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Abstract

Although having a long history of scrutiny in experimental psychology, it is still controversial

whether wilful inner speech (covert speech) production is accompanied by specific activity in

speech muscles. We present the results of a preregistered experiment looking at the electro-

myographic correlates of both overt speech and inner speech production of two phonetic

classes of nonwords. An automatic classification approach was undertaken to discriminate

between two articulatory features contained in nonwords uttered in both overt and covert

speech. Although this approach led to reasonable accuracy rates during overt speech pro-

duction, it failed to discriminate inner speech phonetic content based on surface electromy-

ography signals. However, exploratory analyses conducted at the individual level revealed

that it seemed possible to distinguish between rounded and spread nonwords covertly pro-

duced, in two participants. We discuss these results in relation to the existing literature and

suggest alternative ways of testing the engagement of the speech motor system during wilful

inner speech production.

Introduction

As you read these words, you may be experiencing the presence of a familiar speechlike com-

panion. This internal speech production may accompany daily activities such as reading (see

[1–4], but see [5, 6]), writing ([7]), memorising ([8, 9]), future planning [8], problem solving

[9, 10] or musing (for reviews see [11–14]). Several studies using experience sampling or ques-

tionnaires (e.g., [15, 16]) have shown that by deliberately paying attention to this internal

speech, one can examine its phenomenological properties such as identity (whose voice is it?)

or other high-level characteristics (e.g., is it gendered?). Moreover, it is often possible to exam-

ine lower-level features like the tone of the inner speech, its pitch or its tempo. This set of basic

observations leads to some important insights about the nature of inner speech. The simple

fact that we can make sensory judgements about our inner speech tautologically reveals that

inner speech is accompanied by sensory percepts (e.g., speech sounds, kinaesthetic feelings).

Some of these introspective accounts have been examined, tested and complemented using

empirical methods from cognitive neuroscience. As summarised in [17], behavioural and
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neuroimaging data reveal that some variants of inner speech are associated with auditory and/

or somatosensory sensations that are reflected by auditory and/or somatosensory cortex acti-

vations. Visual representations may also be at play, typically for inner language in the deaf pop-

ulation. Inner verbalising therefore involves the reception of imaginary multisensory signals.

This leads to other fundamental questions: where do these percepts come from? Why do they

sound and feel like the ones we experience when we actually (overtly) speak?

Two main classes of explanatory theories have been offered to answer these questions. A

first class of theories, that derives from Vygotky’s views on language and thought, and that

we describe as the abstraction view [18], suggest that inner speech is profoundly internalised,

abbreviated and condensed in form. Vygotsky suggested that inner speech evolved from so-

called egocentric speech (i.e., self-addressed overt speech or private speech), via a gradual pro-

cess of internalisation during childhood [19]. According to him, the properties of speech are

transformed during this internalisation, and inner speech cannot merely be described as a

weakened form of overt speech (as claimed for instance by [20]). This has led some scholars to

conceive of inner speech as predominantly pertaining to semantics, excluding any phonologi-

cal, phonetic, articulatory, or even auditory properties (e.g., [18, 21, 22]). The property of

abbreviation and condensation is supported by several psycholinguistic experiments on the

qualitative and quantitative differences between overt and covert speech, as concerns rate and

error biases (e.g., [18, 22–24], but see [25]). Such condensation implies that the auditory quali-

ties mentioned above would only rarely be observed during introspection and would merely

be the result of learned associations between abstract linguistic representations and auditory

percepts. A second class of theories is described under the umbrella term of motor simulation
view. These theories suggest that inner speech can be conceived as a kind of action on its own

[26, 27], produced in the same way as overt speech is, except that the last stage of articulatory

execution is only simulated. Most theories under this view share the postulate that the speech

motor system is involved (to some extent) during inner speech production and that the audi-

tory and somatosensory consequences of the simulated articulatory movements constitute the

inner speech percepts referred to in subjective studies.

As explained in the ConDialInt model [28], these two views can be reconciled if various

degrees of unfolding of inner speech are considered. Fully condensed forms of inner speech

only involve semantics, and are deprived of the acoustic, phonological and syntactic qualities

of overt speech. Expanded forms of inner speech, on the other hand, presumably engage pro-

sodic and morpho-syntactic formulation as well as phonological specification, articulatory

simulation and the perception of an inner voice. Between the fully condensed abstract forms

and the expanded articulation-ready form, it can be assumed that various semi-condensed

forms may exist, with morphosyntactic properties and perhaps even phonological features,

depending on the stage at which the speech production process is truncated. Such a view was

also taken by [29] who has suggested that inner speech varies with cognitive demands and

emotional conditions on a continuum between extremely condensed and expanded forms (see

also [11, 27]). Therefore, the two views of inner speech (abstraction vs. simulation) can be con-

strued as descriptions of two opposite poles on the condensation dimension. On the most

expanded side of the continuum, inner speech entails full phonetic specification and articula-

tory simulation. It might therefore be expected that speech motor activity could be detectable.

If the motor simulation view is correct, then motor activity could be recorded during

expanded forms of inner speech. If, on the other hand, the abstraction view applies to all forms

of inner speech, then no motor activity should be present, even in phonologically-expanded

forms.

Previous research has demonstrated that it is possible to record muscle-specific electromyo-

graphic correlates of inner speech (e.g., [30, 31]). However, these studies mostly focused on
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small samples of participants and sometimes used invasive intramuscular electromyography.

In contrast, more recent research studies using surface electromyography lead to mixed results

(e.g., [32]). Building upon previous work, we describe an experimental set-up using surface

electromyography with the aim of testing the involvement of specific speech muscle groups

during the covert production of phonologically expanded speech forms.

Inner speech as motor imagery of speech

Speech production is a complex motor action, involving the fine-grained coordination of

more than 100 muscles in the upper part of the body [33]. In adult humans, its covert counter-

part (referred to as inner speech or verbal imagery) has developed to support a myriad of differ-

ent functions. In the same way as visual imagery permits to mentally examine visual scenes,

verbal imagery can be used as an internal tool, allowing –amongst other things– to rehearse or

to prepare past or future conversations [11, 14]. Because speech production results from

sequences of motor commands which are assembled to reach a given goal, it belongs to the

broader category of motor actions [34]. Therefore, a parallel can be drawn between verbal

imagery and other forms of motor imagery (e.g., imagined walking or imagined writing).

Accordingly, studies on the nature of inner speech might benefit from insights gained from

the study of motor imagery and the field of motor cognition [34, 35].

Motor imagery can be defined as the mental process by which one rehearses a given action,

without engaging in the physical movements involved in this particular action. One of the

most influential theoretical accounts of this phenomenon is the motor simulation theory [34,

36, 37]. In this framework, the concept of simulation refers to the “offline rehearsal of neural

networks involved in specific operations such as perceiving or acting” [34]. The MST shares

some similarities with the theories of embodied and grounded cognition [38] in that both

account for motor imagery by appealing to a simulation mechanism. However, the concept of

simulation in grounded theories is assumed to operate in order to acquire specific conceptual

knowledge [39], which is not the concern of the MST. In other words, we should make a dis-

tinction between embodiment of content, which concerns the semantic content of language,

and embodiment of form, which concerns “the vehicle of thought”, that is, proper verbal pro-

duction [40].

A second class of explanatory models of motor imagery are concerned with the phenome-

non of emulation and with internal models [41]. Internal model theories share the postulate

that action control uses internal models, that is, systems that simulate the behaviour of the

motor apparatus [42, 43]. The function of internal models is to estimate and anticipate the out-

come of a motor command. Among the internal model theories, motor control models based

on robotic principles [44, 45] assume two kinds of internal models (that are supposed to be

coupled and regulated): a forward model (or simulator) that predicts the sensory consequences

of motor commands from efference copies of the issued motor commands, and an inverse

model (or controller) that calculates the feedforward motor commands from the desired sen-

sory states [17, 41].

