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Abstract

Recently proposed numerical algorithms for solving high-dimensional nonlinear partial dif-
ferential equations (PDEs) based on neural networks have shown their remarkable perfor-
mance. We review some of them and study their convergence properties. The methods rely
on probabilistic representation of PDEs by backward stochastic differential equations (BS-
DEs) and their iterated time discretization. Our proposed algorithm, called deep backward
multistep scheme (MDBDP), is a machine learning version of the LSMDP scheme of Gobet,
Turkedjiev (Math. Comp. 85, 2016). It estimates simultaneously by backward induction
the solution and its gradient by neural networks through sequential minimizations of suitable
quadratic loss functions that are performed by stochastic gradient descent. Our main theoret-
ical contribution is to provide an approximation error analysis of the MDBDP scheme as well
as the deep splitting (DS) scheme for semilinear PDEs designed in Beck, Becker, Cheridito,
Jentzen, Neufeld (2019). We also supplement the error analysis of the DBDP scheme of Huré,
Pham, Warin (Math. Comp. 89, 2020). This yields notably convergence rate in terms of
the number of neurons for a class of deep Lipschitz continuous GroupSort neural networks
when the PDE is linear in the gradient of the solution for the MDBDP scheme, and in the
semilinear case for the DBDP scheme. We illustrate our results with some numerical tests
that are compared with some other machine learning algorithms in the literature.

1 Introduction
Let us consider the nonlinear parabolic partial differential equation (PDE) of the form{

∂tu+ µ ·Dxu+ 1
2 Tr(σσᵀD2

xu) = f(·, ·, u, σᵀDxu) on [0, T )× Rd

u(T, ·) = g on Rd,
(1.1)

with µ, σ functions defined on [0, T ] × Rd, valued respectively in Rd, and Md (the set of d × d
matrices), a nonlinear generator function f defined on [0, T ]×Rd×R×Rd, and a terminal function
g defined on Rd. Here, the operators Dx, D

2
x refer respectively to the first and second order spatial

derivatives, the symbol . denotes the scalar product, and ᵀ is the transpose of vector or matrix.
A major challenge in the numerical resolution of such semilinear PDEs is the so-called "curse

of dimensionality" making unfeasible the standard discretization of the state space in dimension
greater than 3. Probabilistic mesh-free methods based on the Backward Stochastic Differential
Equation (BSDE) representation of semilinear PDEs through the nonlinear Feynman-Kac formula
were developed in [Zha04], [BT04], [HL+19], and (ii) on multilevel Picard methods, developed in
[E+18] with algorithms based on Picard iterations, multi-level techniques and automatic differen-
tiation. These methods permit to handle some PDEs with non linearity in u and its gradient Dxu,
with convergence results as well as numerous numerical examples showing their efficiency in high
dimension.
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Over the last few years, machine learning methods have emerged since the pioneering papers by
[HJE17] and [SS17], and have shown their efficiency for solving high-dimensional nonlinear PDEs by
means of neural networks approximation. The work [HJE17] introduces a global machine learning
resolution technique via a BSDE approach. The solution is represented by one feedforward neural
network by time step, whose parameters are chosen as solutions of a single global optimization
problem. It allows to solve PDEs in high dimension and a convergence study of Deep BSDE
is conducted in [HL20]. The Deep Galerkin method of [SS17] proposes another global meshfree
method with a random sampling of time and space points inside a bounded domain. A different
point of view is proposed by [HPW20] with convergence results in L2 for solving semilinear PDEs,
where the solution and its gradient are estimated simultaneously by backward induction through
the minimization of sequential loss functions. Similar idea also appears in [SS17] for linear PDEs.
At the cost of solving multiple optimization problems, the Deep Backward scheme (DBDP) of
[HPW20] verifies better stability and accuracy properties than the global method in [HJE17], as
illustrated on several test cases. The recent paper [Bec+21] also introduces machine learning
schemes based on local loss functions, called Deep Splitting (DS) method which estimates the
PDE solution through backward explicit local optimization problems relying on a neural network
regression method for the computation of conditional expectations.

In this paper, we propose machine learning schemes that use multistep methods introduced in
[BD07] and [GT16]. The idea is to rely on the whole previously computed values of the discretized
processes in the backward computations of the approximation as it is expected to yield a better
propagation of regression errors. We shall develop this approach to the DBDP scheme of [HPW20],
leading to the so-called deep backward multi-step scheme (MDBDP). This can be viewed as a
machine learning version of the Multi-step Forward Dynamic Programming method studied by
[GT16]. However, instead of solving at each time step two regression problems, our approach
allows to consider only a single minimization as in the DBDP scheme. Compared to the latter,
the multi-step consideration is expected to provide better accuracy by reducing the propagation
of errors in the backward induction.Our main theoretical contribution is a detailed study of the
approximation error of MDBDP scheme, through standard stability-type arguments for BSDEs
(see e.g. Section 4.4 in [Zha17] for the continuous time case). The arguments can be adapted
to obtain the convergence of the DS scheme introduced in [Bec+21]. Furthermore, by relying on
recent approximation results for deep neural networks in [TSB21], we obtain a rate of convergence
of our scheme in terms of the number of neurons, and supplement the convergence analysis of the
DBDP scheme [HPW20].

We provide some numerical tests of our proposed algorithms, which show the benefit of multi-
step schemes, and compare our results with the cited machine learning schemes. Notice that the
GroupSort network is used for theoretical analysis but in the numerical implementation, we applied
standard networks with tanh as activation function. The theoretical analysis of the convergence of
methods relying on standard neural networks is left to future research. More numerical examples
and tests are presented in the extended first arXiv version [GPW20] of this paper.

The plan of the paper is the following. In Section 2, we give a brief reminder on neural networks
and notably on a specific class of deep network functions considered in [ALG19; TSB21] that yields
an approximation result with rate of convergence for Lipschitz functions. We also review machine
learning schemes for the numerical resolution of semilinear PDEs. We then describe in detail the
MDBDP scheme. We state in Section 3 the convergence of the MDBDP, DS, and DBDP schemes,
while Section 4 is devoted to the proof of these results. Section 5 gives some numerical tests for
illustration.

2 BSDE Machine Learning Schemes for Semilinear PDEs
In this section, we review recent numerical schemes, and present our new scheme for the resolution
of the semi-linear PDE (1.1) by approximations in the class of neural networks and relying on
probabilistic representation of the solution to the PDE.
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Figure 1: GroupSort activation function ζκ with grouping size κ = 5 and m = 20 neurons, figure
from [ALG19].

2.1 Neural Networks
We denote by

Lρd1,d2
=
{
φ : Rd1 → Rd2 : ∃ (W, β) ∈ Rd2×d1 ×Rd2 , φ(x) = ρ(Wx+ β)

}
,

the set of layer functions with input dimension d1, output dimension d2, and activation function ρ
: Rd2 → Rd2 . Usually, the activation is applied component-wise via a one-dimensional activation
function, i.e., ρ(x1, . . . , xd2

) =
(
ρ̂(x1), . . . , ρ̂(xd2

)
)
with ρ̂ : R 7→ R, to the affine map x ∈ Rd1 7→

Wx + β ∈ Rd2 , with a matrix W called weight, and vector β called bias. Standard examples of
activation functions ρ̂ are the sigmoid, the ReLU, the tanh. When ρ is the identity function, we
simply write Ld1,d2 .

We then define

N ρ
d0,d′,`,m

=
{
ϕ : Rd0 → Rd

′
: ∃φ0 ∈ Lρ0

d0,m0
, ∃φi ∈ Lρimi−1,mi , i = 1, . . . , `− 1,

∃φ` ∈ Lml−1,d′ , ϕ = φ` ◦ φ`−1 ◦ · · · ◦ φ0

}
,

as the set of feedforward neural networks with input layer dimension d0, output layer dimension
d′, and ` hidden layers with mi neurons per layer (i = 0, · · · , ` − 1). These numbers d0, d

′, `,
the sequence m = (mi)i=0,...,`−1, and sequence of activation functions ρ = (ρi)i=0,...,`−1, form the
architecture of the network. In the sequel, we shall mostly work with the case d0 = d (dimension
of the state variable x).

A given network function ϕ ∈ N ρ
d0,d′,`,m

is determined by the weight/bias parameters θ =
(W0, β0, . . . ,W`, β`) defining the layer functions φ0 . . . , φ`, and we shall sometimes write ϕ = ϕθ.

We recall the fundamental result of [HSW89] that justifies the use of neural networks as function
approximators, in the usual case of activation functions applied componentwise at each hidden
layer.
Universal approximation theorem. The space

⋃`−1
i=0

⋃∞
mi=0N

ρ
d0,d′,`,m

is dense in L2(ν), the
set of measurable functions h : Rd0 → Rd

′
s.t.

∫
|h(x)|2

2
ν(dx) < ∞, for any finite measure ν on

Rd0 , whenever ρ is continuous and non-constant.

This universal approximation theorem does not provide any rate of convergence, nor reveals even
in theory how to achieve a given accuracy for a fixed number of neurons. Some results give rates
for the approximation of functions in Sobolev spaces [Pin99], for bounded convex subdifferentiable
Lipschitz functions [BGS15] or bounded Lipschitz functions [Yar17], but here, we need a result
related to (possibly unbounded) Lipschitz functions. The paper [Bac17] provides a possible answer
in this direction, but we instead rely on a simpler approach in [TSB21], building on the GroupSort
deep neural networks introduced by [ALG19]. Let κ ∈ N∗, κ ≥ 2, be a grouping size, dividing
the number of neurons mi = κni, at each layer i = 0, · · · ` − 1.

∑`−1
i=0 mi will be refered to as

the width of the network and `+ 1 as its depth. The GroupSort networks correspond to classical
deep feedforward neural networks in N ζκ

d,1,`,m with a specific sequence of activation function ζκ
= (ζiκ)i=0,...,`−1, and one-dimensional output. Each nonlinear function ζiκ divides its input into
groups of size κ and sorts each group in decreasing order, see Figure 1. Moreover, by enforcing the
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parameters of the GroupSort to satisfy with the Euclidian norm | · |2 and the `∞ norm | · |∞:

sup
|x|2=1

|W0x|∞ ≤ 1, sup
|x|∞=1

|Wix|∞ ≤ 1, |βj |∞ ≤M, i = 1, · · · , l, j = 0, · · · , l

for some M > 0, the related GroupSort neural networks from N ζκ
d,d′,`,m are 1-Lipschitz. The space

of such 1-Lipschitz GroupSort neural networks is called Sζκd,`,m:

Sζκd,`,m = {ϕ(W0,β0,...,W`,β`) ∈ N
ζκ
d,1,`,m, sup

|x|2=1

|W0x|∞ ≤ 1, sup
|x|∞=1

|Wix|∞ ≤ 1,

|βj |∞ ≤M, i = 1, · · · , l, j = 0, · · · , l}.

We then introduce the set GζκK,d,d′,`,m as

GζκK,d,d′,`,m :={Ψ = (Ψi)i=1,...,d′ : Rd 7→ Rd
′
, Ψi : x ∈ Rd 7→ Kβi φi

(x+ αi
βi

)
∈ R,

φi ∈ Sζκd,`,m, for some αi ∈ Rd, βi > 0}.

Notice that these networks are
√
d′K-Lipschitz and that each of their components is K-Lipschitz.

We rely on the the following quantitative approximation result which directly follows from [TSB21].

