
HAL Id: hal-02696205
https://hal.science/hal-02696205v1

Preprint submitted on 1 Jun 2020 (v1), last revised 15 Sep 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep backward multistep schemes for nonlinear PDEs
and approximation error analysis

Maximilien Germain, Huyen Pham, Xavier Warin

To cite this version:
Maximilien Germain, Huyen Pham, Xavier Warin. Deep backward multistep schemes for nonlinear
PDEs and approximation error analysis. 2020. �hal-02696205v1�

https://hal.science/hal-02696205v1
https://hal.archives-ouvertes.fr


Deep backward multistep schemes for nonlinear PDEs
and approximation error analysis ∗

Maximilien Germain † Huyên Pham ‡ Xavier Warin §

June 1, 2020

Abstract

We develop multistep machine learning schemes for solving nonlinear partial differential equations (PDEs)
in high dimension. The method is based on probabilistic representation of PDEs by backward stochastic
differential equations (BSDEs) and its iterated time discretization. In the case of semilinear PDEs, our
algorithm estimates simultaneously by backward induction the solution and its gradient by neural networks
through sequential minimizations of suitable quadratic loss functions that are performed by stochastic gra-
dient descent. The approach is extended to the more challenging case of fully nonlinear PDEs, and we propose
different approximations of the Hessian of the solution to the PDE, i.e., the Γ-component of the BSDE, by
combining Malliavin weights and neural networks. Extensive numerical tests are carried out with various
examples of semilinear PDEs including viscous Burgers equation and examples of fully nonlinear PDEs like
Hamilton-Jacobi-Bellman equations arising in portfolio selection problems with stochastic volatilities, or
Monge-Ampère equations in dimension up to 15. The performance and accuracy of our numerical results
are compared with some other recent machine learning algorithms in the literature, see [HJE17], [HPW20],
[BEJ19], [Bec+19] and [PWG19].

Furthermore, we provide a rigorous approximation error analysis of the deep backward multistep scheme
as well as the deep splitting method for semilinear PDEs, which yields convergence rate in terms of the
number of neurons for shallow neural networks.

Key words: Nonlinear PDEs, Backward SDEs, neural networks, numerical approximation, multistep schemes,
Malliavin weights, error estimates.

MSC Classification: 60H35, 65C20, 65M12.

∗This work is supported by FiME, Laboratoire de Finance des Marchés de l’Energie, and the ”Finance and Sustainable Devel-
opment” EDF - CACIB Chair.
†EDF R&D, LPSM, Université de Paris mgermain at lpsm.paris
‡LPSM, Université de Paris, FiME, CREST ENSAE pham at lpsm.paris
§EDF R&D, FiME xavier.warin at edf.fr

1

mailto:Maximilien.Germain at edf.fr
mailto:pham at lpsm.paris
mailto:xavier.warin at edf.fr


Contents
1 Introduction 2

2 BSDE Machine learning schemes for semilinear PDEs 4
2.1 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Existing schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Deep backward multi-step scheme (MDBDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Extension to fully non linear PDEs: second order deep backward multistep scheme 10

4 Convergence analysis in the semilinear case 13
4.1 Convergence of the MDBDP scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Convergence of the DS scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Proof of the main theoretical results 16
5.1 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Proof of Proposition 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4 Proof of Proposition 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Numerical study 25
6.1 Semilinear PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.1.1 PDE with bounded solution and simple structure . . . . . . . . . . . . . . . . . . . . . . . 25
6.1.2 PDE with unbounded solution and more complex structure . . . . . . . . . . . . . . . . . 27
6.1.3 Viscous Burgers equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2 Fully nonlinear PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2.1 PDE with bounded solution and simple structure . . . . . . . . . . . . . . . . . . . . . . . 31
6.2.2 Monge-Ampère equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2.3 Portfolio selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3 Results synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1 Introduction
Let us consider the nonlinear parabolic partial differential equation (PDE) of the form{

∂tu+ µ ·Dxu+ 1
2 Tr(σσᵀD2

xu) = f(·, ·, u, σᵀDxu) on [0, T )× Rd

u(T, ·) = g on Rd,
(1.1)

with µ, σ functions defined on [0, T ] × Rd, valued respectively in Rd, and Md (the set of d × d matrices), a
nonlinear generator function f defined on [0, T ]×Rd ×R×Rd, and a terminal function g defined on Rd. Here,
the operators Dx, D

2
x refer respectively to the first and second order spatial derivatives, the symbol . denotes

the scalar product, and ᵀ is the transpose of vector or matrix.
A major challenge in the numerical resolution of such semilinear PDEs is the so-called "curse of dimensional-

ity" making unfeasible the standard discretization of the state space in dimension greater than 3. Probabilistic
mesh-free methods based on the Backward Stochastic Differential Equation (BSDE) representation of semilinear
PDEs through the nonlinear Feynman-Kac formula were developed in [Zha04], [BT04], [GLW05], [LGW06] to
overcome this obstacle. These schemes are successfully applied upon dimension 6 or 7, nevertheless, their use
of regression methods implies a dimension dependence through the number of required basis functions. Let us
also mention recent probabilistic approach relying on (i) branching method, see [HL+19] and [War17], and (ii)
on multilevel Picard methods, developed in [E+18] and [Hut+18] with algorithms based on Picard iterations,
multi-level techniques and automatic differentiation. These methods permit to handle some high dimensional
PDEs with non linearity in u and its gradient Dxu, with convergence results as well as numerous numerical
examples showing their efficiency in high dimension.

An even more challenging problem is to design numerical schemes for high dimensional fully nonlinear PDEs
of the form {

∂tu+ µ ·Dxu+ 1
2 Tr(σσᵀD2

xu) = F (·, ·, u,Dxu,D
2
xu) on [0, T )× Rd

u(T, ·) = g on Rd.
(1.2)

In this case, the nonlinearity of the PDE also carries on the second order derivative through the function F ,
which is now defined on the larger space [0, T ]×Rd ×R×Rd × Sd with Sd the set of symmetric d× d matrices.

2



Several methods are available to solve fully nonlinear equations mostly in low or moderate dimension. Let us
mention among others:

• Deterministic methods based on finite-difference and finite-element: we refer to [FGN13] for a review of
this extensive literature.

• Max-plus methods for Hamilton-Jacobi-Bellman equations, see e.g. [McE07], [AGL08].

• An effective scheme developed in [FTW11], using some regression techniques, has been shown to be
convergent under some ellipticity conditions. Due to the use of basis functions, this scheme does not
permit to solve PDE in dimension greater than 5.

• A scheme based on nesting Monte Carlo has been recently proposed in [War18]. It seems to be effective
in very high dimension for not too long maturities and small non linearities. However, no results of
convergence is given.

Over the last few years, machine learning methods have emerged since the pioneering papers by [HJE17]
and [SS17], and have shown their efficiency for solving high-dimensional nonlinear PDEs by means of neural
networks approximation. The work [HJE17] introduces a global machine learning resolution technique for the
BSDE approach. The solution is represented by one feedforward neural network by time step, whose parameters
are chosen as solutions of a single global optimization problem. It allows to solve PDEs in high dimension
and a convergence study of Deep BSDE is conducted in [HL18]. Variants with a single neural network or
Long Short Term Memory (LSTM) networks are extensively tested in [CWNMW19], alongside a fixed point
machine learning method relying on branching processes. Extension to fully nonlinear PDEs has been proposed
by [BEJ19] based on the second order backward stochastic differential equations (2BSDE) representation of
[Che+07] and global deep neural networks minimizing a terminal objective function, but no test on real fully
nonlinear case is given. The Deep Galerkin method of [SS17] proposes another global meshfree method with
a random sampling of time and space points inside a bounded domain. Their authors propose a convergence
study without rate of the scheme in Lebesgue spaces for semilinear equations on bounded domains. Neural
networks with a specific structure especially designed to represent Hamilton Jacobi Bellman equations solutions
are also derived in [DLM19].

A different point of view is proposed by [HPW20] with convergence results in L2 for solving semilinear
PDEs, where the solution and its gradient are estimated simultaneously by backward induction through the
minimization of sequential loss functions. Similar idea also appears in [VSS18] for linear PDEs. At the cost
of solving multiple optimization problems, the Deep Backward scheme of [HPW20] verifies better stability and
accuracy properties than the global method in [HJE17], as illustrated on several test cases. The recent paper
[Bec+19] also introduces machine learning schemes based on local loss functions, called Deep Splitting method
which estimates the PDE solution through backward explicit local optimization problems relying on a neural
network regression method for the computation of conditional expectations. Finally, we mention our paper
[PWG19], which combines ideas in [HPW20] and [Bec+19] to propose a neural networks-based scheme for fully
nonlinear PDEs where the Hessian is approximated by automatic differentiation of the gradient computed at
the previous step.

In this paper, we propose machine learning schemes that use multistep methods introduced in [BD07]
and [GT14] (see also [GT16], [Tur15]). The idea is to rely on the whole previously computed values of the
discretized processes in the backward computations of the approximation. According to these works, it leads
to a better propagation of regression errors. We shall adapt this approach to the deep backward scheme
(DBDP) of [HPW20], leading to the so-called deep backward multi-step scheme (MDBDP). This can be viewed
as a machine learning version of the Multi-step Forward Dynamic Programming method studied by [GT14].
However, instead of solving at each time step two regression problems, our approach allows to consider only a
single minimization as in the DBDP scheme. Compared to the latter, the multi-step consideration is expected to
provide better accuracy by reducing the propagation of errors in the backward induction. Our main theoretical
contribution is a detailed study of the approximation error of MDBDP scheme. Furthermore, by relying on
recent approximation results for shallow neural networks in [Bac17], and by deriving estimates for Lipschitz
constants of shallow neural networks and its gradient, we can obtain a rate of convergence of our scheme in
terms on the number of neurons. The arguments can be adapted to show the convergence of the deep splitting
(DS) method in [Bec+19], and we show in particular that the error rate for MDBDP improves the rate of DBDP
and DS schemes.

Next, we extend this deep multistep backward scheme to the fully nonlinear PDE case where the main
difficulty is to provide en efficient approximation of the Hessian, or equivalently of the Γ-component of the
BSDE. We first give a multistep version of the scheme in [PWG19]. Then, we combine ideas from the Malliavin
regression scheme of [GT16] together with the monotone scheme from [FTW11], in order to approximate the
Hessian by neural networks. This can be done with Malliavin weights of order one or two, hence corresponding

3



to two versions of the algorithm, and it leads to more stable approximation of the Hessian than the algorithm
in [PWG19].

We provide numerous and various numerical tests of our proposed algorithms both for semilinear and fully
nonlinear PDEs, and we compare our results with the cited machine learning schemes. Our examples include
viscous Burgers equations, fully nonlinear Hamilton-Jacobi-Bellman equations arising from portfolio selection
problems, and Monge-Ampère equations up to dimension 15.

The outline of the paper is organized as follows. In Section 2, we give a brief reminder on neural networks
and notably on a specific class of shallow network functions considered in [Bac17] that yields an approximation
result with rate of convergence for Lipschitz functions. We also review recent machine learning schemes for
the numerical resolution of semilinear PDEs. We then describe in detail the deep backward multi-step scheme.
We then extend in Section 3 our algorithm to the case of fully nonlinear PDEs. We state in Section 4 the
convergence of the deep backward multi-step and splitting schemes, while Section 5 is devoted to the proof of
these results. Finally, we present all the numerical results in Section 6, and we conclude with some discussion
about the pros and cons of the different tested algorithms. All the codes of the implemented algorithms in this
paper are available at: https://github.com/MaxGermain/MultistepBSDE.

2 BSDE Machine learning schemes for semilinear PDEs
In this section, we review recent numerical schemes, and present a new scheme for the resolution of the semi-
linear PDE (1.1) by approximations in the class of neural networks and relying on probabilistic representation
of the solution to the PDE.

2.1 Neural networks
We denote by

Lρd1,d2 =
{
φ : Rd1 → Rd2 : ∃ (W, β) ∈ Rd2×d1 × Rd2 , φ(x) = ρ(Wx+ β)

}
,

the set of layer functions with input dimension d1, output dimension d2, and activation function ρ : R → R.
Here, the activation is applied component-wise, i.e., ρ(x1, . . . , xd2) =

(
ρ(x1), . . . , ρ(xd2)

)
, to the affine map x ∈

Rd1 7→ Wx+β ∈ Rd2 , with a matrixW called weight, and vector β called bias. Standard examples of activation
functions are the sigmoid, the ReLu, the Elu, tanh. When ρ is the identity function, we simply write Ld1,d2 .

We then define

N ρ
d0,d′,`,m

=
{
ϕ : Rd0 → Rd

′
: ∃φ0 ∈ Lρd0,m, ∃φi ∈ L

ρ
m,m, i = 1, . . . , `− 1, ∃φ` ∈ Lm,d′ ,

ϕ = φ` ◦ φ`−1 ◦ · · · ◦ φ0

}
,

as the set of feedforward (or artificial) neural networks with input layer dimension d0, output layer dimension
d′, and ` hidden layers with m neurons (or units). These numbers d0, d

′, `,m, and the activation function ρ,
form the architecture of the network. When ` = 1, one usually refers to shallow neural networks, as opposed
to deep neural networks which have several hidden layers. In the sequel, we shall mostly work with the case
d0 = d (dimension of the state variable x) and d′ = 1 (dimension of value function u) or d′ = d (dimension of
gradient function Dxu).

A given network function ϕ ∈ N ρ
d0,d′,`,m

is determined by the weight/bias parameters θ = (W0, β0, . . . ,W`, β`)
defining the layer functions φ0 . . . , φ`, and we shall sometimes write ϕ = ϕθ. The set of parameters is denoted by
Θ. When there are no constraints as in the above definition and practically the case in numerical implementation,
Θ = RM , where M = m(d0 + 1) + m(m + 1)(` − 1) + d′(m + 1) is the number of parameters. For theoretical
analysis, we may consider sparsity-inducing norms on the parameters as in [Bac17] for an architecture with a
single hidden layer ` = 1 and ReLuα activation function, i.e., ρ(x) = (x+)α, for some integer α, with x+ =

max(x, 0). In this case, we denote by Nα,R,γ
d,m,d′ , for γ,R ≥ 1, the set of network functions ϕθ : Rd → Rd′ , with

parameters θ = (W0, β0,W1, β1) ∈ Rm×d × Rm × Rd′×m × Rd′ satisfying row by row

|(Wi
0, β

i
0/R)|2 =

1

R
, i ∈ J1,mK, and |(Wk

1 , β
k
1 )|

1
≤ γ, k ∈ J1, d′K, (2.1)

where |.|1 , |.|2 and |.|∞ are respectively the `1, `2 and `∞ norms in Euclidian spaces. We simply denote as usual
|.| for the norm on R.

In the sequel, we shall mainly focus on the cases α = 1 or 2, and d′ = 1 or d. Notice that a network function
ϕ ∈ Nα,R,γ

d,m,d′ , for α = 2, is C1. We state an elementary Lemma about the growth and Lipschitz properties on
network functions in theses classes.

4

https://github.com/MaxGermain/MultistepBSDE


Lemma 2.1. (1) Let φ ∈ N 1,R,γ
d,m,d′ . Then

|φ(x)|2 ≤
√
d′|φ(x)|∞ ≤

√
dd′γmax

(
1,
|x|

2

R

)
, x ∈ Rd, (2.2)

|φ(x)− φ(x′)|
2
≤
√
d′ |φ(x)− φ(x′)|∞ ≤

√
d′
γ

R
|x− x′|

2
, x, x′ ∈ Rd. (2.3)

(2) Let ϕ ∈ N 2,R,γ
d,m,1 . Then,

|ϕ(x)| ≤ γ
(

1 + 2 max
[
1,
|x|2

2

R2

])
, x ∈ Rd, (2.4)

|Dxϕ(x)|2 ≤
√
d|Dxϕ(x)|∞ ≤ 2d

γ

R
max

(
1,
|x|2
R

)
, x ∈ Rd, (2.5)∣∣Dxϕ(x)−Dxϕ(x′)

∣∣
∞
≤ 2

γ

R2
|x− x′|2 , x, x′ ∈ Rd. (2.6)

Proof. (1) By definition of φ = φθ ∈ N 1,R,γ
d,m,d′ , with parameter θ = (W0, β0,W1, β1), the k-th component of the

Rd′ -valued function φ is equal to

φk(x) =

m∑
i=1

Wki
1

( d∑
j=1

Wij
0 xj + βi0

)
+

+ βk1 , x ∈ Rd, k ∈ J1, d′K.

We deduce that

∣∣φk(x)
∣∣ ≤ m∑

i=1

|Wki
1 |
[
|x|

2

d∑
j=1

|Wij
0 |+ |βi0|

]
+ |βk1 |

≤ max(|x|
2
, R)

m∑
i=1

|Wki
1 ||(Wi

0, β
i
0/R)|

1
+ |βk1 |

≤
√
dmax(|x|

2
, R)

m∑
i=1

|W1i
1 ||(Wi

0, β
i
0/R)|

2
+ |βk1 | ≤

√
dmax

(
1,
|x|

2

R

) m∑
i=1

|W1i
1 |+ |βk1 |

≤
√
dmax

(
1,
|x|

2

R

)
|(Wk

1 , β
k
1 )|1 ≤

√
dγmax

(
1,
|x|

2

R

)
,

where we used the fact that |.|
1
≤
√
d|.|

2
in Rd, and the condition (2.1) on θ. We get the required growth

condition (2.2) by recalling that | · |2 ≤
√
d′| · |∞ in Rd′ .

On the other hand, since ReLu function is 1-Lipschitz, we have for all x, x′ ∈ Rd,

|φk(x)− φk(x′)| ≤
m∑
i=1

|Wki
1 |

d∑
j=1

|Wij
0 ||xj − x′j |

≤
m∑
i=1

|Wki
1 ||Wi

0|2 |x− x′|2 ≤
1

R
|Wk

1 |1 |x− x′|2 ≤
γ

R
|x− x′|

2
,

by Cauchy-Schwarz inequality, and the condition (2.1) on θ. This proves the required Lipschitz property (2.3)
for φ.
(2) By definition of ϕ = ϕθ ∈ N 2,R,γ

d,m,1 , with θ = (W0, β0,W1, β1), we have

ϕ(x) =

m∑
i=1

W1i
1

∣∣∣( d∑
j=1

Wij
0 xj + βi0

)
+

∣∣∣2 + β1, x ∈ Rd, (2.7)

and thus by Cauchy-Schwarz inequality

|ϕ(x)| ≤ 2

m∑
i=1

|W1i
1 |
[
|x|2

2

d∑
j=1

|Wij
0 |2 + |βi0|2

]
+ |β1|

≤ 2 max(|x|2
2
, R2)

m∑
i=1

|W1i
1 ||(Wi

0, β
i
0/R)|2

2
+ |β1|.