Emulation theories [46, 47] borrow from both simulation theories and internal model theo-

ries and provide operational details of the simulation mechanism. In the emulation model pro-

posed by [46], the emulator is a device that implements the same input-output function as the

body (i.e., the musculoskeletal system and relevant sensory systems). When the emulator

receives a copy of the control signal (which is also sent to the body), it produces an output sig-

nal (the emulator feedback), identical or similar to the feedback signal produced by the body,

yielding mock sensory percepts (e.g., visual, auditory, kinaesthetic) during motor imagery.
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By building upon models of speech motor control [45, 48], a recent model describes wilful

(voluntary) expanded inner speech as “multimodal acts with multisensory percepts stemming

from coarse multisensory goals” [17]. In other words, in this model the auditory and kinaes-

thetic sensations perceived during inner speech are assumed to be the predicted sensory conse-

quences of simulated speech motor acts, emulated by internal forward models that use the

efference copies of motor commands issued from an inverse model [46]. In this framework,

the peripheral muscular activity recorded during inner speech production is assumed to be the

result of partially inhibited motor commands. It should be noted that both simulation, emula-

tion, and motor control frameworks can be grouped under the motor simulation view and alto-

gether predict that the motor system should be involved to some extent during motor imagery,

and by extension, during inner speech production. We now turn to a discussion of findings

related to peripheral muscular activity during motor imagery and inner speech.

Electromyographic correlates of covert actions

Across both simulationist and emulationist frameworks, motor imagery has consistently been

defined as the mental rehearsal of a motor action without any overt movement. One conse-

quence of this claim is that, in order to prevent execution, the neural commands for muscular

contractions should be blocked at some level of the motor system by active inhibitory mecha-

nisms [49]. Despite these inhibitory mechanisms, there is abundant evidence for peripheral

muscular activation during motor imagery [49–51]. As suggested by [36], the incomplete inhi-

bition of the motor commands would provide a valid explanation to account for the peripheral

muscular activity observed during motor imagery. This idea has been corroborated by studies

of changes in the excitability of the motor pathways during motor imagery tasks [52]. For

instance, [53] measured spinal reflexes while participants were instructed to either press a

pedal with the foot or to simulate the same action mentally. They observed that both H-reflexes

and T-reflexes increased during motor imagery, and that these increases correlated with the

force of the simulated pressure. Moreover, the pattern of results observed during motor imag-

ery was similar (albeit weaker in amplitude) to that observed during execution, supporting the

motor simulation view of motor imagery. Using transcranial magnetic stimulation, several

investigators observed muscle-specific increases of motor evoked potentials during various

motor imagery tasks, whereas no such increase could be observed in antagonist muscles [54,

55].

When considered as a form of motor imagery, inner speech production is also expected to

be accompanied with peripheral muscular activity in the speech muscles. This idea is sup-

ported by many studies showing peripheral muscular activation during inner speech produc-

tion [10, 30, 31, 56–58], during auditory verbal hallucinations in patients with schizophrenia

[59], or during induced mental rumination [60]. Some authors also recently demonstrated

that it is possible to discriminate inner speech content based on surface electromyography

(EMG) signals with a median 92% accuracy [61]. However, other teams failed to obtain such

results [32].

Many of these EMG studies concluded on the involvement of the speech motor system

based on a difference in EMG amplitude by contrasting a period of inner speech production to

a period of rest. However, as highlighted by [62], it is usually not enough to show an increase

of speech muscle activity during inner speech to conclude that this activation is related to

inner speech production. Indeed, three sorts of inference can be made based on the studies of

electromyographic correlates of inner speech production, depending on the stringency of the

control procedure. The stronger sort of inference is permitted by highlighting a discriminative

pattern during covert speech production, as for instance when demonstrating a dissociation
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between different speech muscles during the production of speech sounds of different phone-

mic class (e.g, contrasting labial versus non-labial words). According to [62], other (weaker)

types of control procedures include i) comparing the EMG activity during covert speech pro-

duction to a baseline period (without contrasting phonemic classes in covert speech utter-

ances), or ii) comparing the activity of speech-related and non-speech related (e.g., forearm)

muscle activity. Ideally, these controls can be combined by recording and contrasting speech

and non-speech related muscles in different conditions (e.g., rest, covert speech, overt speech)

of pronunciation of different speech sounds classes (e.g., labial versus non-labial).

Previous research studies carried out using the preferred procedure recommended by [62]

suggest a discriminative patterns of electromyographic correlates according to the phonemic

class of the words being covertly uttered [30, 31], which would corroborate the motor simula-
tion view of inner speech. However, these studies used limited sample sizes (often less than ten

participants) and worked mostly with children. These factors limit the generalisability of the

above findings because i) low-powered experiments provide biased estimates of effects, ii) fol-

lowing the natural internalisation process, inner speech muscular correlates are expected to

weaken with age and iii) a higher sensitivity could be attained by using modern sensors and

signal processing methods.

The present study intends to bring new information to the debate between the motor simu-
lation view and the abstraction view of inner speech, by focusing on an expanded form of inner

speech: wilful nonword covert production. This work can be seen as a replication and exten-

sion of previous works carried out by McGuigan and collaborators [30, 31]. We aimed to

demonstrate similar dissociations by using surface electromyography recorded over the lip

(orbicularis oris inferior, OOI) and the zygomaticus major (ZYG) muscles. More precisely,

given that rounded phonemes (such as /u/) are articulated with orbicular labial contraction,

whereas spread phonemes (such as /i/) are produced with zygomaticus contraction, if the

motor simulation view is correct, we should observe a higher average EMG amplitude recorded

over the OOI during both the overt and inner production of rounded nonwords in compari-

son to spread nonwords. Conversely, we would expect a lower average EMG amplitude

recorded over the ZYG during both the inner and overt production of rounded nonwords in

comparison to spread nonwords. In addition, we would not expect to observe content-specific

differences in EMG amplitude concerning the non speech-related muscles (i.e., forehead and

forearm muscles).

Methods

In the Methods and Data analysis sections, we report how we determined our sample size, all

data exclusions, all manipulations, and all measures in the study [63]. A pre-registered version

of our protocol can be found at: https://osf.io/czer4/.

Participants

As previous studies of the electromyographic correlates of inner speech were mostly carried

out with samples of children or young adults, used different kinds of EMG measures (surface

EMG or needle EMG), and different kinds of signal processing methods, it was impractical to

determine the effect size of interest for the current study. Therefore, we used sequential testing

as our sampling procedure, based on the method described in [64] and [65]. We fixed a statisti-

cal threshold to BF10 = 10 and BF10 = 1/10 (i.e., BF01 = 10), testing the difference between the

inner production of labial items versus the inner production of non-labial items on the stan-

dardised EMG amplitude of the lower lip (orbicularis oris inferior). In order to prevent poten-

tial experimenter and demand biases during sequential testing, the experimenter was blind to
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BFs computed on previous participants [66]. All statistical analyses have been automatised and

a single instruction was returned to the experimenter (i.e., “keep recruiting participants” or

“stop the recruitment”). We fixed the maximum sample size to 100 participants.

As a result of the above sampling procedure, a total of 25 French-speaking female under-

graduate students in Psychology from the Univ. Grenoble Alpes (mean age = 19.57, SD = 1.1).

took part in this experiment, in exchange for course credits. It should be noted that this proce-

dure did not work optimally because we later spotted an error in the EMG signal processing

workflow. Thus, the sequential testing stopped earlier than it should have. These participants

were recruited via mailing list, online student groups, and posters. Each participant provided a

written consent and the present study was approved by the local ethics committee (Grenoble

CERNI agreement #2016-05-31-9).

Material

EMG recordings. EMG activity was recorded using TrignoTM Mini sensors (Delsys Inc.)

with a sampling rate of 1926 samples/s, a band pass of 20 Hz (12 dB/oct) to 450 Hz (24 dB/oct)

and were amplified by a TrignoTM 16-channel wireless EMG system (Delsys Inc.). These sen-

sors consist of two 5 mm long, 1 mm wide parallel bars, spaced by 10 mm, which were attached

to the skin using double-sided adhesive interfaces. The skin was cleaned by scrubbing it with

70% isopropyl alcohol. EMG signals were synchronised using the PowerLab 16/35 (ADInstru-

ment, PL3516). Raw data from the EMG sensors were then resampled at a rate of 1 kHz and

stored in digital format using Labchart 8 software (ADInstrument, MLU60/8).

EMG sensors were positioned over five muscles: the corrugator supercilii (COR), the fronta-
lis (FRO), the zygomaticus major (ZYG), the orbicularis oris inferior (OOI), and the flexor carpi
radialis (FCR). Given that the activity of the orbicularis oris inferior and orbicularis oris supe-
rior muscles has previously been observed to be strongly correlated and that the activity of the

OOI was more strongly affected by the experimental manipulation [59, 60], we decided to

record only the activity of the OOI in this study. The two speech-related muscles (OOI and

ZYG) were chosen to show speech-specific EMG correlates, whereas the two non-speech

related facial muscles (COR and FRO) were chosen to control for overall facial muscular activ-

ity. We also recorded the activity of the FCR of the non-dominant forearm to control for over-

all (body) muscular activity.