Proposition 2.1 (Slight extension of Tanielian, Sangnier, Biau [TSB21] : Approximation theorem
for Lipschitz functions by Lipschitz GroupSort neural networks.). Let f : [−R,R]d 7→ Rd

′
be K-

Lipschitz. Then, for all ε > 0, there exists a GroupSort neural network g in GζκK,d,d′,`,m verifying

sup
x∈[−R,R]d

|f(x)− g(x)|2 ≤
√
d′2RKε

with g of grouping size κ = d 2
√
d
ε e, depth `+ 1 = O(d2) and width

∑`−1
i=0 mi = O(( 2

√
d
ε )d

2−1) in the
case d > 1. If d = 1, the same result holds with g of grouping size κ = d 1

εe, depth ` + 1 = 3 and
width

∑`−1
i=0 mi = O( 1

ε ).

Proof. With fi the i-th component of f , define

f̃i : z ∈ [0, 1]d 7→ fi(2R(z − 1/2))

2RK
. (2.1)

Then f̃i is 1-Lipschitz and by Theorem 3 from [TSB21] if d > 1 (or Proposition 5 from [TSB21] if
d = 1), there exists a 1-Lipschitz GroupSort neural network gi ∈ Sζκd,`,m verifying

sup
z∈[0,1]d

|f̃i(z)− gi(z)| ≤ ε

with gi of grouping size κ = O( 2
√
d
ε ), depth `+1 = O(d2) and width

∑`−1
i=0 mi = O(( 2

√
d
ε )d

2−1)(respectively
grouping size κ = O( 1

ε ), depth `+ 1 = 3 and width
∑`−1
i=0 mi = O( 1

ε ) if d = 1). Inverting (2.1) we
have fi(x) = 2KRf̃i(

x+R
2R ) hence

sup
x∈[−R,R]d

∣∣∣fi(x)− 2KRgi

(x+R

2R

)∣∣∣ ≤ 2KRε.

The result is proven by concatenating the d′ K-Lipschitz GroupSort networks x 7→ 2KRgi(
x+R
2R ),

i = 1, · · · , d′.

Remark 2.1. As mentioned in [TSB21], GroupSort neural networks generalize the ReLU networks
and, thanks to their Lipschitz continuity, offer better stability regarding noisy inputs and adversarial
attacks. It also appears that GroupSort networks are more expressive than ReLU ones.
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2.2 Existing Schemes
We review recent machine learning schemes that will serve as benchmarks for our new scheme
described in the next section. All these schemes rely on BSDE representation of the solution to
the PDE, and differ according to the formulation of the time discretization of the BSDE.

For this purpose, let us introduce the diffusion process X in Rd associated to the linear part of
the differential operator in the PDE (1.1), namely:

Xt = X0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, 0 ≤ t ≤ T, (2.2)

whereW is a d-dimensional standard Brownian motion on some probability space (Ω,F ,P) equipped
with a filtration F = (Ft)t, and X0 is an F0-measurable random variable valued in Rd. Recall from
[PP90] that the solution u to the PDE (1.1) admits a probabilistic representation in terms of the
BSDE:

Yt = g(XT )−
∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

Zs.dWs, 0 ≤ t ≤ T, (2.3)

via the Feynman-Kac formula Yt = u(t,Xt), 0 ≤ t ≤ T . When u is a smooth function, this
BSDE representation is directly obtained by Itô’s formula applied to u(t,Xt), and we have Zt =
σ(t,Xt)ᵀDxu(t,Xt), 0 ≤ t ≤ T .

Let π be a subdivision {t0 = 0 < t1 < · · · < tN = T} with modulus |π| := supi ∆ti, ∆ti :=
ti+1 − ti, satisfying |π| = O

(
1
N

)
, and consider the Euler scheme

Xi = X0 +

i−1∑
j=0

µ(tj , Xj)∆tj +

i−1∑
j=0

σ(tj , Xj)∆Wj , i = 0, . . . , N,

where ∆Wj := Wtj+1 −Wtj , j = 0, . . . , N . When the diffusion X cannot be simulated, we shall
rely on the simulated paths of (Xi)i that act as training data in the setting of machine learning,
and thus our training set can be chosen as large as desired.

The time discretization of the BSDE (2.3) is written in backward induction as

Y πi = Y πi+1 − f(ti, Xi, Y
π
i , Z

π
i )∆ti − Zπi .∆Wi, i = 0, . . . , N − 1, (2.4)

which also reads as conditional expectation formulae Y πi = Ei
[
Y πi+1 − f(ti, Xi, Y

π
i , Z

π
i )∆ti

]
Zπi = Ei

[
∆Wi

∆ti
Y πi+1

]
, i = 0, . . . , N − 1,

(2.5)

where Ei denotes the conditional expectation w.r.t. Fti . Alternatively, by iterating relations (2.4)
together with the terminal relation Y πN = g(XN ), we have

Y πi = g(XN )−
N−1∑
j=i

[
f(tj , Xj , Y

π
j , Z

π
j )∆tj + Zπj .∆Wj

]
, i = 0, . . . , N − 1. (2.6)

• Deep BSDE scheme [HJE17].
The idea of the method is to treat the backward equation (2.4) as a forward equation by appro-
ximating the initial condition Y0 and the Z component at each time by networks functions of the
X process, so as to match the terminal condition. More precisely, the problem is to minimize over
network functions U0 : Rd → R, and sequences of network functions Z = (Zi)i, Zi : Rd → Rd, i
= 0, . . . , N − 1, the global quadratic loss function

JG(U0,Z) = E
∣∣∣Y U0,Z
N − g(XN )

∣∣∣2,
where (Y U0,Z

i )i is defined by forward induction as

Y U0,Z
i+1 = Y U0,Z

i + f(ti, Xi, Y
U0,Z
i ,Zi(Xi))∆ti + Zi(Xi).∆Wi, i = 0, . . . , N − 1,
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starting from Y U0,Z
0 = U0(X0). The output of this scheme, for the solution (Û0, Ẑ) to this global

minimization problem, provides an approximation Û0 of the solution u(0, .) to the PDE at time 0,
and approximations Y Û0,Ẑ

i of the solution to the PDE (1.1) at times ti evaluated at Xti , i.e., of
Yti = u(ti,Xti), i = 0, . . . , N .

• Deep Backward Dynamic Programming (DBDP) [HPW20].
The method relies on the backward dynamic programming relation (2.4) arising from the time
discretization of the BSDE, and learns simultaneously at each time step ti the pair (Yti , Zti) with
neural networks trained with the forward process X and the Brownian motion W . The scheme
has two versions:

1. DBDP1. Starting from Û (1)
N = g, proceed by backward induction for i = N − 1, . . . , 0, by

minimizing over network functions Ui : Rd → R, and Zi : Rd → Rd the local quadratic loss
function

J
(B1)
i (Ui,Zi) = E

∣∣∣Û (1)
i+1(Xi+1)− Ui(Xi)

− f(ti, Xi,Ui(Xi),Zi(Xi))∆ti −Zi(Xi).∆Wi

∣∣∣2,
and update (Û (1)

i , Ẑ(1)
i ) as the solution to this local minimization problem.

2. DBDP2. Starting from Û (2)
N = g, proceed by backward induction for i = N − 1, . . . , 0, by

minimizing over C1 network functions Ui : Rd → R the local quadratic loss function

J
(B2)
i (Ui)

= E
∣∣∣Û (2)
i+1(Xi+1)− Ui(Xi)− f(ti, Xi,Ui(Xi), σ(ti, Xi)

ᵀDxUi(Xi))∆ti

− DxUi(Xi)
ᵀσ(ti, Xi)∆Wi

∣∣∣2,
where DxUi is the automatic differentiation of the network function Ui. Update Û (2)

i as the
solution to this problem, and set Ẑ(2)

i = σᵀ(ti, .)DxU (2)
i .

The output of DBDP provides an approximation (Ûi, Ẑi) of the solution u(ti, .) and its gradient
σᵀ(ti, .)Dxu(ti, .) to the PDE (1.1) at times ti, i = 0, . . . , N −1. The approximation error has been
analyzed in [HPW20].

Remark 2.2. A machine learning scheme in the spirit of regression-based Monte-Carlo methods
([BT04], [GLW05]) for approximating condition expectations in the time discretization (2.5) of the
BSDE, can be formulated as follows: starting from ÛN = g, proceed by backward induction for i
= N − 1, . . . , 0, in two regression problems:

(a) Minimize over network functions Zi : Rd → Rd

Jr,Zi (Zi) = E
∣∣∣∆Wi

∆ti
Ûi+1(Xi+1)−Zi(Xi)

∣∣∣2
and update Ẑi as the solution to this minimization problem

(b) Minimize over network functions Ui : Rd → R

Jr,Yi (Ui) = E
∣∣∣Ûi+1(Xi+1)− Ui(Xi)− f(ti, Xi,Ui(Xi), Ẑi(Xi))∆ti

∣∣∣2
and update Ûi as the solution to this minimization problem.

Compared to these regression-based schemes, the DBDP scheme approximates simultaneously the
pair component (Y,Z) via the minimization of the loss functions J (B1)

i (Ui,Zi) (or J (B2)
i (Ui) for

the second version), i = N−1, . . . , 0. One advantage of this latter approach is that the accuracy of
the DBDP scheme can be tested when computing at each time step the infimum of loss function,
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which should be equal to zero for the exact solution (up to the time discretization). In contrast, the
infimum of the loss functions in the regression-based schemes is not known for the exact solution as
it corresponds in theory to the residual of L2-projection, and thus the accuracy of the scheme cannot
be tested directly in-sample. Moreover, a variant where the automatic differentiation DxUi(Xi) is
performed to estimate Zti instead of using a second neural network Ẑi (similarly as in the previous
DBDP2 scheme) can also be considered. In this case, one only needs to solve for each time step
the (b) optimization problem and not the (a) problem anymore. �

• Deep Splitting (DS) scheme [Bec+21].
This method also proceeds by backward induction as follows:

- Minimize over C1 network functions UN : Rd → R the terminal loss function

JSN (UN ) = E
∣∣∣g(XN )− UN (XN )

∣∣∣2,
and denote by ÛN as the solution to this minimization problem. If g is C1, we can choose
directly ÛN = g.

- For i = N − 1, . . . , 0, minimize over C1 network functions Ui : Rd → R the loss function

JSi (Ui)

= E
∣∣∣Ûi+1(Xi+1)− Ui(Xi)

− f(ti, Xi+1, Ûi+1(Xi+1), σ(ti, Xi)
ᵀDxÛi+1(Xi+1))∆ti

∣∣∣2, (2.7)

and update Ûi as the solution to this minimization problem. Here Dx refers again to the
automatic differentiation operator for network functions.

The DS scheme combines ideas of the DBDP2 and regression-based schemes where the current
regression-approximation on Z is replaced by the automatic differentiation of the network function
computed at the previous step. The current approximation of Y is then computed by a regres-
sion network-based scheme. In Section 3, we shall analyze the approximation error of the DS
scheme. Please note that in (2.7) we consider a slight modification of the original DS scheme
from [Bec+21]. In their loss function, the term f(ti, Xi+1, Ûi+1(Xi+1), σ(ti, Xi)

ᵀDxÛi+1(Xi+1)) is
replaced by f(ti+1, Xi+1, Ûi+1(Xi+1), σ(ti+1, Xi+1)ᵀDxÛi+1(Xi+1)).

