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The article is devoted to the mathematical analysis of a fluid-structure interaction system where the fluid is compressible and heat conducting and where the structure is deformable and located on a part of the boundary of the fluid domain. The fluid motion is modeled by the compressible Navier-Stokes-Fourier system and the structure displacement is described by a structurally damped plate equation. Our main results are the existence of strong solutions in an L p -L q setting for small time or for small data. Through a change of variables and a fixed point argument, the proof of the main results is mainly based on the maximal regularity property of the corresponding linear systems. For small time existence, this property is obtained by decoupling the linear system into several standard linear systems whereas for global existence and for small data, the maximal regularity property is proved by showing that the corresponding linear coupled fluid-structure operator is R-sectorial.

In this work, we study the interaction between a viscous compressible heat conducting fluid and a viscoelastic structure located on a part of the fluid domain boundary. More precisely, we consider a smooth bounded domain F ⊂ R 3 such that its boundary ∂F contains a flat part Γ S := S × {0}, where S is a smooth bounded domain of R 2 . We also set

Γ 0 = ∂F \ Γ S .
The set Γ 0 is rigid and remains unchanged whereas on the flat part, we assume that there is a plate that can deform only in the transversal direction, and if we denote by η the corresponding displacement, then Γ S is transformed into

Γ S (η) := [x 1 , x 2 , η(x 1 , x 2 )] ; [x 1 , x 2 ] ∈ S .
In our study, we consider only displacements η regular enough and satisfying the boundary conditions (the plate is clamped): η = ∇ s η • n S = 0 on ∂S (1.1) and a condition insuring that the deformed plate does not have any contact with the other part of the boundary of the fluid domain:

Γ 0 ∩ Γ S (η) = ∅.

(1.2) We have denoted by n S the unitary exterior normal to ∂S and in the whole article we add the index s in the gradient and in the Laplace operators if they apply to functions defined on S ⊂ R 2 (and we keep the usual notation for functions defined on a domain of R 3 ).

With the above notations and hypotheses, Γ 0 ∪ Γ S (η) corresponds to a closed simple and regular surface whose interior is the fluid domain F(η). In what follows, we consider that η is also a function of time and its evolution is governed by a damped plate equation.

F(η)

Γ S (η) Γ 0

In F(η(t)), we assume that there is a viscous compressible heat conducting fluid and we denote by ρ, v, and ϑ respectively its density, velocity and temperature. The equations modeling the evolution of these quantities can be written as follows:

             ∂ t ρ + div( ρ v) = 0, t > 0, x ∈ F(η(t)), ρ (∂ t v + ( v • ∇) v) -div T( v, π) = 0, t > 0, x ∈ F(η(t)), c v ρ ∂ t ϑ + v • ∇ ϑ + π div v -κ∆ ϑ = α(div v) 2 + 2µ |D v| 2 t > 0, x ∈ F(η(t)), ∂ tt η + ∆ 2 s η -∆ s ∂ t η = H η ( v, π) t > 0, s ∈ S, (1.3) 
with the boundary conditions

             v(t, s, η(t, s)) = ∂ t η(t, s)e 3 t > 0, s ∈ S, v = 0 t > 0, x ∈ Γ 0 , ∂ ϑ ∂ n (t, x) = 0 t > 0, x ∈ ∂F(η(t)), η = ∇ s η • n S = 0 t > 0, s ∈ ∂S, (1.4) 
and the initial conditions η(0, •) = η 0 1 , ∂ t η(0, •) = η 0 2 in S, ρ(0, •) = ρ 0 , v(0, •) = v 0 , ϑ(0, •) = ϑ 0 in F(η 0 1 ).

(1.5)

In the above system (e 1 , e 2 , e 3 ) is the canonical basis of R 3 , the fluid stress tensor is defined by

T( v, π) = 2µD( v) + (α div v -π)I 3 , D( v) = 1 2 ∇ v + ∇ v ,
and the pressure law is given by π = R 0 ρ ϑ + π 0 .

(1.6) The above physical constants satisfy R 0 > 0, µ > 0 (viscosity), α + 2 3 µ > 0, κ > 0, c v > 0, π 0 ∈ R.

(1.7)

For any matrix A, B ∈ M d (R), we use the canonical scalar product and norm:

A : B = i,j a ij b ij , |A| = √ A : A.
We have set

∇ s = [∂ y 1 , ∂ y 2 ] , ∆ s = ∂ 2 y 1 + ∂ 2 y 2 .
The function H is defined by

H η ( v, π) = -1 + |∇ s η| 2 (T( v, π) n) | Γ S (η(t)) • e 3 , (1.8) 
where n = 1

1 + |∇ s η| 2 [-∇ s η, 1] ,
is the unit normal to Γ S (η(t)) outward F(η(t)). Let us mention that the boundary conditions (1.4) are obtained by assuming that the fluid does not slip on the boundaries and that the plate is thermally insulated. Fluid-structure interaction problems have been an active area of research among the engineers, physicist and mathematicians over the last few decades due to the numerous practical applications and the corresponding scientific challenges. The type of model considered in this article appears in the design of many engineering structures, e.g aircraft and bridges etc., ([4]) as well as in biomechanics ( [START_REF]Fluid-structure interaction and biomedical applications[END_REF]).

Let us mention some related works from the literature. In the last two decades, there has been considerable number of works on similar fluid-structure systems where the fluid is modelled by incompressible flows. We refer to, for instance [START_REF] Grandmont | Mathematical and numerical analysis of some FSI problems[END_REF] and references therein for a concise description of recent progress regarding incompressible flows interacting with deformable structure (beam or plate) located on a part of the fluid domain boundary. Moreover, in some recent articles ([22, 5, 6]) existence and uniqueness of strong solutions (either local in time or for small initial data) were proved without the additional damping term (i.e., without the term -∆ s ∂ t η) in the beam/plate equation.

Concerning compressible fluids interacting with plate/beam equations through boundary of the fluid domain, there are only few results available in the literature. Global existence of weak solutions until the structure touches the boundary of the fluid domain were proved in [START_REF] Flori | Fluid-structure interaction: analysis of a 3-D compressible model[END_REF][START_REF] Breit | Compressible fluids interacting with a linear-elastic shell[END_REF]. Local in time existence of strong solutions in the corresponding 2D/1D case was recently obtained in [START_REF] Mitra | Local existence of Strong solutions for a fluid-structure interaction model[END_REF]. Well-posedness and stability of linear compressible fluid-structure systems were studied in [START_REF] Chueshov | Dynamics of a nonlinear elastic plate interacting with a linearized compressible viscous fluid[END_REF][START_REF] Avalos | Semigroup well-posedness of a linearized, compressible fluid with an elastic boundary[END_REF].

Let us mention that all the above mentioned works correspond to a "Hilbert" space framework. In this article, we are interested in studying existence and uniqueness of strong solutions, local in time or global in time for small initial data, within an "L p -L q " framework. More precisely, we look for solutions in the spaces of functions which are L p with respect to time and L q with respect to space variable, with arbitrary p, q > 1. In the context of fluid-solid interaction problems, there are only few articles available in the literature that studies well-posedness in an L p -L q framework. Let us mention [START_REF] Geissert | L p -theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids[END_REF][START_REF] Maity | L p -L q maximal regularity for some operators associated with linearized incompressible fluid-rigid body problems Selected Recent Results[END_REF] (viscous incompressible fluid and rigid bodies), [START_REF] Hieber | The L p -approach to the fluid-rigid body interaction problem for compressible fluids[END_REF][START_REF] Maity | A maximal regularity approach to the analysis of some particulate flows[END_REF][START_REF] Haak | Mathematical analysis of the motion of a rigid body in a compressible Navier-Stokes-Fourier fluid[END_REF] (viscous compressible fluid and rigid bodies) and [START_REF] Maity | Lp theory for the interaction between the incompressible Navier-Stokes system and a damped beam[END_REF][START_REF] Denk | L p -theory for a fluid-structure interaction model[END_REF] (viscous incompressible fluid interacting with viscoelastic structure located at the boundary of the fluid domain). In fact, this article is a compressible counterpart of our previous work [START_REF] Maity | Lp theory for the interaction between the incompressible Navier-Stokes system and a damped beam[END_REF].