As reviewed in [67], the dominant side of the face displays larger movements than the left

side during speech production, whereas the non-dominant side is more emotionally expres-

sive. Therefore, we recorded the activity of control and emotion-linked muscles (i.e., COR and

FRO) that were positioned on the non-dominant side of the face (i.e., the left side for right-

handed participants), while sensors recording the activity of the speech muscles (i.e., ZYG and

OOI) were positioned on the dominant side of the face.

The experiment was video-monitored using a Sony HDR-CX240E video camera to track

any visible facial movements. A microphone was placed 20–30 cm away from the participant’s

lips to record any faint vocal production during the inner speech and listening conditions.

Stimuli were displayed using the OpenSesame software [68] on a 19-inch colour monitor.

Linguistic material. We selected ten rounded and ten spread bi-syllabic nonwords (cf.

Table 1). Each class of nonwords was specifically designed to either induce a greater activation

of the lip muscle (rounded items) or a greater activation of the zygomaticus muscle (spread

items). These stimuli were selected based on phonetic theoretical constraints, with the aim of

maximising the differences between the two classes of non-words in their involvement of

either the OOI or the ZYG muscle. More precisely, rounded items consisted in the repetition

of a syllable containing a bilabial consonant followed by a rounded vowel, whereas spread
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items consisted in the repetition of a syllable containing a lingual consonant followed by a

spread vowel.

Procedure

Participants were seated in front of a computer screen while audio stimuli (when applicable)

were presented through speakers on both sides of the screen. A video camera was positioned

on one side of the screen to monitor facial movements. A microphone was positioned at

approximately 10 cm of the participant to record possible speech sounds. After positioning

of the EMG sensors, each participant underwent a relaxation session aiming to minimise

pre-existing inter-individual variability on facial muscle contraction (approximate duration

was 330 s). This relaxation session was recorded by a trained professional sophrology thera-

pist. Baseline EMG measurements were performed during the last minute of this relaxation

session, resulting in 60 s of EMG signal at baseline. By using this relaxation period as a

baseline, we made sure that participants were all in a comparable relaxed state. In addition,

several previous EMG studies have argued for the use of a relaxation period as a baseline,

since mere resting periods may include some inner speech production (e.g., [69, 70], for a

review).

Subsequently, participants went through a training session, during which they could get

familiar with the main task. They trained with 8 stimuli in total (4 rounded nonwords and 4

spread nonwords, cf. S1 Text). Each training stimulus appeared in three conditions (for all par-

ticipants): overt speech, inner speech and listening. Nonwords to be produced (covertly or

overtly) were visually presented on the screen. Then, a central fixation dot appeared on the

screen, indicating to the participant that s•he should utter the nonword (either overtly or

covertly). This aimed to ensure that participants were actually producing a nonword, not just

simply visually scanning it. In the overt speech condition, participants were asked to produce

the nonword “just after the word disappeared from the screen”, with “the most neutral intona-

tion possible”. In the inner speech condition, participants were asked to “innerly produce the

nonword” (cf. the S1 Text for precise instructions in French), with “the most neutral intona-

tion possible” and while remaining as still as possible. In the listening condition, the order

of these two screens was reversed. A fixation dot was first presented (for 1 second), followed

by a blank screen (for 1 second). The audio stimulus was presented when the blank screen

appeared, while participants were asked to remain as still as possible.

Table 1. List of bisyllabic nonwords used in the test session.

rounded items spread items

/mumu/ /gigi/

/pupu/ /sese/

/fofo/ /lele/

/mymy/ /sisi

/pypy/ /didi/

/byby/ /nini/

/vøvø/ /ʒiʒi/�

/pøpø/ /lili/

/bøbø/ /ʁiʁi/
/mɔ̃mɔ̃/ /gege/

�Because the production of the French palato-alveolar fricative in /ʒiʒi/ may involve a protrusion of the lips, this item

theoretically slightly deviates from other items of this class.

https://doi.org/10.1371/journal.pone.0233282.t001
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After the training, participants moved to the experimental part, that included a novel list of

20 nonwords (cf. Table 1). Each nonword was presented 6 times in each condition for each

participant. The EMG activity was recorded during the entire experiment. The periods of

interest consisted in one-second portions, after each stimulus presentation and during either

production or listening. This resulted in 60 observations (60 periods of 1 second) for both clas-

ses of nonword in each test condition. The total duration of the experiment ranged between 30

min and 40 min.

EMG signal processing

EMG signal pre-processing was carried out using Matlab r2014a (Version 8.3.0.532, www.

mathworks.fr). We first applied a 50Hz frequency comb filter to eliminate power noise. Then,

we applied a 20 Hz—450 Hz bandpass filter to the EMG signals, in order to focus on the 20–

450 Hz frequency band, following current recommendations for facial EMG studies [71, 72].

Although participants were explicitly asked to remain still during inner speech production

or listening, small facial movements (such as swallowing movements) sometimes occurred.

Such periods were excluded from the final sample of EMG signals. To remove these signals, we

first divided the portions of signals of interest into periods of 1 second. The baseline condition

was therefore composed of 60 trials of 1 second. The periods of interest in all the speech condi-

tions consisted of the 1-second interval during which the participants either produced speech

or listened to speech. It is possible that the nonword took less than 1 second to be produced,

but since there was no way to track when production started and ended in the inner speech

condition, the entire 1-second period was kept. Therefore, the overt speech condition was

composed of 6 repetitions of each nonword, that is 6x20 trials of 1 second. The “inner speech”

and “listening” conditions were similarly composed of 6x20 trials of 1 second. Then, we visu-

ally inspected the EMG signals recorded during each trial and listened to the audio signal

simultaneously recorded. In all conditions, any time a non-speech noise (such as coughing or

yawning) was audible in a trial, the trial was discarded (i.e., we did not include this trial in the

final analysis, for any of the recorded muscles). In the listening and overt speech conditions, if

a burst of EMG activity was present after the relevant audio speech signal, then the trial was

discarded. In the overt speech condition, if the participant started too early or too late and only

part of the nonword was recorded in the audio signal, then the corresponding trial was dis-

carded. In the inner speech and listening condition, if a large EMG burst of activity was pres-

ent, potentially associated with irrelevant non-speech activity, we excluded the trial. The fact

that the artefact rejection procedures slightly differ in the various conditions is not an issue

since we do not directly compare between conditions. Instead, we compare the EMG correlates

of the two classes of nonwords within each condition.

This inspection was realised independently by two judges. Subsequently, we only kept the

trials that were not rejected by any of these two judges (i.e., we removed a trial as soon as it was

rejected by at least one judge). The agreement rate between the two judges was of 87.82% (with

a moderate Cohen’s κ of approximately 0.48). The overall procedure led to an average (aver-

aged over participants) rejection rate of 22.96% (SD = 6.49) in the baseline condition and

18.49% (SD = 6.48) in the other conditions.

After pre-processing and artefact rejection, we computed the by-trial average amplitude of

the centered and rectified EMG signal. This provided a score for each muscle of interest (OOI,

ZYG, FRO, COR, FCR) in each condition (Baseline, Overt Speech, Inner Speech, Listening)

and for each participant. Absolute EMG values are not meaningful as muscle activation is

never null, even in resting conditions, due in part to physiological noise. In addition, there are

inter-individual variations in the amount of EMG activity in the baseline. To normalise and
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standardise for baseline activity across participants, we thus expressed the EMG amplitude as a

z-score from baseline activity (i.e., we subtracted the mean amplitude of the centred and recti-

fied baseline signal and divided the result by the standard deviation of the centred and rectified

baseline signal), thereafter referred to as δ.

Data analysis

Statistical analyses were conducted using R version 3.5.3 [73], and are reported with the

papaja [74] and knitr [75] packages. To assess the effects of the condition and the class of

nonwords on the standardised EMG amplitude, we analysed these data using Condition (3

modalities: speech, inner speech, and listening) and Class of nonwords (2 modalities, rounded

and spread, contrast-coded) as within-subject categorical predictors, and the standardised

EMG amplitude as a dependent variable in a multivariate (i.e., with multiple outcomes) Bayes-

ian multilevel linear model (BMLM). An introduction to Bayesian statistics is outside the

scope of this paper. However, the interested reader is referred to [76] for an introduction to

Bayesian multilevel modelling using the brms package.

In order to take into account the dependencies between repeated observations by partici-

pant, we also included in this model a varying intercept by participant. Contrary to what we

pre-registered, we used a multivariate model (instead of separate models by muscle). This

allowed us to estimate the correlation between each pair of muscles. Models were fitted with

the brms package [77] and using weakly informative priors (see the S1 Text for code details).