5



From the condition (2.1) on θ, this shows the required quadratic growth condition on ϕ. Next, from (2.7), we
derive

∂xjϕ(x) = 2

m∑
i=1

W1i
1 W

ij
0

( d∑
j=1

Wij
0 xj + βi0

)
+
, j = 1, . . . , d, (2.8)

from which we deduce that

∣∣Dxϕ(x)
∣∣
∞
≤ 2

m∑
i=1

|W1i
1 ||Wi

0|2
[
|x|

2

d∑
j=1

|Wij
0 |+ |βi0|

]
≤ 2 max(|x|

2
, R)

m∑
i=1

|W1i
1 ||Wi

0|2 |(Wi
0, β

i
0/R)|

1

≤ 2
√
dmax(|x|

2
, R)

m∑
i=1

|W1i
1 ||Wi

0|2 |(Wi
0, β

i
0/R)|

2
.

From the condition (2.1) on θ, this shows the required linear growth condition on Dxϕ.
Finally, from (2.8), and since ReLu function is 1-Lipschitz, we see by Cauchy-Schwarz inequality that for all

x, x′ ∈ Rd,

∣∣Dxϕ(x)−Dxϕ(x′)
∣∣
∞
≤ 2

m∑
i=1

|W1i
1 ||W i

0|2 |W i
0|1 |x− x′|2 ,

which ends the proof by using again the condition (2.1) on θ. �

Remark 2.1. Relation (2.3)in Lemma 2.1 means that any φ ∈ N 1,R,γ
d,m,d is Lipschitz on Rd with Lipschitz constant

[φ]
L
≤ C(d)γ/R, for some constant C(d) that depends only on the input dimension d (but not on the number

of neurons). Relation (2.5) shows in particular that any ϕ ∈ N 2,R,γ
d,m,1 is locally Lipschitz, and

[ϕ]
L,R

:= sup
x,x′∈B2(R),x 6=x′

|ϕ(x)− ϕ(x′)|
|x− x′|

2

≤ C(d)
γ

R
,

Here, B2(R) denotes the ball B2(R) := {x ∈ Rd : |x|
2
≤ R}. Moreover, relation (2.6) means that Dxϕ is

Lipschitz continuous on Rd with Lipschitz constant [Dxϕ]
L
≤ C(d) γ

R2 . �

We recall the fundamental results of [HSW89]-[HSW90] that justify the use of neural networks as function
approximators.
Universal approximation theorem. The space

⋃∞
m=1N

ρ
d0,d′,`,m

is dense in L2(ν), the set of measurable
functions h : Rd0 → Rd′ s.t.

∫
|h(x)|2

2
ν(dx) <∞, for any finite measure ν on Rd0 , whenever ρ is continuous and

non-constant.

This universal approximation theorem does not provide any rate of convergence, nor reveals even in theory
how to achieve a given accuracy for a fixed number of neurons. There are few results in the literature that prove
precise rates of convergence for approximation with deep neural networks, and most of them focus on single
hidden layer. We mention the recent approximation theorem for (locally) Lipschitz continuous functions, which
results from Proposition 6 combined with Proposition 1 (for α = 1) or Section 2.5 (for α = 2), in [Bac17], and
motivates the introduction of the set of network functions Nα,R,γ

d,m,d′ .
Approximation of Lipschitz continuous functions with finitely many neurons. For any locally Lipchitz
continuous function h : Rd → Rd′ , s.t. [h]

L,R
≤ η, there exists ϕ ∈ Nα,R,γ

d,m,d′ , for some γ larger than a constant
depending only on d, such that√∫

x∈B2(R)

|h(x)− ϕ(x)|2
2
ρ(dx) ≤ C(d, d′)

(
η
(γ
η

)− 1
α+(d−1)/2

ln
(γ
η

)
+ γm−dα

)
, (2.9)

with dα = (d+ 3)/(2d) for α = 1, and dα = 1/2 for α = 2, and where C(d, d′) is a constant that depends only
on d, d′, and ρ is a probability measure on Rd.

6



2.2 Existing schemes
We recall recent machine learning schemes that will serve as benchmarks for our new scheme described in the
next section. All these schemes rely on Backward Stochastic Differential Equation (BSDE) representation of
the solution to the PDE, and differ according to the formulation of the time discretization of the BSDE

For this purpose, let us introduce the diffusion process X in Rd associated to the linear part of the differential
operator in the PDE (1.1), namely:

Xt = X0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, 0 ≤ t ≤ T, (2.10)

where W is a d-dimensional standard Brownian motion on some probability space (Ω,F ,P) equipped with a
filtration F = (Ft)t, and X0 is an F0-measurable random variable valued in Rd. Recall from [PP90] that the
solution u to the PDE (1.1) admits a probabilistic representation in terms of the BSDE:

Yt = g(XT )−
∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

Zs.dWs, 0 ≤ t ≤ T, (2.11)

via the Feynman-Kac formula Yt = u(t,Xt), 0 ≤ t ≤ T . When u is a smooth function, this BSDE representation
is directly obtained by Itô’s formula applied to u(t,Xt), and we have Zt = σ(t,Xt)ᵀDxu(t,Xt), 0 ≤ t ≤ T .

Let π be a subdivision {t0 = 0 < t1 < · · · < tN = T} with modulus |π| := supi ∆ti, ∆ti := ti+1 − ti,
satisfying |π| = O

(
1
N

)
, and consider the Euler-Maruyama discretization (Xi)i=0,...,N defined by

Xi = X0 +

i−1∑
j=0

µ(tj , Xj)∆tj +

i−1∑
j=0

σ(tj , Xj)∆Wj ,

where ∆Wj := Wtj+1
−Wtj , j = 0, . . . , N . When the diffusion process X cannot be directly simulated, we shall

rely on the simulated paths of (Xi)i that act as training data in the setting of machine learning, and thus our
training set can be chosen as large as desired.

The time discretization of the BSDE (2.11) can be written in backward induction as

Y πi = Y πi+1 − f(ti, Xi, Y
π
i , Z

π
i )∆ti − Zπi .∆Wi, i = 0, . . . , N − 1, (2.12)

which also reads as conditional expectation formulae Y πi = Ei
[
Y πi+1 − f(ti, Xi, Y

π
i , Z

π
i )∆ti

]
Zπi = Ei

[
∆Wi

∆ti
Y πi+1

]
, i = 0, . . . , N − 1,

(2.13)

where Ei denotes the conditional expectation w.r.t. Fti . Alternatively, by iterating relations (2.12) together
with the terminal relation Y πN = g(XN ), we have

Y πi = g(XN )−
N−1∑
j=i

[
f(tj , Xj , Y

π
j , Z

π
j )∆tj + Zπj .∆Wj

]
, i = 0, . . . , N − 1. (2.14)

• Deep BSDE scheme [HJE17].
The idea of the method is to treat the backward equation (2.12) as a forward equation by approximating the
initial condition Y0 and the Z component at each time by networks functions of the X process, so as to match
the terminal condition. More precisely, the problem is to minimize over network functions U0 : Rd → R, and
sequences of network functions Z = (Zi)i, Zi : Rd → Rd, i = 0, . . . , N − 1, the global quadratic loss function

JG(U0,Z) = E
∣∣∣Y U0,ZN − g(XN )

∣∣∣2,
where (Y U0,Zi )i is defined by forward induction as

Y U0,Zi+1 = Y U0,Zi + f(ti, Xi, Y
U0,Z
i ,Zi(Xi))∆ti + Zi(Xi).∆Wi, i = 0, . . . , N − 1,

starting from Y U0,Z0 = U0(X0). The output of this scheme, for the solution (Û0, Ẑ) to this global minimization
problem, provides an approximation Û0 of the solution u(0, .) to the PDE at time 0, and approximations Y Û0,Ẑi

of the solution to the PDE (1.1) at times ti evaluated at Xti , i.e., of Yti = u(ti,Xti), i = 0, . . . , N .

• Deep Backward Dynamic Programming (DBDP) [HPW20].
The method relies on the backward dynamic programming relation (2.12) arising from the time discretization
of the BSDE, and learns simultaneously at each time step ti the pair (Yti , Zti) with neural networks trained
with the forward process X and the Brownian motion W . The scheme has two versions:

7



1. DBDP1. Starting from Û (1)
N = g, proceed by backward induction for i = N − 1, . . . , 0, by minimizing over

network functions Ui : Rd → R, and Zi : Rd → Rd the local quadratic loss function

J
(B1)
i (Ui,Zi) = E

∣∣∣Û (1)
i+1(Xi+1)− Ui(Xi)− f(ti, Xi,Ui(Xi),Zi(Xi))∆ti −Zi(Xi).∆Wi

∣∣∣2,
and update (Û (1)

i , Ẑ(1)
i ) as the solution to this local minimization problem.

2. DBDP2. Starting from Û (2)
N = g, proceed by backward induction for i = N − 1, . . . , 0, by minimizing over

C1 network functions Ui : Rd → R the local quadratic loss function

J
(B2)
i (Ui) = E

∣∣∣Û (2)
i+1(Xi+1)− Ui(Xi)− f(ti, Xi,Ui(Xi), σ(ti, Xi)

ᵀDxUi(Xi))∆ti

− DxUi(Xi)
ᵀσ(ti, Xi)∆Wi

∣∣∣2,
where DxUi is the automatic differentiation of the network function Ui. Update Û (2)

i as the solution to
this local minimization problem, and set Ẑ(2)

i = σᵀ(ti, .)DxU (2)
i .

The output of DBDP provides an approximation (Ûi, Ẑi) of the solution u(ti, .) and its gradient σᵀ(ti, .)Dxu(ti, .)
to the PDE (1.1) at times ti, i = 0, . . . , N − 1. The approximation error has been analyzed in [HPW20].

Remark 2.2. A regression-based machine learning scheme in the spirit of regression-based Monte-Carlo meth-
ods ([BT04], [GLW05]) for approximating condition expectations in the time discretization (2.13) of the BSDE,
can be formulated as follows: starting from ÛN = g, proceed by backward induction for i = N − 1, . . . , 0, in
two regression problems:

(a) Minimize over network functions Zi : Rd → Rd

Jr,Zi (Zi) = E
∣∣∣∆Wi

∆ti
Ûi+1(Xi+1)−Zi(Xi)

∣∣∣2
and update Ẑi as the solution to this minimization problem

(b) Minimize over network functions Ui : Rd → R

Jr,Yi (Ui) = E
∣∣∣Ûi+1(Xi+1)− Ui(Xi)− f(ti, Xi,Ui(Xi), Ẑi(Xi))∆ti

∣∣∣2
and update Ûi as the solution to this minimization problem.

Compared to these regression-based schemes, the DBDP scheme approximates simultaneously the pair compo-
nent (Y,Z) via the minimization of the loss functions J (B1)

i (Ui,Zi) (or J (B2)
i (Ui) for the second version), i =

N − 1, . . . , 0. One advantage of this latter approach is that the accuracy of the DBDP scheme can be tested
when computing at each time step the infimum of loss function, which should be equal to zero for the exact
solution (up to the time discretization). In contrast, the infimum of the loss functions in the regression-based
schemes is not known for the exact solution as it corresponds in theory to the residual of L2-projection, and
thus the accuracy of the scheme cannot be tested directly in-sample. �

• Deep Splitting (DS) scheme [Bec+19].
This method also proceeds by backward induction as follows:

- Minimize over C1 network functions UN : Rd → R the terminal loss function

JSN (UN ) = E
∣∣∣g(XN )− UN (XN )

∣∣∣2,
and denote by ÛN as the solution to this minimization problem. If g is C1, we can choose directly ÛN =
g.

- For i = N − 1, . . . , 0, minimize over C1 network functions Ui : Rd → R the loss function

JSi (Ui)

= E
∣∣∣Ûi+1(Xi+1)− Ui(Xi)− f(ti, Xi+1, Ûi+1(Xi+1), σ(ti, Xi)

ᵀDxÛi+1(Xi+1))∆ti

∣∣∣2, (2.15)

and update Ûi as the solution to this minimization problem. Here Dx refers again to the automatic
differentiation operator for network functions.

8



The DS scheme combines ideas of the DBDP2 and regression-based schemes where the current regression-
approximation on Z is replaced by the automatic differentiation of the network function computed at the
previous step. The current approximation of Y is then computed by a regression network-based scheme. In
Section 4, we shall analyze the approximation error of the DS scheme, i.e., a bound for the difference between
Ûi and u(ti, .), i = 0, . . . , N − 1.

2.3 Deep backward multi-step scheme (MDBDP)
The starting point of the Multi-step Deep Backward Dynamic Programming (MDBDP) scheme is the iterated
representation (2.14) for the time discretization of the BSDE. This backward scheme is described as follows: for
i = N − 1, . . . , 0, minimize over network functions Ui : Rd → R, and Zi : Rd → Rd the loss function

JMB
i (Ui,Zi) = E

∣∣∣g(XN )−
N−1∑
j=i+1

f(tj , Xj , Ûj(Xj), Ẑj(Xj))∆tj −
N−1∑
j=i+1

Ẑj(Xj).∆Wj

− Ui(Xi)− f(ti, Xi,Ui(Xi),Zi(Xi))∆ti −Zi(Xi).∆Wi

∣∣∣2 (2.16)

and update (Ûi, Ẑi) as the solution to this minimization problem. This output provides an approximation
(Ûi, Ẑi) of the solution u(ti, .) to the PDE (1.1) at times ti, i = 0, . . . , N − 1. This approximation error will be
analyzed in Section 4.

MDBDP is a machine learning version of the Multi-step Forward Dynamic Programming method studied by
[BD07] and [GT14]. Instead of solving at each time step two regression problems, our approach allows to consider
only a single minimization as in the DBDP scheme. Compared to the latter, the multi-step consideration is
expected to provide better accuracy by reducing the propagation of errors in the backward induction.

In the numerical implementation, the expectation defining the loss function JMB
i in (2.16) is replaced by an

empirical average leading to the so-called generalization (or estimation) error, largely studied in the statistical
community, see [Gy02], and more recently [Hur+18], [BJK19] and the references therein. Moreover, recalling the
parametrization (Uθ,Zθ) of neural network functions in N ρ

d,1,`,m ×N
ρ
d,d,`,m, the minimization of the empirical

average is amenable to stochastic gradient descent (SGD) extensively used in machine learning. More precisely,
given a fixed time step i = N − 1, . . . , 0, at each iteration of the SGD, we pick a sample (Xk

j ,∆W
k
j )j=i,...,N

of the Euler process and increment of Brownian motion (Xj ,∆Wj)j , k = 1, . . . ,K, of mini-batch size K, and
consider the empirical loss function:

JKi (θ) =
1

K

K∑
k=1

∣∣∣g(Xk
N )−

N−1∑
j=i+1

f(tj , X
k
j , Ûj(Xk

j ), Ẑj(Xk
j ))∆tj −

N−1∑
j=i+1

Ẑj(Xk
j ).∆W k

j

− Uθ(Xk
i )− f(ti, X

k
i ,Uθ(Xk

i ),Zθ(Xk
i ))∆ti −Zθ(Xk

i ).∆W k
i

∣∣∣2, (2.17)

where Ûj = U θ̂jj , Ẑj = Z θ̂jj , and θ̂j is the resulting parameter from the SGD obtained at dates j = i+1, . . . , N−1.
In practice, the number of iterations for SGD at the initial backward induction time N − 1 should be large
enough so as to learn accurately the value function u(tN−1, .) and its gradient Dxu(tN−1, .) via Û θ̂N−1 and
Ẑ θ̂N−1 . However, it is then expected (by continuity in time of the value function) that (Ûj , Ẑj) does not vary a
lot from j = i+ 1 to i, which means that at time i, one can design the SGD with initialization parameter equal
to the resulting parameter from the previous SGD at time i+ 1, and then use few iterations to obtain accurate
values of Ûi and Ẑi. This observation allows to reduce significantly the computational time in (M)DBDP scheme
when applying sequentially N SGD. The stochastic gradient descent algorithm for computing an approximate
minimizer of the loss function induces the so-called optimization error, which has been extensively studied in the
stochastic algorithm and machine learning communities, see [BM], [BF11], [CB18], and more recently [BJK19],
and the references therein.

Remark 2.3. The MDBDP requires at each time step i to keep in memory the previously computed network
functions Ûj , and Ẑj , j = i + 1, . . . , N , and to sample the process X from j until the terminal time N . This
is computationally expensive, especially when the horizon T , and so the number N of time steps is very large.
To overcome this issue in practice, one can split the time interval [0, T ] in two, apply the DBDP scheme on
the interval [T/2, T ], which yields an approximation ÛN/2 of the value function at time T/2, and then use the
MDBDP scheme on [0, T/2] starting from the terminal condition ÛN/2. �

9



Algorithm 1: MDBDP scheme.

Data: Initial parameter θ̂N . A sequence of number of iterations (Si)i=0,...,N−1

for i = N − 1, . . . , 0 do
Initial parameter θi ← θ̂i+1

Set s = 1
while s ≤ Si do

Pick a sample of (Xj ,∆Wj)j=i,...,N of mini-batch size K
Compute the gradient ∇JKi (θ) of JKi (θ) defined in (2.17)
Update θi ← θi − η∇JKi (θi) with η learning rate
s ← s+ 1

end
Return θ̂i ← θi, Ûi = U θ̂i , Ẑi = Z θ̂i /* Update parameter, function and derivative */

end

3 Extension to fully non linear PDEs: second order deep backward
multistep scheme

In this section, we consider fully nonlinear PDEs in the form (1.2), and discuss how the MDBDP scheme can
be extended for their numerical resolution in this more challenging case. Since the function F contains the
dependence both on the gradient Dxu and the Hessian D2

xu, we can shift the linear differential operator (left
hand side) of the PDE (1.2) into the function F . However, in practice, this linear differential operator associated
to a diffusion process X is used for training simulations in SGD of machine learning schemes. While the choice
of µ does not really matter, the choice of σ is more delicate, and can be viewed as a parameter for state space
exploration. In the sequel, we assume w.l.o.g. that µ = 0, and σ is a constant invertible matrix.