The main novelties that we bring in this article are :

• The full nonlinear free boundary system coupling viscous compressible Navier-Stokes-Fourier system and a viscoelastic structure located on a part of the fluid domain has not, at the best of our knowledge, been studied in the literature. • The existence and uniqueness results are proved in L p -L q setting. • Global in time existence for small initial data seems to be a new result for such coupled systems.

Let us emphasize that using the L p -L q setting allows us to weaken the regularity on the initial conditions (see for instance [START_REF] Mitra | Local existence of Strong solutions for a fluid-structure interaction model[END_REF]). Moreover, this "L p -L q " framework is interesting even for studies in fluid-structure interaction problems done in the "L 2 -L 2 " framework: let us quote for instance the uniqueness of weak solutions ( [START_REF] Glass | Uniqueness results for weak solutions of two-dimensional fluid-solid systems[END_REF][START_REF] Bravin | Energy equality and uniqueness of weak solutions of a "viscous incompressible fluid + rigid body" system with Navier slip-with-friction conditions in a 2D bounded domain[END_REF]), the asymptotic behavior for large time ( [START_REF] Ervedoza | Long-time behavior for the two-dimensional motion of a disk in a viscous fluid[END_REF][START_REF] Ervedoza | Large time behaviour for the motion of a solid in a viscous incompressible fluid[END_REF]), and the asymptotic behavior for small structures ( [START_REF] Lacave | Small moving rigid body into a viscous incompressible fluid[END_REF]).

1.1. Notation. To state our main results, we need to introduce some notations for the functional spaces. For Ω ⊂ R n is an open set, q > 1 and k ∈ N, we denote by L q (Ω) and W k,q (Ω) the standard Lebesgue and Sobolev spaces respectively. W s,q (Ω), with q > 1 and s ∈ R * + , denotes the usual Sobolev-Slobodeckij space. Moreover, W k,q 0 (Ω) is the completion of C ∞ c (Ω) with respect to the W k,q (Ω) norm. Let k, m ∈ N, k < m. For 1 p < ∞, 1 q < ∞, we consider the standard definition of the Besov spaces by real interpolation of Sobolev spaces

B s q,p (F) = W k,q (F), W m,q (F) θ,p
where s = (1 -θ)k + θm, θ ∈ (0, 1).

We refer to [START_REF] Adams | Sobolev spaces[END_REF] and [38] for a detailed presentation of the Besov spaces. We denote by C k b is the set of continuous and bounded functions with derivatives continuous and bounded up to the order k. For s ∈ (0, 1) and a Banach space U, F s p,q (0, T, U ) stands for U valued Lizorkin-Triebel space. For precise definition of such spaces we refer to [38]. If T ∈ (0, ∞], we set W 1,2 p,q ((0, T ); F) = L p (0, T ; W 2,q (F)) ∩ W 1,p (0, T ; L q (F)), W 2,4 p,q ((0, T ); S) = L p (0, T ; W 4,q (S)) ∩ W 1,p (0, T ; W 2,q (S)) ∩ W 2,p (0, T ; L q (S)), W 1,2 p,q ((0, T ); S) = L p (0, T ; W 2,q (S)) ∩ W 1,p (0, T ; L q (S)). We have the following embeddings (see, for instance, [3, Theorem 4.10.2, p.180]),

W 1,2 p,q ((0, T ); F) → C 0 b ([0, T ); B 2(1-1/p) q,p (F)), (1.9) W 2,4 p,q ((0, T ); S) → C 0 b ([0, T ); B 2(2-1/p) q,p (S)) ∩ C 1 b ([0, T ); B 2(1-1/p)
q,p (S)).

(1.10)

In particular, in what follows, we use the following norm for W 1,2 p,q ((0, T ); F):

f W 1,2 p,q ((0,T );F ) := f L p (0,T ;W 2,q (F )) + f W 1,p (0,T ;L q (F )) + f C 0 b ([0,T );B 2(1-1/p) q,p (F ))
and we proceed similarly for the two other spaces.

We also introduce functional spaces with time decay. We write for any

β ∈ R E β : R → R, t → e βt .
We denote by

L p β (0, ∞) the space E -β L p (0, ∞), that is the set of functions f such that t → e βt f (t) is in L p (0, ∞). The corresponding norm is f L p β (0,∞) := E β f L p (0,∞) .
We proceed similarly for all spaces on (0, ∞) or on [0, ∞).

Finally, we also need to introduce functional spaces for the fluid density, velocity and temperature depending on the displacement η of the structure. Assume T ∈ (0, ∞] and that η ∈ W 2,4 p,q ((0, T ); S) satisfies (1.1) and (1.2). We show in Section 3 that there exists a mapping X = X η such that X(t, •) is a C 1 -diffeomorphism from F onto F(η(t)) and for any function f defined for t ∈ (0, T ) and x ∈ F(η(t)), we then define f (t, y) := f (t, X(t, y)) (t ∈ (0, T ), y ∈ F).

Then we define the following sets as follows

f ∈ W r,p (0, T ; W s,q (F(η(•)))) if f ∈ W r,p (0, T ; W s,q (F)), f ∈ W 1,2 p,q ((0, T ); F(η(•))) if f ∈ W 1,2 p,q ((0, T ); F), f ∈ C 0 ([0, T ]; B 2(1-1/p) q,p (F(η(•)))) if f ∈ C 0 ([0, T ]; B 2(1-1/p) q,p (F)
and a similar definition for all the other spaces.

1.2. Statement of the main results. Let us give the conditions we require on (p, q) and on the initial data for the system (1.3)-(1.8):

2 < p < ∞, 3 < q < ∞, 1 p + 1 2q = 1 2 , (1.11) η 0 1 ∈ B 2(2-1/p) q,p (S), η 0 2 ∈ B 2(1-1/p) q,p (S), ρ 0 ∈ W 1,q (F(η 0 1 )), min F (η 0 1 )
ρ 0 > 0, (1.12)

v 0 ∈ B 2(1-1/p) q,p (F(η 0 1 )) 3 , ϑ 0 ∈ B 2(1-1/p) q,p (F(η 0 1 )), (1.13) 
with the compatibility conditions

η 0 1 = ∇η 0 1 • n S = η 0 2 = 0 on ∂S, v 0 = 0 on Γ 0 , v 0 = η 0 2 e 3 on Γ S (η 0 1 ), (1.14) ∇η 0 2 • n S on ∂S and ∂ ϑ 0 ∂n = 0 on ∂F(η 0 1 ), if 1 p + 1 2q < 1 2 . (1.15)
Note that, all the traces in the above relation makes sense for our choice of p and q (see for instance, [38, p. 200]). We also need a geometrical condition on the initial deformation. Using that F is a smooth domain, there exist two smooth surfaces η -:

S → R * -, η + : S → R * + such that [y 1 , y 2 , y 3 ] ∈ S × R ; y 3 ∈ (η -(y 1 , y 2 ), 0) ⊂ F, (1.16) [y 1 , y 2 , y 3 ] ∈ S × R ; y 3 ∈ (0, η + (y 1 , y 2 )) ⊂ R 3 \ F.
(1.17)

Then our geometrical condition on the initial deformation writes

η -< η 0 1 < η + in S. (1.18)
This yields in particular that Γ 0 ∩ Γ S (η 0 1 ) = ∅. According to the geometry, we can in some situation remove the condition η 0 1 < η + . Note that this condition is not a smallness condition, η + and η -do not need to be small.

Our main results are the following two theorems. The first one is the local in time existence and uniqueness :

Theorem 1.1. Assume (p, q) satisfies (1.11) and that [ ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 ] satisfies (1.12)-(1.15) and (1.18). Then there exists T > 0, depending only on initial data, such that the system

(1.3)-(1.8) admits a unique strong solution [ ρ, v, ϑ, η] satisfying ρ ∈ W 1,p (0, T ; W 1,q (F(η(•)))), v ∈ W 1,2
p,q ((0, T );

F(η(•))) 3 , ϑ ∈ W 1,2
p,q ((0, T ); F(η(•))), η ∈ W 2,4 p,q ((0, T ); S),

Γ 0 ∩ Γ S (η(t)) = ∅ (t ∈ [0, T ]), ρ(t, x) > 0 (t ∈ [0, T ], x ∈ F(η(t))).
Our second main result states the global existence and uniqueness under a smallness condition on the initial data. Let ρ and ϑ be two given positive constants. Let us take in the pressure law (1.6)

π 0 = -R 0 ρϑ. (1.19)
With the above choice of π 0 , ρ, v, ϑ, η = ρ, 0, ϑ, 0 is a steady state solution to the system (1.3)- (1.8).