Two Markov Chain Monte-Carlo (MCMC) were run for each model to approximate the poste-

rior distribution, including each 5.000 iterations and a warmup of 2.000 iterations. Posterior

convergence was assessed examining trace plots as well as the Gelman-Rubin statistic R̂. Con-

stant effect estimates were summarised via their posterior mean and 95% credible interval

(CrI), where a credible interval can be considered as the Bayesian analogue of a classical confi-

dence interval. When applicable, we also report Bayes factors (BFs), computed using the Sav-

age-Dickey method, which consists in taking the ratio of the posterior density at the point of

interest divided by the prior density at that point. These BFs can be interpreted as an updating

factor, from prior knowledge (what we knew before seeing the data) to posterior knowledge

(what we know after seeing the data).

Results

The Results section is divided into two parts. First, we present results from confirmatory (pre-

registered) analyses, aiming to test whether it is possible to dissociate the activity of the OOI

and the ZYG during inner speech production, according to the content of inner speech (here,

the class of nonword). More precisely, we expected an increased EMG activity of the OOI dur-

ing the inner production of rounded nonwords in comparison to spread nonwords. Con-

versely, we expected elevated EMG activity of the ZYG during the inner production of spread

nonwords in comparison to rounded nonwords. Second, we present results from exploratory

(non-preregistered) analyses.

To foreshadow the results, we did not observe such a clear dissociation between the EMG

activity of the OOI and the ZYG muscles, neither in the inner speech condition nor in the

overt speech condition. Contrary to theoretical expectations based on phonetics and speech

production theory [78–81], the activity of both muscles was of higher amplitude for the pro-

nunciation of rounded nonwords (as compared to spread nonwords) during overt speech pro-

duction. Additionally, the EMG amplitude on both muscles of interest was similar during the

inner production (or listening) of the two classes of nonwords. However, in the exploratory

analyses section, we report results from supervised machine learning algorithms (classification
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using random forests), showing a reasonable accuracy to classify EMG signals according to the

class of nonwords during overt speech production. This strategy was however unsuccessful for

the inner speech and the listening conditions.

Before moving to the statistical results, we represent the distribution of the whole dataset,

by class, by condition and by muscle for the two main muscles of interest (OOI and ZYG) in

Fig 1. More precisely, the first row of this figure represents the distribution of the standardised

EMG scores in the inner speech condition, the second row depicts the distribution of these

scores in the listening condition, whereas the third row depicts the distribution of the stan-

dardised EMG scores in the overt speech condition. The first column depicts the distribution

of the standardised EMG scores recorded over the OOI muscle whereas the second one repre-

sents the distribution of the standardised EMG scores recorded over the ZYG muscle. Each

individual data point is represented as a vertical bar along the x-axis of each panel whereas the

vertical coloured line represents the class-specific median. Additionally, a vertical dashed line

is plotted at zero, which represents the baseline level. Thus, a positive value on the x-axis repre-

sents EMG standardised scores that are higher than baseline.

In Table 2, we report the mean standardised EMG amplitude of all recorded muscles in

each condition. Given the skewness of the distribution of these scores, the mean and the stan-

dard deviation (SD) are not the best indicators of the central tendency and dispersion of these

distributions. Therefore, we also report the median, the median absolute deviation (MAD),

and the inter-quartile range (IQR).

We also created a shiny application [82] allowing for further visual exploration of the

data by muscle, by condition, and by participant, in the 3D space formed by three (to be cho-

sen) muscles. This application is available online (at https://barelysignificant.shinyapps.io/3d_

plotly/) and the associated code is available in the OSF repository (https://osf.io/czer4).

Confirmatory (preregistered) analyses

Bayesian multivariate multilevel Gaussian model. We then compared the standardised

EMG amplitude δ for each muscle in each condition (Overt Speech, Inner Speech, Listening)

by fitting a multivariate multilevel Gaussian model (as detailed previously in the Methods sec-

tion). We predicted a higher increase of OOI activity during the inner production of rounded

items in comparison to spread items and conversely, a higher increase of ZYG activity during

the inner production of rounded items in comparison to spread items. These predictions

should also apply to the overt speech condition (and to the listening condition). We should

not observe any by-class differences of FRO and COR activity in any condition.

The results of the Bayesian Gaussian multivariate model are summarised in Table 3. This

table reports the estimated average EMG amplitude in each condition and the corresponding

BF. As they are not the main focus of interest here and for the sake of clarity, descriptive results

for the other two facial muscles and for the forearm muscle are reported in the S1 Text. This

analysis revealed that the EMG amplitude of the OOI was higher than baseline (the standard-

ised score was above zero) in every condition whereas it was only the case in the overt speech

condition for the ZYG. Moreover, in all conditions, the EMG amplitude of the ZYG was lower

than that of the OOI. Crucially, we did not observe the hypothesised difference according to

the class of nonwords on the OOI during inner speech production (β = 0.071, 95% CrI [-0.204,

0.342], BF01 = 64.447) nor on the ZYG (β = 0.005, 95% CrI [-0.031, 0.041], BF01 = 532.811).

Fig 2 depicts these results by representing the distribution of the raw data (coloured dots)

along with the predictions from this model. The black dots and vertical intervals represent the

predicted mean and associated 95% credible interval for each class of non-word, each condi-

tion and for the OOI and the ZYG. Coherently with Table 3, this figure shows that the fitted
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Fig 1. Distribution of standardised EMG scores by class and by muscle. The first row corresponds to the inner speech condition, the second one to

the listening condition, and the third one to the overt speech condition. The first column depicts the EMG amplitude recorded over the OOI muscle

while the second column represents the EMG amplitude recorded over the ZYG muscle. Each individual data point is represented as a vertical bar along

the x-axis. The vertical coloured line represents the by-class median. Please note that the scale of the x-axis may differ considerably between panels.

https://doi.org/10.1371/journal.pone.0233282.g001
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model predicts no noticeable differences between the two classes of non-words in any condi-

tion for the OOI muscle. However, it predicts a higher average EMG amplitude associated

with the rounded item as compared to the spread items in the overt speech condition for the

ZYG muscle.

Before proceeding further with the interpretation of the results, it is essential to check the

quality of this first model. A useful diagnostic of the model’s predictive abilities is known as

posterior predictive checking (PPC) and consists in comparing observed data to data simulated

from the posterior distribution [83]. The idea behind PPC is that a good model should be able

to generate data that resemble the observed data [84]. In this vein, Fig 3 represents the distribu-

tion of the whole dataset (across all participants and conditions) by muscle (the dark blue line)

along with the distribution of hypothetical datasets generated from the posterior distribution

of the model (the light blue lines). As can be seen from this figure, the distributions of the data

generated from the model differ considerably from the distribution of the observed data.

Therefore, in the next section, we turn to a more appropriate model for these data.

Bayesian multivariate multilevel distributional Skew-Normal model. Fig 3 reveals an

important failure of the first model, as it fails to generate data that look like the data we have

Table 2. Descriptive statistics of the standardised EMG amplitude for each muscle in each condition.

Condition Item Muscle Mean Median SD MAD IQR

innerspeech rounded COR 0.34 0.17 0.54 0.42 0.65

innerspeech spread COR 0.32 0.16 0.54 0.40 0.63

listening rounded COR 0.22 0.09 0.46 0.36 0.57

listening spread COR 0.24 0.11 0.46 0.37 0.58

speech rounded COR 0.29 0.17 0.52 0.40 0.56

speech spread COR 0.25 0.13 0.52 0.37 0.52

innerspeech rounded FCR -0.01 -0.04 0.18 0.09 0.13

innerspeech spread FCR 0.00 -0.04 0.19 0.09 0.12

listening rounded FCR -0.01 -0.04 0.15 0.09 0.12

listening spread FCR 0.00 -0.03 0.15 0.09 0.12

speech rounded FCR -0.01 -0.03 0.14 0.08 0.11

speech spread FCR -0.01 -0.03 0.13 0.09 0.12

innerspeech rounded FRO 0.63 0.47 0.68 0.66 0.95

innerspeech spread FRO 0.62 0.47 0.67 0.64 0.95

listening rounded FRO 0.59 0.40 0.67 0.57 0.82

listening spread FRO 0.60 0.41 0.67 0.58 0.85

speech rounded FRO 0.66 0.48 0.71 0.62 0.88

speech spread FRO 0.62 0.46 0.72 0.60 0.81

innerspeech rounded OOI 1.31 0.72 1.63 0.94 1.80

innerspeech spread OOI 1.24 0.64 1.67 0.85 1.61

listening rounded OOI 1.11 0.62 1.40 0.85 1.44

listening spread OOI 1.11 0.62 1.42 0.83 1.40

speech rounded OOI 12.01 10.99 6.44 6.22 8.75

speech spread OOI 11.71 8.88 9.13 6.56 10.25

innerspeech rounded ZYG 0.01 -0.04 0.17 0.11 0.17

innerspeech spread ZYG 0.00 -0.03 0.18 0.11 0.16

listening rounded ZYG 0.01 -0.02 0.17 0.12 0.17

listening spread ZYG 0.00 -0.02 0.16 0.12 0.18

speech rounded ZYG 1.57 1.33 1.10 0.92 1.29

speech spread ZYG 0.69 0.56 0.78 0.51 0.70

https://doi.org/10.1371/journal.pone.0233282.t002
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collected. More precisely, the collected data look right-skewed, as it usually happens with phys-