2.3 Deep Backward Multi-step Scheme (MDBDP)
The starting point of the MDBDP scheme is the iterated representation (2.6) for the time dis-
cretization of the BSDE. This backward scheme is described as follows: for i = N − 1, . . . , 0,
minimize over network functions Ui : Rd → R, and Zi : Rd → Rd the loss function

JMB
i (Ui,Zi) = E

∣∣∣g(XN )−
N−1∑
j=i+1

f(tj , Xj , Ûj(Xj), Ẑj(Xj))∆tj −
N−1∑
j=i+1

Ẑj(Xj).∆Wj

− Ui(Xi)− f(ti, Xi,Ui(Xi),Zi(Xi))∆ti −Zi(Xi).∆Wi

∣∣∣2 (2.8)

and update (Ûi, Ẑi) as the solution to this minimization problem. This output provides an approxi-
mation (Ûi, Ẑi) of the solution u(ti, .) to the PDE (1.1) at times ti, i = 0, . . . , N − 1. This appro-
ximation error will be analyzed in Section 3.

MDBDP is a machine learning version of the Multi-step Dynamic Programming method studied
by [BD07] and [GT16]. Instead of solving at each time step two regression problems, our approach
allows to consider only a single minimization as in the DBDP scheme. Compared to the latter,
the multi-step consideration is expected to provide better accuracy by reducing the propagation
of errors in the backward induction.
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Remark 2.3. We could have also considered, as in the DBDP2 scheme, the automatic differenti-
ation of Ûi for the approximation of the gradient Zti . However, as shown in the numerical tests
of [HPW20], this approach leads to less accurate results than the DBDP1 algorithm which uses an
additional neural network. Moreover, at least for theoretical analysis, it requires to optimize over
C1 neural networks, which is a restrictive assumption. Hence we focus on a DBDP1-type method.

In the numerical implementation, the expectation defining the loss function JMB
i in (2.8) is

replaced by an empirical average leading to the so-called generalization (or estimation) error, largely
studied in the statistical community, see [Gy02], and more recently [Hur+21], [BJK19] and the
references therein. Moreover, recalling the parametrization (Uθ,Zθ) of neural network functions
in N ρ

d,1,`,m×N
ρ
d,d,`,m, the minimization of the empirical average is amenable to stochastic gradient

descent (SGD) extensively used in machine learning. More precisely, given a fixed time step i
= N − 1, . . . , 0, at each iteration of the SGD, we pick a sample (Xk

j ,∆W
k
j )j=i,...,N of the Euler

process and increment of Brownian motion (Xj ,∆Wj)j , k = 1, . . . ,K, of mini-batch size K, and
consider the empirical loss function:

JKi (θ)

=
1

K

K∑
k=1

∣∣∣g(Xk
N )−

N−1∑
j=i+1

f(tj , X
k
j , Ûj(Xk

j ), Ẑj(Xk
j ))∆tj −

N−1∑
j=i+1

Ẑj(Xk
j ).∆W k

j

− Uθ(Xk
i )− f(ti, X

k
i ,Uθ(Xk

i ),Zθ(Xk
i ))∆ti −Zθ(Xk

i ).∆W k
i

∣∣∣2, (2.9)

where Ûj = U θ̂jj , Ẑj = Z θ̂jj , and θ̂j is the resulting parameter from the SGD obtained at dates j ∈
Ji+1, N−1K. In practice, the number of iterations for SGD at the initial induction timeN−1 should
be large enough so as to learn accurately the value function u(tN−1, .) and its gradient Dxu(tN−1, .)

via Û θ̂N−1 and Ẑ θ̂N−1 . However, it is then expected that (Ûj , Ẑj) does not vary a lot from j = i+1
to i, which means that at time i, one can design the SGD with initialization parameter equal to
the resulting parameter from the previous SGD at time i+ 1, and then use few iterations to obtain
accurate values of Ûi and Ẑi. This observation allows to reduce significantly the computational
time in (M)DBDP scheme when applying sequentially N SGD. The SGD algorithm for computing
an approximate minimizer of the loss function induces the so-called optimization error, which has
been extensively studied in the stochastic algorithm and machine learning communities, see [BM],
[BF11], [BJK19], and the references therein.

Algorithm 1: MDBDP scheme.

Data: Initial parameter θ̂N . A sequence of number of iterations (Si)i=0,...,N−1

for i = N − 1, . . . , 0 do
Initial parameter θi ← θ̂i+1

Set s = 1
while s ≤ Si do

Pick a sample of (Xj ,∆Wj)j=i,...,N of mini-batch size K
Compute the gradient ∇JKi (θ) of JKi (θ) defined in (2.9)
Update θi ← θi − η∇JKi (θi) with η learning rate
s ← s+ 1

end
Return θ̂i ← θi, Ûi = U θ̂i , Ẑi = Z θ̂i /* Update parameter, function and
derivative */

end

3 Convergence Analysis
This section is devoted to the approximation error and rate of convergence of the MDBDP, DS,
and DBDP schemes described in Section 2.
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We make the following standard assumptions on the coefficients of the forward-backward equa-
tion associated to semilinear PDE (1.1).

Assumption 3.1. (i) X0 is square-integrable : X0 ∈ L2(F0,Rd).

(ii) The functions µ and σ are Lipschitz in x ∈ Rd, uniformly in t ∈ [0, T ].

(iii) The generator function f is 1/2-Hölder continuous in time and Lipschitz continuous in all
other variables: ∃ [f ]

L
> 0 such that for all (t, x, y, z) and (t′, x′, y′, z′) ∈ [0, T ]×Rd×R×Rd,

|f(t, x, y, z)− f(t′, x′, y′, z′)|
≤ [f ]

L

(
|t− t′|1/2 + |x− x′|

2
+ |y − y′|+ |z − z′|

2

)
.

Moreover, supt∈[0,T ] |f(t, 0, 0, 0)| < ∞.

(iv) The function g satisfies a linear growth condition.

Assumption 3.1 guarantees the existence and uniqueness of an adapted solution (X , Y, Z) to
the forward-backward equation (2.2)-(2.3), satisfying

E
[

sup
0≤t≤T

|Xt|22 + sup
0≤t≤T

|Yt|2 +

∫ T

0

|Zt|22dt
]
< ∞,

( see for instance Theorem 3.3.1, Theorem 4.2.1, Theorem 4.3.1 from [Zha17]). Given the time
grid π = {ti : i = 0, . . . , N}, let us introduce the L2-regularity of Z:

εZ(π) := E
[N−1∑
i=0

∫ ti+1

ti

|Zt − Z̄ti |22dt

]
, with Z̄ti :=

1

∆ti
Ei
[ ∫ ti+1

ti

Ztdt
]
.

Since Z̄ is a L2-projection of Z, we know that εZ(π) converges to zero when |π| goes to zero.
Moreover, as shown in [Zha04], when g is also Lipschitz, we have

εZ(π) = O(|π|).

Here, the standard notation O(|π|) means that lim sup|π|→0 |π|−1O(|π|) < ∞.

Lemma 3.1. Under Assumption 3.2 (ii), the following standard estimate for the Euler-Maruyama
scheme holds when ∆ti → 0

E|Xx
i+1 −Xx′

i+1|22 ≤ (1 + C∆ti)|x− x′|22,

where Xx
i+1 := x+ µ(ti, x)∆ti + σ(ti, x)∆Wi.

Proof. By expanding the square, simply notice that the dominant terms when ∆ti → 0 are of
older ∆ti because the term of order

√
∆ti, namely (x − x′) · (σ(ti, x) − σ(ti, x

′))∆Wi has a null
expectation and all other terms are dominated by ∆ti.

3.1 Convergence of the MDBDP Scheme
We fix classes of functions Ni and N ′i for the approximations respectively of the solution and its
gradient, and define (Û (1)

i , Ẑ(1)
i ) as the output of the MDBDP scheme at times ti, i = 0, . . . , N .

Let us define (implicitly) the process
V

(1)
i = Ei

[
g(XN )− f

(
ti, Xi, V

(1)
i , Ẑi

(1))
∆ti −

N−1∑
j=i+1

f
(
tj , Xj , Û (1)

j (Xj), Ẑ(1)
j (Xj)

)
∆tj

]
,

Ẑ
(1)

i = Ei
[
g(XN )∆Wi

∆ti
−

N−1∑
j=i+1

f
(
tj , Xj , Û (1)

j (Xj), Ẑ(1)
j (Xj)

)∆Wi∆tj
∆ti

]
, i = 0, . . . , N,

(3.1)
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and notice by the Markov property of the discretized forward process (Xi)i that

V
(1)
i = v

(1)
i (Xi), Ẑi

(1)

= ẑi
(1)(Xi), i = 0, . . . , N, (3.2)

for some deterministic functions v(1)
i , ẑi

(1). Let us then introduce

ε1,y
i := inf

U∈Ni
E
∣∣v(1)
i (Xi)− U(Xi)

∣∣2, ε1,z
i := inf

Z∈N ′i
E
∣∣ẑi(1)(Xi)−Z(Xi)

∣∣2
2
,

for i = 0, . . . , N − 1, which represent the L2-approximation errors of the functions v(1)
i , ẑi

(1) in the
classes Ni and N ′i .

Theorem 3.1 (Approximation error of MDBDP). Under Assumption 3.1, there exists a constant
C > 0 (depending only on the data µ, σ, f, g, d, T ) such that in the limit |π| → 0

sup
i∈J0,NK

E
∣∣Yti − Û (1)

i (Xi)
∣∣2 + E

[N−1∑
i=0

∫ ti+1

ti

∣∣Zs − Ẑ(1)
i (Xi)

∣∣2
2

ds
]

≤ C
(
E
∣∣g(XT )− g(XN )

∣∣2 + |π|+ εZ(π) +

N−1∑
j=0

(ε1,y
j + ∆tjε

1,z
j )
)
. (3.3)

Remark 3.1. The upper bound in (3.3) consists of four terms. The first three terms correspond
to the time discretization of BSDE, similarly as in [Zha04], [BT04], namely (i) the strong approx-
imation of the terminal condition (depending on the forward scheme and g), and converging to
zero, as |π| goes to zero, with a rate |π| when g is Lipschitz, (ii) the strong approximation of the
forward Euler scheme, and the L2-regularity of Y , which gives a convergence of order |π|, (iii)
the L2-regularity of Z. Finally, the last term is the approximation error by the chosen class of
functions. Note that the approximation error

∑N−1
j=0 (ε1,y

j + ∆tjε
1,z
j ) in (3.3) is better than the

one for the DBDP scheme derived in [HPW20], with an order
∑N−1
j=0 (Nε1,y

j + ε1,z
j ). In the work

[GT16] which introduced the multistep scheme with linear regression, the authors noticed the same
improvement in the error propagation in comparison with the one-step classical scheme [GLW05].

�

We next study convergence for the approximation error of the MDBDP scheme, for a specific
choice of functions classes Ni and N ′i and with the additional assumption that f does not depend
on z.

Assumption 3.2. The generator function f is independent of z. Namely, for all (t, x, y, z, z′) ∈
[0, T ]× Rd×R×Rd×Rd,

f(t, x, y, z) = f(t, x, y, z′).

Actually, if f is linear in z: f(t, x, y, z) = f̄(t, x, y)+λ(t, x).z, one can boil down to Assumption
3.2 for f̄ by incorporating the linearity in the drift function µ, namely with the modified drift:
µ̄(t, x) = µ(t, x)− σλ(t, x).