Then our result states as follows:

Theorem 1.2. Assume (p, q) satisfies (1.11) and assume that ρ and ϑ are two given positive constants such that (1.19) holds. Then there exist β > 0 and R > 0 such that for any [ ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 ] satisfying (1.12)-(1.15), and

ρ 0 -ρ W 1,q (F (η 0 1 )) + v 0 B 2(1-1/p) q,p (F (η 0 1 )) 3 + ϑ 0 -ϑ B 2(1-1/p) q,p (F (η 0 1 )) + η 0 1 B 2(2-1/p) q,p (S) + η 0 2 B 2(1-1/p) q,p (S) 
R, (1.20)

the system (1.3)-(1.8) admits a unique strong solution ρ, v, ϑ, η satisfying

ρ ∈ C 0 b ([0, ∞); W 1,q (F(η(•)))), ∇ ρ ∈ W 1,p β (0, ∞; L q (F(η(•)))) 3 , ∂ t ρ ∈ L p β (0, ∞; W 1,q (F(η(•)))), v ∈ W 1,2 p,q,β ((0, T ); F(η(•))) 3 , ϑ ∈ C 0 b ([0, ∞); B 2(1-1/p) q,p (F(η(•)))), ∇ ϑ ∈ L p β (0, ∞; W 1,q (F(η(•)))) 3 , ∂ t ϑ ∈ L p β (0, ∞; L q (F(η(•)))), η ∈ C 0 b ([0, ∞); B 2(2-1/p) q,p (S)), η ∈ L p β (0, ∞; W 4,q (S)) + L ∞ (0, ∞; W 4,q (S)), ∂ t η ∈ W 1,2
p,q,β ((0, ∞); S), and

Γ 0 ∩ Γ S (η(t)) = ∅ (t ∈ [0, ∞)), ρ(t, x) > 0 (t ∈ [0, ∞), x ∈ F(η(t))).
Remark 1.3. Let us make the following remarks on the above results:

(1) Note that, in Theorem 1.1 we do not need initial displacement of the plate η 0 1 to be zero. This is a difference with respect to previous works, for instance [START_REF] Mitra | Local existence of Strong solutions for a fluid-structure interaction model[END_REF] or our previous work [START_REF] Maity | Lp theory for the interaction between the incompressible Navier-Stokes system and a damped beam[END_REF] (with an incompressible fluid). Here we manage to handle this case by modifying our change of variables (see Section 3.1).

(2) In Theorem 1.1 and Theorem 1.2, we do not have any "loss of regularity" at initial time.

More precisely, we obtain the continuity of the solution with respect to time in the same space where the initial data belong. Due to the coupling between the fluid system and the structure equations, some results in the literature are stated with this loss of regularity: for instance in [START_REF] Mitra | Local existence of Strong solutions for a fluid-structure interaction model[END_REF]Theorem 1.7], there is a loss of order 1/2 in the space regularity for the fluid velocity at initial time.

(3) As explained above since we work in the "L p -L q " framework, we need less regularity on the initial conditions that in the Hilbert case done by [START_REF] Mitra | Local existence of Strong solutions for a fluid-structure interaction model[END_REF]. More precisely, in [START_REF] Mitra | Local existence of Strong solutions for a fluid-structure interaction model[END_REF] the author assumes that the initial conditions satisfy

η 0 1 = 0, η 0 2 ∈ W 3,2 (S), ρ 0 ∈ W 2,2 (F(η 0 1 )), v 0 ∈ W 3,2 (F(η 0 1 
)) 3 , with the corresponding compatibility conditions. (4) Theorem 1.1 and Theorem 1.2 can be adapted to the 2D/1D case, that is where F is a regular bounded domain in R 2 such that ∂F contains a flat part Γ S = S × {0}, where S is an open bounded interval of R. In that case we can take p, q ∈ (2, ∞) such that

1 p + 1 2q = 1 2 .
(5) Instead of taking heat conducting fluid, we can also consider barotropic fluid model, i.e., the system (1.3) without the temperature equation and with the pressure law π = ρ γ , for some constant γ > 1. In that case, we can take 1 < p < ∞ and n < q < ∞ (n = 2 or 3, the dimension of the fluid domain) such that

1 p + 1 2q = 1.
The proofs of Theorem 1.1 and Theorem 1.2 follow a standard approach in the literature on wellposedness for fluid-solid interaction systems. One of the main difficulties in studying fluid-structure models is that the fluid system is written in the deformed configuration (in Eulerian variables) whereas the structure equations are written in the reference configuration (in Lagrangian variables). Since the fluid domain F(η(t)) depends on the structure displacement, which is one of unknowns, we first reformulate the problem in a fixed domain. This is achieved thanks to a combination of a geometric change of variables (defined through the initial displacement of the structure) and a Lagrangian change of coordinates. With this combined change of variables, we reformulate the problem in the reference domain F. In most of the existing literature, a geometric change of variables via the displacement of the fluid-structure interface is used to rewrite the problem in a fixed domain ([29, 22, 5, 30]). However, in the context of compressible fluid-structure systems, it is more convenient to use a Lagrangian (see for instance [START_REF] Haak | Mathematical analysis of the motion of a rigid body in a compressible Navier-Stokes-Fourier fluid[END_REF]) or a combination of geometric and Lagrangian change of coordinates ( [START_REF] Hieber | The L p -approach to the fluid-rigid body interaction problem for compressible fluids[END_REF]). In fact, such transformations allow us to use basic contraction mapping theorem. More precisely, this transformation eliminates the difficult term v • ∇ ρ from the density equation.

Next, we associate the original nonlinear problem to a linear one involving the non-homogeneous terms. In the case of the local in time existence, this linear system can be partially decoupled (see system (3.24)-(3.27)). The L p -L q regularity of such linear system over finite time interval is obtained by combining various existing maximal L p -L q results for parabolic systems. One of the difficulties is that due to the non-zero initial displacement of the beam, we are dealing with linear operators involving variable coefficients. For the global existence part, we use a "monolithic" type approach, which means that the linearized system in consideration is still a coupled system of fluid and structure equations (see system (4.20)-(4.22)). A crucial step is to show the maximal L p -L q property of the associated fluid-structure linear operator in the infinite time horizon. This is achieved by showing that this operator is R-sectorial and generates an exponentially stable semigroup in a suitable function space. Finally, for both the existence for small time and the existence for small initial conditions, we end the proof by using the Banach fixed point theorem.

The plan of the paper is as follows. In Section 2, we recall some results concerning R-sectorial operators that are used both for the proofs of Theorem 1.1 and Theorem 1.2. Then, we prove Theorem 1.1 in Section 3. In Section 3.1, we introduce the combination of Lagrangian and geometric change of coordinates to reformulate the original problem in the reference configuration. Local in time existence for the system written in reference configuration is stated in Theorem 3.1. In Section 3.2, we prove the maximal L p -L q regularity of a linearized system, whereas in Section 3.3, we derive estimates for the nonlinear terms in order to prove Theorem 3.1 by using the Banach fixed point theorem. Section 4 is devoted to the proof of Theorem 1.2. In Section 4.1 we apply the same change of variables than in Section 3.1 with some slight modifications and then linearize the system around a constant steady state. The global in time existence for small initial data for the system written in the reference configuration is stated in Theorem 4.1. In Section 4.2, we introduce the so-called fluid-structure operator and we show that it is an R-sectorial operator and in Section 4.3 that is generates an exponentially stable semigroup in a suitable function space. The maximal L p -L q regularity of the linearized system is proved in Section 4.4. Finally, in Section 4.5 we show Theorem 4.1. by using the Banach fixed point theorem.

