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Abstract. The use of fractional-order controllers to drive dynamical 
systems to a desired/target configuration became extremely popular in 
the last decade, with many studies stating that they present superior 
performance when compared to the integer-order counterparts, espe-
cially for nonlinear systems. Following this trend, the purpose of this 
chapter is to verify the possibility of improving the performance of the 
control of an inverted cart-pendulum system using fractional-order in-
tegrators. The strategy is to employ the classical pole location linear 
method to calculate the gains of the controller and then to compare the 
performance between integer-order and fractional-order integrators, 
the last one that are calculated using an optimization method. 
 
Keywords: fractional calculus, state-derivative feedback, fractional-order control, 
cart-pendulum nonlinear system 

 

1 Introduction 
The idea of the Fractional Calculus was introduced in 1695 when Bernoulli, 

Leibniz, and L’Hôpital exchanged letters about the possibility of a non-integer 
derivative order. This discussion involved many mathematicians as Euler, Fou-
rier, and Laplace, among others (Monje et al. 2010; Ortigueira 2011; Ortigueira 
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and Manuel 2015). During the following centuries, many pure and applied 
mathematicians contributed to the development of the fractional calculus theory 
and many different fractional operators have been proposed, among them the 
Grünwald-Letnikov, Riemann-Liouville and Caputo fractional derivatives (Li 
and Dend, 2007). 

The Riemann-Liouville fractional integral (Li and Deng 2007) of order 𝛼, 
where 𝛼 ∈ ℝ and 𝛼 > 0, is defined in terms of a convolution type operation be-
tween the real-valued function 𝑦(𝑡) and the kernel  𝑡!"#  

𝐼	 !%,'	𝑦(𝑡) =
1

𝛤(𝛼)/
(𝑡 − 𝜏)!"#𝑦(𝜏) 𝑑𝜏
'

%
	 , 𝑡	 > 𝑎		 (1) 

being 𝛤 the Gamma function, and the Riemann-Liouville fractional derivative 
(Li and Dend, 2007) is defined in terms of the classical derivative of order 𝑛 ∈
ℤ( of this fractional-order integral 
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	𝑡	 > 𝑎,			𝑛 − 1 < 𝛼 < 𝑛	,		
(2) 

which is a global operator (not local as in classical calculus) that presents 
“memory”. 

However, other definitions for a fractional derivative are also possible, like 
one by Grünwald-Letnikov (Li and Deng 2007) 
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	𝑡 > 𝑎,			𝑛 − 1 < 𝛼 < 𝑛	,	

(3) 

or a recent definition by Caputo [4] 

𝐷3 !
%,'𝑦(𝑡) =

1
𝛤(𝑛 − 𝛼)/

(𝑡 − 𝜏)+"!"#𝑦(+)(𝜏) 𝑑𝜏
'

%
 

	𝑡 > 𝑎,			𝑛 − 1 < 𝛼 < 𝑛	.	
(4) 

The development of new definitions is an active field of research in mathe-
matics (Caputo and Fabrizio 2015; Khalil el al. 2014; Zheng and Zhao 2019 
Ortigueira and Trujillo 1012; Katugampola 2011), but in the last decade, mainly 
thanks to the development of numerical methods to simulate fractional systems 
(Li et al. 2011; Deng et al. 2015; Tepljakov et al. 2011), fractional operators 
started to be used in engineering analysis (Katsikadelis 2015; Caputo and Car-
cione 2011; Lewandoswski and Pawlak 2018; Lin et al. 2019; Dai et al. 2017) 
and control theory (Tepljakov 2017; Shah and Agashe 2016; Chen et al. 2018; 
Bingul et al. 2018; Li et al. 2016; Balachandran et al. 2015; Barbosa et al. 2010; 
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Wang et al. 2009 Xue and Zhao 2007; Delavari 2010), especially when dealing 
with time-delay (Martelli 2009) or nonlinear and chaotic systems (Azar et al. 
2017; Niu 2017; Shen et al. 2014; Shen et al. 2014). 

Among the favorable characteristics these fractional-order operators offer, 
two of them can be highlighted: (i) their global application provide a natural 
framework for describing phenomena with memory; and (ii) the fractional ex-
ponent offers a kind of additional degree of freedom to tune a controller, open-
ing opportunities for additional improvements of performance in the controller 
design. 