Proposition 3.1 (Rate of convergence of MDBDP). Let Assumption 3.1 and Assumption 3.2
hold, and assume that X0 ∈ L2+δ(F0,Rd), for some δ > 0, and g is [g]−Lipschitz. Then, there
exists a bounded sequence Ki (uniformly in i,N) such that for GroupSort neural networks classes
Ni = GζκKi,d,1,`,m, and N

′
i = Gζκ√

d
∆ti

Ki,d,d,`,m
, we have

sup
i∈J0,NK

E
∣∣Yti − Û (1)

i (Xi)
∣∣2 + E

[N−1∑
i=0

∫ ti+1

ti

∣∣Zs − Ẑ(1)
i (Xi)

∣∣2
2

ds
]

= O(1/N),

with a grouping size κ = O(2
√
dN2), depth `+ 1 = O(d2) and width

∑`−1
i=0 mi = O((2

√
dN2)d

2−1)

in the case d > 1. If d = 1, take κ = O(N2), depth `+ 1 = 3 and width
∑`−1
i=0 mi = O(N2). Here,

the constants in the O(·) term depend only on µ, σ, f, g, d, T,X0.
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3.2 Convergence of the DS Scheme
We consider classes N γ,η

i of differentiable γi−Lipschitz functions with ηi−Lipschitz derivative for
sequences γ = (γi)i, η = (ηi)i and define Û (2)

i as the output of the DS scheme at times ti, i =
0, . . . , N . .

Let us define the process

V
(2)
i = Ei

[
Û (2)
i+1(Xi+1)− f

(
ti, Xi,Ei[Û (2)

i+1(Xi+1)],Ei[σ(ti, Xi)
ᵀDx[Û (2)

i+1(Xi+1)]
)
∆ti

]
, (3.4)

for i ∈ J0, N−1K, and V (2)
N = Û (2)

N (XN ). By the Markov property of (Xi)i, we have V
(2)
i = v

(2)
i (Xi),

for some functions v(2)
i : Rd → R, i ∈ J0, N − 1K, and we introduce

εγ,ηi =

{
infU∈Nγ,ηi

E
∣∣v(2)
i (Xi)− U(Xi)

∣∣2, i = 0, . . . , N − 1,

infU∈Nγ,ηi
E
∣∣g(XN )− U(XN )

∣∣2, i = N.

the L2-approximation error in the class N γ,η
i of the functions v(2)

i , i = 0, . . . , N − 1, and g.

Theorem 3.2 (Approximation error of DS). Let Assumption 3.1 hold, and assume that X0 ∈
L4(F0,Rd). Then, there exists a constant C > 0 (depending only on µ, σ, f, g, d, T,X0) such that
in the limit |π| → 0

sup
i∈J0,NK

E
∣∣Yti − Û (2)

i (Xi)
∣∣2 ≤ C(E∣∣g(XN )− g(XT )

∣∣2 + |π|+ εZ(π)

+ max
i

[
γ2
i , η

2
i

]
|π|+ εγ,ηN +N

N−1∑
i=0

εγ,ηi

)
. (3.5)

Remark 3.2. We retrieve a similar error as in the analysis of the DBDP2 scheme derived in
[HPW20]. Notice that when g is C1, one can choose to initialize the DS scheme with ÛN = g, and
the term εγ,ηN is removed in (3.5). �

The GroupSort neural networks being only continuous but not differentiable, we are not able to
express a convergence rate for the Deep Splitting scheme in terms of the architecture and number
of neurons to choose, like in Propositions 3.1, 3.2. It would require a quantitative approximation
result for C1 neural networks with bounded Lipschitz gradient, and this is left to future research.

3.3 Convergence of the DBDP Scheme
We consider classes of functions Ni and N ′i for the approximations of the solution and its gradient,
and define (Û (3)

i , Ẑ(3)
i ) as the output of the DBDP scheme at times ti, i = 0, . . . , N . Let us define

(implicitly) the process V
(3)
i = Ei

[
Û (3)
i+1(Xi+1)− f

(
ti, Xi, V

(3)
i , Ẑi

(3))
∆ti

]
Ẑi

(3)

= Ei
[
Û (3)
i+1(Xi+1)∆Wi

∆ti

]
, i = k, . . . , N − 1.

and notice by the Markov property of the discretized forward process (Xi)i that

V
(3)
i = v

(3)
i (Xi), Ẑi = ẑi

(3)(Xi), i = 0, . . . , N, (3.6)

for some deterministic functions v(3)
i , ẑi

(3). Let us then introduce

ε3,y
i := inf

U∈Ni
E
∣∣v(3)
i (Xi)− U(Xi)

∣∣2, ε3,z
i := inf

Z∈N ′i
E
∣∣ẑi(3)(Xi)−Z(Xi)

∣∣2
2
,

for i = 0, . . . , N − 1, which represent the L2-approximation errors of the functions v(3)
i , ẑi

(3) in the
classes Ni and N ′i .
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Theorem 3.3 (Huré, Pham, Warin [HPW20] : Approximation error of DBDP). Under Assump-
tion 3.1, there exists a constant C > 0 (depending only on the data µ, σ, f, g, d, T ) such that in the
limit |π| → 0

sup
i∈J0,NK

E
∣∣Yti − Û (3)

i (Xi)
∣∣2 + E

[N−1∑
i=0

∫ ti+1

ti

∣∣Zs − Ẑ(3)
i (Xi)

∣∣2
2

ds
]

≤ C
(
E
∣∣g(XT )− g(XN )

∣∣2 + |π|+ εZ(π) +N

N−1∑
j=0

(ε3,y
j + ∆tjε

3,z
j )
)
. (3.7)

We next study convergence rate for the approximation error of the DBDP scheme, and need to
specify the class of network functions Ni and N ′i .

Proposition 3.2 (Rate of convergence of DBDP). Let Assumption 3.1 hold, and assume that X0

∈ L2+δ(F0,Rd), for some δ > 0, and g is [g]−Lipschitz. Then, there exists a bounded sequence Ki

(uniformly in i,N) such that for Ni = GζκKi,d,1,`,m, and N
′
i = Gζκ√

d
∆ti

Ki,d,d,`,m
, we have

sup
i∈J0,NK

E
∣∣Yti − Û (3)

i (Xi)
∣∣2 + E

[N−1∑
i=0

∫ ti+1

ti

∣∣Zs − Ẑ(3)
i (Xi)

∣∣2
2

ds
]

= O(1/N),

with a grouping size κ = O(2
√
dN3), depth `+ 1 = O(d2) and width

∑`−1
i=0 mi = O((2

√
dN3)d

2−1)

in the case d > 1. If d = 1, take κ = O(N3), depth `+ 1 = 3 and width
∑`−1
i=0 mi = O(N3). Here,

the constants in the O(·) term depend only on µ, σ, f, g, d, T,X0.

4 Proof of the Main Theoretical Results

4.1 Proof of Theorem 3.1
Let us introduce the processes (V̄i, Z̄i)i arising from the time discretization of the BSDE (2.3), and
defined by the implicit backward Euler scheme: V̄

(1)
i = Ei

[
V̄

(1)
i+1 − f

(
ti, Xi, V̄

(1)
i , Z̄

(1)
i

)
∆ti

]
Z̄

(1)
i = Ei

[
V̄

(1)
i+1

∆Wi

∆ti

]
, i = 0, . . . , N − 1,

(4.1)

starting from V̄
(1)
N = g(XN ). We recall from [Zha04] the time discretization error:

sup
i∈J0,NK

E
∣∣Yti − V̄i(1)∣∣2 + E

[N−1∑
i=0

∫ ti+1

ti

∣∣Zs − Z̄(1)
i

∣∣2
2

ds
]

≤ C
(
E
∣∣g(XT )− g(XN )

∣∣2 + |π|+ εZ(π)
)
, (4.2)

for some constant C depending only on the coefficients satisfying Assumption 3.1.
Let us introduce the auxiliary process

V̂
(1)
i = Ei

[
g(XN )−

N−1∑
j=i

f
(
tj , Xj , Û (1)

j (Xj), Ẑ(1)
j (Xj)

)
∆tj

]
, i = 0, . . . , N, (4.3)

and notice by the tower property of conditional expectations that we have the recursive relations:

V̂i
(1)

= Ei
[
V̂

(1)
i+1 − f

(
ti, Xi, Û (1)

i (Xi), Ẑ(1)
i (Xi)

)
∆ti

]
, i = 0, . . . , N − 1. (4.4)

Observe also that Ẑ
(1)

i defined in (3.1) satisfies

Ẑi
(1)

= Ei
[
V̂

(1)
i+1

∆Wi

∆ti

]
, i = 0, . . . , N − 1. (4.5)
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We now decompose the approximation error, for i ∈ J0, N − 1K, into

E
∣∣Yti − Û (1)

i (Xi)
∣∣2

≤ 4
(
E
∣∣Yti − V̄i(1)∣∣2 + E

∣∣V̄i(1) − V̂ (1)
i

∣∣2 + E
∣∣V̂ (1)
i − V (1)

i

∣∣2 + E
∣∣V (1)
i − Û (1)

i (Xi)
∣∣2)

=: 4(I1
i + I2

i + I3
i + I4

i ), (4.6)

and analyze each of these contribution terms. In the sequel, C denotes a generic constant inde-
pendent of π that may vary from line to line, and depending only on the coefficients satisfying
Assumption 3.1. Notice that the first contribution term is the time discretization error for BSDE
given by (4.2), and we shall study the three other terms in the following steps.

Step 1. Fix i ∈ J0, N − 1K. From the definition (3.1) of V (1)
i and by the martingale representation

theorem, there exists a square integrable process {Ẑ(1)
s , ti ≤ s ≤ T} s.t.

g(XN )− f
(
ti, Xi, V

(1)
i , Ẑ

(1)
i

)
∆ti −

N−1∑
j=i+1

f
(
tj , Xj , Û (1)

j (Xj), Ẑ(1)
j (Xj)

)
∆tj

= Vi +

∫ tN

ti

Ẑ(1)
s .dWs. (4.7)

From the definition (3.1) of Ẑi
(1)

, and by Itô isometry, we then have

Ẑi
(1)

=
Ei
[ ∫ ti+1

ti
Ẑ

(1)
s ds

]
∆ti

, i.e. Ei
[ ∫ ti+1

ti

(
Ẑ(1)
s − Ẑi

(1))
ds
]

= 0. (4.8)

Plugging (4.7) into (2.8), we see that the loss function of the MDBDP scheme can be rewritten as

JMB
i (Ui,Zi)

= E
∣∣∣V (1)
i − Ui(Xi) + ∆ti

[
f
(
ti, Xi, V

(1)
i , Ẑi

(1))
− f

(
ti, Xi,Ui(Xi),Zi(Xi)

)]
+

N−1∑
j=i+1

∫ tj+1

tj

[
Ẑ(1)
s − Ẑj(Xj)

]
.dWs +

∫ ti+1

ti

[
Ẑ(1)
s −Zi(Xi)

]
.dWs

∣∣∣2
= J̃MB

i (Ui,Zi) + E
[N−1∑
j=i

∫ tj+1

tj

∣∣Ẑ(1)
s − Ẑj

(1)∣∣2
2
ds
]

+

N−1∑
j=i+1

∆tjE
∣∣Ẑj(1)

− Ẑj(Xj)
∣∣2
2
, (4.9)

where we use (4.8), and

J̃MB
i (Ui,Zi)

:= E
∣∣∣V (1)
i − Ui(Xi) + ∆ti

[
f
(
ti, Xi, V

(1)
i , Ẑi

(1))
− f

(
ti, Xi,Ui(Xi),Zi(Xi)

)]∣∣∣2
+ ∆tiE

∣∣Ẑi(1)

−Zi(Xi)
∣∣2
2
.