Some Background on R-sectorial Operators

We recall here some definitions and properties related to R-sectorial operators. First, let us give the definition of R-boundedness (R for Randomized) for a family of operators (see, for instance, [START_REF] Weis | Operator-valued Fourier multiplier theorems and maximal Lp-regularity[END_REF][START_REF] Denk | Fourier multipliers and problems of elliptic and parabolic type[END_REF][START_REF] Kunstmann | Maximal Lp-regularity for parabolic equations, Fourier multiplier theorems and H ∞ -functional calculus[END_REF]): Definition 2.1. Assume X and Y are Banach spaces and E ⊂ L(X , Y). We say that E is R-bounded if there exist p ∈ [1, ∞) and a constant C > 0, such that for any integer N 1, any T 1 , . . . T N ∈ E, any independent Rademacher random variables r 1 , . . . , r N , and any

x 1 , . . . , x N ∈ X ,   E N j=1 r j T j x j p Y   1/p C   E N j=1 r j x j p X   1/p . The R p -bound of E on L(X , Y), denoted by R p (E), is the smallest constant C in the above inequality.
Let us recall that a Rademacher random variable is a symmetric random variables with value in {-1, 1} and that E denotes the expectation of a random variable. Note that the above definition is independent of p ∈ [1, ∞) (see, for instance, [11, p.26]). The R p -bound has the following properties (see, for instance, Proposition 3.4 in [START_REF] Denk | Fourier multipliers and problems of elliptic and parabolic type[END_REF]):

R p (E 1 + E 2 ) R p (E 1 ) + R p (E 2 ), R p (E 1 E 2 ) R p (E 1 )R p (E 2 ).
(2.1)

For any β ∈ (0, π), we consider the sector R-sectorial operators:

Σ β = {λ ∈ C \ {0} ; | arg(λ)| < β}. (2.2)
We can introduce the definition of :

Definition 2.2 (sectorial and R-sectorial operators). Let A : D(A) → X be a densely defined closed linear operator on the Banach space X . The operator

A is (R)-sectorial of angle β ∈ (0, π) if Σ β ⊂ ρ(A)
and if the set

R β = λ(λ -A) -1 ; λ ∈ Σ β is (R)-bounded in L(X ).
We denote by M β (A) (respectively R β (A)) the bound (respectively the R-bound) of R β . One can replace in the above definitions R β by the set

R β = A(λ -A) -1 ; λ ∈ Σ β .
In that case, we denote the uniform bound and the R-bound by M β (A) and R β (A).

The following result, due to [START_REF] Weis | Operator-valued Fourier multiplier theorems and maximal Lp-regularity[END_REF] (see also [11, p.45]), shows the important relation between the notion of R-sectoriality and the maximal regularity of type L p : Theorem 2.3. Assume X is a UMD Banach space and that A : D(A) → X is a densely defined, closed linear operator on X . Then the following assertions are equivalent:

(1) For any T ∈ (0, ∞] and for any f ∈ L p (0, T ; X ), the Cauchy problem

u = Au + f in (0, T ), u(0) = 0 (2.3)
admits a unique solution u with u , Au ∈ L p (0, T ; X ) and there exists a constant

C > 0 such that u L p (0,T ;X ) + Au L p (0,T ;X ) C f L p (0,T ;X ) . (2) A is R-sectorial of angle > π 2 .
In the above definition, we recall that X is a UMD Banach space if the Hilbert transform is bounded in L p (R; X ) for p ∈ (1, ∞). In particular, the closed subspaces of L q (Ω) for q ∈ (1, ∞) are UMD Banach spaces. We refer the reader to [3, pp.141-147] for more information on UMD spaces.

Combining the above theorem with [15, Theorem 2.4] and [37, Theorem 1.8.2], we can consider the following Cauchy problem

u = Au + f in (0, ∞), u(0) = u 0 . (2.4)
Corollary 2.4. Assume X is a UMD Banach space, 1 < p < ∞ and A is a closed, densely defined operator in X with domain D(A). Let us suppose also that A is a R-sectorial operator of angle > π 2 and that the semigroup generated by A has negative exponential type. Then for any u 0 ∈ (X , D(A)) 1-1/p,p and for any f ∈ L p (0, ∞; X ), the system (2.4) admits a unique solution in L p (0, ∞; D(A)) ∩ W 1,p (0, ∞; X ).

Finally, we will need the following result ([26, Corollary 2]) on the perturbation theory of Rsectoriality.

Proposition 2.5. Suppose A is a R-sectorial operator of angle β on a Banach space X . Assume that B : D(B) → X is a linear operator such that D(A) ⊂ D(B) and such that there exist a, b 0 satisfying

Bx X a Ax X + b x X (x ∈ D(A)).
(2.5)

If a < 1 M β (A) R β (A) and λ > bM β (A) R β (A) 1 -a M β (A) R β (A) , then A + B -λ is R-sectorial of angle β.

Local in time existence

The aim of this section is to prove Theorem 1.1.

3.1. Change of variables and Linearization. In this subsection, we consider a change of variables to transform the moving domain F(η(t)) into the fixed domain F. For this we use the Lagrangian change of variables to write everything in F(η 0 1 ) and a geometric change of variables to transform F(η 0 1 ) into F. Let us start with the second one. First using that F is smooth, there exist an open bounded neighborhood S of S in R 2 , ε > 0 and

η : S → R smooth such that S × [-ε, ε] ∩ ∂F = (s, η(s)), s ∈ S .
We have in particular that η ≡ 0 in S. From (1.16), (1.17), we can extend η -and η + with

[y 1 , y 2 , y 3 ] ∈ S × R ; y 3 ∈ (η -(y 1 , y 2 ), η(y 1 , y 2 )) ⊂ F, [y 1 , y 2 , y 3 ] ∈ S × R ; y 3 ∈ ( η(y 1 , y 2 ), η + (y 1 , y 2 )) ⊂ R 3 \ F.
Using (1.13)-(1.14) and that q > 3, we can extend η 0 1 by 0 in R 2 \ S with η 0 1 ∈ W 2,q (R 2 ). Then (1.18) yields the existence of ε ∈ (0, 1) such that

η -(1 -ε) < η 0 1 < η + (1 -ε) in S. We consider χ ∈ C ∞ c (R 3 ) such that supp χ ⊂ [y 1 , y 2 , y 3 ] ∈ S × R ; y 3 ∈ (η -(y 1 , y 2 ), η + (y 1 , y 2 )) , χ ≡ 1 in [y 1 , y 2 , y 3 ] ∈ S × R ; y 3 ∈ ((1 -ε)η -(y 1 , y 2 ), (1 -ε)η + (y 1 , y 2 )) .
We also define

Λ(y 1 , y 2 , y 3 ) = η 0 1 (y 1 , y 2 )χ(y 1 , y 2 , y 3 )e 3 [y 1 , y 2 , y 3 ] ∈ R 3 and we consider ζ (t, y) = Λ(ζ(t, y)), ζ(0, y) = y ∈ R 3 . (3.1) Then X 0 := ζ(1, •) (3.2) is a C 1 -diffeomorphism such that X 0 ≡ Id in R 3 \ [y 1 , y 2 , y 3 ] ∈ S × R ; y 3 ∈ (η -(y 1 , y 2 ), η + (y 1 , y 2 )) X 0 (Γ S (0)) = Γ S (η 0 1 ), X 0 [y 1 , y 2 , y 3 ] ∈ S × R ; y 3 ∈ (η -(y 1 , y 2 ), 0) = [y 1 , y 2 , y 3 ] ∈ S × R ; y 3 ∈ (η -(y 1 , y 2 ), η 0 1 (y 1 , y 2 )) .
In particular, X 0 is a C 1 -diffeomorphism such that X 0 (F) = F(η 0 1 ) and such that X 0 = Id on Γ 0 . We consider the characteristics X associated with the fluid velocity v:

∂ t X(t, y) = v(t, X(t, y)) (t > 0), X(0, y) = X 0 (y), y ∈ F. (3.3)
Assume that X is a C 1 -diffeomorphism from F onto F(η(t)) for all t ∈ (0, T ). For each t ∈ (0, T ), we denote by