Assuming that the solution u to the PDE (1.2) is smooth C2, and denoting by (Y,Z,Γ) the triple of F-adapted
processes valued in R× Rd × Sd, defined by

Yt = u(t,Xt), Zt = Dxu(t,Xt), Γt = D2
xu(t,Xt), 0 ≤ t ≤ T,

a direct application of Itô’s formula to u(t,Xt), yields that (Y,Z,Γ) satisfies the backward equation

Yt = g(XT )−
∫ T

t

F (s,Xs, Ys, Zs,Γs)ds−
∫ T

t

Zᵀ
sσ(s,Xs)dWs, 0 ≤ t ≤ T. (3.1)

Compared to the case of semi-linear PDE, the key point is the approximation/learning of the Hessian
matrix D2

xu, hence of the Γ-component of the BSDE (3.1). A basic idea in line of the schemes described in the
previous section would consist in approximating the solution u and its gradient Dxu by network functions U
and Z, and then Hessian D2

xu by the automatic differentiation DxZ of the network function Z, by a learning
approach relying on the time discretization of the BSDE (3.1). It turns out that such method approximates
poorly Γ inducing instability of the scheme: indeed, while the unique pair solution (Y,Z) to the BSDE (2.11)
completely characterizes the solution to the semi-linear PDE and its gradient, the relation (3.1) does not allow
to characterize directly the triple (Y, Z,Γ). Instead, we need a suitable probabilistic representation of the
Γ-component for learning accurately the Hessian function D2

xu.
We start from the training simulations of the forward (Xi)i on the grid π = {ti, i = 0, . . . , N}, and assume

for simplicity that the grid is uniform, i.e., ti = i|π|, |π| = T/N . Notice that Xi = Xti , and is equal to

Xi = X0 + σWti , i = 0, . . . , N.

The approximation of the value function u and its gradient Dxu is learnt simultaneously on the grid π as
described in the previous section but requires in addition a preliminary approximation of the Hessian D2

xu in
the fully non linear case. This will be performed by regression-based machine learning scheme on a subgrid π̂ ⊂
π, which allows to reduce the computational time of the algorithm. We propose three versions of second order
MDBDP based on different representations of the Hessian function, and assuming that g is smooth C2. For the
second and the third one, we need to introduce a subgrid π̂ = {tκ̂`, ` = 0, . . . , N̂} ⊂ π, of modulus |π̂| = κ̂|π|,
for some κ̂ ∈ N∗, with N = κ̂N̂ .

1. Following the methodology introduced in [PWG19], the current Γ-component at step i can be estimated
by automatic differentiation of the Z-component at the previous step while the other Γ-components are
estimated by automatic differentiation of their associated Z-components:

Γi ' DxZi+1, Γj ' DxZj , j > i.

10



2. The time discretization of (3.1) on the grid π̂, where (Y π̂` , Z
π̂
` ,Γ

π̂
` ) denotes an approximation of the triple(

u(tκ̂`, Xκ̂`), Dxu(tκ̂`, Xκ̂`), D
2
xu(tκ̂`, Xκ̂`)

)
, ` = 0, . . . , N̂ , leads to the standard representation formula for

the Z component (see (2.13)):

Z π̂` = Eκ̂`
[
Y π̂`+1Ĥ

1
`

]
, ` = 0, . . . , N̂ − 1,

(recall that Eκ̂` denotes the conditional expectation w.r.t. Ftκ̂`), with the Malliavin weight of order one:

Ĥ1
` = (σᵀ)−1 ∆̂W`

|π̂|
, ∆̂W` := Wtκ̂(`+1)

−Wtκ̂` .

By direct differentiation, we then obtain an approximation of the Γ-component as

Γπ̂` ' Eκ̂`
[
Dxu(tκ̂(`+1), Xκ̂(`+1))Ĥ

1
`

]
.

Moreover, by introducing the antithetic variable

X̂κ̂(`+1) = Xκ̂` − σ∆̂W`,

we then propose the following regression estimator of D2
xu on the grid π̂ with{

Γ̂(1)(tκ̂N̂ , Xκ̂N̂ ) = D2g(Xκ̂N̂ )

Γ̂(1)(tκ̂`, Xκ̂`) = Eκ̂`
[
Dxu(tκ̂(`+1),Xκ̂(`+1))−Dxu(tκ̂(`+1),X̂κ̂(`+1))

2 Ĥ1
`

]
, ` = 0, . . . , N̂ − 1.

3. Alternatively, the time discretization of (3.1) on π̂ yields the iterated conditional expectation relation:

Y π̂` = Eκ̂`
[
g(Xκ̂N̂ )− |π̂|

N̂−1∑
m=`

F (tκ̂m, Xκ̂m, Y
π̂
m, Z

π̂
m,Γ

π̂
m)
]
, ` = 0, . . . , N̂ ,

By (double) integration by parts, and using Malliavin weights on the Gaussian vector X, we obtain a
multi-step approximation of the Γ-component as

Γπ̂` ' Eκ̂`
[
g(Xκ̂N̂ )Ĥ2

`,N̂
− |π̂|

N̂−1∑
m=`+1

F (tκ̂m, Xκ̂m, Y
π̂
m, Z

π̂
m,Γ

π̂
m)Ĥ2

`,m

]
, ` = 0, . . . , N̂ ,

where

Ĥ2
`,m = (σᵀ)−1 ∆̂Wm

` (∆̂Wm
` )ᵀ − (m− `)|π̂|Id

(m− `)2|π̂|2
σ−1, ∆̂Wm

` := Wtκ̂m −Wtκ̂` .

By introducing again the antithetic variables

X̂κ̂m = Xκ̂` − σ∆̂Wm
` , m = `+ 1, . . . , N̂ ,

we then propose another regression estimator of D2
xu on the grid π̂ with

Γ̂(2)(tκ̂`, Xκ̂`) = Eκ̂`
[g(Xκ̂N̂ ) + g(X̂κ̂N̂ )

2
Ĥ2
`,N̂

− |π̂|
2

N̂−1∑
m=`+1

(
F
(
tκ̂m, Xκ̂m, u(tκ̂m, Xκ̂m), Dxu(tκ̂m, Xκ̂m), Γ̂(2)(tκ̂m, Xκ̂m)

)
+ F

(
tκ̂m, X̂κ̂m, u(tκ̂m, X̂κ̂m), Dxu(tκ̂m, X̂κ̂m), Γ̂(2)(tκ̂m, X̂κ̂m)

)
− 2F

(
tκ̂`, Xκ̂`, u(tκ̂`, Xκ̂`), Dxu(tκ̂`, Xκ̂`), Γ̂

(2)(tκ̂`, Xκ̂`)
))
Ĥ2
`,m

]
,

for ` = 0, . . . , N − 1, and Γ̂(2)(tκ̂N̂ , Xκ̂N̂ ) = D2g(Xκ̂N̂ ). The correction term −2F evaluated at time tκ̂`
in Γ̂(2)(tκ̂`, Xκ̂`) does not add bias since

Eκ̂`
[
F
(
tκ̂`, Xκ̂`, u(tκ̂`, Xκ̂`), Dxu(tκ̂`, Xκ̂`), Γ̂

(2)(tκ̂`, Xκ̂`)
)
Ĥ2
`,m

]
= 0,

for all m = `+ 1, . . . , N̂ − 1, and by Taylor expansion of F at second order, we see that it allows together
with the antithetic variable to control the variance when the time step goes to zero. Similar idea was used
in [War18].

11



Remark 3.1. In the case where the function g has some regularity property, one can avoid the integra-
tion by parts at the terminal data component in the above expression of Γ̂(2). For example, when g is C1,
g(Xκ̂N̂ )+g(X̂κ̂N̂ )

2 Ĥ2
`,N̂

is alternatively replaced in Γ̂(2) expression by (Dg(Xκ̂N̂ ) −Dg(X̂κ̂N̂ ))Ĥ1
`,N̂

, while when it
is C2 it is replaced by D2g(Xκ̂N̂ ). �

We can now describe the three versions of second order MDBDP schemes for the numerical resolution of the
fully nonlinear PDE (1.2).

Algorithm 2: Second order Explicit Multi-step DBDP (2EMDBDP)

for i = N − 1, . . . , 0 do
If i = N − 1, update Γ̂i = D2g, otherwise Γ̂i = DxẐi+1, Γ̂j = DxẐj , j ∈ Ji+ 1, N − 1K, /* Update
Hessian */

Minimize over network functions U : Rd → R, and Z : Rd → Rd the loss function at time ti:

JMB
i (U ,Z) = E

∣∣∣g(XN )− |π|
N−1∑
j=i+1

F (tj , Xj , Ûj(Xj), Ẑj(Xj), Γ̂j(Xj))−
N−1∑
j=i+1

Ẑj(Xj)
ᵀσ∆Wj

− U(Xi)− |π|F (ti, Xi,U(Xi),Z(Xi), Γ̂i(Xi+1))−Z(Xi)
ᵀσ∆Wi

∣∣∣2.
Update (Ûi, Ẑi) as the solution to this minimization problem /* Update the function and its
derivative */

end

Algorithm 3: Second order Multi-step DBDP (2MDBDP)

for ` = N̂ , . . . , 0 do
If ` = N̂ , update Γ̂` = D2g, otherwise minimize over network functions Γ : Rd → Sd the loss function

J 1,M
` (Γ) = E

∣∣∣Γ(Xκ̂`)−
Ẑκ̂(`+1)(Xκ̂(`+1))− Ẑκ̂(`+1), X̂κ̂(`+1))

2
Ĥ1
`

∣∣∣2.
Update Γ̂` the solution to this minimization problem /* Update Hessian */
for k = κ̂− 1, . . . , 0 do

Minimize over network functions U : Rd → R, and Z : Rd → Rd the loss function at time ti, i =
(`− 1)κ̂+ k:

JMB
i (U ,Z) = E

∣∣∣g(XN )− |π|
N−1∑
j=i+1

F (tj , Xj , Ûj(Xj), Ẑj(Xj), Γ̂`(Xj))−
N−1∑
j=i+1

Ẑj(Xj)
ᵀσ∆Wj

− U(Xi)− |π|F (ti, Xi,U(Xi),Z(Xi), Γ̂`(Xi))−Z(Xi)
ᵀσ∆Wi

∣∣∣2.
Update (Ûi, Ẑi) as the solution to this minimization problem /* Update the function and
its derivative */

end
end

12



Algorithm 4: Second order Multi-step Malliavin DBDP (2M2DBDP)

for ` = N̂ , . . . , 0 do
If ` = N̂ , update Γ̂` = D2g, otherwise minimize over network functions Γ : Rd → Sd the loss function

J 2,M
` (Γ) = E

∣∣∣Γ(Xκ̂`)−
D2g(Xκ̂N̂ ) +D2g(X̂κ̂N̂ )

2

+
|π̂|
2

N̂−1∑
m=`+1

(
F
(
tκ̂m, Xκ̂m, Ûκ̂m(Xκ̂m), Ẑκ̂m(Xκ̂m), Γ̂m(Xκ̂m)

)
+ F

(
tκ̂m, X̂κ̂m, Ûκ̂m(X̂κ̂m), Ẑκ̂m(X̂κ̂m), Γ̂m(X̂κ̂m)

)
− 2F

(
tκ̂`, X̂κ̂`, Ûκ̂`(X̂κ̂`), Ẑκ̂`(X̂κ̂`), Γ̂`(X̂κ̂`)

))
Ĥ2
`,m

∣∣∣2.
Update Γ̂` the solution to this minimization problem /* Update Hessian */
for k = κ̂− 1, . . . , 0 do

Minimize over network functions U : Rd → R, and Z : Rd → Rd the loss function at time ti, i =
(`− 1)κ̂+ k:

JMB
i (U ,Z) = E

∣∣∣g(XN )− |π|
N−1∑
j=i+1

F (tj , Xj , Ûj(Xj), Ẑj(Xj), Γ̂`(Xj))−
N−1∑
j=i+1

Ẑj(Xj)
ᵀσ∆Wj

− U(Xi)− |π|F (ti, Xi,U(Xi),Z(Xi), Γ̂`(Xi))−Z(Xi)
ᵀσ∆Wi

∣∣∣2.
Update (Ûi, Ẑi) as the solution to this minimization problem /* Update the function and
its derivative */

end
end

The above proposed schemes are in backward iteration, and involve one optimization at each step. Moreover,
as the computation of Γ requires a further derivation for Algorithms 3 and 4, we may expect that the additional
propagation error varies according to |π||π̂| = 1

κ̂ , and thus the convergence of the scheme when κ̂ is large. We
postpone the convergence analysis of second order MDBDP for further investigation. In the numerical imple-
mentation, as detailed in Algorithm 1, the expectation in the loss functions J 1,M

` (resp. J 2,M
` ), and JMB

i are
replaced by empirical average and the minimization over network functions is performed by stochastic gradient
descent.

4 Convergence analysis in the semilinear case
This section is devoted to the approximation error analysis and rate of convergence of the deep backward
multistep (MDBDP) and deep splitting (DS) schemes described in Section 2.

We make the following standard assumptions on the coefficients of the forward-backward equation associated
to semilinear PDE (1.1).

Assumption 4.1. (i) X0 is square-integrable: X0 ∈ L2(F0,Rd).

(ii) The functions µ and σ are Lipschitz in x ∈ Rd, uniformly in t ∈ [0, T ].

(iii) The generator function f is 1/2-Hölder continuous in time and Lipschitz continuous in all other variables:
∃ [f ]

L
> 0 such that for all (t, x, y, z) and (t′, x′, y′, z′) ∈ [0, T ]× Rd × R× Rd,

|f(t, x, y, z)− f(t′, x′, y′, z′)| ≤ [f ]
L

(
|t− t′|1/2 + |x− x′|2 + |y − y′|+ |z − z′|2

)
.

Moreover,

sup
t∈[0,T ]

|f(t, 0, 0, 0)| < ∞.

(iv) The function g satisfies a linear growth condition.

13



Assumption 4.1 guarantees the existence and uniqueness of an adapted solution (X , Y, Z) to the forward-
backward equation (2.10)-(2.11), satisfying

E
[

sup
0≤t≤T

|Xt|22 + sup
0≤t≤T

|Yt|2 +

∫ T

0

|Zt|2dt
]
< ∞.

Given the time grid π = {ti : i = 0, . . . , N}, let us introduce the so-called L2-regularity of Z:

εZ(π) := E
[N−1∑
i=0

∫ ti+1

ti

|Zt − Z̄ti |22dt
]
, with Z̄ti :=

1

∆ti
Ei
[ ∫ ti+1

ti

Ztdt
]
.

Since Z̄ is a L2-projection of Z, we know that εZ(π) converges to zero when |π| goes to zero. Moreover, as
shown in [Zha04], when the terminal condition g is also Lipschitz, we have

εZ(π) = O(|π|).

Here, the standard notation O(|π|) means that lim sup|π|→0 |π|−1O(|π|) < ∞.

4.1 Convergence of the MDBDP scheme
We fix a class of functions N and N ′ for the approximations of the value function and its gradient, and recall
that (Ûi, Ẑi) denotes the output of the MDBDP scheme at times ti, i = 0, . . . , N , resulting from the minimization
of the loss function in (2.16). The class N is typically the class of neural networks N ρ

d,1,`,m, or more specifically
N 1,γ,R
d,m,1 , while the class N ′ may be the class of neural networks N ρ

d,d,`,m or N 1,γ,R
d,m,d .

Let us define (implicitly) the process
Vi = Ei

[
g(XN ) + f

(
ti, Xi, Vi, Ẑi

)
∆ti +

N−1∑
j=i+1

f
(
tj , Xj , Ûj(Xj), Ẑj(Xj)

)
∆tj

]
,

Ẑi = Ei
[
g(XN )∆Wi

∆ti
+

N−1∑
j=i+1

f
(
tj , Xj , Ûj(Xj), Ẑj(Xj)

)∆Wi∆tj
∆ti

]
, i = 0, . . . , N,

(4.1)

and notice by the Markov property of the discretized forward process (Xi)i that

Vi = vi(Xi), Ẑi = ẑi(Xi), i = 0, . . . , N,

for some deterministic functions vi, ẑi. Let us then introduce

εyi := inf
U∈N

E
∣∣vi(Xi)− U(Xi)

∣∣2, εzi := inf
Z∈N ′

E
∣∣ẑi(Xi)−Z(Xi)

∣∣2
2
,

for i = 0, . . . , N − 1, which represent the L2-approximation errors of the functions vi, ẑi in the class of neural
networks N and N ′.

Theorem 4.1 (Approximation error of MDPBD). Under Assumption 4.1, there exists a constant C > 0
(depending only on the data of the problem µ, σ, f, g, d, T ) such that

sup
i∈J0,NK

E
∣∣Yti − Ûi(Xi)

∣∣2 + E
[N−1∑
i=0

∫ ti+1

ti

∣∣Zs − Ẑi(Xi)
∣∣2
2

ds
]

≤ C
(
E
∣∣g(XT )− g(XN )

∣∣2 + |π|+ εZ(π) +

N−1∑
j=0

(εyj + ∆tjε
z
j )
)
. (4.2)

Remark 4.1. The upper bound in (4.2) for the approximation error of the MDBDP consists of four terms.
The first three terms correspond to the time discretization of BSDE, similarly as in [Zha04], [BT04], [GLW05],
namely (i) the strong approximation of the terminal condition (depending on the forward scheme and the
terminal data g), and converging to zero, as |π| goes to zero, with a rate |π| when g is Lipschitz, (ii) the strong
approximation of the forward Euler scheme, and the L2-regularity of Y , which gives a convergence of order |π|,
(iii) the L2-regularity of Z. Finally, the last term is the approximation error by the chosen class of functions.
Note that the approximation error

∑N−1
j=0 (εyj + ∆tjε

z
j ) in (4.2) is better than the one for the DBDP scheme

derived in [HPW20], with an order
∑N−1
j=0 (Nεyj + εzj ). �

14



We next study the rate of convergence for the approximation error of the MDBDP scheme, and need to
specify the class of network functions N and N ′.