iological measurements. To improve on the Gaussian model, we then assumed a Skew-normal

distribution for the response variable (the standardised EMG amplitude δ). The Skew-normal

distribution is a generalisation of the Gaussian distribution with three parameters ξ (xi), ω
(omega), and α (alpha) for location, scale, and shape (skewness), respectively (note that the

Gaussian distribution can be considered a special case of the Skew-normal distribution when

α = 1). In addition, we also improved the first model by turning it into a distributional model,
that is, a model in which we can specify predictor terms for all parameters of the assumed

response distribution [85]. More precisely, we used this approach to predict both the location,

the scale, and the skewness of the Skew-Normal distribution (whereas the first model only

allowed predicting the mean of a Gaussian distribution). As can been seen in Fig 4, this second

model seems better than the first one at generating data that fit the observed data.

The estimates of this second model are summarised in Table 4 and Fig 5. According to this

model, the EMG amplitude of the OOI was higher than baseline (the estimated standardised

score was above zero) in every condition whereas, for the ZYG, it was only the case in the

overt speech condition. We did not observe the hypothesised difference according to the class

of nonwords during inner speech production, neither on the OOI (β = 0.025, 95% CrI [-0.012,

0.064], BF01 = 64.447) nor on the ZYG (β = 0.004, 95% CrI [-0.007, 0.014], BF01 = 532.811).

Predictions from this model are visually represented in Fig 5. This figure differs from Fig 2

(showing the predictions of the Gaussian model) in that the second model (the Skew-normal

model) predicts shifts in location for both the OOI and the ZYG muscles according to the class

of non-word in overt speech prediction. In contrast, the first model (the Gaussian model) pre-

dicted a by-class difference only for the ZYG muscle.

Exploratory (non-preregistered) analyses

In the previous section, we tried to predict the average EMG amplitude by condition on each

single muscle. Although this approach was appropriate to tackle our initial research question

(i.e., can we distinguish muscle-specific EMG correlates of inner speech production?), it is not

Table 3. Estimates from the Gaussian BMLM concerning the OOI and the ZYG.

Response Term Estimate SE Lower Upper Rhat BF01

OOI Inner Speech 1.21 0.27 0.67 1.75 1.00 0.04

OOI Listening 1.09 0.23 0.65 1.53 1.00 <0.001

OOI Overt Speech 11.59 1.28 9.08 14.18 1.00 <0.001

OOI Inner Speech x Class 0.07 0.14 -0.20 0.34 1.00 64.45

OOI Listening x Class -0.08 0.20 -0.47 0.32 1.00 47.05

OOI Overt Speech x Class 0.02 0.19 -0.35 0.39 1.00 52.11

ZYG Inner Speech 0.00 0.03 -0.05 0.06 1.00 379.5

ZYG Listening 0.01 0.02 -0.04 0.05 1.00 388.4

ZYG Overt Speech 1.15 0.15 0.86 1.43 1.00 <0.001

ZYG Inner Speech x Class 0.01 0.02 -0.03 0.04 1.00 532.81

ZYG Listening x Class 0.00 0.03 -0.06 0.05 1.00 389.12

ZYG Overt Speech x Class 0.86 0.03 0.81 0.91 1.00 <0.001

For each muscle (response), the first three lines represent the estimated average amplitude in each condition, and its standard error (SE). The three subsequent rows

represent the estimated average difference between the two classes of nonwords in each condition (i.e., the interaction effect). The ‘Lower’ and ‘Upper’ columns contain

the lower and upper bounds of the 95% CrI, whereas the ‘Rhat’ column reports the Gelman-Rubin statistic. The last column reports the Bayes factor in favour of the null

hypothesis (BF01).

https://doi.org/10.1371/journal.pone.0233282.t003
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optimal to answer more general questions such as “can we predict the content of inner speech

based on the available EMG data?”. In Fig 6, we depict the distribution of the by-word aver-

aged EMG scores in the 2D space formed by the OOI and the ZYG muscles. This figure reveals

that although different nonwords produced in overt speech seem difficult to discriminate on

the basis of a single muscle (cf. Fig 1), it seems easier to discriminate them in the space formed

by two muscles (here OOI and ZYG). More precisely, the two classes of nonwords seem to

form two separate clusters in the overt speech condition, but these clusters do not seem dis-

criminable in the inner speech or in the listening condition.

In other words, it is easier to discriminate these signals in the multidimensional space of all

speech muscles, rather than by considering each muscle independently. Thus, we used a super-

vised machine learning algorithm aiming to classify speech signals according to the class of

nonwords. Broadly, the machine learning approach seeks to find a relationship between an

input X (e.g., EMG recordings over the four facial muscles) and an output Y (e.g., the class of

Fig 2. Raw data along with posterior predictions of the first model for the OOI and the ZYG muscles. Dots represent the mean prediction of this

model by condition, whereas the vertical error bars represent the 95% credible intervals around the mean.

https://doi.org/10.1371/journal.pone.0233282.g002
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Fig 3. Posterior predictive checking for the first model concerning the OOI and ZYG muscles. The dark blue line represents the distribution of the

raw data (across all conditions) whereas light blue lines are dataset generated from the posterior distribution.

https://doi.org/10.1371/journal.pone.0233282.g003

Fig 4. Posterior predictive checking for the Skew-Normal model concerning the OOI and ZYG muscles. The dark blue line represents the

distribution of the raw data whereas light blue lines are dataset generated from the posterior distribution.

https://doi.org/10.1371/journal.pone.0233282.g004
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nonwords). Once trained, it allows predicting a value of the output based on some input val-

ues, whose prediction can be evaluated against new observations.

We used a random forest algorithm, as implemented in the caret package [86]. Random

forests (RFs) represent an ensemble of many decision trees (a forest), which allow predictions

to be made based on a series of decision rules (e.g., is the score on predictor x1 higher or lower

than z? If yes, then . . ., if not, then . . .). The specificity of RFs is to combine a large number of

trees (usually above 100 trees), and to base the final conclusion on the average of these trees,

thus preventing overfitting. We used three separate RFs to classify EMG signals in each condi-

tion (Overt Speech, Inner Speech, and Listening).

To evaluate the performance of this approach, we report the raw accuracy (along with its

resampling-based 95% confidence interval), or the proportion of data points in the test dataset

for which the RF algorithm predicted the correct class of nonwords. First, we randomly split

the entire dataset into a training (80%) and a test set (20%). The training set was used for the

learning whereas the test set was used to evaluate the predictions of the algorithm. To prevent

overfitting, we used repeated 10-fold cross-validation during the learning phase.

Predicting the class of nonwords during overt speech production. We first tried to pre-

dict the class of nonwords produced in overt speech, based on the activity of the four facial

muscles (OOI, ZYG, COR, FRO). Each predictor was centred to its mean and standardised

before the analysis.

This analysis revealed an overall classification accuracy of 0.847, 95% CI [0.814, 0.876] (cf.

confusion matrix in Table 5). Examining the relative importance of each feature (i.e., each

muscle) for prediction revealed that the muscles containing most information to discriminate

the two classes of nonwords were the ZYG and the OOI, whereas, as predicted, forehead mus-

cles did not seem to strongly contribute to predictive accuracy in the overt speech condition.

Predicting the class of nonwords during inner speech production and listening. We

then applied the same strategy (the same algorithm) to the signals recorded in the inner speech

and listening conditions. The results of these analyses are reported in Tables 6 and 7.

Table 4. Estimates from the distributional Skew-Normal model concerning the OOI and the ZYG.