Trying to explore this second feature, in this manuscript a state-feedback 
control system is proposed to stabilize an inverted cart-pendulum system (Fig-
ure 1) and then, the possibility of improving the performance of the control sys-
tem using fractional integrators is analyzed. The inverted pendulum has been 
chosen as a benchmark since it is a classical control problem a nonlinear system 
widely studied using integer-order controllers (Kharola et al. 2016; Wang et al. 
2014; Prasad et al. 2014; Wang 2011), which started to be tested in fractional-
control literature as well (Mousa et al. 2017). 

 

Figure 1: Schematic illustration of the cart-pendulum system. 

2 Proposed control system 
Figure 2 shows the state-space feedback control system proposed to control 

the inverted cart-pendulum system. It can be noted that the angular velocity of 
the pendulum and the velocity of the mass are chosen to be the observed states 
and they must be integrated 𝑰𝜶, as defined by the Riemann-Liouville fractional 
integral in Equation 1, to obtain the angular position of the pendulum and the 
position of the mass, respectively. 
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Figure 2: Illustration of the proposed controller for the inverted cart-pendulum system. 

 
The pole location is a classical and widely method used to calculate the val-

ues of each gain 𝑘7  and that has been developed for linear systems using integer-
order controllers. The locations of the poles are chosen based in the performance 
desired for the closed-loop system. Since this method is based on linear system 
hypothesis, the linearized cart-pendulum model is employed 

𝑚𝑙	�̈� + (𝐼 + 𝑚𝑙!)�̈� − 𝑚𝑔𝑙𝜃 = 0

(𝑀 +𝑚)�̈� + 𝑚𝑙�̈� − 𝑢 = 0,
 (5) 

where M is the cart mass; 𝑚 is the inverted pendulum mass; I is pendulum mo-
ment of inertia; 𝑙 is the distance from the center of pendulum's mass to the fix-
ation point; 𝜃  is the angle between the pendulum and a perpendicular axis 
through the cart’s centroid; 𝑥 is the cart’s horizontal displacement; and 𝑢 is the 
force applied to the cart to control the system.  

Now define the state variables 𝑥#, 𝑥8, 𝑥9 and 𝑥: as 𝑥" = 𝜃, 𝑥! =	 �̇�,𝑥3 =
𝑥, 𝑥4 = �̇�. Then considering the angular position 𝜃 and cart position 𝑥 as the 
outputs of the system, obtained the equations for the system as follows: 

�̇� = 𝐀𝐱 + 𝐁	𝑢,

𝑦 = 	𝐂𝐱,

𝑢 = −89𝑘1𝐼𝛼1 + 𝑘2:𝑥! + 9𝑘3𝐼𝛼2 + 𝑘4:𝑥# +;+ 𝑘𝑙𝜉,
𝐷𝛼𝑙𝜉 = 𝑟 − 𝑦 = 𝑟 − 𝐼𝛼3𝑥#,

 (7) 
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where 𝐱 is the state vector; 𝑢 is the control signal; 𝑦 is the output signal; 𝜉 is the 
output of the integrator; 𝑟 is the reference input signal; 𝐀 is the matrix of states; 
𝐁 is the input matrix; 𝐂 is the output matrix; and 𝐊 is the gain matrix (𝑘#, 𝑘8, 
𝑘9 and 𝑘:). 

For this cart-pendulum, the matrices are: 

𝐀 =

⎣
⎢
⎢
⎢
⎢
⎡

0 1 0 0
𝑚𝑔𝑙(𝑀+𝑚)

𝐼(𝑀+𝑚)+𝑀𝑚𝑙2
1 0 0

0 0 0 1
− 𝑚2𝑔𝑙2

𝐼(𝑀+𝑚)+𝑀𝑚𝑙2
0 0 0⎦

⎥
⎥
⎥
⎥
⎤

, 

𝐁 =

⎣
⎢
⎢
⎢
⎢
⎡

0
− 𝑚𝑙
𝐼(𝑀+𝑚)+𝑀𝑚𝑙2

0
𝐼+𝑚𝑙2

𝐼(𝑀+𝑚)+𝑀𝑚𝑙2 ⎦
⎥
⎥
⎥
⎥
⎤

, 								𝐂 = [1 0 0 0]. 