Proposition 4.1 (Rate of convergence of MDBDP). Let Assumption 4.1 hold, and assume that X0 ∈ L2+δ(F0,Rd),
for some δ > 0, and g is Lipschitz. Then, for N = N 1,γ,R

d,m,1 , and N ′ = N 1,γ,R
d,m,d , we have

sup
i∈J0,NK

E
∣∣Yti − Ûi(Xi)

∣∣2 + E
[N−1∑
i=0

∫ ti+1

ti

∣∣Zs − Ẑi(Xi)
∣∣2
2

ds
]

= O(1/N),

for a choice of m,R, γ of order

m = O
(
Nd+ε

)
, R = O

(
N

d+1
2 +ε

)
, γ = O(R),

for any ε > 0. Here, the constants in the O(·) term depend only on the data µ, σ, f, g, d, T,X0.

Remark 4.2. The rate of convergence in Proposition 4.2 can be expressed in terms of the number of neurons
m, and says that ∥∥u(0,X0)− Û0(X0)

∥∥
2

:=

√
E
∣∣u(0,X0)− Û0(X0)

∣∣2 = O
(
m−

1
2d+ε

)
.

This exponent 1/(2d), which is decreasing with the input dimension d, does not overcome in theory the so-
called curse of dimensionality. This is due to the use of the approximation result in [Bac17] for locally Lipschitz
functions with shallow neural networks, and could be probably improved by considering a class of multilayer
neural networks. However, to the best of our knowledge, we could not find in the literature approximation
results providing a rate of convergence for class of network functions that allow in our context to overcome the
curse of dimensionality. �

4.2 Convergence of the DS scheme
We consider an architecture N 2,R,γ

d,m,1 of the neural network for the approximation of the value function at time
ti, and Ûi ∈ N 2,R,γ

d,m,1 denotes the output of the DS scheme, for i = 0, . . . , N .
Let us define the process

Vi = Ei
[
Ûi+1(Xi+1) + f

(
ti, Xi,Ei[Ûi+1(Xi+1)],Ei[σ(ti, Xi)

ᵀDx[Ûi+1(Xi+1)]
)
∆ti

]
, (4.3)

for i = 0, . . . , N − 1, and VN = ÛN (XN ). By the Markov property of (Xi)i, we have Vi = vi(Xi), for some
deterministic functions vi : Rd → R, i = 0, . . . , N − 1, and we introduce

εm,R,γi :=

 infU∈N 2,R,γ
d,m,1

E
∣∣vi(Xi)− U(Xi)

∣∣2, i = 0, . . . , N − 1,

infU∈N 2,R,γ
d,m,1

E
∣∣g(XN )− U(XN )

∣∣2 = E
∣∣g(XN )− ÛN (XN )

∣∣2, i = N.

the L2-approximation error of vi, i = 0, . . . , N − 1, and g in the class of neural networks N+,R,γ
d,m .

Theorem 4.2 (Approximation error of DS). Let Assumption 4.1 hold, and assume that X0 ∈ L4(F0,Rd). Then,
there exists a constant C > 0 (depending only on µ, σ, f, g, d, T,X0) such that

sup
i∈J0,NK

E
∣∣Yti − Ûi(Xi)

∣∣2 ≤ C(E∣∣g(XN )− g(XT )
∣∣2 + |π|+ εZ(π)

+ max
[
1,
γ2

R2

]
|π|+ εm,R,γN +N

N−1∑
i=0

εm,R,γi

)
. (4.4)

Remark 4.3. We retrieve a similar error as in the analysis of the second version DBDP2 of the deep backward
dynamic programming scheme derived in [HPW20]. Notice that when g is C1, one can choose to initialize the
DS scheme with ÛN = g, and the term εm,R,γN is removed in (4.4). �

We next study the rate of convergence for the approximation error of the DS scheme, and make the additional
Lipschitz assumptions on f and g.

15



Assumption 4.2. (i) The function fσ(t, x, y, z) := f(t, x, y, σ(t, x)ᵀz) is Lipschitz in z, i.e., there exists a
constant [fσ]

L
> 0 such that for all t ∈ [0, T ], x ∈ Rd, y ∈ R, z, z′ ∈ Rd,

|f(t, x, y, σ(t, x)ᵀz)− f(t, x, y, σ(t, x)ᵀz′)| ≤ [fσ]
L
|z − z′|2 .

(ii) g is Lipschitz continuous on Rd.

Remark 4.4. The Lipschitz condition in Assumption 4.2 (i) combined with the Lipschitz property of f, σ in
Assumption 4.1 implies that there exists some constant Kf,σ such that for all t ∈ [0, T ], x, x′ ∈ Rd, y, y′ ∈ R,
z, z′ ∈ Rd,

|f(t, x, y, σ(t, x)ᵀz)− f(t, x′, y′, σ(t, x′)ᵀz′)| ≤ Kf,σ

(
|x− x′|

2
(1 + |z|

2
) + |y − y′|+ |z − z′|

2

)
. (4.5)

This is clearly satisfied when σ is bounded under Assumption 4.1. �

Proposition 4.2 (Rate of convergence of DS). Let Assumptions 4.1 and 4.2 hold, and assume that X0 ∈
L4+δ(F0,Rd), for some δ > 0. Then, we have

sup
i∈J0,NK

E
∣∣∣Yti − Ûi(Xi)

∣∣∣2 = O(1/N),

for a choice of m,R, γ in the class of networks functions N 2,γ,R
d,m,1 of order

m = O
(
N

3(d+5)
2 +ε

)
, R = O

(
N

3(d+3)
4 +ε

)
, γ = O(R),

for any ε > 0.

Remark 4.5. The rate of convergence in Proposition 4.2 can be expressed in terms of the number of neurons
m, and says that ∥∥u(0,X0)− Û0(X0)

∥∥
2

= O
(
m−

1
3(d+5)

+ε).
In comparison with the rate obtained in Proposition 4.1, we see that 1/3(d + 5) < 1/(2d), which means that
the MDBDP has a better rate of convergence than the DS (and DBDP) scheme in terms of the number m of
neurons in shallow networks, whatever the dimension d. �

5 Proof of the main theoretical results
We shall often use some classical inequalities that we recall:

Young inequality. For all (a, b) ∈ R2, β > 0,

(1− β)a2 +
(
1− 1

β

)
b2 ≤ (a+ b)2 ≤ (1 + β)a2 +

(
1 +

1

β

)
b2.

Discrete Gronwall lemma. Let (un, vn, hn)n be positive sequences satisfying for all n ∈ N

un ≤ (1 + hn)un+1 + vn, ∀n ∈ N.

Then, we have for all N ∈ N∗

sup
i∈J0,NK

ui ≤ exp
(N−1∑
i=0

hi

)(
uN +

N−1∑
i=0

vi

)
.

In particular, when hi = β∆ti, with β > 0, ∆ti = O(1/N), there exists C independent of N s.t.

sup
i∈J0,NK

ui ≤ C
(
uN +

N−1∑
i=0

vi

)
, ∀N ∈ N∗.

16



5.1 Proof of Theorem 4.1
Let us introduce the processes (V̄i, Zi)i arising from the time discretization of the BSDE (2.11), and defined by
the implicit backward Euler scheme: V̄i = Ei

[
V̄i+1 + f

(
ti, Xi, V̄i, Zi

)
∆ti

]
Zi = Ei

[
V̄i+1

∆Wi

∆ti

]
, i = 0, . . . , N − 1,

(5.1)

starting from V̄N = g(XN ). We recall from [Zha04] (see also [BT04] or [GLW05]) the time discretization error:

sup
i∈J0,NK

E
∣∣Yti − V̄i∣∣2 + E

[N−1∑
i=0

∫ ti+1

ti

∣∣Zs − Zi∣∣2
2

ds
]
≤ C

(
E
∣∣g(XT )− g(XN )

∣∣2 + |π|+ εZ(π)
)
, (5.2)

for some constant C depending only on the coefficients satisfying Assumption 4.1.
Let us introduce the auxiliary process

V̂i = Ei
[
g(XN ) +

N−1∑
j=i

f
(
tj , Xj , Ûj(Xj), Ẑj(Xj)

)
∆tj

]
, i = 0, . . . , N, (5.3)

and notice by the tower property of conditional expectations that we have the recursive relations:

V̂i = Ei
[
V̂i+1 + f

(
ti, Xi, Ûi(Xi), Ẑi(Xi)

)
∆ti

]
, i = 0, . . . , N − 1. (5.4)

Observe also that Ẑi defined in (4.1) satisfies

Ẑi = Ei
[
V̂i+1

∆Wi

∆ti

]
, i = 0, . . . , N − 1. (5.5)

We now decompose the approximation error, for i ∈ J0, N − 1K, into

E
∣∣Yti − Ûi(Xi)

∣∣2 ≤ 4
(
E
∣∣Yti − V̄i∣∣2 + E

∣∣V̄i − V̂i∣∣2 + E
∣∣V̂i − Vi∣∣2 + E

∣∣Vi − Ûi(Xi)
∣∣2)

=: 4(I1
i + I2

i + I3
i + I4

i ), (5.6)

and analyze each of these contributions terms. In the sequel, C denotes a generic constant independent of π
that may vary from line to line, and depending only on the coefficients satisfying Assumption 4.1. Notice that
the first contribution term is the time discretization error for BSDE given by (5.2), and we shall study the three
other terms in the following steps.
Step 1. Fix i ∈ J0, N − 1K. From the definition (4.1) of Vi and by the martingale representation theorem, there
exists a square integrable process {Ẑs, ti ≤ s ≤ T} such that

g(XN ) + f
(
ti, Xi, Vi, Ẑi

)
∆ti +

N−1∑
j=i+1

f
(
tj , Xj , Ûj(Xj), Ẑj(Xj)

)
∆tj = Vi +

∫ tN

ti

ẐsdWs. (5.7)

From the definition (4.1) of Ẑi, and by Itô isometry, we then have

Ẑi =
Ei
[ ∫ ti+1

ti
Ẑsds

]
∆ti

, i.e. Ei
[ ∫ ti+1

ti

(
Ẑs − Ẑi

)
ds
]

= 0. (5.8)

Plugging (5.7) into (2.16), we see that the loss function of the MDBDP scheme can be rewritten as

JMB
i (Ui,Zi) = E

∣∣∣Vi − Ui(Xi) + ∆ti
[
f
(
ti, Xi,Ui(Xi),Zi(Xi)

)
− f

(
ti, Xi, Vi, Ẑi

)]
+

N−1∑
j=i+1

∫ tj+1

tj

[
Ẑs − Ẑj(Xj)

]
dWs +

∫ ti+1

ti

[
Ẑs −Zi(Xi)

]
dWs

∣∣∣2
= J̃MB

i (Ui,Zi) + E
[N−1∑
j=i

∫ tj+1

tj

∣∣Ẑs − Ẑj∣∣2
2
ds
]

+

N−1∑
j=i+1

∆tjE
∣∣Ẑj − Ẑj(Xj)

∣∣2
2
, (5.9)

17



where we use (5.8), and

J̃MB
i (Ui,Zi) := E

∣∣∣Vi − Ui(Xi) + ∆ti
[
f
(
ti, Xi,Ui(Xi),Zi(Xi)

)
− f

(
ti, Xi, Vi, Ẑi

)]∣∣∣2
+ ∆tiE

∣∣Ẑi −Zi(Xi)
∣∣2
2
.

It is clear by Lipschitz continuity of f in Assumption 4.1 that

J̃MB
i (Ui,Zi) ≤ C

(
E
∣∣Vi − Ui(Xi)

∣∣2 + ∆tiE
∣∣Ẑi −Zi(Xi)

∣∣2
2

)
. (5.10)

On the other hand, by Young inequality with β ∈ (0, 1), we have

J̃MB
i (Ui,Zi) ≥ (1− β)E

∣∣Vi − Ui(Xi)
∣∣2 +

(
1− 1

β

)
|∆ti|2E

∣∣f(ti, Xi,Ui(Xi),Zi(Xi)
)
− f

(
ti, Xi, Vi, Ẑi

)∣∣2
+ ∆tiE

∣∣Ẑi −Zi(Xi)
∣∣2
2

≥ (1− β)E
∣∣Vi − Ui(Xi)

∣∣2 − 2[f ]2
L

β
|∆ti|2

(
E
∣∣Ui(Xi)− Vi

∣∣2 + E
∣∣Zi(Xi)− Ẑi

∣∣2
2

)
+ ∆tiE

∣∣Ẑi −Zi(Xi)
∣∣2
2

≥
(

1−
(
4[f ]2

L
+

1

2

)
∆ti

)
E
∣∣Vi − Ui(Xi)

∣∣2 +
1

2
∆tiE

∣∣Ẑi −Zi(Xi)
∣∣2
2
, (5.11)

where we use the Lipschitz continuity of f in the second inequality, and choose explicitly β = 4[f ]2
L

∆ti (for ∆ti

small enough) in the last one. By applying inequality (5.11) to (Ui,Zi) = (Ûi, Ẑi), which is a minimizer of J̃MB
i

by (5.9), and combining with (5.10), this yields for ∆ti small enough and for all network functions Ui, Zi:

E
∣∣Vi − Ûi(Xi)

∣∣2 + ∆tiE
∣∣Ẑi − Ẑi(Xi)

∣∣2
2
≤ C

(
E
∣∣Vi − Ui(Xi)

∣∣2 + ∆tiE
∣∣Ẑi −Zi(Xi)

∣∣2
2

)
.

By minimizing over Ui,Zi in the right hand side, we get the approximation error by neural networks of the
regressed functions Vi, Ẑi:

E
∣∣Vi − Ûi(Xi)

∣∣2 + ∆tiE
∣∣Ẑi − Ẑi(Xi)

∣∣2
2
≤ C(εyi + ∆tiε

z
i ). (5.12)

Step 2. From the expression of Vi and V̂i in (4.1), (5.3), and by Lipschitz continuity of f , we have

E
∣∣V̂i − Vi∣∣2 = ∆t2iE

∣∣∣Ei[f(ti, Xi, Ûi(Xi), Ẑi(Xi)
)
− f

(
ti, Xi, Vi, Ẑi

)]∣∣∣2
≤ 2[f ]2

L
|∆ti|2

(
E
∣∣Vi − Ûi(Xi)

∣∣2 + E
∣∣Ẑi − Ẑi(Xi)

∣∣2
2

)
≤ C∆ti(ε

y
i + ∆tiε

z
i ), i = 0, . . . , N, (5.13)

where we use (5.12) in the last inequality.

Step 3. From the recursive expressions of V̄i, V̂i in (5.1), (5.4), and by applying Young, Cauchy-Schwarz in-
equalities, together with the Lipschitz continuity of f , we get for β ∈ (0, 1):

E
∣∣V̄i − V̂i∣∣2 ≤ (1 + β)E

∣∣∣Ei[V̄i+1 − V̂i+1

]∣∣∣2 + 2[f ]2
L

(
1 +

1

β

)
|∆ti|2

(
E
∣∣V̄i − Ûi(Xi)

∣∣2 + E
∣∣Zi − Ẑi(Xi)

∣∣2
2

)
≤ (1 + β)E

∣∣∣Ei[V̄i+1 − V̂i+1

]∣∣∣2 + 2[f ]2
L

(
1 +

1

β

)
|∆ti|2

(
3E|V̄i − V̂i|2 + 2E

∣∣Zi − Ẑi∣∣2
2

)
+ 2[f ]2

L

(
1 +

1

β

)
|∆ti|2

(
3E|V̂i − Vi|2 + 3E|Vi − Ûi(Xi)|2 + 2E

∣∣Ẑi − Ẑi(Xi)
∣∣2
2

)
≤ (1 + β)E

∣∣∣Ei[V̄i+1 − V̂i+1

]∣∣∣2 + (1 + β)
2[f ]2

L
|∆ti|2

β

(
3E|V̄i − V̂i|2 + 2E

∣∣Zi − Ẑi∣∣2
2

)
+ C[f ]2

L

(
1 +

1

β

)
∆ti(ε

y
i + ∆tiε

z
i ), (5.14)

where we use (5.12) and (5.13) in the last inequality. Moreover, by (5.1) and (5.5), we have

∆ti
(
Zi − Ẑi

)
= Ei

[
∆Wi

(
V̄i+1 − V̂i+1

)]
= Ei

[
∆Wi

(
V̄i+1 − V̂i+1 − Ei

[
V̄i+1 − V̂i+1

])]
,

18



and thus by Cauchy-Schwarz inequality

∆tiE
∣∣Zi − Ẑi∣∣2

2
≤ d

(
E
∣∣V̄i+1 − V̂i+1

∣∣2 − E
∣∣∣Ei[V̄i+1 − V̂i+1

]∣∣∣2). (5.15)

Plugging into (5.14), and choosing β = 4d[f ]2
L

∆ti, gives

(1− C∆ti)E
∣∣V̄i − V̂i∣∣2 ≤ (1 + C∆ti)E

∣∣V̄i+1 − V̂i+1

∣∣2 + (1 + C∆ti)
(
εyi + ∆tiε

z
i )

By discrete Gronwall lemma, and recalling that V̄N = V̂N (= g(XN )), we then obtain

sup
i∈J0,NK

E
∣∣V̄i − V̂i∣∣2 ≤ C

N−1∑
i=0

(
εyi + ∆tiε

z
i ). (5.16)

The required bound for the approximation error on Y follows by plugging (5.2), (5.12), (5.13), and (5.16) into
(5.6).

Step 4. We decompose the approximation error for the Z component into three terms

E
[N−1∑
i=0

∫ ti+1

ti

∣∣Zs − Ẑi(Xi)
∣∣2
2

ds
]

(5.17)

≤ 3

N−1∑
i=0

(
E
[ ∫ ti+1

ti

∣∣Zs − Zi∣∣2
2

ds
]

+ ∆tiE
∣∣Zi − Ẑi∣∣2

2
+ ∆tiE

∣∣Ẑi − Ẑi(Xi)
∣∣2
2

)
.

