dots) along with the predictions from this model. The black dots 510

and vertical intervals represent the predicted mean and associated 95% 511

credible interval for each class of non-word, each condition and for the OOI 512

and the ZYG. Coherently with Table 3, this figure shows that the fitted model 513

predicts no noticeable differences between the two classes of non-words in 514

any condition for the OOI muscle. However, it predicts a higher average EMG 515

amplitude associated with the rounded item as compared to the spread 516

March 9, 2020 13/28



items in the overt speech condition for the ZYG muscle. 517

ZYGinnerspeechZYGlisteningZYGspeechOOIinnerspeechOOIlisteningOOIspeechspreadroundedspreadroundedspreadroundedspreadroundedspreadroundedspreadrounded020400.02.55.07.510.00.02.55.07.50.00.40.80.02.55.07.510.00.00.51.01.5Nonword classStandardised EMG amplitude

Fig 2. Raw data along with posterior predictions of the first model for the
OOI and the ZYG muscles. Dots represent the mean prediction of this model
by condition, whereas the vertical error bars represent the 95% credible
intervals around the mean.

Before proceeding further with the interpretation of the results, it is 518

essential to check the quality of this first model. A useful diagnostic of the 519

model’s predictive abilities is known as posterior predictive checking (PPC) 520

and consists in comparing observed data to data simulated from the 521

posterior distribution [83]. The idea behind PPC is that a good model should 522

be able to generate data that resemble the observed data [84]. In this vein, 523

Fig 3 represents the distribution of the whole dataset (across all participants 524

and conditions) by muscle (the dark blue line) along with the distribution of 525

hypothetical datasets generated from the posterior distribution of the model 526

(the light blue lines). As can be seen from this figure, the distributions of the 527

data generated from the model differ considerably from the distribution of 528

the observed data. Therefore, in the next section, we turn to a more 529

appropriate model for these data. 530

0.000.050.100.150.200.00.51.01.5020400.02.55.07.5OOI standardised EMG amplitudeZYG standardised EMG amplitudeDensityDensity

Fig 3. Posterior predictive checking for the first model concerning the OOI
and ZYG muscles. The dark blue line represents the distribution of the raw
data (across all conditions) whereas light blue lines are dataset generated
from the posterior distribution.

Bayesian multivariate multilevel distributional Skew-Normal model 531

Fig 3 reveals an important failure of the first model, as it fails to generate 532

data that look like the data we have collected. More precisely, the collected 533

data look right-skewed, as it usually happens with physiological 534

measurements. To improve on the Gaussian model, we then assumed a 535

Skew-normal distribution for the response variable (the standardised EMG 536

amplitude δ). The Skew-normal distribution is a generalisation of the 537

Gaussian distribution with three parameters ξ (xi), ω (omega), and α (alpha) 538

for location, scale, and shape (skewness), respectively (note that the 539

Gaussian distribution can be considered a special case of the Skew-normal 540

distribution when α = 1). In addition, we also improved the first model by 541

turning it into a distributional model, that is, a model in which we can specify 542

predictor terms for all parameters of the assumed response distribution [85]. 543

More precisely, we used this approach to predict both the location, the scale, 544

and the skewness of the Skew-Normal distribution (whereas the first model 545

only allowed predicting the mean of a Gaussian distribution). As can been 546

seen in Fig 4, this second model seems better than the first one at 547

generating data that fit the observed data. 548

0.000.050.100.150.200.00.51.01.502040600.02.55.07.5OOI standardised EMG amplitudeZYG standardised EMG activityDensityDensity

Fig 4. Posterior predictive checking for the Skew-Normal model concerning
the OOI and ZYG muscles. The dark blue line represents the distribution of
the raw data whereas light blue lines are dataset generated from the
posterior distribution.
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Table 4. Estimates from the distributional Skew-Normal model concerning the
OOI and the ZYG.

