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Isaac Pérez Castillo10

Department of Quantum Physics and Photonics, Institute of Physics,11

UNAM, P.O. Box 20-364, 01000 Mexico City, Mexico and12

London Mathematical Laboratory, 8 Margravine Gardens, London, W6 8RH, UK13

Oliver Hulme14

Danish Research Centre for Magnetic Resonance,15

Centre for Functional and Diagnostic Imaging and Research,16

Copenhagen University Hospital Hvidovre,17
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Abstract37

Despite the importance of having robust estimates of the time-asymptotic total number of in-38

fections, early estimates of COVID-19 show enormous fluctuations. Using COVID-19 data for39

different countries, we show that predictions are extremely sensitive to the reporting protocol and40

crucially depend on the last available data-point, before the maximum number of daily infections41

is reached. We propose a physical explanation for this sensitivity, using a Susceptible-Exposed-42

Infected-Recovered (SEIR) model where the parameters are stochastically perturbed to simulate43

the difficulty in detecting asymptomatic patients, different confinement measures taken by differ-44

ent countries, as well as changes in the virus characteristics. Our results suggest that there are45

physical and statistical reasons to assign low confidence to statistical and dynamical fits, despite46

their apparently good statistical scores. These considerations are general and can be applied to47

other epidemics.48

I. LEAD PARAGRAPH49

COVID-19 is currently affecting over 180 countries in the world and poses seri-50

ous threats to public health as well as economic and social stability of many coun-51

tries. Modeling and extrapolating in near real-time the evolution of COVID-1952

epidemics is a scientific challenge, which requires a deep understanding of the53

non-linearities undermining the dynamics of the epidemics. Here we show that54

real-time predictions of COVID-19 infections are extremely sensitive to errors55

in data collection and crucially depend on the last available data-point. We test56

these ideas in both statistical (logistic) and dynamical (Susceptible-Exposed-57

Infected-Recovered) models that are currently used to forecast the evolution of58

the COVID-19 epidemic. Our goal is to show how uncertainties arising from59

both poor data quality and inadequate estimations of model parameters (incu-60

bation, infection and recovery rates) propagate to long term extrapolations of61

infections count. We provide guidelines for reporting those uncertainties to the62

scientific community and the general public.63

∗ Correspondence to davide.faranda@lsce.ipsl.fr

3



II. INTRODUCTION64

SARS-CoV-2, a zoonotic virus of the coronavirus family [1], that provokes an infectious65

disease known as COVID-19, has emerged in China at the end of 2019, affecting first the66

Hubei province and quickly spreading to all Chinese provinces [2]. The failure of initial67

containment measures caused the virus to spread internationally, and on March 11th, The68

World Health Organization (WHO) declared COVID-19 a pandemic [3]. According to the69

WHO Situation Report-59 released on March 19th [4], the number of countries affected by70

the pandemic is 176, with 209 839 confirmed infections and 8778 deaths. As this report71

also notices: the number of confirmed cases worldwide has exceeded 200 000. It took over72

three months to reach the first 100 000 confirmed cases, and only 12 days to reach the next73

100 000, an astonishing development, due to the highly contagious character of SARS-CoV-2.74

75

SARS-CoV-2 causes potentially life-threatening form of pneumonia in a non-negligible76

patients fraction [5]. Enormous efforts to contain the virus and to not overwhelm inten-77

sive care facilities are currently taken all over the world. Following the drop in infections78

observed in the Hubei province, restrictive confinement measures have been taken in many79

countries [6]. Most of the time, those measures are taken on the basis of epidemics models,80

which are fitted with dynamical or statistical models on the available data.81

82

COVID-19 data should be provided daily, following a request of the WHO. To date, the83

WHO guidelines require countries to report, at each day t, the total number of infected84

patients I(t) as well as the number of deaths D(t). Unfortunately, there is large variability85

in the way both I(t) and D(t) are counted. We provide some illustrative example: on the86

one hand, Italy shows the highest fatality rate:87

f =
τ∑
t=1

D(t)/
τ∑
t=1

I(t) ' 0.07 (1)88

possibly because D(t) includes all deaths who have contracted SARS-CoV-2, indepen-89

dently on whether the virus is the first cause of death. Moreover, in a recent interview [7],90