Y (t, •) = [X(t, •)] -1 the inverse of X(t, •).
We consider the following change of variables

ρ(t, y) = ρ(t, X(t, y)), v(t, y) = v(t, X(t, y)), ϑ(t, y) = ϑ(t, X(t, y)), π = R 0 ρϑ + π 0 , (3.4) 
for (t, y) ∈ (0, T ) × F. In particular,

ρ(t, x) = ρ(t, Y (t, x)), v(t, x) = v(t, Y (t, x)), ϑ(t, x) = ϑ(t, Y (t, x)),
for (t, x) ∈ (0, T ) × F(η(t)). We introduce the notation

B X := Cof ∇X, δ X := det ∇X, A X := 1 δ X B X B X , (3.5) 
B 0 := B X 0 , δ 0 := δ X 0 , A 0 := A X 0 . (3.6) 
This change of variables transforms (1.3)-(1.8) into the following system for [ρ, v, ϑ, η] :

   ∂ t ρ + ρ 0 δ 0 ∇v : B 0 = F 1 in (0, T ) × F, ρ(0, •) = ρ 0 in F, (3.7) 
       ∂ t v -Lv = F 2 in (0, T ) × F, v = 0 on (0, T ) × Γ 0 , v = ∂ t ηe 3 on (0, T ) × Γ S , v(0, •) = v 0 in F, (3.8) 
     ∂ t ϑ - κ c v ρ 0 δ 0 div A 0 ∇ϑ = F 3 in (0, T ) × F, A 0 ∇ϑ • n = G on (0, T ) × ∂F, ϑ(0, •) = ϑ 0 in F, (3.9) 
   ∂ tt η + ∆ 2 s η -∆ s ∂ t η = H in (0, T ) × S, η = ∇η • n S = 0 on (0, T ) × ∂S, η(0, •) = η 0 1 , ∂ t η(0, •) = η 0 2 in S, (3.10) 
where we have used the following notation

ρ 0 := ρ 0 • X 0 , v 0 := v 0 • X 0 , ϑ 0 := ϑ 0 • X 0 , (3.11) Lv = 1 ρ 0 δ 0 div T 0 (v), T 0 (v) := µ∇vA 0 + µ + α δ 0 B 0 (∇v) B 0 (3.12) F 1 (ρ, v, ϑ, η) := ρ 0 δ 0 ∇v : B 0 - ρ δ X ∇v : B X (3.13) F 2 (ρ, v, ϑ, η) := 1 ρ 0 δ 0 ρ 0 δ 0 -ρδ X ∂ t v + µ div ∇v A X -A 0 + (µ + α) div 1 δ X B X (∇v) B X - 1 δ 0 B 0 (∇v) B 0 + R 0 B X ∇(ρϑ) (3.14) F 3 (ρ, v, ϑ, η) := 1 c v ρ 0 δ 0 c v ρ 0 δ 0 -ρδ X ∂ t ϑ + κ div A X -A 0 ∇ϑ + α δ X (B X : ∇v) 2 + µ 2δ X ∇vB X + B X ∇v 2 -(R 0 ρϑ + π 0 )∇v : B X (3.15) G(ρ, v, ϑ, η) = A 0 -A X ∇ϑ • n (3.16) H(ρ, v, ϑ, η) = - µ δ X ∇vB X + B X ∇v -∇ s η 1 • e 3 - α δ X ∇v : B X + R 0 ρϑ + π 0 . (3.17)
The characteristics X defined in (3.3) can now be written as

X(t, y) = X 0 (y) + t 0 v(r, y) dr, (3.18) 
for every y ∈ F and t 0. The hypotheses (1.12)-(1.15) on the initial conditions are transformed into the following conditions

ρ 0 ∈ W 1,q (F), min F ρ 0 > 0, (3.19) η 0 1 ∈ B 2(2-1/p) q,p (S), η 0 1 = ∇ s η 0 1 • n S = 0 on S, (3.20) 
v 0 ∈ B 2(1-1/p) q,p (F) 3 , ϑ 0 ∈ B 2(1-1/p) q,p (F), η 0 2 ∈ B 2(1-1/p) q,p (S), (3.21) 
v 0 = 0 on Γ 0 , v 0 = η 0 2 e 3 on Γ S , η 0 2 = 0 on ∂S, (3.22)

∇η 0 2 • n S = 0 on ∂S and A 0 ∇ϑ 0 • n = 0 on ∂F if 1 p + 1 2q < 1 2 . (3.23)
Here n is the unit normal to ∂F outward to F. 

[ρ, v, ϑ, η] ∈ W 1,p (0, T ; W 1,q (F)) × W 1,2 p,q ((0, T ); F 3 × W 1,2 p,q ((0, T ); F) × W 2,4 p,q ((0, T ); S) Moreover, min [0,T ]×F ρ > 0, Γ 0 ∩ Γ S (η(t)) = ∅ (t ∈ [0, T ]),
and for all t ∈ [0, T ], X(t, •) :

F → F(η(t)) is a C 1 -diffeomorphism.
3.2. Maximal L p -L q regularity of a linear system. The proof of Theorem 3.1 relies on the Banach fixed point theorem and on maximal L p -L q estimates of a linearized system. By replacing the nonlinear terms F 1 , F 2 , F 3 , G and H in (3.7)-(3.10) by given source terms f 1 , f 2 , f 3 , g and h we obtain the following linear system   

∂ t ρ + ρ 0 δ 0 ∇v : B 0 = f 1 in (0, T ) × F, ρ(0, •) = ρ 0 in F, (3.24) 
       ∂ t v -Lv = f 2 in (0, T ) × F, v = 0 on (0, T ) × Γ F , v = ∂ t ηe 3 on (0, T ) × Γ S , v(0, •) = v 0 in F, (3.25) 
     ∂ t ϑ - κ c v ρ 0 δ 0 div A 0 ∇ϑ = f 3 in (0, T ) × F, A 0 ∇ϑ • n = g on (0, T ) × ∂F, ϑ(0, •) = ϑ 0 in F, (3.26) 
   ∂ tt η + ∆ 2 s η -∆ s ∂ t η = h in (0, T ) × S, η = ∇η • n S = 0 on (0, T ) × ∂S, η(0, •) = η 0 1 , ∂ t η(0, •) = η 0 2 in S, (3.27) 
where A 0 , B 0 , δ 0 are defined in (3.6) and where L is defined by (3.12). Note that we also modify the initial conditions in the above system with respect to (3.7)-(3.10) since ρ 0 and η 0 1 already appear in the coefficients of (3.24)-(3.27). In the next section, we will take

ρ 0 = ρ 0 , η 0 1 = η 0 1
but here we do not assume the above relation. In particular, we assume that ρ 0 satisfies the second condition of (3.19) and that η 0 1 satisfies (1.18) but we do not impose these hypotheses on ρ 0 and on η 0 1 . We recall that (p, q) satisfies (1.11) and to simplify, we assume throughout this section that

T ∈ (0, 1].
This condition is only used to avoid the dependence in time of the constants in the estimates of this section.

We consider the subset of initial conditions

I p,q = ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 ∈ W 1,q (F)×B 2(1-1/p) q,p (F) 3 ×B 2(1-1/p) q,p (F)×B 2(2-1/p) q,p (S)×B 2(1-1/p) q,p (S) 
,

v 0 = 0 on Γ 0 , v 0 = η 0 2 e 3 on Γ S , η 0 1 = ∂ η 0 1 ∂n S = η 0 2 = 0 on ∂S, ∂η 0 2 ∂n S = 0 on ∂S and A 0 ∇ϑ 0 • n = 0 on ∂F if 1 p + 1 2q < 1 2 , (3.28) 
endowed with the norm

ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 Ip,q := ρ 0 W 1,q (F ) + v 0 B 2(1-1/p) q,p (F ) 3 + ϑ 0 B 2(1-1/p) q,p (F ) + η 0 1 B 2(2-1/p) q,p (S) + η 0 2 B 2(1-1/p) q,p ( 

S) .