Response Term Estimate SE Lower Upper Rhat BF01

OOI Inner Speech 1.47 0.03 1.41 1.53 1.00 0.04

OOI Listening 1.24 0.02 1.19 1.29 1.00 <0.001

OOI Overt Speech 12.15 0.14 11.87 12.43 1.00 <0.001

OOI Inner Speech x Class 0.03 0.02 -0.01 0.06 1.00 64.45

OOI Listening x Class 0.00 0.02 -0.05 0.05 1.00 47.05

OOI Overt Speech x Class 1.42 0.18 1.05 1.78 1.00 52.11

ZYG Inner Speech 0.02 0.00 0.01 0.02 1.00 379.5

ZYG Listening 0.01 0.00 0.00 0.02 1.00 388.4

ZYG Overt Speech 1.21 0.02 1.18 1.24 1.00 <0.001

ZYG Inner Speech x Class 0.00 0.01 -0.01 0.01 1.00 532.81

ZYG Listening x Class 0.00 0.01 -0.02 0.02 1.00 389.12

ZYG Overt Speech x Class 0.39 0.02 0.35 0.43 1.00 <0.001

Note. For each muscle (response), the first three lines represent the estimated average am-

plitude in each condition, and its standard error (SE). The three subsequent rows represent

the estimated average difference between the two classes of nonwords in each condition

(i.e., the interaction effect). The ’Lower’ and ’Upper’ columns contain the lower and upper

bounds of the 95% CrI, whereas the ’Rhat’ column reports the Gelman-Rubin statistic. The

last column reports the Bayes factor in favour of the null hypothesis (BF01).

The estimates of this second model are summarised in Table 4 and Fig 5. 549

According to this model, the EMG amplitude of the OOI was higher than 550

baseline (the estimated standardised score was above zero) in every 551

condition whereas, for the ZYG, it was only the case in the overt speech 552

condition. We did not observe the hypothesised difference according to the 553

class of nonwords during inner speech production, neither on the OOI (β = 554

0.025, 95% CrI [-0.012, 0.064], BF01 = 64.447) nor on the ZYG (β = 0.004, 555

95% CrI [-0.007, 0.014], BF01 = 532.811). 556

ZYGinnerspeechZYGlisteningZYGspeechOOIinnerspeechOOIlisteningOOIspeechspreadroundedspreadroundedspreadroundedspreadroundedspreadroundedspreadrounded020400.02.55.07.510.00.02.55.07.50.00.40.80.02.55.07.510.00.00.51.01.5Nonword classStandardised EMG amplitude

Fig 5. Raw data along with posterior predictions of the third model for the
OOI and the ZYG muscles. Dots represent the mean prediction of this model
by condition (concerning the location parameter) whereas the vertical error
bars represent the 95% credible intervals.

Predictions from this model are visually represented in Fig 5. This figure 557

differs from Fig 2 (showing the predictions of the Gaussian model) in that the 558

second model (the Skew-normal model) predicts shifts in location for both 559

the OOI and the ZYG muscles according to the class of non-word in overt 560

speech prediction. In contrast, the first model (the Gaussian model) 561

predicted a by-class difference only for the ZYG muscle. 562

Exploratory (non-preregistered) analyses 563

In the previous section, we tried to predict the average EMG amplitude by 564

condition on each single muscle. Although this approach was appropriate to 565

tackle our initial research question (i.e., can we distinguish muscle-specific 566

EMG correlates of inner speech production?), it is not optimal to answer 567

more general questions such as “can we predict the content of inner speech 568
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based on the available EMG data?”. In Fig 6, we depict the distribution of the 569

by-word averaged EMG scores in the 2D space formed by the OOI and the 570

ZYG muscles. This figure reveals that although different nonwords produced 571

in overt speech seem difficult to discriminate on the basis of a single muscle 572

(cf. Fig 1), it seems easier to discriminate them in the space formed by two 573

muscles (here OOI and ZYG). More precisely, the two classes of nonwords 574

seem to form two separate clusters in the overt speech condition, but these 575

clusters do not seem discriminable in the inner speech or in the listening 576

condition. 577

bøbøbybyfofomɔ̃mɔ̃mumumymypøpøpupupypyvøvøsesedidigegegigiʒiʒilelelilininiʁiʁisisibøbøbybyfofomɔ̃mɔ̃mumumymypøpøpupupypyvøvøsesedidigegegigiʒiʒilelelilininiʁiʁisisibøbøbybyfofomɔ̃mɔ̃mumumymypøpøpupupypyvøvøsesedidigegegigiʒiʒilelelilininiʁiʁisisiInner speechListeningOvert speech1.11.21.31.41.51.01.11.21.381012140.51.01.52.0-0.02-0.010.000.010.020.03-0.020.000.02OOIZYG

Fig 6. Average standardised EMG amplitude for each nonword in each
condition, in the 2D space formed by the OOI and the ZYG. Ellipses represent
95% data ellipses, that is, the 95% contours of a bivariate normal
distribution.