It is clear by Lipschitz continuity of f in Assumption 3.1 that

J̃MB
i (Ui,Zi) ≤ C

(
E
∣∣V (1)
i − Ui(Xi)

∣∣2 + ∆tiE
∣∣Ẑi(1)

−Zi(Xi)
∣∣2
2

)
. (4.10)

On the other hand, by the Young inequality: (1 − β)a2 +
(
1 − 1

β

)
b2 ≤ (a + b)2 ≤ (1 + β)a2 +
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(
1 + 1

β

)
b2, for all (a, b) ∈ R2, and β > 0, we have

J̃MB
i (Ui,Zi)

≥ (1− β)E
∣∣V (1)
i − Ui(Xi)

∣∣2 + ∆tiE
∣∣Ẑi(1)

−Zi(Xi)
∣∣2
2

+
(

1− 1

β

)
|∆ti|2E

∣∣f(ti, Xi,Ui(Xi),Zi(Xi)
)
− f

(
ti, Xi, V

(1)
i , Ẑi

(1))∣∣2
≥ (1− β)E

∣∣V (1)
i − Ui(Xi)

∣∣2 + ∆tiE
∣∣Ẑi(1)

−Zi(Xi)
∣∣2
2

−
2[f ]2

L

β
|∆ti|2

(
E
∣∣Ui(Xi)− V (1)

i

∣∣2 + E
∣∣Zi(Xi)− Ẑi

(1)∣∣2
2

)
≥
(

1−
(
4[f ]2

L
+

1

2

)
∆ti

)
E
∣∣V (1)
i − Ui(Xi)

∣∣2 +
1

2
∆tiE

∣∣Ẑi(1)

−Zi(Xi)
∣∣2
2
, (4.11)

where we use the Lipschitz continuity of f in the second inequality, and choose explicitly β =
4[f ]2

L
∆ti (< 1 for ∆ti small enough) in the last one. By applying inequality (4.11) to (Ui,Zi) =

(Û (1)
i , Ẑ(1)

i ), which is a minimizer of J̃MB
i by (4.9), and combining with (4.10), this yields for ∆ti

small enough and for all functions Ui, Zi:

E
∣∣V (1)
i − Û (1)

i (Xi)
∣∣2 + ∆tiE

∣∣Ẑi(1)

− Ẑ(1)
i (Xi)

∣∣2
2

≤ C
(
E
∣∣Vi − Ui(Xi)

∣∣2 + ∆tiE
∣∣Ẑi −Zi(Xi)

∣∣2
2

)
.

By minimizing over Ui,Zi in the right hand side, we get the approximation error in the classes

Ni,N ′i of the regressed functions V (1)
i , Ẑi

(1)

:

E
∣∣V (1)
i − Û (1)

i (Xi)
∣∣2 + ∆tiE

∣∣Ẑi(1)

− Ẑ(1)
i (Xi)

∣∣2
2
≤ C(ε1,y

i + ∆tiε
1,z
i ). (4.12)

Step 2. From the expressions of V (1)
i and V̂ (1)

i in (3.1), (4.3), and by Lipschitz continuity of f , we
have by (4.12):

E
∣∣V̂i(1)

− V (1)
i

∣∣2 = ∆t2iE
∣∣∣Ei[f(ti, Xi, V

(1)
i , Ẑi

(1))
− f

(
ti, Xi, Û (1)

i (Xi), Ẑ(1)
i (Xi)

)]∣∣∣2
≤ 2[f ]2

L
|∆ti|2

(
E
∣∣V (1)
i − Û (1)

i (Xi)
∣∣2 + E

∣∣Ẑi(1)

− Ẑ(1)
i (Xi)

∣∣2
2

)
≤ C∆ti(ε

1,y
i + ∆tiε

1,z
i ), i = 0, . . . , N. (4.13)

Step 3. From the recursive expressions of V̄i
(1), V̂ (1)

i in (4.1), (4.4), and applying the Young, the
Cauchy-Schwarz inequalities, together with the Lipschitz condition of f , we get for β > 0:

E
∣∣V̄ (1)
i − V̂ (1)

i

∣∣2
≤ (1 + β)E

∣∣∣Ei[V̄ (1)
i+1 − V̂

(1)
i+1

]∣∣∣2 + 2[f ]2
L

(
1 +

1

β

)
|∆ti|2

(
E
∣∣V̄i(1) − Û (1)

i (Xi)
∣∣2 + E

∣∣Z̄(1)
i − Ẑ

(1)
i (Xi)

∣∣2
2

)
≤ (1 + β)E

∣∣∣Ei[V̄ (1)
i+1 − V̂

(1)
i+1

]∣∣∣2 + 2[f ]2
L

(
1 +

1

β

)
|∆ti|2

(
3E|V̄i

(1) − V̂i
(1)
|2 + 2E

∣∣Z̄(1)
i − Ẑi

(1)∣∣2
2

)
+ 2[f ]2

L

(
1 +

1

β

)
|∆ti|2

(
3E|V̂i

(1)
− V (1)

i |
2 + 3E|V (1)

i − Û (1)
i (Xi)|2 + 2E

∣∣Ẑi(1)

− Ẑi(Xi)
∣∣2
2

)
≤ (1 + β)E

∣∣∣Ei[V̄ (1)
i+1 − V̂

(1)
i+1

]∣∣∣2 + (1 + β)
2[f ]2

L
|∆ti|2

β

(
3E|V̄i

(1) − V̂i
(1)
|2 + 2E

∣∣Z̄(1)
i − Ẑi

(1)∣∣2
2

)
+ C[f ]2

L

(
1 +

1

β

)
∆ti(ε

1,y
i + ∆tiε

1,z
i ), (4.14)
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where we use (4.12), (4.13) in the last inequality. Moreover, by (4.1), (4.5), we have

∆ti
(
Z̄

(1)
i − Ẑi

(1))
= Ei

[
∆Wi

(
V̄

(1)
i+1 − V̂

(1)
i+1

)]
= Ei

[
∆Wi

(
V̄

(1)
i+1 − V̂

(1)
i+1 − Ei

[
V̄

(1)
i+1 − V̂

(1)
i+1

])]
,

and thus by the Cauchy-Schwarz inequality

∆tiE
∣∣Z̄(1)
i − Ẑi

(1)∣∣2
2
≤ d

(
E
∣∣V̄ (1)
i+1 − V̂

(1)
i+1

∣∣2 − E
∣∣∣Ei[V̄ (1)

i+1 − V̂
(1)
i+1

]∣∣∣2). (4.15)

Plugging into (4.14), and choosing β = 4d[f ]2
L

∆ti, gives

(1− C∆ti)E
∣∣V̄ (1)
i − V̂ (1)

i

∣∣2
≤ (1 + C∆ti)E

∣∣V̄ (1)
i+1 − V̂

(1)
i+1

∣∣2 + (1 + C∆ti)
(
ε1,y
i + ∆tiε

1,z
i )

By discrete Gronwall lemma, and recalling that V̄ (1)
N = V̂

(1)
N (= g(XN )), we then obtain

sup
i∈J0,NK

E
∣∣V̄i(1) − V̂i

(1)∣∣2 ≤ C

N−1∑
i=0

(
ε1,y
i + ∆tiε

1,z
i ). (4.16)

The required bound for the approximation error on Y follows by plugging (4.2), (4.12), (4.13), and
(4.16) into (4.6).
Step 4. We decompose the approximation error for the Z component into three terms

E
[N−1∑
i=0

∫ ti+1

ti

∣∣Z(1)
s − Ẑ

(1)
i (Xi)

∣∣2
2

ds
]

≤ 3

N−1∑
i=0

(
E
[ ∫ ti+1

ti

∣∣Z(1)
s − Z̄

(1)
i

∣∣2
2

ds
]

+ ∆tiE
∣∣Z̄(1)
i − Ẑ

(1)

i

∣∣2
2

+ ∆tiE
∣∣Ẑ(1)

i − Ẑ
(1)
i (Xi)

∣∣2
2

)
.(4.17)

By summing the inequality (4.15) (recalling that V̄ (1)
N = V̂

(1)
N ), and using (4.14), we have for

β ∈ (0, 1):

N−1∑
i=0

∆tiE|Z̄(1)
i − Ẑ

(1)

i |2

≤ d

N−1∑
i=0

(
E
∣∣V̄ (1)
i − V̂ (1)

i

∣∣2 − E
∣∣Ei[V̄ (1)

i+1 − V̂
(1)
i+1

]∣∣2)
≤ d

N−1∑
i=0

(
βE
∣∣∣Ei[V̄ (1)

i+1 − V̂
(1)
i+1

]∣∣∣2 +
(
1 +

1

β

)(
2[f ]2

L
|∆ti|2

)(
3E|V̄i

(1) − V̂i
(1)
|2 + 2E

∣∣Z̄(1)
i − Ẑi

(1)∣∣2
2

)
+ C[f ]2

L

(
1 +

1

β

)
∆ti(ε

1,y
i + ∆tiε

1,z
i )
)

≤ d

N−1∑
i=0

( 8d[f ]2
L

∆ti

1− 8d[f ]2
L

∆ti
E
∣∣Ei[V̄ (1)

i+1 − V̂
(1)
i+1

]∣∣2 +
3

4d
∆tiE|V̄i

(1) − V̂i
(1)
|2 +

C

8d
(ε1,y
i + ∆tiε

1,z
i )
)

+
1

2

N−1∑
i=0

∆tiE
∣∣Z̄(1)
i − Ẑ

(1)

i

∣∣2
2
, (4.18)

by choosing explicitly β =
8d[f ]2

L
∆ti

1−8d[f ]2
L

∆ti
= O(∆ti) for ∆ti small enough. Plugging (4.2), (4.12),

(4.16), and (4.18) (using the Jensen inequality) into (4.17), this proves the required bound for the
approximation error on Z, and completes the proof. �
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4.2 Proof of Proposition 3.1
Let us introduce the flow of the Euler scheme (Xi) by:

Xk,x
j+1 := Xk,x

j + µ(tj , X
k,x
j )∆tj + σ(tj , X

k,x
j )∆Wj , j = k, . . . , N,

starting from Xk,x
k = x at time step j = k ∈ N∗. Under Assumption 3.2, f does not depend on z

so by slight abuse of notation we write f(t, x, y) = f(t, x, y, z). Define

V k,xi,1 = Ei
[
g(Xk,x

N )− f
(
ti, X

k,x
i , V k,xi,1

)
∆ti −

N−1∑
j=i+1

f
(
tj , X

k,x
j , Û (1)

j (Xk,x
j )

)
∆tj

]
,

V̂ k,xi,1 = Ei
[
g(Xk,x

N )−
N−1∑
j=i

f
(
tj , X

k,x
j , Û (1)

j (Xk,x
j )

)
∆tj

]
, i = k, . . . , N,

Ẑ
k,x

i,1 = Ei
[
V k,xi+1,1

∆Wi

∆ti

]
, i = k, . . . , N,

and observe that we have the recursive relations:

V̂ k,xi,1 = Ei
[
V̂ k,xi+1,1 − f

(
ti, X

k,x
i , Û (1)

i (Xk,x
i )

)
∆ti

]
, i = k, . . . , N,

V k,xi,1 = Ei
[
V̂ k,xi+1,1 − f

(
ti, X

k,x
i , V k,xi,1

)
∆ti

]
, i = k, . . . , N.