We also consider the space R T,p,q of the source terms in (3.24)-(3.27):

R T,p,q = [f 1 , f 2 , f 3 , g, h] ; f 1 ∈ L p (0, T, W 1,q (F)), f 2 ∈ L p (0, T ; L q (F)) 3 , f 3 ∈ L p (0, T ; L q (F)), g ∈ F (1-1/q)/2
p,q (0, T ; L q (∂F)) ∩ L p (0, T ; W 1-1/q,q (∂F)), h ∈ L p (0, T ; L q (S)), with g(0,

•) = 0 if 1 p + 1 2q < 1 2 , (3.29) 
with

[f 1 , f 2 , f 3 , g, h] R T,p,q = f 1 L p (0,T ;W 1,q (F )) + f 2 L p (0,T ;L q (F )) 3 + f 3 L p (0,T ;L q (F )) + g F (1-1/q)/2
p,q (0,T ;L q (∂F ))∩L p (0,T ;W 1-1/q,q (∂F )) + h L p (0,T ;L q (S)) .

Finally, the space W T,p,q of the solutions [ρ, u, ϑ, η] of (3.24)-(3.27) is the Cartesian product:

W T,p,q = W 1,p (0, T ; W 1,q (F)) × W 1,2 p,q ((0, T ); F) 3 × W 1,2 p,q ((0, T ); F) × W 2,4 p,q ((0, T ); S), (3.30) 
with the norm [ρ, u, ϑ, η] W T,p,q := ρ W 1,p (0,T ;W 1,q (F )) + u W 1,2 p,q ((0,T );F ) 3 + ϑ W 1,2 p,q ((0,T );F ) + η W 2,4 p,q ((0,T );S) . With the above notation, we can state the main result of this section: (3.20) and (1.18). Then for any

Theorem 3.2. Assume (1.11) (3.19),
ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 ∈ I p,q , [f 1 , f 2 , f 3 , g, h] ∈ R T,p,q , (3.31) 
the system (3.24)-(3.27) admits a unique solution [ρ, v, ϑ, η] ∈ W T,p,q and there exists a constant C > 0 depending on p, q and independent of T such that

[ρ, v, ϑ, η] W T,p,q C ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 Ip,q + [f 1 , f 2 , f 3 , g, h] R T,p,q . 
(3.32)

In order to prove the above result, we notice that the system (3.24)-(3.27) can be solved in "cascades". Systems (3.26) and (3.27) can be solved independently. With the solution of system (3.27) we can solve the system (3.25) and then (3.24).

We first need the following result on the coefficients appearing in the system (3.24)-(3.27): (3.20) and (1.18). Then A 0 , B 0 , δ 0 defined in (3.6) satisfy

Lemma 3.3. Assume (1.11) (3.19),
δ 0 > 0, A 0 = (A 0 ) , 1 δ 0 ∈ W 1,q (F), B 0 , A 0 ∈ W 1,q (F) 9 ,
and there exists c 0 > 0 such that

A 0 c 0 I 3 in F.
Proof. The proof relies on the dependence of the solutions of (3.1) with respect to the initial conditions. Using that η 0 1 ∈ W 2,q (R 2 ) for q > 3 and Sobolev embedding, we have that Λ ∈ C 1 b (R 3 ). In particular, from standard results (see, for instance, [2, p.116]), we have that ζ ∈ C 1 (R × R 3 ) and by using the ordinary differential equation satisfied by the derivatives of ζ in space, we find that X 0 ∈ W 2,q (F) 3 and ∇X 0 is invertible. This yields the result.

We are now in a position to prove Theorem 3.2:

Proof of Theorem 3.2. The proof is divided in several steps devoted to the resolution of each system.

Step 1: we show here that (3.27) admits a unique solution η ∈ W 2,4 p,q ((0, T ) × S) and that there exists a constant C independent of T such that η W 2,4 p,q ((0,T );S) + ∂ t η W 1,2 p,q ((0,T );S)

C η 0 1 B 2(2-1/p) q,p (S) + η 0 2 B 2(1-1/p) q,p ( 
S) + h L p (0,T ;L q (S)) . (3.33) To prove this, we combine [14, Theorem 5.1] and [START_REF] Weis | Operator-valued Fourier multiplier theorems and maximal Lp-regularity[END_REF]Theorem 4.2]. For the sake of clarity, we provide brief details about the proof. We first consider X S := W 2,q 0 (S) × L q (S), (3.34) and the operator A S defined by

D(A S ) = W 4,q (S) ∩ W 2,q 0 (S) × W 2,q 0 (S), A S = 0 Id -∆ 2 ∆ . (3.35)
With the above notation, the system (3.27) can be written as

d dt η ∂ t η = A S η ∂ t η + 0 h , η ∂ t η (0) = η 0 1 η 0 2 .
Applying Theorem 5.1 in [START_REF] Denk | A structurally damped plate equation with Dirichlet-Neumann boundary conditions[END_REF], we have that A S is R-sectorial in X S of angle β 0 > π/2 (see Section 2). Thus the operator A S has maximal regularity L p -regularity in X S ([40, Theorem 4.2] or Corollary 2.4). More precisely, for every h ∈ L p (0, T ; L q (F)) and for every ( η 0 1 , η 0 2 ) ∈ (X S , D(A S )) 1-1/p,p , the system (3.27) admits a unique strong solution with η ∈ L p (0, T ; W 4,q (S)) ∩ W 2,p (0, T ; L q (S)).

In order to obtain the estimate (3.33) independent of T , we proceed as [24, Proposition 2.2].

Step 2: we show now that the system (3.25) admits a unique solution v ∈ W 1,2 p,q ((0, T ); F) 3 and that there exists a constant C > 0 depending only on the geometry such that

v W 1,2 p,q ((0,T );F ) 3 C η 0 1 B 2(2-1/p) q,p (S) + η 0 2 B 2(1-1/p) q,p (S) + v 0 B 2(1-1/p) q,p (F ) 3 + h L p (0,T ;L q (S)) + f 2 L p (0,T ;L q (F )) 3 . (3.36)
To do this, we are going to apply [START_REF]Optimal L p -L q -estimates for parabolic boundary value problems with inhomogeneous data[END_REF]Theorem 2.3] and for this, we first reduce the problem to the case of homogeneous boundary conditions.

Using that F is a smooth domain, there exists an open bounded neighborhood S of S in R 2 , ε > 0 and η : S → R smooth such that

S × [-ε, ε] ∩ ∂F = (s, η(s)), s ∈ S . (3.37) We consider χ ∈ C ∞ c (R 3 ) such that supp χ ⊂ S × [-ε, ε], χ ≡ 1 in S × [-ε/2, ε/2].
Then we define

w(t, y 1 , y 2 , y 3 ) := χ(y 1 , y 2 , y 3 )∂ t η(t, y 1 , y 2 )e 3 (t, y 1 , y 2 , y 3 ) ∈ (0, T ) × R 3 (3.38)
and we set u = v -w so that u is the solution of

     ∂ t u -Lu = f 2 := f 2 -∂ t w -Lw in (0, T ) × F, u = 0 on (0, T ) × ∂F, u(0, •) = u 0 := v 0 -w(0, •) in F, (3.39) 
From Lemma 3.3 and (3.33), there exists a positive constant C independent of T such that

f 2 L p (0,T ;L q (F )) 3 C η 0 1 B 2(2-1/p) q,p (S) + η 0 2 B 2(1-1/p) q,p (S) + h L p (0,T ;L q (S)) + f 2 L p (0,T ;L q (F )) 3 , u 0 B 2(1-1/p) q,p (F ) 3 v 0 B 2(1-1/p) q,p (F ) 3 + η 0 2 B 2(1-1/p) q,p (S) 
.

Moreover, u 0 = 0 on ∂F. To obtain the result it remains to show that for u 0 ∈ B 2(1-1/p) q,p (F) 3 with u 0 = 0 on ∂F and for f 2 ∈ L p (0, T ; L q (F)) 3 , system (3.39) admits a unique strong solution in W 1,2 p,q ((0, T ); F) 3 with an estimate independent of T . In order to do this, we are going to apply [12, Theorem 2.3].