In other words, it is easier to discriminate these signals in the 578

multidimensional space of all speech muscles, rather than by considering 579

each muscle independently. Thus, we used a supervised machine learning 580

algorithm aiming to classify speech signals according to the class of 581

nonwords. Broadly, the machine learning approach seeks to find a 582

relationship between an input X (e.g., EMG recordings over the four facial 583

muscles) and an output Y (e.g., the class of nonwords). Once trained, it 584

allows predicting a value of the output based on some input values, whose 585

prediction can be evaluated against new observations. 586

We used a random forest algorithm, as implemented in the caret package 587

[86]. Random forests (RFs) represent an ensemble of many decision trees (a 588

forest), which allow predictions to be made based on a series of decision 589

rules (e.g., is the score on predictor x1 higher or lower than z? If yes, then …, 590

if not, then …). The specificity of RFs is to combine a large number of trees 591

(usually above 100 trees), and to base the final conclusion on the average of 592

these trees, thus preventing overfitting. We used three separate RFs to 593

classify EMG signals in each condition (Overt Speech, Inner Speech, and 594

Listening). 595

To evaluate the performance of this approach, we report the raw accuracy 596

(along with its resampling-based 95% confidence interval), or the proportion 597

of data points in the test dataset for which the RF algorithm predicted the 598

correct class of nonwords. First, we randomly split the entire dataset into a 599

training (80%) and a test set (20%). The training set was used for the 600

learning whereas the test set was used to evaluate the predictions of the 601

algorithm. To prevent overfitting, we used repeated 10-fold cross-validation 602

during the learning phase. 603

Predicting the class of nonwords during overt speech production 604

We first tried to predict the class of nonwords produced in overt speech, 605

based on the activity of the four facial muscles (OOI, ZYG, COR, FRO). Each 606

predictor was centred to its mean and standardised before the analysis. 607
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Table 5. Confusion matrix with by-class error
for the overt speech condition.

Reference

Prediction rounded spread class.error

rounded 917 163 0.151
spread 198 898 0.181

This analysis revealed an overall classification accuracy of 0.847, 95% CI 608

[0.814, 0.876] (cf. confusion matrix in Table 5). Examining the relative 609

importance of each feature (i.e., each muscle) for prediction revealed that 610

the muscles containing most information to discriminate the two classes of 611

nonwords were the ZYG and the OOI, whereas, as predicted, forehead 612

muscles did not seem to strongly contribute to predictive accuracy in the 613

overt speech condition. 614

Predicting the class of nonwords during inner speech production 615

and listening 616

We then applied the same strategy (the same algorithm) to the signals 617

recorded in the inner speech and listening conditions. The results of these 618

analyses are reported in Table 6 and Table 7. 619

Table 6. Confusion matrix with by-class
classification error for the inner speech
condition.

Reference

Prediction rounded spread class.error

rounded 386 502 0.565
spread 473 454 0.510

This analysis revealed an overall classification accuracy of 0.472, 95% CI 620

[0.426, 0.52] in the inner speech condition, which indicates that the RF 621

algorithm did not allow discriminating the two classes of nonwords better 622

than random guessing. As the classification accuracy in the inner speech 623

and listening conditions was not better than chance, we do not report the 624

relative importance of the predictors. Indeed, it would be difficult to interpret 625

the importance of predictors for a classification task at which they do not 626

perform better than chance. 627

Table 7. Confusion matrix with by-class
classification error for the listening condition.