By summing the inequality (5.15) (recalling that V̄N = V̂N ), and using (5.14), we have for β ∈ (0, 1)

N−1∑
i=0

∆tiE|Zi − Ẑi|2

≤ d

N−1∑
i=0

(
E
∣∣V̄i − V̂i∣∣2 − E

∣∣Ei[V̄i+1 − V̂i+1

]∣∣2)
≤ d

N−1∑
i=0

(
βE
∣∣∣Ei[V̄i+1 − V̂i+1

]∣∣∣2 +
(
1 +

1

β

)(
2[f ]2

L
|∆ti|2

)(
3E|V̄i − V̂i|2 + 2E

∣∣Zi − Ẑi∣∣2
2

)
+ C[f ]2

L

(
1 +

1

β

)
∆ti(ε

y
i + ∆tiε

z
i )
)

≤ d

N−1∑
i=0

( 8d[f ]2
L

∆ti

1− 8d[f ]2
L

∆ti
E
∣∣Ei[V̄i+1 − V̂i+1

]∣∣2 +
3

4d
∆tiE|V̄i − V̂i|2 +

C

8d
(εyi + ∆tiε

z
i )
)

+
1

2

N−1∑
i=0

∆tiE
∣∣Zi − Ẑi∣∣2

2
, (5.18)

by choosing explicitely β =
8d[f ]2

L
∆ti

1−8d[f ]2
L

∆ti
= O(∆ti) for ∆ti small enough. Plugging (5.2), (5.12), (5.16), and

(5.18) (using Jensen inequality) into (5.17), this proves the required bound for the approximation error on Z,
and completes the proof. �

5.2 Proof of Proposition 4.1
In the sequel, C denotes a generic constant independent of |π|, γ, R,m, possible depending on the coefficients
µ, σ, f, g, T,X0, that may vary from line to line. We write sometimes the constant C(d) to stress the dependence
on d.
Step 1. Fix i ∈ J0, N − 1K. Let us show that the functions vi, ẑi defined in (4.1) are Lipschitz. For x ∈ Rd, we
define by induction the processes Xx

j , j = i, . . . , N ,

Xx
j+1 := Xx

j + µ(tj , X
x
j )∆tj + σ(tj , X

x
j )∆Wj , j = i, . . . , N − 1, Xx

i = x,

so that 
vi(x) = E

[
g(Xx

N ) + f(ti, x, vi(x), ẑi(x))∆ti +

N−1∑
j=i+1

f
(
tj , X

x
j , Ûj(Xx

j ), Ẑj(Xx
j )
)
∆tj

]
,

∆ti ẑi(x) = E
[
g(Xx

N )∆Wi +

N−1∑
j=i+1

f
(
tj , X

x
j , Ûj(Xx

j ), Ẑj(Xx
j )
)
∆Wi∆tj

]
.

(5.19)

19



From the Lipschitz condition on g in Assumption 4.2, on f in Assumption 4.1, and by Cauchy-Schwarz inequality,
we then have for all x, x′ ∈ Rd,

∆ti|ẑi(x)− ẑi(x′)|

≤ [g]
L

√
d∆ti‖Xx

N −Xx′

N ‖2

+ [f ]
L

√
d∆ti

N−1∑
j=i+1

[
‖Xx

j −Xx′

j ‖2 +
∥∥Ûj(Xx

j )− Ûj(Xx′

j )
∥∥

2
+
∥∥Ẑj(Xx

j )− Ẑj(Xx′

j )
∥∥

2

]
∆tj ,

where ‖X‖2p :=
(
E|X|2p

2

) 1
2p denotes the L2p-norm, p ≥ 1. Now, by the Lipschitz property (2.3) of Ûj ∈ N 1,γ,R

d,m,1

and Ẑj ∈ N 1,γ,R
d,m,d , we have∥∥Ûj(Xx

j )− Ûj(Xx′

j )
∥∥

2
+
∥∥Ẑj(Xx

j )− Ẑj(Xx′

j )
∥∥

2
≤ C(d)

γ

R
‖Xx

j −Xx′

j ‖2 . (5.20)

From the standard estimate ‖Xx
j −Xx′

j ‖2 ≤ C|x− x′|
2
, j = i, . . . , N , it follows that

∆ti|ẑi(x)− ẑi(x′)| ≤ C(d)
√

∆ti

(
1 +

γ

R

)
|x− x′|

2
, x, x′ ∈ Rd. (5.21)

Back to (5.19), we have similarly

|vi(x)− vi(x′)| ≤ [g]
L
‖Xx

N −Xx′

N ‖2 + ∆ti[f ]
L

(
|x− x′|2 + |vi(x)− vi(x′)|+ |ẑi(x)− ẑi(x′)|

)
+ [f ]

L

N−1∑
j=i+1

[
‖Xx

j −Xx′

j ‖2 +
∥∥Ûj(Xx

j )− Ûj(Xx′

j )
∥∥

2
+
∥∥Ẑj(Xx

j )− Ẑj(Xx′

j )
∥∥

2

]
∆tj ,

and so for ∆ti small enough, and by using (5.20), (5.21):

|vi(x)− vi(x′)| ≤ C∆ti
(
|x− x′|

2
+ |ẑi(x)− ẑi(x′)|

)
+ C

[
‖Xx

N −Xx′

N ‖2 +
(

1 +
γ

R

) N−1∑
j=i+1

‖Xx
j −Xx′

j ‖2∆tj

]
≤ C(d)

(
1 +

γ

R

)
|x− x′|

2
, x, x′ ∈ Rd. (5.22)

On the other hand, back to the expression (5.19), and from the linear growth conditions on f, g, together
with Cauchy-Schwarz inequality, we have

∆ti|ẑi(x)| ≤ C
√

∆ti

[
1 + ‖Xx

N‖2 +

N−1∑
j=i+1

(
1 + ‖Xx

j ‖2 +
∥∥Ûj(Xx

j )
∥∥

2
+
∥∥Ẑj(Xx

j )
∥∥

2

)
∆tj

]

≤ C(d)γ
√

∆ti

[
1 + ‖Xx

N‖2 +

N−1∑
j=i+1

(
1 + ‖Xx

j ‖2)∆tj

]
≤ C(d)γ

√
∆ti(1 + |x|2), x ∈ Rd,

from the growth condition (2.2) on Ûi ∈ N 1,γ,R
d,m,1 , Ẑi ∈ N

1,γ,R
d,m,d , and the standard estimate ‖Xx

j ‖2p ≤ C(1 + |x|
2
).

We then get similarly for vi:

|vi(x)| ≤ C
[
1 + ‖Xx

N‖2 + ∆ti

(
1 + ‖Xx

j ‖2 + |vi(x)|+ |ẑi(x)|
)

+

N−1∑
j=i+1

(
1 + ‖Xx

j ‖2 +
∥∥Ûj(Xx

j )
∥∥

2
+
∥∥Ẑj(Xx

j )
∥∥

2

)
∆tj

]
,

and so for ∆ti small enough

|vi(x)| ≤ C(d)γ(1 + |x|2), x ∈ Rd. (5.23)

Step 2. From the approximation result in (2.9) for Lipschitz functions, localization of Xi on B2(R) = {x ∈
Rd : |x|2 ≤ R}, Hölder inequality, and Bienaymé–Chebyshev inequality, the approximation error of vi, i =

20



0, . . . , N − 1, by the class of networks N 1,R,γ
d,m,1 , is bounded by√

εyi = inf
U∈N 1,R,γ

d,m,1

∥∥vi(Xi)− U(Xi)
∥∥

2

≤ inf
U∈N 1,R,γ

d,m,1

∥∥∥(vi(Xi)− U(Xi)
)
1
Xi∈B2(R)

∥∥
2

+
∥∥∥(vi(Xi)− Ûi(Xi)

)
1|Xi|2≥R

∥∥∥
2

≤ C
(

[vi]L,R

( γ

[vi]L,R

)−2/(d+1)

log
( γ

[vi]L,R

)
+ γm−

d+3
2d

)
+

(∥∥vi(Xi)‖2+δ +
∥∥Ûi(Xi)

∥∥
2+δ

)∥∥Xi

∥∥p
p

Rp
, (5.24)

for any δ > 0, and p ≥ 1. Now, from the growth condition (2.2) for any function in N 1,γ,R
d,m,1 , and the growth

condition (5.23), we have ∥∥Ûi(Xi)
∥∥

4
+
∥∥vi(Xi)

∥∥
4
≤ C(d)γ

(
1 + ‖Xi‖4

)
.

Recalling the standard estimate ‖Xi‖2p ≤ C(1 + ‖X0‖2p), i = 0, . . . , N , we then have for R large enough, γ/R
= O(1), and using the fact that [vi]L,R ≤ C(d)γ/R from (5.22):

εyi ≤ C(d,X0, p)
{(
R−2/(d+1) log(R) +Rm−

d+3
2d

)2

+
1

R2p−2

}
, (5.25)

for some constant C(d,X0, p) independent of N,R,m, and this holds for any p ≥ 1. Similarly, we obtain the
bound for the approximation error of ẑi, i = 0, . . . , N−1, for γ/R = O(1), by using now the fact that

√
∆ti[ẑi]L,R

≤ C(d)γ/R from (5.21):

∆tiε
z
i ≤ C

(√
∆ti[ẑi]L,R

( γ

[ẑi]L,R

)−2(d+1)

log
( γ

[ẑi]L,R

)
+ γ
√

∆tim
− d+3

2d

)2

+
∆ti
(∥∥ẑi(Xi)‖2+δ +

∥∥Ûi(Xi)
∥∥

2+δ

)2∥∥Xi

∥∥2p

p

R2p

≤ C(d,X0, p)
{(

(R
√

∆ti)
−2/(d+1) log(R

√
∆ti) +R

√
∆tim

− d+3
2d

)2

+
∆ti
R2p−2

}
. (5.26)

Plugging estimates (5.25)-(5.26) into (4.2), and recalling that E|g(XT )−g(XN )|2 + εZ(π) = O(|π|) = O(1/N)
when g is Lipschitz, the approximation error in (Y, Z) is bounded by

sup
i∈J0,NK

E
∣∣Yti − Ûi(Xi)

∣∣2 + E
[N−1∑
i=0

∫ ti+1

ti

∣∣Zs − Ẑi(Xi)
∣∣2
2

ds
]

≤ C(d,X0, p)
[ 1

N
+N

(
R−2/(d+1) log(R) +Rm−

d+3
2d

)2

+
N

R2p−2

]
,

for any p ≥ 1. Therefore, to achieve a rate of convergence of order 1/N for the left hand side of the above
inequality, it suffices to choose R and m s.t.

NR−4/(d+1)| log(R)|2 = O(1/N), and NR2m−
d+3
d = O(1/N),

hence for example with R = O
(
N

d+1
2 +ε

)
, and m = O

(
Nd+2ε

)
, for any ε > 0, and then take p = (d+ 3)/(d+ 1)

so that N/R2p−2 = O(1/N). �

5.3 Proof of Theorem 4.2
Let us introduce the explicit backward Euler scheme of the BSDE (2.11): V̄i = Ei

[
V̄i+1 + f

(
ti, Xi, V̄i+1, Zi

)
∆ti

]
Zi = Ei

[
V̄i+1

∆Wi

∆ti

]
, i = 0, . . . , N − 1,

(5.27)

starting from V̄N = g(XN ), and which is also known to converge with the same time discretization error (5.2)
than the implicit backward scheme.

21



We decompose the approximation error into three terms:

E
∣∣Yti − Ûi(Xi)

∣∣2 ≤ 3
(
E
∣∣Yti − V̄i∣∣2 + E

∣∣V̄i − Vi∣∣2 + E
∣∣Vi − Ûi(Xi)

∣∣2). (5.28)

The first term is the classical time discretization error, and the rest of the proof is devoted to the analysis of
the second and third terms.
Step 1. Fix i ∈ J0, N − 1K. By definition of Vi in (4.3) and the martingale representation theorem, there exists
a square integrable process {Ẑs, ti ≤ s ≤ ti+1} such that

Ûi+1(Xi+1) + f
(
ti, Xi,Ei

[
Ûi+1(Xi+1)

]
,Ei
[
σ(ti, Xi)

ᵀDxÛi+1(Xi+1)
])

∆ti = Vi +

∫ ti+1

ti

Ẑs dWs.

It follows that the quadratic loss function of the DS scheme in (2.15) can be written as

JSi (Ui) := E
∣∣∣Ûi+1(Xi+1)− Ui(Xi) + f

(
ti, Xi+1, Ûi+1(Xi+1), σ(ti, Xi)

ᵀDxÛi+1(Xi+1)
)
∆ti

∣∣∣2
= J̃Si (Ui) + E

[ ∫ ti+1

ti

|Ẑs|22ds
]
, (5.29)

where

J̃Si (Ui) := E
∣∣∣Vi − Ui(Xi) + ∆fi∆ti

∣∣∣2
with ∆fi := f

(
ti, Xi+1, Ûi+1(Xi+1), σ(ti, Xi)

ᵀDxÛi+1(Xi+1)
)

− f
(
ti, Xi,Ei[Ûi+1(Xi+1)],Ei[σ(ti, Xi)

ᵀDxÛi+1(Xi+1)]
)
.

A direct application of Young inequality in the form (a+ b)2 ≥ 1
2a

2 − b2 leads to

J̃Si (Ui) + |∆ti|2E
∣∣∆fi∣∣2 ≥ 1

2
E
∣∣Vi − Ui(Xi)

∣∣2. (5.30)

On the other hand, by Lipschitz continuity of f , we have

J̃Si (Ui) + |∆ti|2E
∣∣∆fi∣∣2 ≤ 2E

∣∣Vi − Ui(Xi)
∣∣2 + 3|∆ti|2E

∣∣∆fi∣∣2
≤ 2E

∣∣Vi − Ui(Xi)
∣∣2 + 9|∆ti|2[f ]2

L
E|Xi+1 −Xi|22

+ 9|∆ti|2[f ]2
L
E
∣∣∣Ûi+1(Xi+1)− Ei[Ûi+1(Xi+1)]

∣∣∣2
+ 9|∆ti|2[f ]2

L
E
∣∣∣σ(ti, Xi)

ᵀDxÛi+1(Xi+1)− Ei
[
σ(ti, Xi)

ᵀDxÛi+1(Xi+1)
]∣∣∣2

2

≤ 2 E
∣∣Vi − Ui(Xi)

∣∣2 + 9|∆ti|2[f ]2
L
E|Xi+1 −Xi|22

+ 9|∆ti|2[f ]2
L
E
∣∣∣Ûi+1(Xi+1)− Ûi+1(Xi)

∣∣∣2
+ 9|∆ti|2[f ]2

L
E
[
|σ(ti, Xi)|22Ei

∣∣DxÛi+1(Xi+1)−DxÛi+1(Xi)
∣∣2
2

]
, (5.31)

where we use the definition of conditional expectation Ei[.], and the tower property of conditional expectation
in the last inequality. Recall from Lemma 2.1 that the network function Ûi+1 ∈ N 2,γ,R

d,m,1 is locally Lipschitz on
Rd. Actually, from (2.5), we have∣∣Ûi+1(x)− Ûi+1(x′)

∣∣ ≤ 2d
γ

R
max

(
1,
|x|

2
+ |x′|

2

R

)
|x− x′|

2
, ∀x, x′ ∈ Rd. (5.32)

By Cauchy-Schwarz inequality, we then have

E
∣∣∣Ûi+1(Xi+1)− Ûi+1(Xi)

∣∣∣2 ≤ C(d)
γ2

R2

(
1 +
‖Xi+1‖24 + ‖Xi‖24

R2

)∥∥Xi+1 −Xi

∥∥2

4

≤ C(d)
γ2

R2

(
1 +

∥∥X0

∥∥2

4

)2

∆ti

for ∆ti small enough, R ≥ 1, and we used again the standard estimate: ‖Xi‖2p ≤ C(1 +‖X0‖2p), ‖Xi+1−Xi‖2p
≤ C(1 + ‖X0‖2p)

√
∆ti, for p ≥ 1. By using also the Lipschitz condition on DxÛi+1 in N 2,γ,R

d,m,1 (see Remark 2.1),
and plugging into (5.31), we then get

J̃Si (Ui) + |∆ti|2E
∣∣∆fi∣∣2 ≤ 2E

∣∣Vi − Ui(Xi)
∣∣2 + C(d) max

[
1,
γ2

R2

](
1 +

∥∥X0

∥∥2

4

)2

|∆ti|3. (5.33)

22



By applying inequality (5.30) to Ui = Ûi, which is a minimizer of J̃ Si by (5.29), and combining with (5.33), this
yields for all network functions Ui in N+,γ,R

d,m :

E
∣∣Vi − Ûi(Xi)

∣∣2 ≤ C
(
E
∣∣Vi − Ui(Xi)

∣∣2 + (1 + ‖X0‖24)2|∆ti|3 max
[
1,
γ2

R2

])
,

and thus by minimizing over Ui in the right hand side

E
∣∣Vi − Ûi(Xi)

∣∣2 ≤ C
(
εm,γ,Ri + (1 + ‖X0‖24)2|∆ti|3 max

[
1,
γ2

R2

])
. (5.34)

Step 2. From the expressions of Vi, and V̄i in (4.3) and (5.27), and by applying Young, Cauchy-Schwarz inequal-
ities, we get with β ∈ (0, 1)

E
∣∣V̄i − Vi∣∣2 ≤ (1 + β)E

∣∣∣Ei[Ûi+1(Xi+1)− V̄i+1

]∣∣∣2
+
(
1 +

1

β

)
|∆ti|2E

∣∣∣f(ti, Xi,Ei[Ûi+1(Xi+1)],Ei[σ(ti, Xi)
ᵀDxÛi+1(Xi+1)]

)
− f

(
ti, Xi, V̄i+1, Zi

)∣∣∣2
≤ (1 + β)E

∣∣∣Ei[Ûi+1(Xi+1)− V̄i+1

]∣∣∣2
+ 2[f ]2

L

(
1 +

1

β

)
|∆ti|2

(
E
∣∣Ûi+1(Xi+1)− V̄i+1

∣∣2 + E
∣∣∣Ei[σ(ti, Xi)

ᵀDxÛi+1(Xi+1)
]
− Zi

∣∣∣2
2

)
.(5.35)

Now, recalling the expression of Zi in (5.27), and by a standard integration by parts argument (see e.g. Lemma
2.1 in [FTW11]), we have

Ei
[
σ(ti, Xi)

ᵀDxÛi+1(Xi+1)
]
− Zi = Ei

[(
Ûi+1(Xi+1)− V̄i+1

)∆Wi

∆ti

]
= Ei

[(
Ûi+1(Xi+1)− V̄i+1 − Ei

[
Ûi+1(Xi+1)− V̄i+1

])∆Wi

∆ti

]
.