Let us denote by L 0 (y, ξ) the principal symbol of the operator L defined by (3.12). Then we have

L 0 (•, ξ) = µ ρ 0 δ 0 (A 0 ξ • ξ)I 3 + µ + α ρ 0 (δ 0 ) 2 (B 0 ξ) ⊗ (B 0 ξ).
In particular, L 0 (•, ξ) is symmetric and using (3.6) and (1.7), there exists c 0 such that

L 0 (y, ξ)a • a c 0 |a| 2 (y ∈ F, a, ξ ∈ R 3 , |ξ| = 1). (3.40)
This shows condition (E) (ellipticity of the interior symbol) of [START_REF]Optimal L p -L q -estimates for parabolic boundary value problems with inhomogeneous data[END_REF]. Since we are in the case of the Dirichlet boundary conditions, (3.40) yields the Lopatinskii-Shapiro condition (LS), see for instance, [34, Proposition 6.2.13 and Remark (i), p.270].

Finally, applying again Lemma 3.3 and using that q > 3, we can verify that (SD1) and (SB1) hold true. We can thus apply [12, Theorem 2.3] and deduce that the system (3.39) admits a unique solution u ∈ W 1,2 p,q ((0, T ); F) 3 . This yields that the system (3.25) admits a unique solution v ∈ W 1,2 p,q ((0, T ); F) 3 . In order to show that the estimate (3.36) holds with a constant independent of T, we can proceed as [24, Proposition 2.2].

Step 3: next we prove that the system (3.26) admits a unique strong solution ϑ ∈ W 1,2 p,q ((0, T ); F) and that there exists a constant C > 0, depending only on the geometry such that ϑ W 1,2 p,q ((0,T );F ) C ϑ 0 B 2(1-1/p) q,p (F ) + f 3 L p (0,T ;L q (F )) + g F (1-1/q)/2 p,q (0,T ;L q (∂F )) + g L p (0,T ;W 1-1/q,q (∂F )) . (3.41) As for the previous step, we are going to apply [START_REF]Optimal L p -L q -estimates for parabolic boundary value problems with inhomogeneous data[END_REF]Theorem 2.3]. The principal symbol associated with the operator ϑ → -

κ c v ρ 0 δ 0 div A 0 ∇ϑ is a 0 (•, ξ) = κ c v ρ 0 δ 0 A 0 ξ • ξ
and from Lemma 3.3 it satisfies a 0 (•, ξ) c 1 > 0 for ξ such that |ξ| = 1. This shows condition (E) (ellipticity of the interior symbol) of [START_REF]Optimal L p -L q -estimates for parabolic boundary value problems with inhomogeneous data[END_REF].

Due to Theorem 10.4 in [41, p.145], the above operator is properly elliptic and following Example 11.6 in [41, pp.160-161]), we see that the Lopatinskii-Shapiro condition (LS) holds true.

Finally, applying again Lemma 3.3 and using that q > 3, we can verify that (SD1) and (SB1) hold true.

Thus all the conditions of [12, Theorem 2.3] are satisfied. Finally, to obtain the estimate (3.41) with constant independent of T we can proceed as [24, Proposition 2.2].

Step 4: it only remains to prove the estimate for ρ. It follows from v ∈ W 1,2 p,q ((0, T ); F) 3 and Lemma 3.3 that the system (3.24) admits a unique solution ρ ∈ W 1,p (0, T ; W 1,q (F)) and there exists a constant C independent of T such that ρ W 1,p (0,T ;W 1,q (F )) C v W 1,2 p,q ((0,T );F ) 3 + ρ 0 W 1,q (F ) + f 1 L p (0,T ;W 1,q (F )) .

(3.42)

Combining

Step 1 to Step 4, we deduce the result. For this, we notice that a solution of (3.7)-(3.17) is a solution of (3.24)-(3.27) such that the source terms satisfy

[f 1 , f 2 , f 3 , g, h] = [F 1 , F 2 , F 3 , G, H] ,
where F 1 , F 2 , F 3 , G and H are given by (3.13)- (3.17). This suggests to prove Theorem 3.1 by showing that the following mapping admits a fixed point:

Ξ T,R : B T,R -→ B T,R , [f 1 , f 2 , f 3 , g, h] -→ [F 1 , F 2 , F 2 , G, H] , (3.43) 
where

B T,R = [f 1 , f 2 , f 3 , g, h] ∈ R T,p,q ; [f 1 , f 2 , f 3 , g, h] R T,p,q R
(recall that R T,p,q is defined by (3.29)) and where [ρ, v, ϑ, η] is the solution of (3.24)-(3.27) associated with [f 1 , f 2 , f 3 , g, h] and with initial conditions ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 ∈ I p,q . More precisely, we take R large enough so that ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 Ip,q R, (3.44) and we assume (1.11) (3.19), (3.20) and (1.18) so that we can apply Theorem 3.2: the system (3.24)-(3.27) admits a unique solution (ρ, v, ϑ, η) ∈ W T,p,q and [ρ, v, ϑ, η]

W T,p,q C ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 Ip,q + [f 1 , f 2 , f 3 , g, h] R T,p,q .
To prove Theorem 3.1, we need to show that, for T small enough, the mapping Ξ T,R is well-defined, that Ξ T,R (B T,R ) ⊂ B T,R and Ξ T,R | B T,R is a strict contraction.

In this proof, we write C R for any positive constant of the form C(1 + R N ) for N ∈ N, with C a constant that only depends on the geometry and on the physical parameters, and in particular independent of T . In particular the above inequality can be written as ρ W 1,p (0,T ;W 1,q (F )) + v W 1,2 p,q ((0,T );F ) 3 + ϑ W 1,2 p,q ((0,T );F ) + η W 2,4 p,q ((0,T );S) C R .

(3.45)

We are going to use several times that since q > 3, W 1,q (F) is an algebra and W 1,q (F) ⊂ L ∞ (F). We also have that W 1-1 q ,q (∂F) ⊂ L ∞ (∂F). We also recall the following elementary inequalities:

f L p (0,T ) T 1 p -1 r f L r (0,T ) (f ∈ L r (0, T )) if r > p, (3.46) f -f (0) L ∞ (0,T ) T 1 p f W 1,p (0,T ) (f ∈ W 1,p (0, T )) if 1 p + 1 p = 1. (3.47)
In particular, we deduce from (3.45) and the above inequality

ρ -ρ 0 L ∞ (0,T ;W 1,q (F )) C R T 1 p , ρ L ∞ (0,T ;W 1,q (F )) C R . (3.48)
The above estimate with (3.46) yields

ρ L p (0,T ;W 1,q (F )) C R T 1 p . (3.49) Since 2 < p < ∞, one has B 2(1-1/p) q,p ( 
F) → W 1,q (F). Therefore, using (3.45) and (1.9), we obtain

v L ∞ (0,T ;W 1,q (F )) 3 + ϑ L ∞ (0,T ;W 1,q (F )) C R . (3.50)
Using (3.47) and (3.18), we deduce successively

X W 1,p (0,T ;W 2,q (F )) 3 C R , X -X 0 L ∞ (0,T ;W 2,q (F )) 3 C R T 1 p , X L ∞ (0,T ;W 2,q (F )) 3 C R .
(3.51) Since X 0 is a C 1 -diffeomorphism, we deduce from the above estimates that X is a C 1 -diffeomorphism for T small enough. Moreover, by combining the above estimates with Lemma 3.3 and with (3.5), we also deduce

B X W 1,p (0,T ;W 1,q (F )) 9 C R , B X -B 0 L ∞ (0,T ;W 1,q (F )) 9 C R T 1 p , B X L ∞ (0,T ;W 1,q (F )) 9 C R , (3.52) δ X W 1,p (0,T ;W 1,q (F )) C R , δ X -δ 0 L ∞ (0,T ;W 1,q (F )) C R T 1 p , δ X L ∞ (0,T ;W 1,q (F )) C R , (3.53 
) and in particular, there exists c 0 depending on η 0 1 such that for T small enough, δ X c 0 > 0.