Italian biologist Bucci has stated that D(t) can be underestimated because it does not91

include those patients who died at home without being tested. On the other hand, in92

Germany, the fatality rate is extremely low f ' 0.002. There may be several explanations93
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for this : some query data methodology (e.g. a different method to determine D(t)) while94

others say high testing rates are giving a more accurate picture [8].95

96

Great uncertainties also exist in the count of I(t). Whereas in the early stage of the epi-97

demic several countries tested asymptomatic individuals to track back the infection chain,98

recent policies to estimate I(t) have changed. Most of the western countries now test only99

patients displaying severe SARS-CoV-2 symptoms. In an effort of tracking all the chain100

of infections, South Korea has tested many asymptomatic people. This latter strategy has101

proven effective in supporting actions to reduce the rate of new infections. A recent study [9]102

has estimated that an enormous part of total infections were undocumented (80% to 90%)103

and that those undetected infections were the source for 79% of documented cases in China.104

105

The goal of this paper is to analyse the effect of those large uncertainties in real-time106

forecasting of the long term behavior of the COVID-19 epidemic [10]. As stated by Polonsky107

et al [11], there is a need for defining robust methods to assess both the intrinsic errors108

inherent to fitting procedures as well as those introduced by poor data-quality. Funk et al109

[12] give a concrete example of this applied to the Ebola epidemics in the Western Area region110

of Sierra Leone in 2014-15. Classically, epidemiologists rely on Susceptible-Exposed-Infected-111

Recovered (SEIR) models [13]. These models consist of ordinary differential equations where112

a population is divided into compartments, with the assumption that every individual in113

the same compartment has the same characteristics. In SEIR, population is divided into114

Susceptible, Exposed, Infected and Recovered individuals. Such models predict a sigmoid115

shape of the total number of infections C(t) =
∑τ

t=1 I(t). Using the available national116

data points I(t) one can obtain long term estimates on the total of COVID-19 infections117

in each country. This paper focuses on the estimation of the sensitivity of these models to118

the last available data point, before the inflection point of the I(t) curve is reached. We119

use SEIR models to show the possible origins of this sensitivity by perturbing the relevant120

parameters, often assumed deterministic, with a noise that mimics changes in the way the121

virus is spreading, e.g. as a result of application of confinement measures, or the presence122

(rate/magnitude) of super-spreaders [14]. The paper is organised as follows: in Section III123

we discuss the various sources of data for COVID-19 and their shortcomings, and then we124

discuss in detail the SEIR model and its statistical modelling. In Section IV we discuss the125
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results focusing on the statistical sensitivity of the modelling, and apply it to data from126

France, UK and Italy. We finish, in Section V, with some remarks and point out some127

potentially beneficial policy guidelines.128

III. DATA AND MODELLING129

A. Data130

The data repository used in this paper for COVID-19 data is a Visual Dashboard operated131

by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE).132

The data repository [15] is also supported by ESRI Living Atlas Team and the Johns Hopkins133

University Applied Physics Lab (JHU APL). We used datasets of cases confirmed with134

a laboratory test, irrespective of clinical signs and symptoms [3]. The data contains, as135

recognized by the public authorities that dispatched them, several inhomogeneities due to136

the different ways of testing patients with suspicious symptoms. As an example, Italy137

announced on Feb. 26 that it relaxed testing criteria to the point that contacts linked to138

confirmed cases or recent travelers to outbreak areas would not be tested anymore, unless139

they show symptoms. Unlike Italy, South Korea (population of 51 million) is testing 15000140

to 20000 individuals per day since Feb. 27 with the goal to minimize hospital pressure141

and stop the epidemics in the early stages [16]. COVID-19 data also suffers from reporting142

problems due to the local management of health infrastructures. In Italy, healthcare is a143

regional task and everyday data are collected at a regional level and transmitted to the144