By plugging into (5.35), we then obtain by Cauchy-Schwarz inequality

E
∣∣V̄i − Vi∣∣2 ≤ (1 + β)E

∣∣∣Ei[Ûi+1(Xi+1)− V̄i+1

]∣∣∣2 + 2[f ]2
L

(1 + β)
|∆ti|2

β

{
E
∣∣Ûi+1(Xi+1)− V̄i+1

∣∣2
+

d

∆ti

[
E
∣∣Ûi+1(Xi+1)− V̄i+1

∣∣2 − E
∣∣∣Ei[Ûi+1(Xi+1)− V̄i+1

]∣∣∣2]}
≤ (1 + C∆ti)E

∣∣Ûi+1(Xi+1)− V̄i+1

∣∣2, (5.36)

by choosing explicitly β = 2d[f ]2
L

∆ti for ∆ti small enough. By using again Young inequality on the r.h.s. of
(5.36), and since ∆ti = O(1/N), we then get

E
∣∣V̄i − Vi∣∣2 ≤ (1 + C∆ti)E

∣∣V̄i+1 − Vi+1

∣∣2 + CNE
∣∣Ûi+1(Xi+1)− Vi+1

∣∣2.
By discrete Gronwall lemma, and recalling that V̄N = g(XN ), VN = ÛN (XN ), we deduce with (5.34) that

sup
i∈J0,NK

E
∣∣V̄i − Vi∣∣2 ≤ Cεm,γ,RN + CN

N−1∑
i=1

(
εm,γ,Ri + (1 + ‖X0‖24)2|∆ti|3 max

[
1,
γ2

R2

])
. (5.37)

The required bound (4.4) for the approximation error on Y follows by plugging (5.2), (5.34) and (5.37) into
(5.28). �

5.4 Proof of Proposition 4.2
Step 1. In the sequel, C denotes a generic constant independent of |π|, γ, R,m, possible depending on the
coefficients µ, σ, f, T , that may vary from line to line. We write sometimes the constant C(d) to stress the
dependence on d. Fix i ∈ J0, N − 1K. Let us show that the function vi defined via Vi = vi(Xi) (see (4.3)) is
locally Lipschitz.

Define Xx
i+1 := x+ µ(ti, x)∆ti + σ(ti, x)∆Wi, and let x, x′ ∈ Rd. Then, from (4.3), we write

vi(x)− vi(x′) = E
[
Ûi+1(Xx

i+1)− Ûi+1(Xx′

i+1) + ∆ti∆fi

]
, (5.38)

23



where

∆fi := f
(
ti, x,E[Ûi+1(Xx

i+1)],E[σ(ti, x)ᵀDxÛi+1(Xx
i+1)]

)
− f

(
ti, x

′,E[Ûi+1(Xx′

i+1)],E[σ(ti, x
′)ᵀDxÛi+1(Xx′

i+1)]
)
.

From the Lipschitz condition on f in Assumption 4.1 and 4.2 (see relation (4.5)), we then have∣∣∆fi∣∣ ≤ Kf,σ

{
|x− x′|2

(
1 + E

∣∣DxÛi+1(Xx
i+1)|

)
+ E

∣∣Ûi+1(Xx
i+1)− Ûi+1(Xx′

i+1)
∣∣

+ E
∣∣DxÛi+1(Xx

i+1)−DxÛi+1(Xx′

i+1)
∣∣
2

}
. (5.39)

From (5.32), and by Cauchy-Schwarz inequality, we have

E
∣∣∣Ûi+1(Xx

i+1)− Ûi+1(Xx′

i+1)
∣∣∣ ≤ 2d

γ

R

(
1 +
‖Xx

i+1‖2 + ‖Xx′

i+1‖2
R

)∥∥Xx
i+1 −Xx′

i+1

∥∥
2

≤ C(d)
γ

R

(
1 +
|x|2 + |x′|2

R

)
|x− x′|

2
(5.40)

for ∆ti small enough, where we used the standard estimate: ‖Xx
i+1‖2p ≤ |x|2(1 + C

√
∆ti) + C

√
∆ti, ‖Xx

i+1 −
Xx′

i+1‖2p ≤ (1 + C
√

∆ti)|x− x′|2 . From the Lipschitz property of DxÛi+1 (see Remark 2.1), we have

E
∣∣DxÛi+1(Xx

i+1)−DxÛi+1(Xx′

i+1)
∣∣
2
≤ C(d)

γ

R2
|x− x′|

2
. (5.41)

Moreover, from (2.5), we have

∥∥DxÛi+1(Xx
i+1)

∥∥
2
≤ 2d

γ

R

(
1 +
‖Xx

i+1‖2
R

)
≤ C(d)

γ

R

(
1 +
|x|2
R

)
. (5.42)

It follows from (5.38), (5.39), (5.40), (5.41) and (5.42) that for R ≥ 1, ∆ti ≤ 1:

|vi(x)− vi(x′)| ≤ C(d)
[
1 +

γ

R

(
1 +
|x|2 + |x′|2

R

)]
|x− x′|2 , x, x′ ∈ Rd,

which shows that vi is locally Lipschitz. In the next step, we shall take γ/R of order 1 (with respect to the
modulus |π| of the time discretization), and so [vi]L,R ≤ C(d)γ/R.

On the other hand, back to the expression of vi in (4.3), from the growth linear condition of σ, f in Assumption
4.1, and the growth conditions in Lemma 2.1, we have for all x ∈ Rd:

|vi(x)| ≤ (1 + C∆ti)E
∣∣Ûi+1(Xx

i+1)
∣∣+ C∆ti(1 + |x|

2
)
(

1 + E
∣∣DxÛi+1(Xx

i+1)
∣∣
2

)
≤ 3γ(1 + C∆ti)

(
1 +
‖Xx

i+1‖22
R2

)
+ 2d

γ

R
C∆ti(1 + |x|2)

(
1 +
‖Xx

i+1‖2
R

)
≤ C(d)γ

(
1 +
|x|2

2

R2

)
, (5.43)

for ∆ti small enough, where we used again the estimate ‖Xx
i+1‖2 ≤ |x|2(1 + C

√
∆ti) + C

√
∆ti.

Step 2. Similarly as in (5.24), by using the approximation result in (2.9) for locally Lipschitz continuous, we see
that the approximation error of vi, i = 0, . . . , N − 1, by the class of networks N 2,R,γ

d,m,1 , is bounded by√
εr,γ,Ri = inf

U∈N 2,R,γ
d,m,1

∥∥vi(Xi)− U(Xi)
∥∥

2

≤ C
(

[vi]L,R

( γ

[vi]L,R

)−2/(d+3)

log
( γ

[vi]L,R

)
+ γm−1/2

)
+

(∥∥vi(Xi)‖2+δ +
∥∥Ûi(Xi)

∥∥
2+δ

)∥∥Xi

∥∥p
p

Rp
,

for any δ > 0, and p ≥ 1. Now, from the growth condition (2.4) for any function in N 2,γ,R
d,m,1 , and the growth

condition (5.43), we have

∥∥Ûi(Xi)
∥∥

2+δ
+
∥∥vi(Xi)

∥∥
2+δ
≤ C(d)γ

(
1 +
‖Xi‖24+2δ

R2

)
.

24



Recalling the standard estimate ‖Xi‖2p ≤ C(1 + ‖X0‖2p), i = 0, . . . , N , we then have for R large enough, γ/R
= O(1), and using the fact that [vi]L,R ≤ C(d)γ/R from Step 1:

εr,γ,Ri ≤ C(d,X0, p)
{(
R−2/(d+3) log(R) +Rm−1/2

)2

+
1

R2p−2

}
, (5.44)

for some constant C(d,X0) independent of N,R,m, and this holds for any p ≥ 1. Since g is Lipschitz under
Assumption (4.2), we notice that estimate (5.44) on the network approximation error also holds for i = N by
taking γ/R = [g]

L
. Plugging this estimate into (4.4), and recalling that E|g(XT )− g(XN )|2 + εZ(π) = O(|π|)

= O(1/N) when g is Lipschitz, we get

sup
i∈J0,NK

E
∣∣Yti − Ûi(Xi)

∣∣2 ≤ C(d,X0)
[ 1

N
+N2

(
R−2/(d+3) log(R) +Rm−1/2

)2

+
N2

R2p−2

]
.

Therefore, to achieve a rate of convergence of order 1/N for supi∈J0,NK E
∣∣Yti − Ûi(Xi)

∣∣2, it suffices to choose R
and m s.t.

N2R−4/(d+3)| log(R)|2 = O(1/N), and N2R2m−1 = O(1/N),

hence for example with R = O
(
N

3(d+3)
4 +ε

)
, and m = O

(
N

3(d+5)
2 +2ε

)
, for any ε > 0, and then take p =

(d+ 5)/(d+ 3) so that N2/R2p−2 = O(1/N). �

6 Numerical study
We test our different algorithms and the cited ones in this paper on various examples and by varying the state
space dimension. If not stated otherwise, we choose the maturity T = 1. In each example we use tanh as
activation function, and an architecture composed of 2 hidden layers with d + 10 neurons. We apply Adam
gradient descent [KB14] with a decreasing learning rate, using the Tensorflow library [Aba+16]. Each numerical
experiment is conducted using a node composed of 2 Intel R© Xeon R© Gold 5122 Processors, 192 Go of RAM,
and 2 GPU nVidia R© Tesla R© V100 16Go. We use a batch size of 1000.

6.1 Semilinear PDEs
We first consider examples from [HPW20] to compare its Deep Backward Dynamic Programming methods with
the Deep Splitting and the Deep Multistep methods, and then examples coming from the well-known viscous
Burgers equation. The three first lines of the tables below are taken from [HPW20]. For each test, the two best
results are highlighted in boldface. We use 5000 gradient descent iterations by time step except 20000 for the
projection of the final condition. The execution of the multistep algorithm approximately takes between 8000
s. and 16000 s. (depending on the dimension) for a resolution with N = 120.

6.1.1 PDE with bounded solution and simple structure

We take the parameters
µ = 0.2

d , σ = Id√
d
, x =

∑d
i=1 xi

f(x, y, z) =
(

cos(x)
(
e
T−t
2 + 1

2

)
+ 0.2 sin(x)

)
e
T−t
2 − 1

2 (sin(x) cos(x)eT−t)2

1 + 1
2d (y(1d · z))2.

(6.1)

so that the PDE solution is given by

u(t, x) = cos (x) exp

(
T − t

2

)
.

We first provide a test with a larger maturity T = 2, in dimension d = 1. The results are reported in
Figure 1, while Figure 2 (resp. Figure 3) plots the graphs of the neural network approximations with the Deep
splitting (resp. Multistep DBDP) scheme. It is observed in this example that the multistep scheme gives similar
precision as the DBDP scheme and outperforms the DS scheme, while the DBSDE scheme is not convergent
due to the high number N = 240 of time steps.

25



Averaged value Standard deviation Relative error (%)
[HPW20] (DBDP1) 1.4633 0.0143 0.36
[HPW20] (DBDP2) 1.4388 0.0135 2.04
[HJE17] (DBSDE) NC NC NC
[Bec+19] (DS) 1.4968 0.0367 1.91

MDBDP 1.4626 0.020 0.38

Figure 1: Estimate of u(0, x0) in the case (6.1), where d = 1, x0 = 1, T = 2 with N = 240 time steps. Average
and standard deviation observed over 10 independent runs are reported. The theoretical solution is 1.4686938.

Figure 2: Estimates of u and Dxu using DS scheme in the case (6.1), T = 2. We take d = 1, x0 = 1, at the top
t = 1., and at the bottom t = 0.0083.

Figure 3: Estimates of u and Dxu in the case (6.1) using MDBDP scheme, T = 2. We take d = 1, x0 = 1, at
the top t = 1, and at the bottom t = 0.0083.

26



Next, we fix T = 1, and increase the dimension d. The results are reported in Figure 4 for d = 5, in Figure
5 for d = 10, in Figure 6 for d = 20, and in Figure 7 for d = 50. It is observed that all the schemes DBDP,
DBSDE and MDBDP provide quite accurate results with comparable precision, and largely outperforms the
DS scheme.

Averaged value Standard deviation Relative error (%)
[HPW20] (DBDP1) 0.4637 0.0043 0.85
[HPW20] (DBDP2) 0.4634 0.0014 0.92
[HJE17] (DBSDE) 0.4656 0.0035 0.44
[Bec+19] (DS) 0.4790 0.0169 2.42

MDBDP 0.4649 0.0006 0.59

Figure 4: Estimate of u(0, x0) in the case (6.1), where d = 5, x0 = 1 15, T = 1 with 120 time steps. Average
and standard deviation observed over 10 independent runs are reported. The theoretical solution is 0.46768.

Averaged value Standard deviation Relative error (%)
[HPW20] (DBDP1) - 1.3895 0.0015 0.44
[HPW20] (DBDP2) - 1.3913 0.0006 0.57
[HJE17] (DBSDE) - 1.3880 0.0016 0.33
[Bec+19] (DS) - 1.4097 0.0173 1.90

MDBDP -1.3887 0.0006 0.38

Figure 5: Estimate of u(0, x0) in the case (6.1), where d = 10, x0 = 1 110, T = 1 with 120 time steps. Average
and standard deviation observed over 10 independent runs are reported. The theoretical solution is -1.383395.

Averaged value Standard deviation Relative error (%)
[HPW20] (DBDP1) 0.6760 0.0027 0.47
[HPW20] (DBDP2) 0.6710 0.0056 0.27
[HJE17] (DBSDE) 0.6869 0.0024 2.09
[Bec+19] (DS) 0.6944 0.0201 3.21

MDBDP 0.6744 0.0005 0.24

Figure 6: Estimate of u(0, x0) in the case (6.1), where d = 20, x0 = 1 120, T = 1 with 120 time steps. Average
and standard deviation observed over 10 independent runs are reported. The theoretical solution is 0.6728135.

Averaged value Standard deviation Relative error (%)
[HPW20] (DBDP1) 1.5903 0.0063 0.04
[HPW20] (DBDP2) 1.5876 0.0068 0.21
[HJE17] (DBSDE) 1.5830 0.0361 0.50
[Bec+19] (DS) 1.6485 0.0140 3.62

MDBDP 1.5924 0.0005 0.09

Figure 7: Estimate of u(0, x0) in the case (6.1), where d = 50, x0 = 1 150, T = 1 with 120 time steps. Average
and standard deviation observed over 10 independent runs are reported. The theoretical solution is 1.5909.

6.1.2 PDE with unbounded solution and more complex structure

We take the parameters {
µ = 0, σ = Id√

d

f(x, y, z) = k(x) + y√
d
(1d · z) + y2

2

(6.2)

with a function k so that the PDE solution is given by

u(t, x) =
T − t
d

d∑
i=1

(sin(xi)1xi<0 + xi1xi≥0) + cos
( d∑
i=1

ixi

)
.

We start with tests in dimension d = 1. The results are reported in Figure 8, and graphs of the neural
network approximations with the Deep splitting (resp. Multistep DBDP) scheme are plotted in Figure 9 (resp.

27



Figure 10). Similar conclusion can be drawn as in the previous section with bounded solution and simple
structure.

Averaged value Standard deviation Relative error (%)
[HPW20] (DBDP1) 1.3720 0.0030 0.41
[HPW20] (DBDP2) 1.3736 0.0022 0.29
[HJE17] (DBSDE) 1.3724 0.0005 0.38
[Bec+19] (DS) 1.3630 0.0079 1.06

MDBDP 1.3735 0.0003 0.30

Figure 8: Estimate of u(0, x0) in the case (6.2), where d = 1, x0 = 0.5 with 120 time steps. Average and standard
deviation observed over 10 independent runs are reported. The theoretical solution is 1.3776.

Figure 9: Estimates of u and Dxu using DS scheme in the case (6.2). We take d = 1, x0 = 0.5, at the top
t = 0.5, and at the bottom t = 0.0083.

Figure 10: Estimates of u and Dxu in the case (6.2) using MDBDP scheme. We take d = 1, x0 = 0.5, at the
top t = 0.5, and at the bottom t = 0.0083.

28



We next increase the dimension up to d = 8, and report the results in the following figures. The accuracy
is not so good as in the previous section with simple structure of the solution, but we notice that the MDBDP
scheme yields the best performance in dimension d = 8 (above dimension d = 10, all the schemes do not give
good approximation results).

Averaged value Standard deviation Relative error (%)
[HPW20] (DBDP1) 0.5715 0.0038 0.14
[HPW20] (DBDP2) 0.5708 0.0024 0.02
[HJE17] (DBSDE) 0.5715 0.0006 0.14
[Bec+19] (DS) 0.5680 0.0124 0.47

MDBDP 0.5721 0.0005 0.37

Figure 11: Estimate of u(0, x0) in the case (6.2), where d = 2, x0 = 0.5 12 with 120 time steps. Average and
standard deviation observed over 10 independent runs are reported. The theoretical solution is 0.5707.

Averaged value Standard deviation Relative error (%)
[HPW20] (DBDP1) 0.8666 0.0130 1.21
[HPW20] (DBDP2) 0.8365 0.0045 4.64
[HJE17] (DBSDE) NC NC NC
[Bec+19] (DS) 0.6846 0.0576 21.96

MDBDP 0.8675 0.0008 1.08

Figure 12: Estimate of u(0, x0) in the case (6.2), where d = 5, x0 = 0.5 15 with 120 time steps. Average and
standard deviation observed over 10 independent runs are reported. The theoretical solution is 0.8772.

Averaged value Standard deviation Relative error (%)
[HPW20] (DBDP1) 1.1694 0.0254 0.78
[HPW20] (DBDP2) 1.0758 0.0078 7.28
[HJE17] (DBSDE) NC NC NC
[Bec+19] (DS) 1.2283 0.0113 5.86

MDBDP 1.1654 0.0379 0.47

Figure 13: Estimate of u(0, x0) in the case (6.2), where d = 8, x0 = 0.5 18 with 120 time steps. Average and
standard deviation observed over 10 independent runs are reported. The theoretical solution is 1.1603.