(8) 

The following values are adopted for the system parameters: 

𝑚 = 0.1	𝑘𝑔, 𝑀	 = 	2	𝑘𝑔, 𝑙 = 0.5	𝑚 and 𝐼 = 0.006	𝑘𝑔 ∙ 𝑚8. 

The linear model using classical control will be used to obtain values for 
the 𝑘′𝑠. It will be used the pole location method and the closed-loop poles are 
chosen to be located at: 

𝜇# = −1 + 𝑗√3						𝜇8 = −1 − 𝑗√3						𝜇9 = −5						𝜇: = −5						𝜇? = −5, 

where 𝑗 = √−1. 
 
Using the Matlab to calculate the 𝑘′𝑠, the following values are obtained: 

𝑘# = −200.6						𝑘8 = −50.3				𝑘9 = −70.1						𝑘: = −46.8						𝑘@ = −63.8. 

The next step is to verify if the performance of the system can be improved 
changing the orders of the integrators by simulations using the FOMCOM 
toolbox (Tepljakov 2011). The simulations are done considering the following in-
itial conditions: 

𝜃2 = 10°						�̇�2 = 0						𝑥2 = 0						�̇�2 = 0. 
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Since it is desired to verify the basins of attraction of the closed loop system, 
the simulations also consider a nonlinear model of the inverted cart-pendulum, 
given by 

𝑚𝑙	 𝑐𝑜𝑠 𝜃 �̈� + (𝐼 + 𝑚𝑙!)�̈� − 𝑚𝑔𝑙 𝑠𝑖𝑛 𝜃 = 0

(𝑀 +𝑚)�̈� + 𝑚𝑙 𝑐𝑜𝑠 𝜃 �̈� − 𝑚𝑙 𝑠𝑖𝑛 𝜃 �̇�! − 𝑢 = 0.
 (9) 

Another decision is to maintain the values of 𝛼9 and 𝛼A  equal to 1. This de-
cision is based in the fact that lower values would introduce an offset in the 
mass position and higher values would make the position of the mass more os-
cillatory. 

 

3 Fractional-controller optimization 
Simulations are performed to evaluate the behavior of the control-system in-

tegrators with the combination of different orders, integer and fractional, and so 
find the point or region where the performance criteria are minimal. 

These simulations are divided into two stages: global analysis and detailed 
analysis. In the first stage, the global analysis is performed observing the per-
formance in a larger range of integrators, where the integrators had their order 
varied by 0.05 between: 

0.1 ≤ 𝛼# ≤ 2.0				and				0.1 ≤ 𝛼8 ≤ 2.0. 

Based on the results of this simulation, the second stage have been per-
formed, reducing the interval of the order of the integrators according to the 
region that has the lowest ISE criterion values and settling time. Therefore, for 
detailed analysis, several systems are simulated with variations of 0.01 within 
the ranges: 

0.6 ≤ 𝛼# ≤ 1.2				and				0.7 ≤ 𝛼8 ≤ 1.3. 

The performance of this system is evaluated using the following criteria: 
• Integral of the Squared Error (ISE) of the angular position of the 

pendulum:  

𝐽B = / 𝜃8𝑑𝑡
C

2
 

• Settling time of the pendulum 𝑡B . 
• Integral of the Squared Error (ISE) of the cart position:  
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𝐽D = / 𝑥8𝑑𝑡
C

2
 

• Settling time of the cart 𝑡D . 
These criteria are imposed to verify the best combination of the orders 𝛼# 

and 𝛼8. 

4 Angular position of the pendulum 
In the problem of an inverted cart-pendulum, the angular position of the pen-

dulum is the most important output of the system for dynamic control, espe-
cially when the purpose of the control is to keep the pendulum in equilibrium in 
a near upright position. Therefore, the shorter the time and the oscillation for 
the system to reach this equilibrium, the better its performance. Therefore, dur-
ing the simulations below, the setting time 𝑡B  and the ISE criterion 	𝐽B  of the 
angular position are observed. 