Notice by the Markov property of the discretized forward process (Xk,x
i )i that

V k,xj,1 = v
(1)
j (Xk,x

j ), V̂ k,xj,1 = v̂
(1)
j (Xk,x

j ), Ẑ
k,x

j,1 = ẑ
(1)
j (Xk,x

j ), j = k, . . . , N

for some deterministic function v(1)
j , v̂

(1)
j , ẑ

(1)
j which do not depend on k. Notably v(1)

j , ẑ
(1)
j are the

same functions as in (3.2).
Step 1. We first estimate the evolution of the Lipschitz constant of v̂(1)

i when i varies. Let x′ ∈ Rd.
By the Cauchy-Schwarz inequality

∆tkE
∣∣∣Ẑk,xk,1 − Ẑk,x′k,1

∣∣∣2 ≤ 1

∆tk
E
∣∣∣Ek[(V̂ k,xk+1,1 − V̂

k,x′

k+1,1)∆Wk

]∣∣∣2 ≤ d E
∣∣∣V̂ k,xk+1,1 − V̂

k,x′

k+1,1

∣∣∣2. (4.19)
Moreover, assuming that Û (1)

k is [Û (1)
k ]−Lipschitz yields

E
∣∣∣V̂ k,xk,1 − V̂

k,x′

k,1

∣∣∣ ≤ E
∣∣∣V̂ k,xk+1,1 − V̂

k,x′

k+1,1

∣∣∣+ ∆tiE
∣∣∣{f(tk, x′, Û (1)

k (x′)
)
− f

(
tk, x, Û (1)

k (x)
)
}
∣∣∣

≤ E
∣∣∣V̂ k,xk+1,1 − V̂

k,x′

k+1,1

∣∣∣+ [f ]∆ti(1 + [Û (1)
k ])|x− x′|2.

Step 2. Then for the v(1)
k function, the Young inequality gives

E
∣∣∣V k,xk,1 − V

k,x′

k,1

∣∣∣2 ≤ (1 + γ∆tk)E
∣∣∣Ek[V̂ k,xk+1,1 − V̂

k,x′

k+1,1

]∣∣∣2
+ (1 +

1

γ∆tk
)∆t2kE

∣∣∣{f(tk, x′, V k,x′k,1

)
− f

(
tk, x, V

k,x
k,1

)
}
∣∣∣2

≤ (1 + γ∆tk)E
∣∣∣Ek[V̂ k,xk+1,1 − V̂

k,x′

k+1,1

]∣∣∣2
+ 2[f ]2(1 +

1

γ∆tk
)∆t2kE

[
|x− x′|22 + |V k,xk,1 − V

k,x′

k,1 |
2
]
.

Therefore by choosing γ = 2[f ]2 for ∆tk small enough

E
∣∣∣V k,xk,1 − V

k,x′

k,1

∣∣∣2 ≤ (1 + (γ + 3)∆tk)E
∣∣∣V̂ k,xk+1,1 − V̂

k,x′

k+1,1

∣∣∣2 + (1 + (γ + 3)∆ti)∆tk|x− x′|22.
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Hence assuming v̂(1)
k+1 is [v̂

(1)
k+1]−Lipchitz we obtain with Lemma 3.1

|v(1)
k (x)− v(1)

k (x′)|2 = E
∣∣∣V k,xk,1 − V

k,x′

k,1

∣∣∣2 (4.20)

≤ (1 + (γ + 3)∆tk)((1 + C∆tk)[v̂
(1)
k+1]2 + ∆tk)|x− x′|22

≤ (1 + C̃∆tk)([v̂
(1)
k+1]2 + ∆tk)|x− x′|22 := [v

(1)
k ]2|x− x′|22, (4.21)

for ∆tk small enough and another constant C̃.
Step 3. Let ε > 0, κ ∈ N, ` ∈ N, m ∈ R` to be chosen after. Recursively, we choose Nk =

Gζκ
[v

(1)
k ],d,1,`,m

(with [v
(1)
N−1]2 = (1 + C̃∆tN−1)([g]2 + ∆tN−1) by (4.21)) to approximate v(1)

k by

[v
(1)
k ]−Lipschitz GroupSort neural networks with uniform error 2[vk]Rε on [−R,R]d , see Proposi-

tion 2.1. Therefore, by Lemma 3.1, estimations (4.20) and the definition of [v
(1)
k ] in (4.21), for ∆tk

small enough

|v̂(1)
k (x)− v̂(1)

k (x′)| ≤ E
∣∣∣V̂ k,xk+1,1 − V̂

k,x′

k+1,1

∣∣∣+ [f ]∆tk(1 + [Û (1)
k ])|x− x′|2

≤ (1 + (C + 2[f ])∆tk)[v̂
(1)
k+1]|x− x′|2 + [f ](1 + C∆tk)∆tk|x− x′|2.

Thus v̂(1)
k is [v̂

(1)
k ] Lipschitz with

[v̂
(1)
k ] ≤ (1 + Ĉ∆tk)[v̂

(1)
k+1] + [f ](1 + C∆tk)∆ti

for a constant Ĉ. By discrete Gronwall lemma over k = N − 1, . . . , 0,

[v̂
(1)
i ]2 ≤ K, [v

(1)
i ]2 ≤ K,

uniformly in i,N for some constantK. By (4.19) and Proposition 2.1, we chooseN ′k = Gζκ√
d

∆ti
[v

(1)
k ],d,d,`,m

to approximate ẑk(1) by GroupSort neural networks with uniform error 2 d√
∆tk

[vk]Rε on [−R,R]d.

Thus
√

∆tkẑk
(1),
√

∆tkZ(1)
k are dK Lipschitz, uniformly.

Step 4. The regression errors ε1,y
i verify from, localization of Xi on B2(R), the Hölder inequality,

and the Markov inequality, the approximation error of v(1)
i , i ∈ J0, N−1K, by the class of GroupSort

neural networks (Proposition 2.1)√
ε1,y
i = inf

U∈G[vi],d,1

∥∥v(1)
i (Xi)− U(Xi)

∥∥
2

≤ inf
U∈G[vi],d,1

∥∥∥(v(1)
i (Xi)− U(Xi)

)
1
Xi∈B2(R)

∥∥∥
2

+
∥∥∥(v(1)

i (Xi)− Û (1)
i (Xi)

)
1|Xi|2≥R

∥∥∥
2

≤ 2KRε+ E
∣∣∣(v(1)

i (Xi)− Û (1)
i (Xi)

)2q∣∣∣1/2qE∣∣∣1 2q
2q−1

|Xi|2≥R

∣∣∣ 2q−1
2q

= 2KRε+ E
∣∣∣(v(1)

i (Xi)− Û (1)
i (Xi)

)2q∣∣∣1/2qE[1|Xi|2≥R
]
2q−1

2q

≤ 2KRε+

(∥∥v(1)
i (Xi)− v(1)

i (0)‖
2q

+
∥∥Û (1)

i (Xi)− v(1)
i (0)

∥∥
2q

)∥∥Xi

∥∥
2q

2q−1

R
, (4.22)

for q > 1 and 2q = 2 + δ with δ as in the statement of the Proposition and by noticing that
(v

(1)
i (Xi) − Û (1)

i (Xi)
)

= (v
(1)
i (Xi) − v(1)

i (0) − (Û (1)
i (Xi) − v(1)

i (0))
)
. Now, by Lipschitz continuity

of v(1)
i , Û (1) and because 0 ∈ B2(R) we have∥∥Û (1)

i (Xi)− v(1)
i (0)

∥∥
2q

+
∥∥v(1)
i (Xi)− v(1)

i (0)
∥∥

2q

≤
∥∥Û (1)

i (0)− v(1)
i (0)

∥∥
2q

+
∥∥Û (1)

i (Xi)− Û (1)
i (0)

∥∥
2q

+
∥∥v(1)
i (Xi)− v(1)

i (0)
∥∥

2q

≤ 2KRε+ 2K
∥∥Xi

∥∥
2q
. (4.23)
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Recalling the standard estimate ‖Xi‖2q ≤ C(1 + ‖X0‖2q ), i = 0, . . . , N , we then have

ε1,y
i ≤ C

{
R2ε2 +

1 +R2ε2

R2

}
,

for some constant C(d,X0) independent of N,R, ε. Similarly, repeating (4.22) and (4.23) by re-
placing respectively Û (1)

i by Ẑ(1)
i and v(1)

i by ẑ(1)
i and recalling that

√
∆tkẑk

(1),
√

∆tkZ(1)
k are dK

Lipschitz uniformly w.r.t N , we obtain

∆tiε
1,z
i ≤ C{R2ε2 +

1 +R2ε2

R2
},

Then to obtain a convergence rate of O(1/N) in (3.3), it suffices to choose R, ε such that

NR2ε2 = O(1/N), N
1 +R2ε2

R2
= O(1/N),

which is verified with if d > 1 with R = O(N), ε = O( 1
N2 ). Then by Proposition 2.1, we can choose

the previously GroupSort neural networks with grouping size κ = O(2
√
dN2), depth `+ 1 = O(d2)

and width
∑`−1
i=0 mi = O((2

√
dN2)d

2−1) if d > 1. If d = 1, we can take κ = O(N2), depth `+1 = 3

and width
∑`−1
i=0 mi = O(N2).

4.3 Proof of Theorem 3.2
Let us introduce the explicit backward Euler scheme of the BSDE (2.3): V̄

(2)
i = Ei

[
V̄

(2)
i+1 − f

(
ti, Xi, V̄

(2)
i+1, Z̄

(2)
i

)
∆ti

]
Z̄

(2)
i = Ei

[
V̄

(2)
i+1

∆Wi

∆ti

]
, i = 0, . . . , N − 1,

(4.24)

starting from V̄
(2)
N = g(XN ), and which is also known to converge with the same time discretization

error (4.2) than the implicit backward scheme.
We decompose the approximation error into three terms:

E
∣∣Yti − Û (2)

i (Xi)
∣∣2 ≤ 3

(
E
∣∣Yti − V̄ (2)

i

∣∣2 + E
∣∣V̄ (2)
i − V (2)

i

∣∣2 + E
∣∣V (2)
i − Û (2)

i (Xi)
∣∣2). (4.25)

The first term is the classical time discretization error, and the rest of the proof is devoted to the
analysis of the second and third terms.

Step 1. Fix i ∈ J0, N−1K. By definition of V (2)
i in (3.4) and the martingale representation theorem,

there exists a square integrable process {Ẑ(2)
s , ti ≤ s ≤ ti+1} such that

Û (2)
i+1(Xi+1)− f

(
ti, Xi,Ei

[
Û (2)
i+1(Xi+1)

]
,Ei
[
σ(ti, Xi)

ᵀDxÛ (2)
i+1(Xi+1)

])
∆ti

= Vi +

∫ ti+1

ti

Ẑ(2)
s .dWs.