6.1.3 Viscous Burgers equation

The basic viscous Burgers’ equation is a semilinear PDE in dimension one written as{
∂tu+ σ2

2 ∂
2
xxu = u∂xu, on [0, T )× R

u(T, .) = g.
(6.3)

An (quasi)-explicit solution, obtained by Hopf-Cole transformation, is given by:

u(t, x) = −σ2∂x log
[ 1

2πσ2(T − t)2

∫
R

exp
(
− (x− x′)2

2σ2(T − t)
− 1

σ2

∫ x′

0

g(x′′) dx′′
)

dx′
]
.

We take the terminal condition g(x) = cos(x) so that an analytic expression of the solution is

u(t, x) =

∫
R
x−x′
T−t exp

(
− (x−x′)2

2σ2(T−t) −
sin(x′)
σ2

)
dx′∫

R exp
(
− (x−x′)2

2σ2(T−t) −
sin(x′)
σ2

)
dx′

.

This analytic function is estimated through Monte-Carlo simulation, and we report the results of the different
schemes in Figure 14, while Figure 15 (resp. Figure 16) plots the graphs of the neural network approximations
with the Deep splitting (resp. Multistep DBDP) scheme. All the schemes provide very good results both in
terms of relative error and standard deviation, and it is observed that the DS scheme achieves the smallest
relative error.

29



Averaged value Standard deviation Relative error (%)
[HPW20] (DBDP1) 0.43489 0.00174 0.78
[HPW20] (DBDP2) 0.43432 0.00154 0.65
[HJE17] (DBSDE) 0.43356 0.00010 0.48
[Bec+19] (DS) 0.43040 0.00296 0.26

MDBDP 0.43501 0.00083 0.81

Figure 14: Estimate of u(0, x0) in the case of Burgers equation (6.3), where d = 1, x0 = 1. with 120 time steps.
Average and standard deviation observed over 10 independent runs are reported. The theoretical solution,
estimated with Monte-Carlo simulation (106 samples) is 0.4315.

Figure 15: Estimates of u and Dxu in the case of Burgers equation (6.3) using DS scheme. We take d = 1,
x0 = 1, at the top t = 0.5, and at the bottom t = 0.0083.

Figure 16: Estimates of u and Dxu in the case of Burgers equation (6.3) using MDBDP. scheme We take d = 1,
x0 = 1, at the top t = 0.5, and at the bottom t = 0.0083.

30



6.2 Fully nonlinear PDEs
We consider examples from [PWG19] that we compare with Algorithms 2 (2EMDBDP), 3 (2MDBDP), and
4 (2M2DBDP) designed in this paper. Notice that some comparison tests with the 2DBSDE scheme [BEJ19]
have been already done in [PWG19]. For a resolution with N = 120, N̂ = 30, the execution of our multitep
algorithms takes between 10000 s. and 30000 s. (depending on the dimension) with a number of gradient
descent iterations fixed at 4000 at each time step except 80000 at the first one.

6.2.1 PDE with bounded solution and simple structure

We take the parameters

µ = 0, σ =
Id√
d
, x =

d∑
i=1

xi

and solve the nonlinear PDE

∂tu = −1

2
cos (x) exp

(T − t
2

)
+ cos (x)

2
exp (T − t) +

uTr(D2
xu)

d
, (6.4)

so that its solution is given by

u(t, x) = cos (x) exp
(T − t

2

)
.

For the time discretization we take N = 120, N̂ = 30. We first start in dimension d = 1 with results given
in Figure 17, and graphs of x 7→ u, Dx and D2

xu in Figures 20, 21, and 22 for the different algorithms.

Averaged value Standard deviation Relative error (%)
[PWG19] 1.53606 0.02795 4.59
2EMDBDP 1.61976 0.22369 10.29
2MDBDP 1.49930 0.00561 2.08
2M2DBDP 1.50165 0.00676 2.24

Figure 17: Estimate of u(0, x0) in the case (6.4), where d = 1, x0 = 1 with N = 120, N̂ = 30. Average and
standard deviation observed over 10 independent runs are reported. The theoretical solution is 1.468693.

Next, we study the impact of the choice of the parameter N̂ on the approximation results, and by increasing
the dimension d.

N̂ Averaged value Standard deviation Relative error (%)
[PWG19] 0.21790 0.09972 71.74
2EMDBDP 0.65697 0.93289 14.8
2MDBDP 12 0.81601 0.00480 5.83
2MDBDP 30 0.77699 0.00571 0.76
2MDBDP 60 0.80684 0.02153 4.64
2M2DBDP 12 0.77691 0.00456 0.76
2M2DBDP 30 0.78722 0.01187 2.09
2M2DBDP 60 0.826206 0.05405 7.15

Figure 18: Estimate of u(0, x0) in the case (6.4), where d = 5, x0 = 15 with N = 120. Average and standard
deviation observed over 10 independent runs are reported. The theoretical solution is 0.771074.

Averaged value Standard deviation Relative error (%)
[PWG19] 1.94670 0.05342 185.35
2EMDBDP -1.21034 0.08323 46.93
2MDBDP -3.50869 0.57553 53.83
2M2DBDP NC NC NC

Figure 19: Estimate of u(0, x0) in the case (6.4), where d = 10, x0 = 110 with N = 120, N̂ = 30. Average and
standard deviation observed over 10 independent runs are reported. The theoretical solution is -2.280833.

31



It is worth mentioning that the 2M2DBDP algorithm also diverges in dimension 10 when N̂ = 40 or N̂ = 20.
The other algorithms converge but not to the right solution.

Figure 20: Estimates of u, Dxu, D2
xu using 2MDBDP in the case (6.4) for d = 1 with N = 120, N̂ = 30. We

take x0 = 1., at the left t = 0.5126, and at the right t = 0.0084.

32



Figure 21: Estimates of u, Dxu, D2
xu using 2EMDBDP in the case (6.4) for d = 1 with N = 120. We take

x0 = 1., at the left t = 0.5042, and at the right t = 0.0084.

33



Figure 22: Estimates of u, Dxu, D2
xu using [PWG19] in the case (6.4) for d = 1 with N = 120. We take x0 = 1.,

at the left t = 0.5042, and at the right t = 0.0084.

This example highlights the requirement for a multistep method with adaptive time step for the estimation
of the second order derivative as far as both the 2EMDBDP method and the algorithm from [PWG19] do
not converge anymore when the dimension increases. Even in dimension one, as shown in figures 21 and 22,
instabilities occur in the Hessian estimation, before propagating to the gradient and the solution itself. With
N̂ smaller than N , this behavior seems corrected for small dimensions but appears anyway when the dimension
becomes high.

6.2.2 Monge-Ampère equation

We consider another example of fully nonlinear PDE, namely the parabolic Monge-Ampère equation:{
∂tu+ det(D2

xu) = f(x), (t, x) ∈ [0, T ]× Rd,
u(T, x) = g(x),

(6.5)

where det(D2
xu) is the determinant of the Hessian matrix D2

xu.
We test our algorithms by choosing a C2 function g, then compute G = det(D2g), and set f := G−1. Then,

34



by construction, the function

u(t, x) = g(x) + T − t,

is solution to the Monge-Ampère (MA) equation (6.5). We choose g(x) = cos(
∑d
i=1 xi/

√
d). For the numerical

implementation, we rewrite the MA equation as

∂tu+
1

8
∆u = F (x,D2

xu), on [0, T )× Rd,

(∆u is the Laplacian of u), with F (x,Γ) = 1
8Tr(Γ)− det(Γ) + f(x), and train with the forward process

Xk+1 = X0 +
1

2
Wk, k = 0, . . . , N, X0 = 1d.

N̂ Averaged value Standard deviation Relative error (%)
[PWG19] 0.37901 0.00312 0.97
2EMDBDP 0.376989 0.000272 1.50
2MDBDP 30 0.391464 0.000448 2.28
2MDBDP 60 0.383953 0.000417 0.32
2MDBDP 120 0.37984 0.000276 0.75
2M2DBDP 30 NC NC NC

Figure 23: Estimate of u(0, 15) on the Monge Ampere problem (6.5) (d = 5) and N = 120. Average and
standard deviation observed over 10 independent runs are reported. The theoretical solution is 0.38272712.

N̂ Averaged value Standard deviation Relative error (%)
[PWG19] 0.25276 0.00235 1.17
2EMDBDP 0.25523 0.000478 0.20
2MDBDP 30 0.23622 0.000659 7.64
2MDBDP 60 0.24516 0.004383 4.14
2MDBDP 120 0.25310 0.00046 1.03
2M2DBDP 30 NC NC NC

Figure 24: Estimate of u(0, 115) on the Monge Ampere problem (6.5) (d = 15) and N = 120. Average and
standard deviation observed over 10 independent runs are reported. The theoretical solution is 0.25575373.

This example shows that for medium dimension d = 5, Algorithm 3 improves significantly the approximation
result compared to the other algorithms when choosing a suitable adaptive step N̂ for the computation of the
Hessian, while for higher dimension d = 15, the multistep extension of the scheme in [PWG19] already gives
quite accurate result.

6.2.3 Portfolio selection

We consider a portfolio selection problem formulated as follows. There are n risky assets of uncorrelated price
process P = (P 1, . . . , Pn) with dynamics governed by

dP it = P itσ(V it )
[
λi(V

i
t )dt+ dW i

t

]
, i = 1, . . . , n,

where W = (W 1, . . . ,Wn) is a n-dimensional Brownian motion, λ = (λ1, . . . , λn) is the market price of risk of
the assets, σ is a positive function (e.g. σ(v) = ev corresponding to the Scott model), and V = (V 1, . . . , V n) is
the volatility factor modeled by an Ornstein-Uhlenbeck (O.U.) process

dV it = κi[θi − V it ]dt+ νidB
i
t, i = 1, . . . , n,

with κi, θi, νi > 0, and B = (B1, . . . , Bn) a n-dimensional Brownian motion, s.t. d < W i, Bj > = δijρijdt, with
ρi := ρii ∈ (−1, 1). An agent can invest at any time an amount αt = (α1

t , . . . , α
n
t ) in the stocks, which generates

a wealth process X = Xα governed by

dXt =

n∑
i=1

αitσ(V it )
[
λi(V

i
t )dt+ dW i

t

]
.

35



The objective of the agent is to maximize her expected utility from terminal wealth:

E
[
U(XαT )] ← maximize over α

It is well-known that the solution to this problem can be characterized by the dynamic programming method
(see e.g. [Pha09]), which leads to the Hamilton-Jacobi-Bellman for the value function on [0, T )× R× Rn:∂tu+

n∑
i=1

[
κi(θi − vi)∂viu+

1

2
ν2
i ∂

2
viu
]

=
1

2
R(v)

(∂xu)2

∂2
xxu

+

n∑
i=1

[
ρiλi(vi)νi

∂xu∂
2
xviu

∂2
xxu

+
1

2
ρ2
i ν

2
i

(∂2
xviu)2

∂2
xxu

]
u(T, x, v) = U(x), x ∈ R, v ∈ Rn,

with a Sharpe ratio R(v) := |λ(v)|2, for v = (v1, . . . , vn) ∈ (0,∞)n. The optimal portfolio strategy is then given
in feedback form by α∗t = â(t,X ∗t , Vt), where â = (â1, . . . , ân) is given by

âi(t, x, v) = − 1

σ(vi)

(
λi(vi)

∂xu

∂2
xxu

+ ρiνi
∂2

xviu

∂2
xxu

)
, (t, x, v = (v1, . . . , vn)) ∈ [0, T )× R× Rn,

for i = 1, . . . , n.

We shall test this example when the utility function U is of exponential form: U(x) = − exp(−ηx), with η
> 0, and under different cases for which explicit solutions are available:

(1) Merton problem. This corresponds to a degenerate case where the factor V , hence the volatility σ and the
risk premium λ are constant. We rewrite the Bellman equation as

∂tu+ |λ|∂xu+
1

2
∂2
xxu =

1

2
|λ|2 (∂xu)2

∂2
xxu

+ |λ|∂xu+
1

2
∂2
xxu, (6.6)

and train our algorithms with the forward process

Xk+1 = Xk + |λ|∆tk + ∆Wk, k = 0, . . . , N, X0 = x0.

Recall that the explicit solution is given by

u(t, x) = e−(T−t) |λ|
2

2 U(x).

(2) One risky asset: n = 1. In this case, we rewrite the Bellman equation as

∂tu+ λ(θ)∂xu+
1

2
∂2

xxu+
1

2
ν2∂2

vvu

=
1

2
|λ(v)|2 (∂xu)2

∂2
xxu

+
[
ρλ(v)γ

∂xu∂
2
xvu

∂2
xxu

+
1

2
ρ2γ2 (∂2

xvu)2

∂2
xxu

]
+ λ(θ)∂xu+

1

2
∂2

xxu− κ(θ − v)∂vu,

for (t, x, v) ∈ [0, T )× R× R, and train our algorithms with the forward process

Xk+1 = Xk + λ(θ)∆tk + ∆Wk, k = 0, . . . , N − 1, X0 = x0

Vk+1 = Vk + ν∆Bk, k = 0, . . . , N − 1, V0 = θ,

with d < W,B > = ρdt. We test our algorithm with λ(v) = λv, λ > 0, for which we have an explicit
solution: u(t, x, v) = U(x)w(t, v) with

w(t, v) = exp
(
− φ(t)

v2

2
− ψ(t)v − χ(t)

)
, (t, v) ∈ [0, T ]× R,

where (φ, ψ, χ) are solutions of the Riccati system of ODEs:

φ̇− 2κ̄φ− ν2(1− ρ2)φ2 + λ2 = 0, φ(T ) = 0,

ψ̇ − (κ̄+ ν2(1− ρ2)φ)ψ + κθφ = 0, ψ(T ) = 0,

χ̇+ κθψ − ν2

2
(−φ+ (1− ρ2)ψ2) = 0, χ(T ) = 0,

36



with κ̄ = κ+ ρνλ, and explicitly given by (see e.g. Appendix in [SZ99])

φ(t) = λ2 sinh(κ̂(T − t))
κ̂ cosh(κ̂(T − t)) + κ̄ sinh(κ̂(T − t))

ψ(t) = λ2κθ

κ̂

cosh(κ̂(T − t))− 1

κ̂ cosh(κ̂(T − t)) + κ̄ sinh(κ̂(T − t))

χ(t) =
1

2(1− ρ2)
ln
[

cosh(κ̂(T − t)) +
κ̄

κ̂
sinh(κ̂(T − t))

]
− 1

2(1− ρ2)
κ̄(T − t)

− λ2 (κθ)2

κ̂2

[ sinh(κ̂(T − t))
κ̂ cosh(κ̂(T − t)) + κ̄ sinh(κ̂(T − t))

− (T − t)
]

− λ2 (κθ)2κ̄

κ̂3

cosh(κ̂(T − t))− 1

κ̂ cosh(κ̂(T − t)) + κ̄ sinh(κ̂(T − t))
,

with κ̂ =
√
κ2 + 2ρνλκ+ ν2λ2.

(3) No leverage effect, i.e., ρi = 0, i = 1, . . . , n. In this case, we rewrite the Bellman equation as

∂tu+
[ n∑
i=1

λi(θ)
]
∂xu+

1

2
∂2

xxu+
1

2

n∑
i=1

ν2
i ∂

2
viu

=
1

2
|λ(v)|2 (∂xu)2

∂2
xxu

+
[ n∑
i=1

λi(θ)
]
∂xu+

1

2
∂2

xxu−
n∑
i=1

κi(θi − vi)∂viu,

and train with the forward process

Xk+1 = Xk +

n∑
i=1

λi(θi)∆tk + ∆Wk, k = 0, . . . , N − 1, X0 = x0

V ik+1 = V ik + νi∆B
i
k, k = 0, . . . , N − 1, V i0 = θi,

with < W,Bi > = 0. We test our algorithm with λi(v) = λivi, λi > 0, i = 1, . . . , n, v = (v1, . . . , vn), for
which we have an explicit solution u(t, x, v) = U(x)w(t, v) with

w(t, v) = exp
(
−

n∑
i=1

[
φi(t)

v2
i

2
+ ψi(t)vi + χi(t)

])
, (t, v) ∈ [0, T ]× Rn,

φi(t) = λ2
i

sinh(κ̂i(T − t))
κi sinh(κ̂i(T − t)) + κ̂i cosh(κ̂i(T − t))

ψi(t) = λ2
i

κiθi
κ̂i

cosh(κ̂i(T − t))− 1

κi sinh(κ̂i(T − t)) + κ̂i cosh(κ̂i(T − t))

χi(t) =
1

2
ln
[

cosh(κ̂i(T − t)) +
κi
κ̂i

sinh(κ̂i(T − t))
]
− 1

2
κi(T − t)

− λ2
i

(κiθi)
2

κ̂2
i

[ sinh(κ̂i(T − t))
κ̂i cosh(κ̂i(T − t)) + κi sinh(κ̂i(T − t))

− (T − t)
]

− λ2 (κiθi)
2κi

κ̂3
i

cosh(κ̂i(T − t))− 1

κ̂i cosh(κ̂i(T − t)) + κi sinh(κ̂i(T − t))
,

with κ̂i =
√
κ2
i + ν2

i λ
2
i .

Merton Problem. We take η = 0.5, λ = 0.6, N = 120, N̂ = 30. We plot in Figure 26 the neural
networks approximation of u,Dxu,D

2
xu, and the feedback control â (for one asset) computed from our different

algorithms, together with their analytic values (in orange). As also reported in the estimates of Figure 25, the
multistep algorithms improve significantly the results obtained in [PWG19], where the estimation of the Hessian
is not really accurate (see blue curve in Figure 26).

Averaged value Standard deviation Relative error (%)
[PWG19] -0.50510 0.00393 0.30
2EMDBDP -0.50673 0.000193 0.022
2MDBDP -0.50647 0.000329 0.030
2M2DBDP -0.50644 0.000219 0.035

Figure 25: Estimate of u(0, 1.) in the Merton problem (6.6) with N = 120, N̂ = 30. Average and standard
deviation observed over 10 independent runs are reported. The theoretical solution is -0.50662.

37



Figure 26: Estimates of u, Dxu, D2
xu and of the optimal control α on the Merton problem (6.6) with N = 120,

N̂ = 30. We take x0 = 1., at the left t = 0.5042, and at the right t = 0.0084.