Global analysis 

The first simulation to understand the behavior of the angular position varies 
𝛼# and 𝛼8 in the range 0.1 to 2. In this way, the ISE criterion for different com-
binations of integrators produce the results shown in Figures 3 and 4. 

  

Figure 3: ISE criterion of the angular position for 𝟎. 𝟏 ≤ 𝜶𝟏,𝟐 ≤ 𝟐. 
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Figure 4: ISE criterion of the angular position for 𝟎. 𝟏 ≤ 𝜶𝟏,𝟐 ≤ 𝟐.  

This first result already allows one to conclude that a system with low am-
plitudes and small oscillations (smaller 𝐽B) can be obtained through fractional 
integrators, as they present better results than integer integrators (𝛼# = 𝛼8 = 1). 
Figure 4 shows the region of integrators that have the lowest ISE value in blue, 
reaching minimum values close to 𝐽B=0.01. 

Observing the results of another evaluation criterion, the numbers of combi-
nations of integrators can be reduced, further detailing the analysis. Figures 5 
and 6 show the results of the settling time of the first simulation. 

Figure 5 shows regions with extremely low levels of settling time, 
however these regions have very oscillation values and high 𝐽&  values. 
Therefore, the point where the settling time and little oscillation is lower has 
been indicated in the graph. 

 

Figure 5: Settling time of the angular position for 𝟎. 𝟏 ≤ 𝜶𝟏,𝟐 ≤ 𝟐.  
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Figure 6: Settling time of the angular position for 𝟎. 𝟏 ≤ 𝜶𝟏,𝟐 ≤ 𝟐.   

As in the results of the ISE criterion, the shortest settling time of the system 
does not correspond to the integers, but the combination of the fractional inte-
grators 𝛼# = 0.85 and 𝛼8 = 0.90, as shown in Figure 5. These results also con-
tribute to the details of the study, since it reduces the number of combinations 
of integrators with satisfactory results. If a controller with integer integrators 
(𝛼#,8 = 1) has a settling time of 4.8 seconds, then the satisfactory results will be 
those below that. Therefore, for the next simulation the interval is reduced to: 

0.6 ≤ 𝛼# ≤ 1.2				and				0.7 ≤ 𝛼8 ≤ 1.3. 

This range is represented by the central region of the settling time of the con-
tour plot (Figure 6), bounded by dashed lines, where this minimum point and 
the other points satisfactory. 

Detailed analysis 

In this second simulation, the intention is to find the minimum ISE criterion 
value of the angular position ( 𝐽E = ∫ θ8𝑑𝑡C

2 ) together with the settling time 𝑡B  
less than 4.8 seconds. 

Thus, from the range defined in items 3.2 and 4.1.1, the ISE criteria and the 
settling time of the different combinations of integrators presented the results 
shown in Figures 7, 8, 9 and 10. 
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Figure 7: ISE criterion of the angular position for 𝟎. 𝟔 ≤ 𝜶𝟏 ≤ 𝟏. 𝟐 and 𝟎. 𝟕 ≤ 𝜶𝟐 ≤ 𝟏. 𝟑 . 

 

 

Figure 8: ISE criterion of the angular position for 𝟎. 𝟔 ≤ 𝜶𝟏 ≤ 𝟏. 𝟐 and 𝟎. 𝟕 ≤ 𝜶𝟐 ≤ 𝟏. 𝟑. 

The results of the graph in Figures 7 and 8 indicate to the minimum value of 
𝐽E  equal to 0.014, with the fractional integrators approximately 0.94 ≤ 𝛼# ≤
1.00 and 0.70 ≤ 𝛼8 ≤ 0.74, reaffirming that the use of fractional-order in the 
integrator is more advantageous. 

As shown in Figure 9, the minimum settling time of the angular position is 
2.315 and 3.182 seconds, with fractional integrators equal to 𝛼# = 1.20 / 𝛼8 =
0.70  and 𝛼# = 0.86  / 𝛼8 = 0.90 , respectively. However, the region around 
𝛼# = 1.20 / 𝛼8 = 0.70 has high values of 𝐽B  (see figure 7). Figure 10 shows that 
there is a large region with different combinations of integrators with 𝑡B  below 
4.8 seconds, even so for the two criteria these regions are different. Therefore, 
it is necessary to find an intersection of these criteria. 