Response Term Estimate SE Lower Upper Rhat BF01

OOI Inner Speech 1.47 0.03 1.41 1.53 1.00 0.04

OOI Listening 1.24 0.02 1.19 1.29 1.00 <0.001

OOI Overt Speech 12.15 0.14 11.87 12.43 1.00 <0.001

OOI Inner Speech x Class 0.03 0.02 -0.01 0.06 1.00 64.45

OOI Listening x Class 0.00 0.02 -0.05 0.05 1.00 47.05

OOI Overt Speech x Class 1.42 0.18 1.05 1.78 1.00 52.11

ZYG Inner Speech 0.02 0.00 0.01 0.02 1.00 379.5

ZYG Listening 0.01 0.00 0.00 0.02 1.00 388.4

ZYG Overt Speech 1.21 0.02 1.18 1.24 1.00 <0.001

ZYG Inner Speech x Class 0.00 0.01 -0.01 0.01 1.00 532.81

ZYG Listening x Class 0.00 0.01 -0.02 0.02 1.00 389.12

ZYG Overt Speech x Class 0.39 0.02 0.35 0.43 1.00 <0.001

For each muscle (response), the first three lines represent the estimated average amplitude in each condition, and its standard error (SE). The three subsequent rows

represent the estimated average difference between the two classes of nonwords in each condition (i.e., the interaction effect). The ‘Lower’ and ‘Upper’ columns contain

the lower and upper bounds of the 95% CrI, whereas the ‘Rhat’ column reports the Gelman-Rubin statistic. The last column reports the Bayes factor in favour of the null

hypothesis (BF01).

https://doi.org/10.1371/journal.pone.0233282.t004
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This analysis revealed an overall classification accuracy of 0.472, 95% CI [0.426, 0.52] in the

inner speech condition, which indicates that the RF algorithm did not allow discriminating

the two classes of nonwords better than random guessing. As the classification accuracy in the

inner speech and listening conditions was not better than chance, we do not report the relative

importance of the predictors. Indeed, it would be difficult to interpret the importance of pre-

dictors for a classification task at which they do not perform better than chance.

This analysis similarly revealed an overall classification accuracy of 0.46, 95% CI [0.413,

0.507] in the listening condition.

Discussion

In the present study we aimed to replicate and extend previous findings showing that facial

electromyography can be used to discriminate expanded inner speech content [30, 31]. As

these studies used small samples of children, our study aimed to examine whether such results

Fig 5. Raw data along with posterior predictions of the third model for the OOI and the ZYG muscles. Dots represent the mean prediction of this

model by condition (concerning the location parameter) whereas the vertical error bars represent the 95% credible intervals.

https://doi.org/10.1371/journal.pone.0233282.g005

PLOS ONE Inner speech electromyographic correlates

PLOS ONE | https://doi.org/10.1371/journal.pone.0233282 May 27, 2020 17 / 27

https://doi.org/10.1371/journal.pone.0233282.g005
https://doi.org/10.1371/journal.pone.0233282


can be reproduced using surface electromyography and modern signal processing methods in

an adult sample.

To this end, it was crucial to first show that the EMG correlates of our two classes of non-

words were discriminable during overt speech production. Surprisingly, the data we collected

during overt speech production do not corroborate the hypothesis according to which the

average EMG amplitude of the OOI should be higher during the production of “rounded”

Fig 6. Average standardised EMG amplitude for each nonword in each condition, in the 2D space formed by the OOI and the ZYG. Ellipses

represent 95% data ellipses, that is, the 95% contours of a bivariate normal distribution.

https://doi.org/10.1371/journal.pone.0233282.g006

Table 5. Confusion matrix with by-class error for the overt speech condition.

Prediction Reference class.error

rounded spread

rounded 917 163 0.151

spread 198 898 0.181

https://doi.org/10.1371/journal.pone.0233282.t005
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nonwords as compared to “spread” nonwords. For both orofacial speech muscles (OOI and

ZYG), the average EMG amplitude was higher for rounded nonwords than for spread non-

words during overt speech production. Moreover, whereas the average EMG amplitude

recorded over speech muscles was higher than baseline in both the inner speech and listening

conditions, we did not find differences of activation according to the content of the material

(the class of nonword). An automatic classification approach, using the four facial muscles

(OOI, ZYG, COR, FRO), revealed that although it was possible to discriminate EMG signals

related to the two classes of nonwords with a reasonable accuracy during overt speech produc-

tion, this approach failed in discriminating these two classes during inner speech production

or during listening. We also observed a higher EMG amplitude recorded over the facial (both

orofacial and non-orofacial) muscles during inner speech production and during the listening

of speech production than during rest. However, as pinpointed by [62], this observation is not

sufficient to conclude that these activations were actually related to inner speech production,

because i) both orofacial speech-related muscles and forehead non-speech related muscles

showed similar EMG amplitude changes from baseline and ii) we did not observe different

changes in EMG amplitude depending on the content of inner speech (i.e., depending on the

class of nonword to be uttered).

Before discussing the theoretical implications of these results, two main issues are worth

discussing. First, how can we explain that rounded nonwords were associated with higher

EMG amplitude during overt speech on both OOI and ZYG muscles? Second, how can we

explain the indiscriminability of inner speech content, which seems to contradict classic as

well as recent findings in the field [61]? We turn to each of these questions in the following.

To answer the first question, we began by comparing our results to results obtained by

another group [87]. The authors of this study recorded surface EMG activity from five partici-

pants while they were producing seven facial expressions and five isolated vowel sounds (/a/,

/e/, /i/, /o/, /u/), repeated five times each. They recorded EMG activity over eight facial muscles

(the zygomaticus major (ZYG), the risorius (RIS), the orbicularis oris superior (OOS) and infe-

rior (OOI), the mentalis (MEN), the depressor anguli oris (DAO), the levator labii superioris

(LLS) muscles, and the digastric muscle (DIG)). We divided these vowels in two classes to fit

our own classes of nonwords. More precisely, we have created the following two classes: a

rounded class, composed of the vowels /o/ and /u/, and a spread class, composed of the vowels

/e/ and /i/ (note that we did not include the vowel /a/ because it theoretically does not fit in

one of these two categories). We present the average EMG amplitude recorded over the OOI

and the ZYG according to the vowel class in Table 8.

Table 6. Confusion matrix with by-class classification error for the inner speech condition.

Prediction Reference class.error

rounded spread

rounded 386 502 0.565

spread 473 454 0.510

https://doi.org/10.1371/journal.pone.0233282.t006

Table 7. Confusion matrix with by-class classification error for the listening condition.

Prediction Reference class.error

rounded spread

rounded 426 499 0.539

spread 508 406 0.556

https://doi.org/10.1371/journal.pone.0233282.t007
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We notice that [87] have indeed observed the dissociation we initially predicted, that is, that

the EMG amplitude recorded over the OOI was higher during the pronunciation of rounded

vowels than during pronunciation of spread vowels, whereas the reverse pattern was observed

concerning the ZYG. Paired-samples Wilcoxon signed rank tests revealed a shift in location

(pseudomedian) between rounded and spread items for the OOI (β = 24.12, 95% CI [15.19,

40.77], V = 1184, p<.001) with rounded items being associated with a higher location than

spread items. This analysis also revealed a shift in the inverse direction concerning the ZYG

(β = -1.51, 95% CI [-2.94, -0.48], V = 275, p<.001). However, one crucial difference between

[87] design and ours is the complexity of the linguistic material. Whereas [87] used single pho-

nemes, we chose to use bisyllabic nonwords to increase the ecological validity of the paradigm.

Although these nonwords were specifically created to theoretically increase the engagement of

either the OOI or the ZYG (cf. the “Linguistic material” section), it is reasonable to expect dif-

ferences in the average EMG patterns between isolated phonemes and nonwords. More pre-

cisely, we expect the average EMG amplitude associated with the production of a given

phoneme (e.g., /y/) to be impacted by the production of the consonant (e.g., /b/) it is paired

with, due to coarticulation. More generally, we could hypothesise that the difference between

the average EMG amplitude recorded during the production of the phoneme /i/ and during

the production of the phoneme /y/ could be reduced when these phonemes are coarticulated

in CV or CVCV sequences like /byby/ or /didi/ (as in our study). In other words, we might

expect an interaction effect between the structure of the to-be produced speech sequence

(either a single vowel or a CV/CVCV sequence) and the class of the vowel. This is coherent

with previous findings showing that the muscular activity associated with vowel production is

strongly influenced by the surrounding consonants in CVC sequences [78]. Thus, further

investigations should focus on how the average EMG amplitude is impacted by coarticulation

during the production of CVCV sequences.