Protezione Civile, who transfers the data to WHO. Many inconsistencies and delays have145

been documented in this transfer process [17]. A similar situation occurs in Mexico, in146

which for instance, private institutions, either hospitals or laboratories, do not possess the147

necessary national and international certifications given by the Instituto de Diagnóstico148

y Referencia Epidemiológicos (InDRE) and therefore their tests are not considered valid149

and must be redone by certified institutions[18], thus unnecessarily delaying the release150

of accurate daily reports. COVID-19 data of Mexico was collected from the daily reports151

generated by Mexico’s Secretaŕıa de Salud [19]. Our goal is to account for these uncertainties152

in the modelling of COVID-19 data.153
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B. An epidemiological Susceptible-Exposed-Infected-Recovered model154

The Susceptible-Exposed-Infected-Recovered (SEIR) model [13] is an epidemiological155

compartmental model where a total population N is divided into susceptible individuals156

S, exposed individuals E, infected individuals I, and the number R of people who have157

had the disease and are now either recovered or dead (and assumed not to be susceptible158

to reinfection). The model is constructed under the assumption that the total population159

N = S(t) + E(t) + I(t) +R(t) does not vary. This implies:160

0 = dN/dt = dS/dt+ dE/dt+ dI/dt+ dR/dt, ∀t ≥ 0. (2)161

The model relies on some assumptions. First of all, susceptible individuals end up becom-162

ing infected and infected individuals can only recover or die. Individuals who are exposed (E)163

have had contact with an infected person, but are not themselves infectious. Furthermore,164

those who have recovered or died are forever immune. It is also assumed that susceptibility165

is equal for all and that it is proportional to the product of I(t) and S(t) at a time t. These166

assumptions lead us to a set of four ordinary differential equations:167

dS

dt
= −λS(t)I(t) (3)168

dE

dt
= λS(t)I(t)− αE(t) (4)169

dI

dt
= αE(t)− γI(t) (5)170

dR

dt
= γI(t). (6)171

Here γ > 0 represents the mean recovery/death rate, or 1/γ the mean infection period,172

λ = λ0/S(0) > 0 is considered the contact or infection rate of the disease and it is rescaled173

by the initial number of susceptible individuals S(0) and α is the inverse of the incubation174

period. These expressions satisfy (2) as required. Because data are reported only on a daily175

basis, we adopt the discrete SEIR model:176

S(t+ 1) = S(t)− λS(t)I(t) (7)177

E(t+ 1) = (1− α)E(t) + λS(t)I(t) (8)178

I(t+ 1) = (1− γ)I(t) + αE(t) (9)179

R(t+ 1) = R(t) + γI(t). (10)180
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This model is obtained rewriting the ordinary differential equations 3-6 with an Euler181

Scheme and fixing dt = 1 day. An important derived quantity of the model is R0 = λ0/γ,182

the average reproduction number of the virus in a population. This quantity represents the183

number of cases, on average, an infected person will cause during their infectious period.184

For COVID-19 in Wuhan in January 2020, R0 = 2.68 with 95% CrI 2·47–2·86 according to185

an estimate performed with Wuhan data [20]. Dynamical modelling of COVID-19 epidemic186

has been proposed in [21]. In that study, the authors used a Susceptible-Exposed-Infected-187

Recovered model with delays and performed a sensitivity study on the parameters. Fixing188

λ ' 1 as in [21] and γ = 0.37 to recover the value of R0 found in [20] (assuming that the189

behavioural elements of viral transmission are consistent in other populations), we are left190

with the choice of α. The range for incubation period of SARS-CoV-2 has been determined191

in [22] between 2 and 11 days. As a comparison, this range is estimated to be between 2192

and 5 days for human coronavirus, and between 2 and 10 days for severe acute respiratory193

syndrome (SARS) coronavirus [23]. Using a trial and error procedure and a subjective194

estimation of the quality of the fit, we obtain the best fit when we set α = 0.27 (corresponding195

to an incubation period between 3 and 4 days) and initial conditions S(0) = 33000, I(0) = 2,196