Therefore, to find the minimum value, the following optimization criterion 
is used 

Minimize 𝐽B = ∫ 𝜃8𝑑𝑡.C
2  
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Imposing a settling time for the pendulum 𝑡B ≤ 4.8𝑠 and for the cart position 
𝑡D ≤ 5𝑠, the values obtained for the control system are 𝛼# = 1.08 and 𝛼8 =
0.95.  

 

Figure 9: Settling time of the angular position for 𝟎. 𝟔 ≤ 𝜶𝟏 ≤ 𝟏. 𝟐 and 𝟎. 𝟕 ≤ 𝜶𝟐 ≤ 𝟏. 𝟑. 

 

 

Figure 10: Settling time of the angular position for 𝟎. 𝟔 ≤ 𝜶𝟏 ≤ 𝟏. 𝟐 and 𝟎. 𝟕 ≤ 𝜶𝟐 ≤ 𝟏. 𝟑. 

5 Position of the cart 
The dynamic control of the cart's position output is important when the sys-

tem's objective is to reduce the cart's travel as much as possible while maintain-
ing the pendulum in equilibrium in the vertical position, i.e. the final angle 𝜃F  
near zero. Therefore, the shorter the settling time for the system to reach this 
equilibrium with lower amplitudes and oscillations, the better its performance. 
Therefore, during the simulations below, the settling time 𝑡D 	and the ISE crite-
rion 𝐽D  of the cart position are observed. 
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Global analysis 

The simulation is performed to comprehend the behavior of the cart position 
in a global way, varying 𝛼# and 𝛼8 in the range of 0.1 to 2. Thus, the ISE crite-
rion of the different combinations of integrators presented the results shown in 
Figure 11 and 12. 

 

Figure 11: ISE criterion of the cart position 𝟎. 𝟏 ≤ 𝜶𝟏,𝟐 ≤ 𝟐. 

 

Figure 12: ISE criterion of the cart position for 𝟎. 𝟏 ≤ 𝜶𝟏,𝟐 ≤ 𝟐.  
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Figure 13: Settling time of the cart position for 𝟎. 𝟏 ≤ 𝜶𝟏,𝟐 ≤ 𝟐.  

 

 

Figure 14: Settling time of the cart position for 𝟎. 𝟏 ≤ 𝜶𝟏,𝟐 ≤ 𝟐.   

To reduce the number of combinations of integrators and to further detailed 
analysis, the results of settling time are observed, as shown in Figures 13 and 
14. 

Figures 13 and 14 shows that the shortest settling time in the system does not 
correspond to the integer integrators, but the combination of the fractional inte-
grators 𝛼# = 0.95 and 𝛼8 = 0.95, with settling time equal to 4.0 seconds. These 
results also contribute to the details of the study, since it reduces the number of 
combinations of integrators with satisfactory results. If a controller with integer 
integrators (𝛼#,8 = 1) has a settling time of the cart position equal to 5.0 sec-
onds, then the satisfactory results are be those below that. Therefore, the same 
simulation of the detailed analysis of the angular position is conducted with in-
tervals equal to: 

0.6 ≤ 𝛼# ≤ 1.2				and				0.7 ≤ 𝛼8 ≤ 1.3. 
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This range is represented by the central region of the settling time of the con-
tour plot (Figure 14), bounded by dashed lines, where this minimum point and 
the other points satisfactory.  

Detailed analysis 

In the detailed analysis the objective is to find the minimum ISE criterion 
value of the cart position (𝐽G = ∫ x8𝑑𝑡C

2 ) together with the 𝑡D  settling time less 
than 5 seconds. Thus, from the interval defined in items 3.2 and 4.2.1, the ISE 
criterion and the settling time of the different combinations of integrators pre-
sented the results shown in Figures 15, 16, 17 and 18. 

 

Figure 15: ISE criterion of the cart position for 𝟎. 𝟔 ≤ 𝜶𝟏 ≤ 𝟏. 𝟐 and 𝟎. 𝟕 ≤ 𝜶𝟐 ≤ 𝟏. 𝟑 .  