With regards to inner speech, our results do not support theoretical predictions of the

motor simulation view, according to which it should be possible to discriminate classes of

nonwords produced in inner speech based on EMG signals. Whereas this outcome is consis-

tent with some recent results [32], it also stands in sharp contrast with classical results in the

field [30, 31] as well as more recent developments. For instance, [61] developed a wearable

device composed of seven surface EMG sensors that can attain a 92% median classification

accuracy in discriminating internally vocalised digits. There are a few crucial differences

between [61]’s work and ours that stand as good candidates to explain the discrepancies

between our results. First, the strategy adopted to position the sensors was radically different.

Following guidelines from the field of psychophysiology, our strategy was to position sensors

precisely over the facial muscles of interest, aligned with the direction of the muscle fibers

and in theoretically optimal positions to record activity of this muscle while reducing cross-

talk. However, precisely because of pervasive cross-talk in facial surface EMG recordings,

Table 8. Standardised EMG amplitude recorded over the OOI and the ZYG during overt speech production of rounded versus spread vowels in Eskes et al. (2017).

Muscle Item Observations Mean SD Median Histogram

OOI rounded 50 59.70 60.09 42.03

OOI spread 50 22.15 11.92 20.65

ZYG rounded 50 7.39 3.78 6.27

ZYG spread 50 10.15 6.20 7.99

The number of observations is given by the number of vowels to be pronounced in each category (2) times the number of repetitions (5) times the number of

participants (5), for a total of 50 observations per cell.

https://doi.org/10.1371/journal.pone.0233282.t008
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this strategy, whereas maximising the probability of recording activity from a given single

muscle, was also (as a result) reducing the probability of recording activity from potentially

speech-relevant neighbour muscles. Therefore, this strategy might work sub-optimally when

the goal of the experiment is to extract the maximum amount of (relevant) EMG information

to discriminate inner speech content. However, this problem might be mitigated by using

more sensors and a more lenient sensor-positioning approach. Whereas we recorded the

EMG amplitude over only two lower facial muscles (OOI and ZIG), [61] analysed EMG data

from seven different sensors, whose position and number was defined iteratively in order to

maximise the classification accuracy. In other words, the parameters of the experiment were

iteratively optimised to maximise a certain outcome (classification accuracy). This strategy

is radically different from the classical approach in experimental and cognitive psychology

where experimental conditions are defined to test theoretically derived hypotheses. Whereas

the first approach is arguably more efficient at solving a particular problem at hand, the sec-

ond approach might be more efficient in tackling theoretical questions. For instance, a recent

study reported a greater EMG amplitude of laryngeal and lip muscles during auditory verbal

tasks (covert singing) than during visual imagery tasks [88]. By coupling EMG recording

with demographic and psychological measures, they were able to show that these correlates

were related to the level of accuracy in singing, thus shedding light upon the nature and func-

tions of peripheral muscular activity during covert singing. However, adding more sensors

(e.g., on the risorius), or better optimising sensor placement, could improve the sensitivity of

the present approach.

Putting aside considerations related to methodological aspects of the present study, these

results do not corroborate the motor simulation view of inner speech production. Instead, it

seems to support the abstraction view, which postulates that inner speech results from the acti-

vation of abstract linguistic representations and does not engage the articulatory apparatus.

However, individual differences in discriminability highlight that the abstractness of inner

speech might be flexible, as suggested by [22]. Indeed, although for most participants it was

not possible to decode the phonetic content of inner speech, rounded and spread nonwords

were in fact distinguishable based on OOI and ZYG information only (by visual inspection of

the 2D plot), for two of them (S_15 and S_17, cf. S1 Text). This suggests either that the extent

to which inner speech production recruits the speech motor system might vary between indi-

viduals or that it might vary within individual depending on the properties of the ongoing task

(these two suggestions are not mutually exclusive). For instance, we know from early research

on the EMG correlates of inner speech that the average amplitude of these correlates tend to be

higher when the task is more difficult [10]. As such, the extent to which inner speech produc-

tion recruits the speech motor system could be moderated by manipulating the difficulty of

the ongoing task. In addition, the electromyographic activity recorded during motor imagery

could be modulated by the perspective taken in motor imagery. A distinction is made between

first-person perspective or internal imagery (i.e., imagining an action as we would execute it)

and third-person perspective or external imagery (i.e., imagining an action as an observer of

this action), that may involve different neural processes [89]. It has been shown that a first-per-

son perspective may result in greater EMG activity than motor imagery in a third-person per-

spective [90, 91]. Therefore, we hypothesise that the involvement of the speech motor system

during inner speech production may be modulated by the specific instructions given to the

participants. For instance, by instructing participants to focus on inner speaking (imagining

speaking), instead of inner hearing (imagining hearing), and by asking them to focus on the

kinaesthetic feelings related to speech acts (rather than on auditory percepts), we could expect

to find a higher average EMG amplitude recorded over the speech muscles. In addition, by

specifically asking the participants to mentally articulate the nonwords, as if they were
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dictating them to someone, rather than just read and visually scan them, we may expect stron-

ger articulatory involvement.

Of course, the current study and the above discussion should be interpreted with a few

words of caution in mind. For each class of nonwords, we collected around 6 x 10 = 60 obser-

vations by condition and by participant. For 25 participants and two classes of nonwords,

this results in 25 (participants) x 120 (individual trials) x 3 (conditions) = 9000 observations.

However, after rejecting trials with movement artefacts, we had 7285 observations in total.

Although the number of observations reported in the present study is reasonable, the sensitiv-

ity of the experiment could be improved by increasing the number of observations and/or by

reducing two important sources of variation. More precisely, one could reduce the variance

related to the item (the specific nonword being uttered) by selecting nonwords that are more

similar to each other in the way they are uttered, by selecting less items or simpler items. Simi-

larly, particular attention should be devoted to reducing inter-participant variability, which

could be done by using more guided and specific instructions, as well as a longer training

phase to familiarise the participant with the task.

In summary, we have demonstrated that whereas surface electromyography may lead to

reasonable accuracy in discriminating classes of nonwords during overt speech production

(using signals recorded over only two speech-related muscles), it did not permit to discrimi-

nate these two classes during inner speech production across all participants (only for two par-

ticipants). These results, in comparison with results obtained by other teams [61], highlight

that depending on the aim of the research, different strategies might be more or less success-

fully pursued. More precisely, if the goal is to attain high classification accuracy (problem-solv-

ing approach), then the parameters of the experiment (e.g., number of repetitions, number of

sensors, position of the sensors, parameters of the signal processing workflow) should be opti-

mised based on the desired outcome (i.e., classification accuracy). However, the classical labo-

ratory strategy used in experimental and cognitive psychology, aiming to compare specific

conditions (or muscles) to each other in a controlled environment, is deemed to be more

appropriate when the aim of the research is to sharpen our understanding of the psychological

phenomenon under study.
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Smadja S, Patoine P-L, editors. Épistémocritique, n˚ 18: Langage intérieur—Espaces intérieurs / Inner

Speech—Inner Space. 2018. Available: http://epistemocritique.org/what-the-neurocognitive-study-of-

inner-language-reveals-about-our-inner-space/

13. Morin A, Uttl B, Hamper B. Self-Reported Frequency, Content, and Functions of Inner Speech. Proce-

dia—Social and Behavioral Sciences. 2011; 30: 1714–1718. https://doi.org/10.1016/j.sbspro.2011.10.

331

PLOS ONE Inner speech electromyographic correlates

PLOS ONE | https://doi.org/10.1371/journal.pone.0233282 May 27, 2020 23 / 27

https://doi.org/10.1371/journal.pone.0025782
https://doi.org/10.1016/j.jneuroling.2004.12.002
https://doi.org/10.1523/JNEUROSCI.2982-12.2012
https://doi.org/10.1523/JNEUROSCI.2982-12.2012
https://doi.org/10.1162/jocn_a_00022
https://doi.org/10.1162/jocn_a_00022
http://www.ncbi.nlm.nih.gov/pubmed/21452944
https://doi.org/10.1016/j.concog.2018.06.018
http://www.ncbi.nlm.nih.gov/pubmed/30001840
https://doi.org/10.1002/acp.1647
https://doi.org/10.1002/acp.1647
https://doi.org/10.1016/j.bandl.2004.06.103
http://www.ncbi.nlm.nih.gov/pubmed/15721957
https://doi.org/10.1037/bul0000021
http://www.ncbi.nlm.nih.gov/pubmed/26011789
http://epistemocritique.org/what-the-neurocognitive-study-of-inner-language-reveals-about-our-inner-space/
http://epistemocritique.org/what-the-neurocognitive-study-of-inner-language-reveals-about-our-inner-space/
https://doi.org/10.1016/j.sbspro.2011.10.331
https://doi.org/10.1016/j.sbspro.2011.10.331
https://doi.org/10.1371/journal.pone.0233282


14. Perrone-Bertolotti M, Rapin L, Lachaux JP, Baciu M, Lœvenbruck H. What is that little voice inside my

head? Inner speech phenomenology, its role in cognitive performance, and its relation to self-monitor-

ing. Behavioural brain research. Elsevier B.V. 2014; 261: 220–39. https://doi.org/10.1016/j.bbr.2013.