E(0) = R(0) = 0. The fit against the Chinese data is reported in Figure 1. We are aware197

that a log-likelihood method with cross-validation would provide a better fit as well as an198

estimate of the uncertainty. However, we underline that the goal of this work is not to provide199

the best possible model but rather to explore the sensitivity of it to perturbations. First200

of all, we note that, despite its simplicity, the model shows qualitatively similar behaviour201

to the published data. Note that there is a discontinuity in the dataset, which is due to a202

change in the way infections were counted, introduced on Feb. 12, 2020 [24].203

This model has also evident deficiencies in representing the COVID-19 infections. First of204

all the total populationN here is to be intended as a number of people who could have been in205

contact with infected individuals. Furthermore, the population under consideration does not206

consist of a group of about the same age and general health level, and the the group members207

do not mix homogeneously. The model does not have any spatial component, nor does it208

predict the influences of policy and behavioural responses to the progress of the pandemic.209

More complex models introducing further parameters would likely lead to overfitting and210

over-confident predictions, due to the limited volume of data currently available. No model211

will be sufficient to predict the outcome of this pandemic: the outcome depends on our212
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response. Models are presented here with the aim of generating some insight into the overall213

behaviour and the risks entailed by inaction.214

C. Statistical Modelling215

When insight is limited and compartmental models are not suited, phenomenological sta-216

tistical models provide a starting point for estimation of key transmission parameters, such217

as the reproduction number, and forecasts of epidemic impact [25]. One of the simplest ways218

to model the epidemics is to observe that the function C(t) is a sigmoid function and perform219

a statistical fit of the data to extrapolate the long-term behavior of the epidemics [26, 27].220

Among all the possible sigmoid functions, two have proven useful in fitting epidemic growth:221

the generalized logistic distribution [28] and the generalized Gompertz distribution [29]. A222

complete overview of sigmoid functions is presented in [30], although applied to in a differ-223

ent context. Since our considerations are independent of the sigmoid function used, we will224

present results for the generalized logistic model only. The model reads:225

C(t) = a/(1 + b · exp(−c · t)); (11)226

where a, b and c are parameters of the model. They are linked in a non-explicit way227

to the solution of the SEIR model. A fit to the Chinese data is presented in Figure 2.228

Logistic fits are performed with the MATLAB Nonlinear least-squares solver constraining229

objective function with gradient. At first sight, one can be tempted to use R2 ' 0.997 as230

a quality indicator of the fit. However, we stress that R2 is not an appropriate measure231

for nonlinear regression models: given the smoothness of data, there will be lots of models232

(eg low-order polynomial) which could fit well (get a very good R2) but would not make233

credible predictions [31]. These data are however collected at a mature stage of the epidemic234

and as such the characteristics of the logistic fit to these data can be assigned with greater235

confidence. In the next section we will discuss the performance of the statistical model in236

the early stage of the epidemics, where the logistic function can be used to extrapolate the237

behavior of C(t).238
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IV. RESULTS: STATISTICAL AND DYNAMICAL MODELLING OF EARLY239

STAGES OF THE EPIDEMICS240

A. Statistical sensitivity241

We begin by showing the sensitivity of the logistic extrapolations in the early stage of242

the epidemics by looking at French data from Mar. 04 to Mar 20. France has previously243

recorded sporadic cases of SARS-CoV-2 infections but the exponential growth phase started244

at the beginning of March 2020. To show the high sensitivity to the last point of the245

datasets we first perform a logistic fit with data starting from different dates and ending246

Mar. 20 (Figure 3a) and then do the reverse experiment by fitting data starting on Mar.247

04 but ending at different dates (Figure 3b). Clearly, fits are more stable by removing days248

from the beginning of the outbreak than from the most recent past. Again, we stress the249

inadequacy of the R2 metric as it yields values above R2 > 0.99 for all cases considered in250