It follows that the quadratic loss function of the DS scheme in (2.7) is written as

JSi (Ui)

:= E
∣∣∣Û (2)
i+1(Xi+1)− Ui(Xi)− f

(
ti, Xi+1, Û (2)

i+1(Xi+1), σ(ti, Xi)
ᵀDxÛ (2)

i+1(Xi+1)
)
∆ti

∣∣∣2
= J̃Si (Ui) + E

[ ∫ ti+1

ti

|Ẑ(2)
s |22ds

]
, (4.26)

where

J̃Si (Ui) := E
∣∣∣V (2)
i − Ui(Xi) + ∆fi∆ti

∣∣∣2
with ∆fi := f

(
ti, Xi,Ei[Û (2)

i+1(Xi+1)],Ei[σ(ti, Xi)
ᵀDxÛ (2)

i+1(Xi+1)]
)

− f
(
ti, Xi+1, Û (2)

i+1(Xi+1), σ(ti, Xi)
ᵀDxÛ (2)

i+1(Xi+1)
)
.
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A direct application of the Young inequality in the form (a+ b)2 ≥ 1
2a

2 − b2 leads to

J̃Si (Ui) + |∆ti|2E
∣∣∆fi∣∣2 ≥ 1

2
E
∣∣V (2)
i − Ui(Xi)

∣∣2. (4.27)

On the other hand, by Lipschitz continuity of f , we have

J̃Si (Ui) + |∆ti|2E
∣∣∆fi∣∣2

≤ 2E
∣∣V (2)
i − Ui(Xi)

∣∣2 + 3|∆ti|2E
∣∣∆fi∣∣2

≤ 2E
∣∣V (2)
i − Ui(Xi)

∣∣2 + 9|∆ti|2[f ]2
L
E|Xi+1 −Xi|22

+ 9|∆ti|2[f ]2
L
E
∣∣∣Û (2)
i+1(Xi+1)− Ei[Û (2)

i+1(Xi+1)]
∣∣∣2

+ 9|∆ti|2[f ]2
L
E
∣∣∣σ(ti, Xi)

ᵀDxÛ (2)
i+1(Xi+1)− Ei

[
σ(ti, Xi)

ᵀDxÛ (2)
i+1(Xi+1)

]∣∣∣2
2

≤ 2 E
∣∣V (2)
i − U (2)

i (Xi)
∣∣2 + 9|∆ti|2[f ]2

L
E|Xi+1 −Xi|22

+ 9|∆ti|2[f ]2
L
E
∣∣∣Û (2)
i+1(Xi+1)− Û (2)

i+1(Xi)
∣∣∣2

+ 9|∆ti|2[f ]2
L
E
[
|σ(ti, Xi)|22Ei

∣∣DxÛ (2)
i+1(Xi+1)−DxÛ (2)

i+1(Xi)
∣∣2
2

]
, (4.28)

where we use the definition of conditional expectation Ei[.], and the tower property of conditional
expectation in the last inequality. Recall that Ûi+1 ∈ N γ,η

i is Lipschitz on Rd. Actually, we have∣∣Ûi+1(x)− Ûi+1(x′)
∣∣ ≤ γi|x− x′|2 , ∀x, x′ ∈ Rd .

By the Cauchy-Schwarz inequality, we then have

E
∣∣∣Û (2)
i+1(Xi+1)− Û (2)

i+1(Xi)
∣∣∣2 ≤ Cγ2

i

∥∥Xi+1 −Xi

∥∥2

4

≤ Cγ2
i ∆ti

for ∆ti small enough, R ≥ 1, and we used again the standard estimate: ‖Xi‖2p ≤ C(1 + ‖X0‖2p),
‖Xi+1−Xi‖2p ≤ C(1 + ‖X0‖2p)

√
∆ti, for p ≥ 1. By using also the Lipschitz condition on DxÛi+1,

and plugging into (4.28), we get

J̃Si (Ui) + |∆ti|2E
∣∣∆fi∣∣2 ≤ 2E

∣∣V (2)
i − Ui(Xi)

∣∣2 + C(d) max
[
γ2
i , η

2
i

](
1 +

∥∥X0

∥∥2

4

)2

|∆ti|3.(4.29)

By applying inequality (4.27) to Ui = Û (2)
i , which is a minimizer of J̃ Si by (4.26), and combining

with (4.29), this yields for all functions Ui in N γ,η
i :

E
∣∣V (2)
i − Û (2)

i (Xi)
∣∣2 ≤ C

(
E
∣∣V (2)
i − Ui(Xi)

∣∣2 + (1 + ‖X0‖24)2|∆ti|3 max
[
γ2
i , η

2
i

])
,

and thus by minimizing over Ui in the right hand side

E
∣∣V (2)
i − Û (2)

i (Xi)
∣∣2 ≤ C

(
εγ,ηi + (1 + ‖X0‖24)2|∆ti|3 max

[
γ2
i , η

2
i

])
. (4.30)

Step 2.
From the expressions of V (2)

i , and V̄
(2)
i in (3.4) and (4.24), and by applying the Young, the

Cauchy-Schwarz inequalities, we get with β ∈ (0, 1)
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E
∣∣V̄ (2)
i − V (2)

i

∣∣2
≤ (1 + β)E

∣∣∣Ei[Û (2)
i+1(Xi+1)− V̄ (2)

i+1

]∣∣∣2
+
(
1 +

1

β

)
|∆ti|2E

∣∣∣f(ti, Xi, V̄
(2)
i+1, Z̄

(2)
i

)
− f

(
ti, Xi,Ei[Û (2)

i+1(Xi+1)],Ei[σ(ti, Xi)
ᵀDxÛ (2)

i+1(Xi+1)]
)∣∣∣2

≤ (1 + β)E
∣∣∣Ei[Û (2)

i+1(Xi+1)− V̄ (2)
i+1

]∣∣∣2
+ 2[f ]2

L

(
1 +

1

β

)
|∆ti|2

(
E
∣∣Û (2)
i+1(Xi+1)− V̄ (2)

i+1

∣∣2 + E
∣∣∣Ei[σ(ti, Xi)

ᵀDxÛ (2)
i+1(Xi+1)

]
− Z̄(2)

i

∣∣∣2
2

)
.(4.31)

Now, recalling the expression of Z̄i in (4.24), and by a standard integration by parts argument (see
e.g. Lemma 2.1 in [FTW11]), we have

Ei
[
σ(ti, Xi)

ᵀDxÛ (2)
i+1(Xi+1)

]
− Z̄(2)

i

= Ei
[(
Û (2)
i+1(Xi+1)− V̄ (2)

i+1

)∆Wi

∆ti

]
= Ei

[(
Û (2)
i+1(Xi+1)− V̄ (2)

i+1 − Ei
[
Û (2)
i+1(Xi+1)− V̄ (2)

i+1

])∆Wi

∆ti

]
.

By plugging into (4.31), we then obtain by the Cauchy-Schwarz inequality

E
∣∣V̄i(2) − V (2)

i

∣∣2
≤ (1 + β)E

∣∣∣Ei[Û (2)
i+1(Xi+1)− V̄ (2)

i+1

]∣∣∣2 + 2[f ]2
L

(1 + β)
|∆ti|2

β

{
E
∣∣Û (2)
i+1(Xi+1)− V̄ (2)

i+1

∣∣2
+

d

∆ti

[
E
∣∣Û (2)
i+1(Xi+1)− V̄ (2)

i+1

∣∣2 − E
∣∣∣Ei[Û (2)

i+1(Xi+1)− V̄ (2)
i+1

]∣∣∣2]}
≤ (1 + C∆ti)E

∣∣Û (2)
i+1(Xi+1)− V̄ (2)

i+1

∣∣2, (4.32)

by choosing explicitly β = 2d[f ]2
L

∆ti for ∆ti small enough. By using again the Young inequality
on the r.h.s. of (4.32), and since ∆ti = O(1/N), we then get

E
∣∣V̄ (2)
i − V (2)

i

∣∣2 ≤ (1 + C∆ti)E
∣∣V̄ (2)
i+1 − V

(2)
i+1

∣∣2 + CNE
∣∣Û (2)
i+1(Xi+1)− V (2)

i+1

∣∣2.
By discrete Gronwall lemma, and recalling that V̄ (2)

N = g(XN ), V (2)
N = ÛN (XN ), we deduce with

(4.30) that

sup
i∈J0,NK

E
∣∣V̄ (2)
i − V (2)

i

∣∣2 ≤ Cεγ,ηN + CN

N−1∑
i=1

(
εγ,ηi + (1 + ‖X0‖24)2|∆ti|3 max

[
γ2
i , η

2
i

])
. (4.33)

The required bound (3.5) for the approximation error on Y follows by plugging (4.2), (4.30)
and (4.33) into (4.25). �

4.4 Proof of Proposition 3.2
For x ∈ Rd, we define the processes Xj,x

j+1, j = 0, . . . , N ,

Xj,x
j+1 := x+ µ(tj , x)∆tj + σ(tj , x)∆Wj , j = 0, . . . , N − 1.

Define also  V xi,3 = Ei
[
Û (3)
i+1(Xi,x

i+1)− f
(
ti, x, V

x
i,3, Ẑ

x

i,3

)
∆ti

]
= v

(3)
i (x)

Ẑ
x

i,3 = Ei
[
Û (3)
i+1(Xi,x

i+1)∆Wi

∆ti

]
= ẑ

(3)
i (x)
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with v(3)
i , ẑ

(3)
i as in (3.6) by Markov property.

Step 1. Let x′ ∈ Rd. By the Cauchy-Schwarz inequality, we have the standard estimate

∆tiE
∣∣∣Ẑxi,3 − Ẑx′i,3∣∣∣2

2

=
1

∆ti
E
∣∣∣Ei[{Û (3)

i+1(Xi,x
i+1)− Û (3)

i+1(Xi,x′

i+1)− Ei
[
Û (3)
i+1(Xi,x

i+1)− Û (3)
i+1(Xi,x′

i+1)
]
}∆Wi

]∣∣∣2
≤ d

(
E
∣∣∣Û (3)
i+1(Xi,x

i+1)− Û (3)
i+1(Xi,x′

i+1)
∣∣∣2 − E

∣∣∣Ei[Û (3)
i+1(Xi,x

i+1)− Û (3)
i+1(Xi,x′

i+1)
]∣∣∣2). (4.34)

We then apply the Young inequality to see that

E
∣∣∣V xi,3 − V x′i,3∣∣∣2
≤ (1 + γ∆ti)E

∣∣∣Ei[Û (3)
i+1(Xi,x

i+1)− Û (3)
i+1(Xi,x′

i+1)
]∣∣∣2

+ (1 +
1

γ∆ti
)∆t2iE

∣∣∣{f(ti, x′, V x′i,3, Ẑi3,x′)− f(ti, x, V xi,3, Ẑxi,3)}∣∣∣2
≤ (1 + γ∆ti)E

∣∣∣Ei[Û (3)
i+1(Xi,x

i+1)− Û (3)
i+1(Xi,x′

i+1)
]∣∣∣2

+ 3[f ]2(1 +
1

γ∆ti
)∆t2iE{|x− x′|22 + |V xi,3 − V x

′

i,3|2 + |Ẑ
x

i,3 − Ẑ
x′

i,3|22}.

Hence for γ = 3[f ]2d and ∆ti small enough, using (4.34) we obtain

E
∣∣∣V xi,3 − V x′i,3∣∣∣2 ≤ (1 + (γ + 3d)∆ti)E

∣∣∣Û (3)
i+1(Xi,x

i+1)− Û (3)
i+1(Xi,x′

i+1)
∣∣∣2

+ (1 + (γ + 3d)∆ti)∆tiE|x− x′|22.

Therefore, with Lemma 3.1

|v(3)
N−1(x)− v(3)

N−1(x′)|2 = E
∣∣∣V xN−1,3 − V x

′

N−1,3

∣∣∣2
≤ (1 + (γ + 3d)∆tN−1)((1 + C∆tN−1)[g]2 + ∆ti)|x− x′|22
≤ (1 + Ĉ∆tN−1)([g]2 + ∆ti)|x− x′|22,

for some constant Ĉ. Similarly, assuming Û (3)
i+1 is [Û (3)

i+1]−Lipschitz, v(3)
i is Lipschitz with constant

[v
(3)
i ] verifying

[v
(3)
i ]2 ≤ (1 + Ĉ∆ti)([Û (3)

i+1]2 + ∆ti).