Reference

Prediction rounded spread class.error

rounded 426 499 0.539
spread 508 406 0.556
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This analysis similarly revealed an overall classification accuracy of 0.46, 628

95% CI [0.413, 0.507] in the listening condition. 629

Discussion 630

In the present study we aimed to replicate and extend previous findings 631

showing that facial electromyography can be used to discriminate expanded 632

inner speech content [30,31]. As these studies used small samples of 633

children, our study aimed to examine whether such results can be 634

reproduced using surface electromyography and modern signal processing 635

methods in an adult sample. 636

To this end, it was crucial to first show that the EMG correlates of our two 637

classes of nonwords were discriminable during overt speech production. 638

Surprisingly, the data we collected during overt speech production do not 639

corroborate the hypothesis according to which the average EMG amplitude 640

of the OOI should be higher during the production of “rounded” nonwords as 641

compared to “spread” nonwords. For both orofacial speech muscles (OOI 642

and ZYG), the average EMG amplitude was higher for rounded nonwords 643

than for spread nonwords during overt speech production. Moreover, while 644

the average EMG amplitude recorded over speech muscles was higher than 645

baseline in both the inner speech and listening conditions, we did not find 646

differences of activation according to the content of the material (the class 647

of nonword). An automatic classification approach, using the four facial 648

muscles (OOI, ZYG, COR, FRO), revealed that although it was possible to 649

discriminate EMG signals related to the two classes of nonwords with a 650

reasonable accuracy during overt speech production, this approach failed in 651

discriminating these two classes during inner speech production or during 652

listening. We also observed a higher EMG amplitude recorded over the facial 653

(both orofacial and non-orofacial) muscles during inner speech production 654

and during the listening of speech production than during rest. However, as 655

pinpointed by [62], this observation is not sufficient to conclude that these 656

activations were actually related to inner speech production, because i) both 657

orofacial speech-related muscles and forehead non-speech related muscles 658

showed similar EMG amplitude changes from baseline and ii) we did not 659

observe different changes in EMG amplitude depending on the content of 660

inner speech (i.e., depending on the class of nonword to be uttered). 661

Before discussing the theoretical implications of these results, two main 662

issues are worth discussing. First, how can we explain that rounded 663

nonwords were associated with higher EMG amplitude during overt speech 664

on both OOI and ZYG muscles? Second, how can we explain the 665

indiscriminability of inner speech content, which seems to contradict classic 666

as well as recent findings in the field [61]? We turn to each of these 667

questions in the following. 668

To answer the first question, we began by comparing our results to results 669

obtained by another group [87]. The authors of this study recorded surface 670

EMG activity from five participants while they were producing seven facial 671

expressions and five isolated vowel sounds (/a/, /e/, /i/, /o/, /u/), repeated five 672

times each. They recorded EMG activity over eight facial muscles (the 673

zygomaticus major (ZYG), the risorius (RIS), the orbicularis oris superior 674

(OOS) and inferior (OOI), the mentalis (MEN), the depressor anguli oris (DAO), 675

the levator labii superioris (LLS) muscles, and the digastric muscle (DIG)). 676
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We divided these vowels in two classes to fit our own classes of nonwords. 677

More precisely, we have created the following two classes: a rounded class, 678

composed of the vowels /o/ and /u/, and a spread class, composed of the 679

vowels /e/ and /i/ (note that we did not include the vowel /a/ because it 680

theoretically does not fit in one of these two categories). We present the 681

average EMG amplitude recorded over the OOI and the ZYG according to the 682

vowel class in Table 8. 683

Table 8. Standardised EMG amplitude recorded over the OOI and the ZYG
during overt speech production of rounded versus spread vowels in Eskes
et al. (2017).

Muscle Item Observations Mean SD Median Histogram

OOI rounded 50 59.70 60.09 42.03 ▇▂▁▁▁
OOI spread 50 22.15 11.92 20.65 ▇▅▂▂▁
ZYG rounded 50 7.39 3.78 6.27 ▇▃▁▁▁
ZYG spread 50 10.15 6.20 7.99 ▇▃▂▁▁

Note. The number of observations is given by the number of vowels to be
pronunced in each category (2) times the number of repetitions (5) times
the number of participants (5), for a total of 50 observations per cell.