One asset n = 1 in Scott volatility model. We take η = 0.5, λ = 1.5, θ = 0.4, ν = 0.4, κ = 1, ρ = −0.7.
For all tests we choose N = 120, N̂ = 30 and σ(v) = ev. We report in Figure 27 the relative error between
the neural networks approximation of u,Dxu,D

2
xu computed from our different algorithms and their analytic

38



values. It turns out that the multistep extension of [PWG19], namely 2EMDBDP scheme, yields a very accurate
approximation result, much better than the other algorithms, with also a reduction of the standard deviation.

Averaged value Standard deviation Relative error (%)
[PWG19] -0.53327 0.00619 0.53
2EMDBDP -0.53613 0.000447 0.007
2MDBDP -0.53772 0.000463 0.304
2M2DBDP -0.53205 0.000501 0.755

Figure 27: Estimate of u(0, 1, θ) on the One Asset problem with stochastic volatility (d = 2) and N = 120,
N̂ = 30. Average and standard deviation observed over 10 independent runs are reported. The exact solution
is −0.53609477.

No Leverage in Scott model. In the case with one asset we take η = 0.5, λ = 1.5, θ = 0.4, ν = 0.2,
κ = 1. For all tests we choose N = 120, N̂ = 30 and σ(v) = ev. We report in Figure 28 the relative error
between the neural networks approximation of u,Dxu,D

2
xu computed from our different algorithms and their

analytic values. All the algorithms yield quite accurate results, but compared to the case with correlation in
Figure 27, it appears here that the best performance in terms of precision is achieved by Algorithm 2M2DBDP.

Averaged value Standard deviation Relative error (%)
[PWG19] -0.50160 0.00594 0.007
2EMDBDP -0.50400 0.00229 0.485
2MDBDP -0.50149 0.00024 0.015
2M2DBDP -0.50157 0.00036 0.001

Figure 28: Estimate of u(0, 1, θ), with 120 time steps on the No Leverage problem (6.7) with 1 asset (d = 2)
and N = 120, N̂ = 30. Average and standard deviation observed over 10 independent runs are reported. The
exact solution is −0.501566.

In the case with four assets we take η = 0.5, λ =
(
1.5 1.1 2. 0.8

)
, θ =

(
0.1 0.2 0.3 0.4

)
, ν =(

0.2 0.15 0.25 0.31
)
, κ =

(
1. 0.8 1.1 1.3

)
. The results are reported in Figure 29. We observe that the

algorithm in [PWG19] provides a not so accurate outcome, while its multistep version (2EMDBDP scheme)
divides by 10 the relative error and the standard deviation.

Averaged value Standard deviation Relative error (%)
[PWG19] -0.45119 0.00507 2.13
2EMDBDP -0.440709 0.00051 0.239
2MDBDP -0.437963 0.00098 0.861
2M2DBDP -0.448307 0.00566 1.481

Figure 29: Estimate of u(0, 1, θ), with 120 time steps on the No Leverage problem (6.7) with 4 assets (d = 5)
and N = 120, N̂ = 30. Average and standard deviation observed over 10 independent runs are reported. The
theoretical solution is -0.44176462.

Finally, in the case with nine assets, we take η = 0.5, λ =
(
1.5 1.1 2. 0.8 0.5 1.7 0.9 1. 0.9

)
, θ =(

0.1 0.2 0.3 0.4 0.25 0.15 0.18 0.08 0.91
)
, ν =

(
0.2 0.15 0.25 0.31 0.4 0.35 0.22 0.4 0.15

)
,

κ =
(
1. 0.8 1.1 1.3 0.95 0.99 1.02 1.06 1.6

)
. The results are reported in Figure 30. The approxi-

mation is less accurate than in lower dimension, but we observe again that compared to one-step scheme in
[PWG19], the multistep versions improve significantly the error with the best performance in precision obtained
here by the 2MDBDP scheme.

39



N̂ Averaged value Standard deviation Relative error (%)
[PWG19] -0.30150 0.03475 9.60
2EMDBDP -0.266311 0.00283 3.19
2MDBDP 30 -0.289786 0.00559 5.34
2MDBDP 60 -0.285491 0.00948 3.78
2MDBDP 120 -0.283000 0.01129 2.87
2M2DBDP 30 NC NC NC

Figure 30: Estimate of u(0, 1, θ), with 120 time steps on the No Leverage problem with 9 assets (d = 10) and
N = 120. Average and standard deviation observed over 10 independent runs are reported. The theoretical
solution is -0.27509173.

6.3 Results synthesis
From the results of the different algorithms that we have tested on various examples, we make the following
remarks. The local machine learning schemes (DBDP, DS and their extensions) are more stable and converge
in more cases than the global deep learning scheme (DBSDE) as they are not limited by the number of time
steps required in the time discretization. In general, the DBDP schemes yield better approximation results
than the DS scheme with the notable exception of the Burgers equation in dimension 1. For unbounded and
complex structure of the solution to semilinear PDEs, the multistep version of the DBDP scheme allows to gain
in precision and standard deviation at least in medium dimension. When dealing with fully nonlinear PDEs, we
observe that multistep schemes improve significantly the approximation error, and permit to achieve accurate
results that are not attainable by one-step scheme. Among the three multistep algorithms proposed in this
paper, one cannot draw a conclusion about the dominance of one over the others, as the performance depends
on the examples and dimension, although it seems that Algorithm 2M2DBDP with Malliavin weights of second
order often diverges in high dimension. Anyway, the computational cost of multistep schemes is rather high
compared to one-step scheme. Finally, we point out that the choice of the adaptive grid for the computation of
the Hessian with Malliavin weights is a delicate point in multistep schemes, and would need a theoretical study
that is postponed for future work.

References
[Aba+16] M. Abadi et al. “TensorFlow: A system for large-scale machine learning”. In: 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 16). 2016, pp. 265–283.
url: https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf.

[AGL08] M. Akian, S. Gaubert, and A. Lakhoua. “The max-plus finite element method for solving deter-
ministic optimal control problems: basic properties and convergence analysis,” in: SIAM Journal
on Control and Optimization 47.2 (2008), pp. 817–848.

[Bac17] F. Bach. “Breaking the Curse of Dimensionality with Convex Neural Networks”. In: Journal of
Machine Learning Research 18.19 (2017), pp. 1–53. url: http://jmlr.org/papers/v18/14-
546.html.

[BD07] C. Bender and R. Denk. “A forward scheme for backward SDEs”. In: Stochastic Processes and
their Applications 117.12 (2007), pp. 1793 –1812. issn: 0304-4149. doi: https://doi.org/10.
1016/j.spa.2007.03.005. url: http://www.sciencedirect.com/science/article/pii/
S0304414907000476.

[Bec+19] C. Beck et al. “Deep splitting method for parabolic PDEs”. In: arXiv:1907.03452 (July 2019).

[BEJ19] C. Beck, W. E, and A. Jentzen. “Machine Learning Approximation Algorithms for High-
Dimensional Fully Nonlinear Partial Differential Equations and Second-order Backward Stochas-
tic Differential Equations”. In: J. Nonlinear Sci. 29.4 (Aug. 2019), pp. 1563–1619. issn: 1432-
1467. doi: 10.1007/s00332-018-9525-3. url: https://doi.org/10.1007/s00332-018-
9525-3.

[BF11] B. Bercu and J.C. Fort. “Generic stochastic gradient methods”. In:Wiley Encyclopedia of Opera-
tions Research and Management Science. 2011, pp. 1–8.

[BJK19] C. Beck, A. Jentzen, and B. Kuckuck. “Full error analysis for the training of deep neural net-
works”. In: arXiv:1910.00121v2 (2019).

[BM] F. Bach and E. Moulines. “Non-strongly-convex smooth stochastic approximation with conver-
gence rate O(1/n).” In: Proceedings of the 26th International Conference on Neural Information
Processing Systems, NIPS’13, pp. 773–781.

40

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
http://jmlr.org/papers/v18/14-546.html
http://jmlr.org/papers/v18/14-546.html
https://doi.org/https://doi.org/10.1016/j.spa.2007.03.005
https://doi.org/https://doi.org/10.1016/j.spa.2007.03.005
http://www.sciencedirect.com/science/article/pii/S0304414907000476
http://www.sciencedirect.com/science/article/pii/S0304414907000476
https://doi.org/10.1007/s00332-018-9525-3
https://doi.org/10.1007/s00332-018-9525-3
https://doi.org/10.1007/s00332-018-9525-3


[BT04] B. Bouchard and N. Touzi. “Discrete-time approximation and Monte-Carlo simulation of back-
ward stochastic differential equations”. In: Stochastic Process. Appl. 111.2 (2004), pp. 175 –
206. issn: 0304-4149. doi: https://doi.org/10.1016/j.spa.2004.01.001. url: http:
//www.sciencedirect.com/science/article/pii/S0304414904000031.

[CB18] L. Chizat and F. Bach. “On the Global Convergence of Gradient Descent for Over-parameterized
Models using Optimal Transport”. In: Advances in Neural Information Processing Systems
(NeurIPS) (2018).

[Che+07] P. Cheridito et al. “Second-order backward stochastic differential equations and fully nonlinear
parabolic PDEs”. In: Comm. Pure Appl. Math. 60.7 (July 2007), pp. 1081–1110. issn: 0010-3640.
doi: 10.1002/cpa.20168.

[CWNMW19] Q. Chan-Wai-Nam, J. Mikael, and X. Warin. “Machine Learning for Semi Linear PDEs”. In: J.
Sci. Comput. (Feb. 2019). doi: 10.1007/s10915-019-00908-3.

[DLM19] J. Darbon, G. Langlois, and T. Meng. “Overcoming the curse of dimensionality for some
Hamilton–Jacobi partial differential equations via neural network architectures”. In: arXiv:1910.09045
(Oct. 2019).

[FGN13] X. Feng, R. Glowinski, and M. Nellan. “Recent developments in numerical methods for fully
nonlinear second order partial differential equations”. In: SIAM Review 55.2 (2013), pp. 205–
267.

[FTW11] A. Fahim, N. Touzi, and X. Warin. “A probabilistic numerical method for fully nonlinear
parabolic PDEs”. In: Ann. Appl. Probab. 21.4 (Aug. 2011), pp. 1322–1364. doi: 10.1214/10-
AAP723. url: https://doi.org/10.1214/10-AAP723.

[GLW05] E. Gobet, J-P. Lemor, and X. Warin. “A regression-based Monte Carlo method to solve backward
stochastic differential equations”. In: Ann. Appl. Probab. 15.3 (Aug. 2005), pp. 2172–2202. doi:
10.1214/105051605000000412. url: https://doi.org/10.1214/105051605000000412.

[GT14] E. Gobet and P. Turkedjiev. “Linear regression MDP scheme for discrete backward stochastic
differential equations under general conditions”. In: Math. Comp. 85 (Mar. 2014). doi: 10.1090/
mcom/3013.

[GT16] E. Gobet and P. Turkedjiev. “Approximation of backward stochastic differential equations using
Malliavin weights and least-squares regression”. In: Bernoulli 22.1 (Feb. 2016), pp. 530–562. doi:
10.3150/14-BEJ667. url: https://doi.org/10.3150/14-BEJ667.

[Gy02] L. Györfi et al. A distribution-free theory of nonparametric regression. Springer Series in Statis-
tics, Springer-Verlag, 2002.

[HJE17] J. Han, A. Jentzen, and W. E. “Solving high-dimensional partial differential equations using
deep learning”. In: Proc. Natl. Acad. Sci. 115 (July 2017). doi: 10.1073/pnas.1718942115.

[HL+19] P. Henry-Labordère et al. “Branching diffusion representation of semilinear PDEs and Monte
Carlo approximation”. In: Ann. Inst. H. Poincaré Probab. Statist. 55.1 (Feb. 2019), pp. 184–210.
doi: 10.1214/17-AIHP880. url: https://doi.org/10.1214/17-AIHP880.

[HL18] J. Han and J. Long. “Convergence of the Deep BSDE Method for Coupled FBSDEs”. In:
arXiv:1811.01165 (Nov. 2018).

[HPW20] C. Huré, H. Pham, and X. Warin. “Deep backward schemes for high-dimensional nonlinear
PDEs”. In: Mathematics of Computation 89.324 (2020), pp. 1547–1580.

[HSW89] K. Hornik, M. Stinchcombe, and H. White. “Multilayer Feedforward Networks Are Universal
Approximators”. In: Neural Netw. 2.5 (July 1989), pp. 359–366. issn: 0893-6080.

[HSW90] K. Hornik, M. Stinchcombe, and H. White. “Universal approximation of an unknown mapping
and its derivatives using multilayer feedforward networks”. In: Neural Network 3(5) (1990),
pp. 551–560.

[Hur+18] C. Huré et al. “Deep neural networks algorithms for stochastic control problems on finite horizon,
part I: convergence analysis”. In: arXiv:1812.04300 (2018).

[Hut+18] M. Hutzenthaler et al. “Overcoming the curse of dimensionality in the numerical approximation
of semilinear parabolic partial differential equations”. In: arXiv:1807.01212 (2018).

[KB14] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. Published as a conference
paper at the 3rd International Conference for Learning Representations, San Diego, 2015. 2014.
url: http://arxiv.org/abs/1412.6980.

41

https://doi.org/https://doi.org/10.1016/j.spa.2004.01.001
http://www.sciencedirect.com/science/article/pii/S0304414904000031
http://www.sciencedirect.com/science/article/pii/S0304414904000031
https://doi.org/10.1002/cpa.20168
https://doi.org/10.1007/s10915-019-00908-3
https://doi.org/10.1214/10-AAP723
https://doi.org/10.1214/10-AAP723
https://doi.org/10.1214/10-AAP723
https://doi.org/10.1214/105051605000000412
https://doi.org/10.1214/105051605000000412
https://doi.org/10.1090/mcom/3013
https://doi.org/10.1090/mcom/3013
https://doi.org/10.3150/14-BEJ667
https://doi.org/10.3150/14-BEJ667
https://doi.org/10.1073/pnas.1718942115
https://doi.org/10.1214/17-AIHP880
https://doi.org/10.1214/17-AIHP880
http://arxiv.org/abs/1412.6980


[LGW06] J-P. Lemor, E. Gobet, and X. Warin. “Rate of convergence of an empirical regression method for
solving generalized backward stochastic differential equations”. In: Bernoulli 12.5 (Oct. 2006),
pp. 889–916. doi: 10.3150/bj/1161614951. url: https://doi.org/10.3150/bj/1161614951.

[McE07] W. McEneaney. “A curse of dimensionality free numerical method for solution of certain HJB
PDEs”. In: SIAM Journal on Control and Optimization 46.4 (2007), pp. 1239–1276.

[Pha09] H. Pham. Continuous-time Stochastic Control and Optimization with Financial Applications.
Vol. 61. SMAP. Springer, 2009.

[PP90] E. Pardoux and S. Peng. “Adapted solution of a backward stochastic differential equation”. In:
Systems & Control Letters 14.1 (1990), pp. 55 –61. issn: 0167-6911. doi: https://doi.org/
10.1016/0167-6911(90)90082-6. url: http://www.sciencedirect.com/science/article/
pii/0167691190900826.

[PWG19] H. Pham, X. Warin, and M. Germain. “Neural networks-based backward scheme for fully non-
linear PDEs”. In: arXiv:1908.00412 (2019).

[SS17] J. Sirignano and K. Spiliopoulos. “DGM: A deep learning algorithm for solving partial differen-
tial equations”. In: J. Computational Phys. 375 (Aug. 2017). doi: 10.1016/j.jcp.2018.08.029.

[SZ99] R. Schöbel and J. Zhu. “Stochastic volatility with an Ornstein-Uhlenbeck process and extension”.
In: Review of Finance 3.1 (1999), pp. 23–46.

[Tur15] P. Turkedjiev. “Two algorithms for the discrete time approximation of Markovian backward
stochastic differential equations under local conditions”. In: Electron. J. Probab. 20 (2015), 49
pp. doi: 10.1214/EJP.v20-3022. url: https://doi.org/10.1214/EJP.v20-3022.

[VSS18] M. Sabate Vidales, D. Siska, and L. Szpruch. “Unbiased deep solvers for parametric PDEs”. In:
arXiv:1810.05094v2 (2018).

[War17] X. Warin. “Variations on branching methods for non linear PDEs”. In: arXiv:1701.07660 (Jan.
2017). doi: 10.13140/RG.2.2.10311.39846.

[War18] X. Warin. “Nesting Monte Carlo for high-dimensional non-linear PDEs”. In: arXiv:1804.08432
(2018).

[Zha04] J. Zhang. “A numerical scheme for BSDEs”. In: Ann. Appl. Probab. 14.1 (Feb. 2004), pp. 459–
488. doi: 10.1214/aoap/1075828058. url: https://doi.org/10.1214/aoap/1075828058.

[E+18] W. E et al. “On multilevel Picard numerical approximations for high-dimensional nonlinear
parabolic partial differential equations and high-dimensional nonlinear backward stochastic dif-
ferential equations”. In: to appear in Journal of Scientific Computing (2018).

42

https://doi.org/10.3150/bj/1161614951
https://doi.org/10.3150/bj/1161614951
https://doi.org/https://doi.org/10.1016/0167-6911(90)90082-6
https://doi.org/https://doi.org/10.1016/0167-6911(90)90082-6
http://www.sciencedirect.com/science/article/pii/0167691190900826
http://www.sciencedirect.com/science/article/pii/0167691190900826
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1214/EJP.v20-3022
https://doi.org/10.1214/EJP.v20-3022
https://doi.org/10.13140/RG.2.2.10311.39846
https://doi.org/10.1214/aoap/1075828058
https://doi.org/10.1214/aoap/1075828058

	Introduction
	BSDE Machine learning schemes for semilinear PDEs
	Neural networks
	Existing schemes
	Deep backward multi-step scheme (MDBDP)

	Extension to fully non linear PDEs: second order deep backward multistep scheme
	Convergence analysis in the semilinear case
	Convergence of the MDBDP scheme
	Convergence of the DS scheme

	Proof of the main theoretical results
	Proof of Theorem 4.1
	Proof of Proposition 4.1
	Proof of Theorem 4.2
	Proof of Proposition 4.2

	Numerical study
	Semilinear PDEs
	PDE with bounded solution and simple structure
	PDE with unbounded solution and more complex structure
	Viscous Burgers equation

	Fully nonlinear PDEs
	PDE with bounded solution and simple structure
	Monge-Ampère equation
	Portfolio selection

	Results synthesis