Step 2. Let ε > 0, κ ∈ N, ` ∈ N, m ∈ R` to be chosen after. Recursively, we approximate v(3)
i by

a [v
(3)
i ]-Lipschitz GroupSort neural network U (3)

i in Ni = Gζκ
[v

(3)
i ],d,1,`,m

with uniform error 2[vi]Rε

on [−R,R]d (Proposition 2.1). Then by discrete Gronwall inequality

[U (3)
i ]2 ≤ K, [v

(3)
i ]2 ≤ K,

uniformly in i,N for some constant K. Thus v(3)
i ,U (3)

i are K Lipschitz, uniformly. Then we

approximate by (4.34) ẑi(3) by a
√

d
∆ti

[v
(3)
i ]-Lipschitz GroupSort neural network Zi in N ′i =

Gζκ√
d

∆ti
[v

(3)
i ],d,d,`,m

with uniform error 2 d√
∆ti

[v
(3)
i ]Rε on [−R,R]d thanks to Proposition 2.1. Thus

√
∆tiẑi

(3),
√

∆tiZ(3)
i are dK Lipschitz, uniformly.

Step 3. The regression errors ε3,y
i verify from, localization of Xi on B2(R), the Hölder inequality,

and the Markov inequality, the approximation error of v(3)
i , i ∈ J0, N−1K, by the class of GroupSort
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neural networks (Proposition 2.1)√
ε3,y
i = inf

U∈G[vk],d,1

∥∥v(3)
i (Xi)− U(Xi)

∥∥
2

≤ inf
U∈G[vk],d,1

∥∥∥(v(3)
i (Xi)− U(Xi)

)
1
Xi∈B2(R)

∥∥∥
2

+
∥∥∥(v(3)

i (Xi)− Û (3)
i (Xi)

)
1|Xi|2≥R

∥∥∥
2

≤ 2KRε+ E
∣∣∣(v(3)

i (Xi)− Û (3)
i (Xi)

)2q∣∣∣1/2qE∣∣∣1 2q
2q−1

|Xi|2≥R

∣∣∣ 2q−1
2q

= 2KRε+ E
∣∣∣(v(3)

i (Xi)− Û (3)
i (Xi)

)2q∣∣∣1/2qE[1|Xi|2≥R
]
2q−1

2q

≤ 2KRε+

(∥∥v(3)
i (Xi)− v(3)

i (0)‖
2q

+
∥∥Û (3)

i (Xi)− v(3)
i (0)

∥∥
2q

)∥∥Xi

∥∥
2q

2q−1

R
, (4.35)

by noticing that (v
(3)
i (Xi)− Û (3)

i (Xi)
)

= (v
(3)
i (Xi)− v(3)

i (0)− (Û (3)
i (Xi)− v(3)

i (0))
)
for q > 0 and

2q = 2 + δ with δ as in the statement of the Proposition. Now, by Lipschitz continuity of v(3)
i , Û (3)

and because 0 ∈ B2(R) we have∥∥Û (3)
i (Xi)− v(3)

i (0)
∥∥

2q
+
∥∥v(3)
i (Xi)− v(3)

i (0)
∥∥

2q

≤
∥∥Û (3)

i (0)− v(3)
i (0)

∥∥
2q

+
∥∥Û (3)

i (Xi)− Û (3)
i (0)

∥∥
2q

+
∥∥v(3)
i (Xi)− v(3)

i (0)
∥∥

2q

≤ 2KRε+ 2K
∥∥Xi

∥∥
2q
. (4.36)

Recalling the standard estimate ‖Xi‖2q ≤ C(1 + ‖X0‖2q ), i = 0, . . . , N , we then have

ε3,y
i ≤ C

{
R2ε2 +

1 +R2ε2

R2

}
,

for some constant C(d,X0) independent of N,R, ε. Similarly repeating (4.35) and (4.36) by re-
placing respectively Û (3)

i by Ẑ(3)
i and v(3)

i by ẑ(3)
i and recalling that

√
∆tiẑi

(3),
√

∆tiZ(3)
i are dK

Lipschitz uniformly w.r.t. N , we obtain

∆tiε
3,z
i ≤ C

{
R2ε2 +

1 +R2ε2

R2

}
.

Then to obtain a convergence rate of O(1/N) in (3.7), it suffices to choose R, ε such that

N2R2ε2 = O(1/N), N2 1 +R2ε2

R2
= O(1/N),

which is verified with R = O(N3/2), ε = O( 1
N3 ). Then by Proposition 2.1, if d > 1 we can

choose the previously GroupSort neural networks with grouping size κ = O(d2
√
dN3e), depth

` + 1 = O(d2) and width
∑`−1
i=0 mi = O((2

√
dN3)d

2−1). If d = 1, we can take κ = O(N3), depth
`+ 1 = 3 and width

∑`−1
i=0 mi = O(N3).

5 Numerical Tests
We test our different algorithms and the cited ones in this paper on some examples and by varying
the state space dimension. In each example we use tanh as activation function, and an architecture
composed of 2 hidden layers with d + 10 neurons. We apply Adam gradient descent [KB14] with
a decreasing learning rate, using the Tensorflow library. Each numerical experiment is conducted
using a node composed of 2 Intel® Xeon® Gold 5122 Processors, 192 Gb of RAM, and 2 GPU
nVidia® Tesla® V100 16Gb. We use a batch size of 1000. We do not implement the GroupSort
network because even if it is useful for theoretical analysis, it would be costly to use in practice: on
the one hand, it will induce a cost of order O(n lnn) where n is the batch size, compared to a linear
cost O(n) for standard activation function; on the other hand, it requires to track the Lipschitz
constant of the functions and adapt the networks architecture accordingly. Whereas theoretical
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results suggest to take deep neural networks with depth increasing with the dimension, we observe
that two hidden layers are enough to obtain a good accuracy. According to our experience tanh
activation function provides the best results. ReLU or Elu being not bounded, some explosion
tends to appear when the learning rates are not small enough.
We consider examples from [HPW20] to compare its DBDP scheme with the DS and MDBDP
schemes. The three first lines of the tables below are taken from [HPW20]. For each test, the
two best results are highlighted in boldface. We use 5000 gradient descent iterations by time step
except 20000 for the projection of the final condition. The execution of the multistep algorithm
approximately takes between 8000 s. and 16000 s. (depending on the dimension) for a resolution
with N = 120. More numerical examples and tests are presented in the extended version [GPW20]
of this paper, and the codes at: https://github.com/MaxGermain/MultistepBSDE.

5.1 PDE with Bounded Solution and Simple Structure

We take the parameters: µ = 0.2
d , σ = Id√

d
, terminal condition g(x) = cos(x), with x =

∑d
i=1 xi,

and generator

f(x, y, z)

= −
(

cos(x) + 0.2 sin(x)
)
e
T−t

2 +
1

2
(sin(x) cos(x)eT−t)2 − 1

2d
(y(1d · z))2.

so that the PDE solution is given by u(t, x) = cos (x) exp
(
T−t

2

)
.

We fix T = 1, and increase the dimension d. The results are reported in Figure 2 for d = 10,
in Figure 3 for d = 20, and in Figure 4 for d = 50. It is observed that all the schemes DBDP,
DBSDE and MDBDP provide quite accurate results with smallest standard deviation for MDBDP,
and largely outperforms the DS scheme.

Averaged value Standard deviation Relative error (%)
[HPW20] (DBDP1) - 1.3895 0.0015 0.44
[HPW20] (DBDP2) - 1.3913 0.0006 0.57
[HJE17] (DBSDE) - 1.3880 0.0016 0.33
[Bec+19] (DS) - 1.4097 0.0173 1.90

MDBDP -1.3887 0.0006 0.38

Figure 2: Estimate of u(0, x0) in the case (5.1), where d = 10, x0 = 1 110, T = 1 with 120 time
steps. Average and standard deviation observed over 10 independent runs are reported. The
theoretical solution is -1.383395.

Averaged value Standard deviation Relative error (%)
[HPW20] (DBDP1) 0.6760 0.0027 0.47
[HPW20] (DBDP2) 0.6710 0.0056 0.27
[HJE17] (DBSDE) 0.6869 0.0024 2.09
[Bec+19] (DS) 0.6944 0.0201 3.21

MDBDP 0.6744 0.0005 0.24

Figure 3: Estimate of u(0, x0) in the case (5.1), where d = 20, x0 = 1 120, T = 1 with 120 time
steps. Average and standard deviation observed over 10 independent runs are reported. The
theoretical solution is 0.6728135.
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Averaged value Standard deviation Relative error (%)
[HPW20] (DBDP1) 1.5903 0.0063 0.04
[HPW20] (DBDP2) 1.5876 0.0068 0.21
[HJE17] (DBSDE) 1.5830 0.0361 0.50
[Bec+19] (DS) 1.6485 0.0140 3.62

MDBDP 1.5924 0.0005 0.09

Figure 4: Estimate of u(0, x0) in the case (5.1), where d = 50, x0 = 1 150, T = 1 with 120 time
steps. Average and standard deviation observed over 10 independent runs are reported. The
theoretical solution is 1.5909.

5.2 PDE with Unbounded Solution and more Complex Structure
We consider a toy example with solution given by

u(t, x) =
T − t
d

d∑
i=1

(sin(xi)1xi<0 + xi1xi≥0) + cos
( d∑
i=1

ixi

)
.

Therefore we take the parameters

µ = 0, σ =
Id√
d
, T = 1, f(t, x, y, z) = k(t, x)− y√

d
(1d · z)−

y2

2
(5.2)

with k(t, x) = ∂tu+ 1
2d Tr(D2

xu) + u√
d

∑
iDxiu+ u2

2 .

We start with tests in dimension d = 1. The results are reported in Figure 5.

Averaged value Standard deviation Relative error (%)
[HPW20] (DBDP1) 1.3720 0.0030 0.41
[HPW20] (DBDP2) 1.3736 0.0022 0.29
[HJE17] (DBSDE) 1.3724 0.0005 0.38
[Bec+19] (DS) 1.3630 0.0079 1.06

MDBDP 1.3735 0.0003 0.30

Figure 5: Estimate of u(0, x0) in the case (5.2), where d = 1, x0 = 0.5, T = 1 with 120 time steps.
Average and standard deviation observed over 10 independent runs are reported. The theoretical
solution is 1.3776.

We next increase the dimension to d = 8, and report the results in the following figure. The
accuracy is not so good as in the previous section with simple structure of the solution, but we
notice that the MDBDP scheme yields the best performance (above dimension d = 10, all the
schemes do not give good approximation results).

Averaged value Standard deviation Relative error (%)
[HPW20] (DBDP1) 1.1694 0.0254 0.78
[HPW20] (DBDP2) 1.0758 0.0078 7.28
[HJE17] (DBSDE) NC NC NC
[Bec+19] (DS) 1.2283 0.0113 5.86

MDBDP 1.1654 0.0379 0.47

Figure 6: Estimate of u(0, x0) in the case (5.2), where d = 8, x0 = 0.5 18, T = 1 with 120 time steps.
Average and standard deviation observed over 10 independent runs are reported. The theoretical
solution is 1.1603.
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