Figure 3. The analysis suggests that, if a large error is presented in the last data point, the251

extrapolation has less predictive adequacy. This implies very narrow estimates of confidence252

intervals for C(t): for each fit, confidence intervals are as small as the thickness of the line253

used in the plots in Figure 3. This prevents a correct evaluation of the confidence interval,254

which is critical to assess the uncertainties around the future evolution of the epidemics,255

and to build relevant policies to address the worst case scenario.256

257

To further test this concept, we now assume we are uncertain about the magnitude

of the last data point C(t∗). To simulate this uncertainty, we replace it with a random

number ξ(t∗) drawn from a discrete uniform distribution with mean C(t∗) and standard

deviation 0.2C(t∗). We therefore construct an ensemble of 100 possible trajectories under

this generative process. Results are presented in Figure 4 for UK (a), France (b) and Italy

(c). To date, Italy is at a more mature stage of the epidemic, while France and UK face an

earlier stage. This is reflected in the spread of the ensemble: for the UK, forecasting the

epidemic with a logistic fit is not informative of the course of the epidemic: the ensemble

spread just suggests that the current phase is an exponential growth and at best it can

inform that worst case scenarios should be considered at this point. The ensemble spread

reduces when the epidemics is at a more mature stage (Italy). Indeed, if we set b = 1 and
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we start the fit from time t0 then the logistic distribution is written:

C(t) = a/(1 + exp(−c(t− t0))).

In the early growth phase, exp(−c(t− t0))� 1, so:258

C(t) ∼ a exp(c(t− t0)) = a exp(−c · t0) exp(−c · t) = A exp(−c · t)

.259

Even though we can fit A and b to data, recalling that A = a exp(−c · t0) we have huge260

freedom over a, the upper asymptote that determines the final count of the epidemics.261

B. Dynamical sensitivity in a stochastic SEIR model262

Another way to understand the sensitivity in epidemics is to release the assumption263

that incubation period α, infection rate λ and recovery rate γ are constant through the264

epidemics [32]. Intrinsically they can vary, because of the presence of individuals with an265

extremely high transmission rate known as super-spreaders [14], or due to the release or the266

application of confinement measures, or changes in the SARS-CoV-2 characteristics. They267

can also display spurious variations due to the way data are reported or collected, for the268

problems specified above. We explore all these possibilities by considering α, λ, and γ as269

time varying processes. The idea of using stochastic models to represent epidemics is not new270

to the literature [33–35]. In the modelling of COVID-19 infections can be further justified271

by the evidence that R0 = λ/γ displays spatial and temporal variability [11]. For example,272

Wu et al. [20] show fluctuations of R0 in different Chinese regions. These differences are273

due to changes in the duration of contagiousness, likelihood of infection per contact and the274

contact rate [36] which depends on demographic spatial variability [37]. There is however275

little consensus on which variables or parameters should be perturbed in order to get a276

realistic behavior. Our goal here is different than obtaining the best possible forecasts of the277

epidemics as we want to understand which parameter causes a large sensitivity in the final278

C(t) counts. Let us begin, by alternatively replacing in Equations 7-10 one of the constant279

parameters κ ∈ {α, λ, γ} with a stochastic process:280

κ(t) = κ0 + σ · ξ(t) (12)281
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where σ is the intensity of the perturbation and ξ(t) a random variable drawn from282

a normal distribution N(0, 1) at each time. The purpose of equation 12 is to introduce283

instantaneous discrete jumps in the values of the daily parameters. This discrete process,284

used in [38], is more appropriate than a continuous one (see, e.g. [39]) when observations285

are affected by large detection errors, as in the present case. Figure 5 shows an example286

of 30 realisations of a stochastic SEIR COVID-19 model, obtained by replacing alternately287

α (a,b), λ (b,d) and γ with the stochastic process in Eq 12 and using σ = 0.2κ0 to get288

fluctuations of the order of 20% of each parameter values, in analogy with the statistical289

sensitivity studies performed in the previous section. The sensitivity clearly depends on the290

perturbed parameter: a perturbation on α mostly implies a different timing of the epidemics291

while the final cumulative number of infections C(t) remains unchanged. Perturbations on292