 

 

Figure 16: ISE criterion of the cart position for 𝟎. 𝟔 ≤ 𝜶𝟏 ≤ 𝟏. 𝟐 and 𝟎. 𝟕 ≤ 𝜶𝟐 ≤ 𝟏. 𝟑. 

The results of the graph in Figures 15 and 16 indicate to the minimum value 
of 𝐽G equal to 0.22, with the fractional integrators approximately 1.10 ≤ 𝛼# ≤
1.15 and 0.95 ≤ 𝛼8 ≤ 1.05, again reaffirming that the use of fractional-order 
in the integrator offers better results. 
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As shown in Figures 17, the minimum settling time of the angular position is 
3.72 seconds, with fractional integrators equal to 𝛼# = 0.95 and 𝛼8 = 0.97. 
Figure 18 shows that there is a small region with different combinations of in-
tegrators with 𝑡D  below 5 seconds, even so for the two criteria these regions are 
different. Therefore, it is necessary to find an intersection of these criteria. 

Therefore, to find the minimum value, the following optimization criterion 
is used 

Minimize 𝐽D = ∫ 𝑥8𝑑𝑡C
2 . 

Imposing a settling time for the pendulum 𝑡B ≤ 4.5𝑠 and for the cart position 
𝑡D ≤ 5𝑠, the values obtained for the control system are also 𝛼# = 1.10 and 𝛼8 =
0.95.  

 

Figure 17: Settling time of the car position for 𝟎. 𝟔 ≤ 𝜶𝟏 ≤ 𝟏. 𝟐 and 𝟎. 𝟕 ≤ 𝜶𝟐 ≤ 𝟏. 𝟑. 

 

 

Figure 18: Settling time of the cart position for 𝟎. 𝟔 ≤ 𝜶𝟏 ≤ 𝟏. 𝟐 and 𝟎. 𝟕 ≤ 𝜶𝟐 ≤ 𝟏. 𝟑. 
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6 Optimized controller 
The previous items indicate that for both, the control of the angular position 

and the control of the position of the cart, the ideal value for the order of the 
integrators is equal to 𝛼# = 1.08/1,10 and 𝛼8 = 0.95. Thus, it is concluded 
that the fractionals result in a better performance. Otherwise, the optimization 
should have indicated the order of the integrators equal to 1. 

To reinforce the advantages of fractional controllers, graphical and perfor-
mance comparisons are made, based on the criteria: settling time and ISE crite-
ria. The fractional integrators 𝛼# = 1.09 (middle term between the optimization 
of 𝐽B  and 𝐽D) and 𝛼8 = 0.95 were used. The graphical comparisons of system 
responses are shown in Figure 19 and Figure 20. 

The graphs with the comparison between the control systems with integer 
and fractional integrators show better performance in both criteria. The values 
of the performance criteria of both systems are presented in the Table 1. 

 

Figure 19: Time series of the angular position of the pendulum when ISE criteria is mini-
mized imposing  𝒕𝜽 ≤ 𝟒. 𝟖𝒔 and 𝒕𝑿 ≤ 𝟓𝒔. 

 

Figure 20: Time series of the position of the cart when ISE criteria is minimized imposing 
𝒕𝜽	 ≤ 𝟒. 𝟖𝒔 and 𝒕𝑿 ≤ 𝟓𝒔. 
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Table 1 - Performance values of systems with integer and fractional integrators after opti-
mization of the ISE criterion of the angular position 

Parameter 
ISE Settling Time 

IO FO % IO FO % 

Angular 
position 68.63 53.04 -23 4.87 4.19 -14 

Cart  
position 0.26 0.22 -14 5.07 4.91 -3 

 
The results in Table 1 refer to the optimization of the ISE criterion with the 

settling time, where the ISE angular position presenting the best performance 
among the other criteria (approximately 23%). There is also an improvement of 
the 14% in the ISE criteria of the cart position and the settling time of the angu-
lar position. The only one that does not have a considerable improvement is the 
settling time of the cart position. However, it is concluded that there is a possi-
bility of improving the controllers using fractional integrators.  

The ideal order values found can be different according to the priority that is 
given to the dynamic control of the system, that is, if the objective is to improve 
the settling time of the cart independent of the settling time pendulum, the order 
of the integrators will be different of the optimum found. 