We notice that [87] have indeed observed the dissociation we initially 684

predicted, that is, that the EMG amplitude recorded over the OOI was higher 685

during the pronunciation of rounded vowels than during pronunciation of 686

spread vowels, whereas the reverse pattern was observed concerning the 687

ZYG. Paired-samples Wilcoxon signed rank tests revealed a shift in location 688

(pseudomedian) between rounded and spread items for the OOI (β = 24.12, 689

95% CI [15.19, 40.77], V = 1184, p < .001) with rounded items being 690

associated with a higher location than spread items. This analysis also 691

revealed a shift in the inverse direction concerning the ZYG (β = -1.51, 95% 692

CI [-2.94, -0.48], V = 275, p < .001). However, one crucial difference 693

between [87] design and ours is the complexity of the linguistic material. 694

Whereas [87] used single phonemes, we chose to use bisyllabic nonwords to 695

increase the ecological validity of the paradigm. Although these nonwords 696

were specifically created to theoretically increase the engagement of either 697

the OOI or the ZYG (cf. the “Linguistic material” section), it is reasonable to 698

expect differences in the average EMG patterns between isolated phonemes 699

and nonwords. More precisely, we expect the average EMG amplitude 700

associated with the production of a given phoneme (e.g., /y/) to be impacted 701

by the production of the consonant (e.g., /b/) it is paired with, due to 702

coarticulation. More generally, we could hypothesise that the difference 703

between the average EMG amplitude recorded during the production of the 704

phoneme /i/ and during the production of the phoneme /y/ could be reduced 705

when these phonemes are coarticulated in CV or CVCV sequences like /byby/ 706

or /didi/ (as in our study). In other words, we might expect an interaction 707

effect between the structure of the to-be produced speech sequence (either 708

a single vowel or a CV/CVCV sequence) and the class of the vowel. This is 709

coherent with previous findings showing that the muscular activity 710

associated with vowel production is strongly influenced by the surrounding 711

consonants in CVC sequences [78]. Thus, further investigations should focus 712

on how the average EMG amplitude is impacted by coarticulation during the 713
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production of CVCV sequences. 714

With regards to inner speech, our results do not support theoretical 715

predictions of the motor simulation view, according to which it should be 716

possible to discriminate classes of nonwords produced in inner speech based 717

on EMG signals. Whereas this outcome is consistent with some recent 718

results [32], it also stands in sharp contrast with classical results in the field 719

[30,31] as well as more recent developments. For instance, [61] developed a 720

wearable device composed of seven surface EMG sensors that can attain a 721

92% median classification accuracy in discriminating internally vocalised 722

digits. There are a few crucial differences between [61]’s work and ours that 723

stand as good candidates to explain the discrepancies between our results. 724

First, the strategy adopted to position the sensors was radically different. 725

Following guidelines from the field of psychophysiology, our strategy was to 726

position sensors precisely over the facial muscles of interest, aligned with the 727

direction of the muscle fibers and in theoretically optimal positions to record 728

activity of this muscle while reducing cross-talk. However, precisely because 729

of pervasive cross-talk in facial surface EMG recordings, this strategy, 730

whereas maximising the probability of recording activity from a given single 731

muscle, was also (as a result) reducing the probability of recording activity 732

from potentially speech-relevant neighbour muscles. Therefore, this strategy 733

might work sub-optimally when the goal of the experiment is to extract the 734

maximum amount of (relevant) EMG information to discriminate inner 735

speech content. However, this problem might be mitigated by using more 736

sensors and a more lenient sensor-positioning approach. Whereas we 737

recorded the EMG amplitude over only two lower facial muscles (OOI and 738

ZIG), [61] analysed EMG data from seven different sensors, whose position 739

and number was defined iteratively in order to maximise the classification 740

accuracy. In other words, the parameters of the experiment were iteratively 741

optimised to maximise a certain outcome (classification accuracy). This 742

strategy is radically different from the classical approach in experimental 743

and cognitive psychology where experimental conditions are defined to test 744

theoretically derived hypotheses. Whereas the first approach is arguably 745

more efficient at solving a particular problem at hand, the second approach 746

might be more efficient in tackling theoretical questions. For instance, a 747

recent study reported a greater EMG amplitude of laryngeal and lip muscles 748

during auditory verbal tasks (covert singing) than during visual imagery 749

tasks [88]. By coupling EMG recording with demographic and psychological 750

measures, they were able to show that these correlates were related to the 751

level of accuracy in singing, thus shedding light upon the nature and 752

functions of peripheral muscular activity during covert singing. However, 753

adding more sensors (e.g., on the risorius), or better optimising sensor 754

placement, could improve the sensitivity of the present approach. 755

Putting aside considerations related to methodological aspects of the 756

present study, these results do not corroborate the motor simulation view of 757

inner speech production. Instead, it seems to support the abstraction view, 758

which postulates that inner speech results from the activation of abstract 759

linguistic representations and does not engage the articulatory apparatus. 760

However, individual differences in discriminability highlight that the 761

abstractness of inner speech might be flexible, as suggested by [22]. Indeed, 762