λ and γ affect the final C(t) in a deeper way, leading to a total variation in the number of293

cases of the order of 20%. Indeed, by changing λ and γ, we also modify the basic reproduc-294

tion number R0. The idea of having a time-varying reproduction number has been already295

exploited in [40], although the authors have directly modelled the dynamics of a dynamic296

reproduction number R(t) without introducing a SEIR model.297

298

As a further step, we add noise simultaneously to all parameters of the SEIR model via299

Equation 12. Six realisations of the model are shown in Figure 6. Figure 6-a,b) shows the300

evolution of S(t), R(t), E(t) and C(t). We have separated the time evolution of I(t) in301

Figure 6-c) to compare it with that of COVID-19 data for China, South Korea and Italy302

(Figure 6d). Despite having a quasi-smooth behavior of C(t), we observe a highly non-303

smoothness of I(t), which is reflected by the data. The sensitivity of the model is higher304

when I(t) is large, because γ and λ directly act on I(t). Therefore, when approaching the305

maximum of I(t) (t ∼ 50 days) small changes in the parameters can greatly affect the final306

total count of infections C(t). This implies that mitigation strategies based on the reduction307

of λ by self-isolation, social distancing, are way more effective if imposed at the early stage308

of the epidemics, as they can suppress positive fluctuations of and help reducing R0.309
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V. DISCUSSION310

In this work we have discussed the statistical and dynamical sensitivity of asymptotic311

estimates of COVID-19 infections when performed at the early stages of the epidemics.312

First of all, we noted that SEIR model, with λ, γ and α inferred from clinical studies,313

can fit Chinese data with a value of N ' 33000 that is very different from that of the314

Chinese, Hubei or Wuhan populations. This enormous discrepancy can be due both to a315

large underestimation in the number of total cases, or to the effectiveness of confinement316

measures which results in a smaller exposed population. This estimate should be taken317

as a first caveat in fitting a SEIR model to infer COVID-19 epidemics evolution in other318

countries as results may be largely under/over-estimated [11].319

320

Then, we have shown that statistical fits often used to extrapolate the long term behav-321

ior of the epidemics are greatly affected by the magnitude of the last data point, despite322

values of R2 close to one, leading to unrealistic or over-confident estimates of confidence323

intervals on the forecast of the total number of infections [41, 42]. In the early stage of the324

epidemics, we have shown that knowing the last data point with a relative 20% error, can325

lead to a final extrapolation of infections with an error of several orders of magnitude. In326

order to improve the estimates of statistical models one should replace R2 estimates by a327

formal comparison of model-alternatives using information criteria (e.g. AIC or BIC) or328

a log-likelihood approach with a leave-one-out cross-validation procedure. A simple cross329

validation can follow both the approaches described in this paper: i) exclude the last data330

points and check the stability of the estimates, ii) add noise to the last data point and331

obtain an ensemble of estimates. Another approach could be based on evaluating every day332

each model on the performance in predicting the new data point, and then used again with333

the new data point for an updated estimate.334

335

Finally, we have investigated whether this statistical sensitivity can be dynamically re-336

produced with a SEIR model where parameters are considered stochastic processes (Equa-337

tion 12). We have found that the stochastic dynamics are more sensitive to γ and λ.338

Perturbations on these parameters are proportional to the number of infected patients I(t)339

and are therefore important in the growth phase of the epidemics. Actual data display fluc-340
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tuations even larger than those simulated in the stochastic models, suggesting that instead341

of assuming observational Gaussian noise on the parameters, jump processes (e.g. Levy342

noise) may be more appropriate [43]. Furthermore, we noticed that large fluctuations in343

the number of detected infections is also due to changes in the testing protocols and avail-344

ability of tests. All these inconsistencies prevent the possibility of performing meaningful345

asymptotic statistical or dynamical modelling for COVID-19, or comparing results among346

different countries. This may be even more problematic in least developed countries, which347

are just beginning to register cases [44–46].348

349

Our study suggests that dynamical and statistical modelling should focus on limited350