7 Basins of attraction 

Optimized controller (𝜶𝟏 = 𝟏 and 𝜶𝟐 = 𝟎. 𝟗𝟓) 

The basins of the attraction of the system are compared with integer and frac-
tional integrators. Figure 21 show the result of the attraction basins in terms of 
angular position and angular velocity. For the fractional controller, 𝛼# = 1.09 
and 𝛼8 = 0.95	are considered. 

The graph shown in Figures 21 show that the use of fractional-order integra-
tors reduces the basin of attraction, despite improving performance. With the 
integer-order the angular position of the attraction basin is close to 50 degrees, 
while the fractional-order is below 40 degrees. The reduction in the number of 
controllable cases with different initial conditions using the fractional-order was 
36% compared to the integer-order. 
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Figure 21: Basin of attraction in the angular position vs angular velocity plane for the inte-
grator with integer-order (𝜶𝟏 = 𝟏 and 𝜶𝟐 = 𝟏) and fractional-order (𝜶𝟏 = 𝟏. 𝟎𝟗 and 𝜶𝟐 =

𝟎. 𝟗𝟓). 

 

Controller with wider attraction basin (𝜶𝟏 = 𝟎. 𝟗𝟎 and 𝜶𝟐 = 𝟎. 𝟖𝟓) 

From the previous results, where the basin of attraction was reduced using 
an optimal controller, seek to find combinations of fractional orders that resulted 
result the opposite, i.e. an extension of the attraction basin. Therefore, the frac-
tional integrators 𝛼# = 0.90 and 𝛼8 = 0.85 are used and Figure 22 shows the 
attraction basins of the three cases (integer-order, optimal fractional-order and 
fractional-order with a wider attraction basin). 

 

Figure 22: Basins of attraction in the angular position vs angular velocity plane for the 
three cases of the integrators: integer-order, optimal fractional-order and fractional-order 

with a wider attraction basin. 

The basin of attraction of the new integrator with fractional orders 𝛼# = 0.90 
and 𝛼8 = 0.85 had an increase of 11% compared to the whole order integrator 
basin. Thus, it can be said that the use of fractional orders reduces and enlarges 
the attraction basin, being related to the combination of orders used. In addition, 
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this reduction or expansion is also related to the performance of the controller 
(settling time and ISE criteria). To assess the impact on the system's behavior, 
performance and graphical comparisons were made. The graphical comparisons 
of system responses are shown in Figure 23 and Figure 24. 

The graphs show that performance is impaired, with fractional order result-
ing in higher amplitudes. For a better analysis, the settling time and the ISE 
criteria are shown in Table 2.  

 

 
Figure 23: Comparison of time series of the angular position of the pendulum between inte-

ger-order and fractional-order with wider attraction basins. 

 

 

Figure 24: Comparison of time series of the position of the cart between integer-order and 
fractional-order with wider attraction basins. 

Among the results of the criteria presented in Table 2, only the setting time 
of the angular position of the pendulum has the best performance in comparison 
with the integer-order controller, with a time reduction of 34%, even better than 
the optimal controller. The most significant worsening in performance was in 
the settling time of the cart position, with an increase in time of 18%. The other 
criteria had no significant variations. 
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Table 2 - Performance values of systems with integer and fractional integrators  

with wider attraction basins. 

Parameter 
ISE Settling Time 

IO FO % IO FO % 

Angular 
position 68.63 70.70 +3 4.87 3.20 -34 

Cart  
position 0.26 0.27 +4 5.07 6.00 +18 

 

8 Conclusions 
Based on the results shown in this chapter, it can be concluded that the using 

of fractional integrators improves the performance of the control of a cart-pen-
dulum system reducing the ISE of both the angular position and the position of 
the cart and the settling time either for the same combinations of  𝑘7 , but, as 
expected, the basin of attraction is reduced. 

However, disregarding some performance criteria, fractional integrators can 
expand the attraction basin and improve a certain performance criterion at the 
same time, as shown in Table 2, where even with the 11% increase in the attrac-
tion basin, there is an 34% reduction in settling time compared to integer-order 
integrators. 

The proposed approach seems to be very appealing for control systems in 
which state-derivatives are easier to be obtained or measured than the state sig-
nals (Assunção et al. 2007). 
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