although for most participants it was not possible to decode the phonetic 763

content of inner speech, rounded and spread nonwords were in fact 764

distinguishable based on OOI and ZYG information only (by visual inspection 765
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of the 2D plot), for two of them (S_15 and S_17, cf. supplementary materials). 766

This suggests either that the extent to which inner speech production 767

recruits the speech motor system might vary between individuals or that it 768

might vary within individual depending on the properties of the ongoing task 769

(these two suggestions are not mutually exclusive). For instance, we know 770

from early research on the EMG correlates of inner speech that the average 771

amplitude of these correlates tend to be higher when the task is more 772

difficult [10]. As such, the extent to which inner speech production recruits 773

the speech motor system could be moderated by manipulating the difficulty 774

of the ongoing task. In addition, the electromyographic activity recorded 775

during motor imagery could be modulated by the perspective taken in motor 776

imagery. A distinction is made between first-person perspective or internal 777

imagery (i.e., imagining an action as we would execute it) and third-person 778

perspective or external imagery (i.e., imagining an action as an observer of 779

this action), that may involve different neural processes [89]. It has been 780

shown that a first-person perspective may result in greater EMG activity than 781

motor imagery in a third-person perspective [90,91]. Therefore, we 782

hypothesise that the involvement of the speech motor system during inner 783

speech production may be modulated by the specific instructions given to 784

the participants. For instance, by instructing participants to focus on inner 785

speaking (imagining speaking), instead of inner hearing (imagining hearing), 786

and by asking them to focus on the kinaesthetic feelings related to speech 787

acts (rather than on auditory percepts), we could expect to find a higher 788

average EMG amplitude recorded over the speech muscles. In addition, by 789

specifically asking the participants to mentally articulate the nonwords, as if 790

they were dictating them to someone, rather than just read and visually scan 791

them, we may expect stronger articulatory involvement. 792

Of course, the current study and the above discussion should be 793

interpreted with a few words of caution in mind. For each class of nonwords, 794

we collected around 6 x 10 = 60 observations by condition and by 795

participant. For 25 participants and two classes of nonwords, this results in 796

25 (participants) x 120 (individual trials) x 3 (conditions) = 9000 797

observations. However, after rejecting trials with movement artefacts, we 798

had 7285 observations in total. Although the number of observations 799

reported in the present study is reasonable, the sensitivity of the experiment 800

could be improved by increasing the number of observations and/or by 801

reducing two important sources of variation. More precisely, one could 802

reduce the variance related to the item (the specific nonword being uttered) 803

by selecting nonwords that are more similar to each other in the way they 804

are uttered, by selecting less items or simpler items. Similarly, particular 805

attention should be devoted to reducing inter-participant variability, which 806

could be done by using more guided and specific instructions, as well as a 807

longer training phase to familiarise the participant with the task. 808

In summary, we have demonstrated that whereas surface 809

electromyography may lead to reasonable accuracy in discriminating classes 810

of nonwords during overt speech production (using signals recorded over 811

only two speech-related muscles), it did not permit to discriminate these two 812

classes during inner speech production across all participants (only for two 813

participants). These results, in comparison with results obtained by other 814

teams [61], highlight that depending on the aim of the research, different 815

strategies might be more or less successfully pursued. More precisely, if the 816

goal is to attain high classification accuracy (problem-solving approach), 817
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then the parameters of the experiment (e.g., number of repetitions, number 818

of sensors, position of the sensors, parameters of the signal processing 819

workflow) should be optimised based on the desired outcome (i.e., 820

classification accuracy). However, the classical laboratory strategy used in 821

experimental and cognitive psychology, aiming to compare specific 822

conditions (or muscles) to each other in a controlled environment, is deemed 823

to be more appropriate when the aim of the research is to sharpen our 824

understanding of the psychological phenomenon under study. 825
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