stages of the epidemics and restrict the analysis to specific regions, accounting for large un-351

certainties as done in [47]. Modelling approaches should take into account both statistical352

uncertainties as well as expert knowledge in a sort of Bayesian framework that allows to353

guide the choice of prior probabilities [10]. In the interest of preserving the public health of354

as many individuals as possible, once modelled the uncertainty in the data, the worst case355

scenarios should always be taken into account very seriously as a guideline to enforce strict356

confinement measures.357

358
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Dubrulle, and François Daviaud. Stochastic chaos in a turbulent swirling flow. Physical review463

letters, 119(1):014502, 2017.464

[40] Adam J Kucharski, Timothy W Russell, Charlie Diamond, Yang Liu, John Edmunds, Sebas-465

tian Funk, Rosalind M Eggo, Fiona Sun, Mark Jit, James D Munday, et al. Early dynamics of466

transmission and control of covid-19: a mathematical modelling study. The Lancet Infectious467

Diseases, 2020.468

[41] Andrea Remuzzi and Giuseppe Remuzzi. Covid-19 and italy: what next? The Lancet, 2020.469

[42] Choujun Zhan, K Tse Chi, Zhikang Lai, Tianyong Hao, and Jingjing Su. Prediction of covid-19470

spreading profiles in south korea, italy and iran by data-driven coding. medRxiv, 2020.471

[43] Xianghua Zhang and Ke Wang. Stochastic seir model with jumps. Applied Mathematics and472

Computation, 239:133–143, 2014.473

[44] Joost Hopman, Benedetta Allegranzi, and Shaheen Mehtar. Managing covid-19 in low-and474

middle-income countries. JAMA, 2020.475

[45] Marius Gilbert, Giulia Pullano, Francesco Pinotti, Eugenio Valdano, Chiara Poletto, Pierre-476
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FIG. 1. Example of a Susceptible-Exposed-Infected-Recovered (SEIR) model of COVID-19 (Eqs 7-

10) with λ = 1./S(0), α = 0.27, γ = 0.37. Initial conditions are set to I(0) = 2, S(0) = 33000,

E(0) = R(0) = 0. a) Time evolution for the variables of the system, b) Time evolution for the

total number of infections C(t) against the Chinese data with t=1 corresponding to Dec 19. 2019.
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FIG. 2. Logistic (Eq. 11 fit of the Chinese number of infections C(t). The best fit parameters are

a = 80800± 400, b = 0.225± 0.005, c = 190± 25.
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FIG. 3. Logistic distribution fits for the early stages of the epidemic in France. a) Logistic fits

with data starting from different dates and ending Mar. 20. b) Logistic fits ending on different

dates, but starting Mar. 04.

21



FIG. 4. Logistic distribution substituting the last data point with a random number ξ(t∗) drawn

from a uniform distribution with mean C(t∗) and standard deviation 0.2C(t∗) for UK (a), France

(b) and Italy (c).
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FIG. 5. Example of 30 trajectories of dynamics of stochastic Susceptible-Exposed-Infected-

Recovered (SEIR) model for COVID-19, obtained replacing alternatevely α (a,b), λ (b,d) and

γ with the stochastic process with Eq 12. Dynamics are integrated with a fixed initial condi-

tion and 30 noise realisations. a,c,e) Time evolution for the variables of the system, b,d,f) Time

evolution for the total number of infections C(t).
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FIG. 6. Example of 6 trajectories of dynamics of stochastic Susceptible-Exposed-Infected-

Recovered (SEIR) model for COVID-19, obtained replacing all parameters α, λ and γ with an

independent stochastic process as in Eq 12. Dynamics are integrated with a fixed initial condition

and 6 noise realisations. a) Time evolution for the variables of the system. b) Time evolution for

the total number of infections C(t). c) Time evolution for the daily infections. d) Comparison with

daily infections in China (red, starting Dec 19. 2019), South Korea (black, starting Jan 30, 2020),

Italy (blue, starting Feb 20, 2020).
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