12.034

15. Hurlburt RT, Heavey CL. Investigating pristine inner experience: Implications for experience sampling

and questionnaires. Consciousness and Cognition. 2015; 31: 148–159. https://doi.org/10.1016/j.

concog.2014.11.002 PMID: 25486341

16. McCarthy-Jones S, Fernyhough C. The varieties of inner speech: Links between quality of inner speech

and psychopathological variables in a sample of young adults. Consciousness and cognition. Elsevier

Inc. 2011; 20: 1586–93.

17. Lœvenbruck H, Grandchamp R, Rapin L, Nalborczyk L, Dohen M, Perrier P, et al. A cognitive neurosci-

ence view of inner language: To predict and to hear, see, feel. In: Langland-Hassan P, Vicente A, edi-

tors. Inner speech: New voices. Oxford University Press; 2018. p. 37.

18. Oppenheim GM, Dell GS. Inner speech slips exhibit lexical bias, but not the phonemic similarity effect.

Cognition. 2008; 106: 528–537. https://doi.org/10.1016/j.cognition.2007.02.006 PMID: 17407776

19. Vygotsky LS. Thought and language, revised and expanded edition. The MIT Press; 1934–2012.

20. Watson JB. Psychology from the standpoint of a behaviorist. Philadelphia, PA, US: J B Lippincott Com-

pany; 1919.

21. MacKay DG. Constraints on theories of inner speech. In: Reisberg D, editor. Auditory imagery. Erl-

baum; Hillsdale, N. J. 1992. pp. 121–149.

22. Oppenheim GM, Dell GS. Motor movement matters: The flexible abstractness of inner speech. Memory

& Cognition. 2010; 38: 1147–1160. https://doi.org/10.3758/MC.38.8.1147

23. Korba RJ. The rate of inner speech. Percept Mot Skills. 1990; 71: 1043–1052. https://doi.org/10.2466/

pms.1990.71.3.1043

24. Netsell R, Kleinsasser S, Daniel T. The rate of expanded inner speech during spontaneous sentence

productions. Percept Mot Skills. 2016; 123: 383–393. https://doi.org/10.1177/0031512516664992

PMID: 27562695

25. Corley M, Brocklehurst PH, Moat HS. Error biases in inner and overt speech: Evidence from tongue

twisters. Journal of Experimental Psychology: Learning, Memory, and Cognition. 2011; 37: 162–175.

https://doi.org/10.1037/a0021321 PMID: 21244112

26. Jones SR, Fernyhough C. Thought as action: Inner speech, self-monitoring, and auditory verbal halluci-

nations. Consciousness and cognition. 2007; 16: 391–9. https://doi.org/10.1016/j.concog.2005.12.003

PMID: 16464616

27. Martı́nez-Manrique F, Vicente A. The activity view of inner speech. Frontiers in psychology. 2015; 6:

232. https://doi.org/10.3389/fpsyg.2015.00232 PMID: 25806010

28. Grandchamp R, Rapin L, Perrone-Bertolotti M, Pichat C, Haldin C, Cousin E, et al. The ConDialInt

Model: Condensation, Dialogality, and Intentionality Dimensions of Inner Speech Within a Hierarchical

Predictive Control Framework. Front Psychol. Frontiers; 2019; 10.

29. Fernyhough C. Alien voices and inner dialogue: Towards a developmental account of auditory verbal

hallucinations. New Ideas in Psychology. 2004; 22: 49–68. https://doi.org/10.1016/j.newideapsych.

2004.09.001

30. McGuigan FJ, Dollins AD. Patterns of covert speech behavior and phonetic coding. The Pavlovian Jour-

nal of Biological Science. 1989; 24: 19–26. PMID: 2704564

31. McGuigan FJ, Winstead CL. Discriminative relationship between covert oral behavior and the phonemic

system in internal information processing. Journal of Experimental Psychology. 1974; 103: 885–890.

https://doi.org/10.1037/h0037379 PMID: 4443764

32. Meltzner GS, Sroka J, Heaton JT, Gilmore LD, Colby G, Roy S, et al. Speech recognition for vocalized

and subvocal modes of production using surface EMG signals from the neck and face. INTERSPEECH.

Brisbane, Australia; 2008. pp. 2667–2670.

33. Simonyan K, Horwitz B. Laryngeal motor cortex and control of speech in humans. The Neuroscientist.

2011; 17: 197–208. https://doi.org/10.1177/1073858410386727 PMID: 21362688

34. Jeannerod M. Motor cognition: What actions tell the self. Oxford; New York: Oxford University Press;

2006.

35. Haggard P. Conscious intention and motor cognition. Trends in Cognitive Sciences. 2005; 9: 290–295.

https://doi.org/10.1016/j.tics.2005.04.012 PMID: 15925808

36. Jeannerod M. The representing brain: Neural correlates of motor intention and imagery. Behavioral and

Brain Sciences. 1994; 17: 187. https://doi.org/10.1017/S0140525X00034026

PLOS ONE Inner speech electromyographic correlates

PLOS ONE | https://doi.org/10.1371/journal.pone.0233282 May 27, 2020 24 / 27

https://doi.org/10.1016/j.bbr.2013.12.034
https://doi.org/10.1016/j.bbr.2013.12.034
https://doi.org/10.1016/j.concog.2014.11.002
https://doi.org/10.1016/j.concog.2014.11.002
http://www.ncbi.nlm.nih.gov/pubmed/25486341
https://doi.org/10.1016/j.cognition.2007.02.006
http://www.ncbi.nlm.nih.gov/pubmed/17407776
https://doi.org/10.3758/MC.38.8.1147
https://doi.org/10.2466/pms.1990.71.3.1043
https://doi.org/10.2466/pms.1990.71.3.1043
https://doi.org/10.1177/0031512516664992
http://www.ncbi.nlm.nih.gov/pubmed/27562695
https://doi.org/10.1037/a0021321
http://www.ncbi.nlm.nih.gov/pubmed/21244112
https://doi.org/10.1016/j.concog.2005.12.003
http://www.ncbi.nlm.nih.gov/pubmed/16464616
https://doi.org/10.3389/fpsyg.2015.00232
http://www.ncbi.nlm.nih.gov/pubmed/25806010
https://doi.org/10.1016/j.newideapsych.2004.09.001
https://doi.org/10.1016/j.newideapsych.2004.09.001
http://www.ncbi.nlm.nih.gov/pubmed/2704564
https://doi.org/10.1037/h0037379
http://www.ncbi.nlm.nih.gov/pubmed/4443764
https://doi.org/10.1177/1073858410386727
http://www.ncbi.nlm.nih.gov/pubmed/21362688
https://doi.org/10.1016/j.tics.2005.04.012
http://www.ncbi.nlm.nih.gov/pubmed/15925808
https://doi.org/10.1017/S0140525X00034026
https://doi.org/10.1371/journal.pone.0233282


37. Jeannerod M. Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage.

2001; 14: S103–S109. https://doi.org/10.1006/nimg.2001.0832 PMID: 11373140

38. Barsalou LW. Grounded cognition. Annual review of psychology. 2008; 59: 617–645. https://doi.org/10.

1146/annurev.psych.59.103006.093639 PMID: 17705682

39. O’Shea H, Moran A. Does motor simulation theory explain the cognitive mechanisms underlying motor

imagery? A critical review. Frontiers in Human Neuroscience. 2017; 11. https://doi.org/10.3389/fnhum.

2017.00072 PMID: 28261079

40. Pickering MJ, Garrod S. An integrated theory of language production and comprehension. Behavioral

and Brain Sciences. 2013; 36: 329–347. https://doi.org/10.1017/S0140525X12001495 PMID:

23789620

41. Gentsch A, Weber A, Synofzik M, Vosgerau G, Schütz-Bosbach S. Towards a common framework of
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