(3.54)

We thus deduce

1 δ X W 1,p (0,T ;W 1,q (F )) C R , 1 δ X - 1 δ 0 L ∞ (0,T ;W 1,q (F )) C R T 1 p , 1 δ X L ∞ (0,T ;W 1,q (F )) C R .
(3.55) Using the above estimates and (3.5), we also obtain

A X W 1,p (0,T ;W 1,q (F )) 9 C R , A X -A 0 L ∞ (0,T ;W 1,q (F )) 9 C R T 1 p , A X L ∞ (0,T ;W 1,q (F )) 9 C R .
(3.56) We are now in position to estimate the non linear terms in (3.13)-(3.17). From the above estimates, we deduce

F 1 (ρ, v, ϑ, η) L p (0,T ;W 1,q (F )) + F 2 (ρ, v, ϑ, η) L p (0,T ;L q (F )) 3 + F 3 (ρ, v, ϑ, η) L p (0,T ;L q (F )) C R T 1 p .
(3.57) By using the trace theorems, we also have G(ρ, v, ϑ, η) L p (0,T ;W 1-1/q,q (∂F )) + H(ρ, v, ϑ, η) L p (0,T ;L q (S)) C R T 1 p .

(3.58)

It only remains to estimate G given by (3.16) in F

(1-1/q)/2 p,q (0, T ; L q (∂F)). First, using [12, Proposition 6.4], since ϑ ∈ W 1,2 p,q ((0, T ); F), we have that ∀i, j, ∂ϑ ∂y j n i ∈ F (1-1/q)/2 p,q (0, T ; L q (∂F)), ∂ϑ ∂y j n i F

(1-1/q)/2 p,q (0,T ;L q (∂F ))

C R .

Then we apply the general result [24, Proposition 2.7] with s = (1-

1 q )/2, U 1 = U 3 = L q (∂F), U 2 = W 1-1
q ,q (∂F). Note that since 2 < p < ∞, we have the condition s + 1 p < 1. From [24, Proposition 2.7], we deduce that for some positive constant δ,

A 0 -A X ∇ϑ • n F (1-1/q)/2 p,q (0,T ;L q (∂F )) CT δ A 0 -A X W 1,p (0,T ;W 1-1 q ,q (∂F )) i,j ∂ϑ ∂y j n i F (1-1/q)/2 p,q (0,T ;L q (∂F )) C R T δ . (3.59)
Combining (3.57), (3.58), (3.59), we deduce

Ξ T,R (f 1 , f 2 , f 3 , g, h) R T,p,q C R T δ (3.60)
for some power δ > 0. Thus for T small enough, Ξ T,R (B T,R ) ⊂ B T,R .

To show that Ξ T,R | B T,R is a strict contraction, we proceed similarly: we consider

f (i) 1 , f (i) 2 , f (i) 3 , g (i) , h (i) ∈ B T,R , i = 1, 2
and we denote by ρ (i) , v (i) , ϑ (i) , η (i) the solution of (3.24)-(3.27) associated with

f (i) 1 , f (i) 2 , f (i) 
3 , g (i) , h (i) ∈ R T,p,q and ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 ∈ I p,q .

We also write

[f 1 , f 2 , f 3 , g, h] = f (1) 1 , f (1) 
2 , f

3 , g (1) , h (1) -f

(2) 1 , f (2) 
2 , f

3 , g (2) , h (2) ,

[ρ, v, ϑ, η] = ρ (1) , v (1) , ϑ (1) , η (1) -ρ (2) , v (2) , ϑ (2) , η (2) .

We can apply Theorem 3.2 and deduce that

ρ W 1,p (0,T ;W 1,q (F )) + v W 1,2 p,q ((0,T );F ) 3 + ϑ W 1,2 p,q ((0,T );F ) + η W 2,4
p,q ((0,T );S)

C [f 1 , f 2 , f 3 , g, h] R T,p,q , (3.61)
and since the initial conditions of [ρ, v, ϑ, η] are null, we can apply (3.47):

ρ L ∞ (0,T ;W 1,q (F )) CT 1 p [f 1 , f 2 , f 3 , g, h] R T,p,q . (3.62)
We deduce similarly that

X (1) -X (2)
L ∞ (0,T ;W 2,q (F ))

CT 1 p [f 1 , f 2 , f 3 , g, h] R T,p,q , (3.63) 
and we obtain similar estimates for B X (1) -B X (2) , A X (1) -A X (2) , δ X (1) -δ X (2) . Proceeding as above, we deduce that F 1 , F 2 , F 3 , G and H given by (3.13)-(3.17) satisfy F 1 (ρ (1) , v (1) , ϑ (1) , η (1) ) -F 1 (ρ (2) , v (2) , ϑ (2) , η (2) )

L p (0,T ;W 1,q (F ))

+ F 2 (ρ (1) , v (1) , ϑ (1) , η (1) ) -F 2 (ρ (2) , v (2) , ϑ (2) , η (2) )

L p (0,T ;L q (F )) 3 + F 3 (ρ (1) , v (1) , ϑ (1) , η (1) ) -F 3 (ρ (2) , v (2) , ϑ (2) , η (2) )

L p (0,T ;L q (F ))

+ G(ρ (1) , v (1) , ϑ (1) , η (1) ) -G(ρ (2) , v (2) , ϑ (2) , η (2) )

L p (0,T ;W 1-1/q,q (∂F ))∩F

(1-1/q)/2 p,q (0,T ;L q (∂F ))

+ H(ρ (1) , v (1) , ϑ (1) , η (1) ) -H(ρ (2) , v (2) , ϑ (2) , η (2) )

L p (0,T ;L q (S)) C R T δ [f 1 , f 2 , f 3 , g, h] R T,p,q (3.64)
for some positive constant δ. Thus taking T small enough, we deduce that Ξ T,R | B T,R is a strict contraction and this ends the proof of the theorem.

Global in time existence

In this section we prove Theorem 1.2.

Change of variables and Linearization.

As in the first part of this work, in order to show global existence in time we use a change of variables to write the system (1.3)-(1.8) in the fixed spatial domain F. We consider the same transformation as in Section 3.1, that is X is defined by (3.3). Note that (1.20) for R small enough yields condition (1.18). However, we modify (3.4) since we linearize here the system around the constant steady state ρ, 0, ϑ, 0 , with ρ, ϑ ∈ R * + :

ρ(t, y) = ρ(t, X(t, y)) -ρ, v(t, y) = v(t, X(t, y)), ϑ(t, y) = ϑ(t, X(t, y)) -ϑ, (4.1) 
for (t, y) ∈ (0, T ) × F. In particular,

ρ(t, x) = ρ + ρ(t, Y (t, x)), v(t, x) = v(t, Y (t, x)), ϑ(t, x) = ϑ + ϑ(t, Y (t, x)), (4.2) 
for (t, x) ∈ (0, T ) × F(η(t)). This change of variables transforms (1.3)-(1.8) into the following system for [ρ, v, ϑ, η] :

         ∂ t ρ + ρ div v = F 1 (ρ, v, ϑ, η) in (0, ∞) × F, ∂ t v - 1 ρ div T(ρ, v, ϑ) = F 2 (ρ, v, ϑ, η) in (0, ∞) × F, ∂ t ϑ -κ∆ϑ = F 3 (ρ, v, ϑ, η) in (0, ∞) × F, ∂ tt η + ∆ 2 s η -∆ s ∂ t η = -T(ρ, v, ϑ)e 3 • e 3 + H(ρ, v, ϑ, η) in (0, ∞) × S, (4.3) 
         v = 0 on (0, ∞) × Γ F , v = ∂ t ηe 3 on (0, ∞) × Γ S , ∂ϑ ∂n = G(ρ, v, ϑ, η) on (0, ∞) × ∂F, η = ∇ s η • n S = 0 on (0, ∞) × ∂S, (4.4) η(0, •) = η 0 1 , ∂η(0, •) = η 0 2 in S, ρ(0, •) = ρ 0 , v(0, •) = v 0 , ϑ(0, •) = ϑ 0 in F, (4.5) 
where

T(ρ, v, ϑ) = 2µDv + α div v -R 0 ϑρ -R 0 ρϑ I 3 , (4.6) κ = κ c v ρ (4.7) ρ 0 = ρ 0 • X 0 -ρ, v 0 = v 0 • X 0 , ϑ 0 = ϑ 0 • X 0 -ϑ. (4.8)
The nonlinear terms in (4.3)-(4.5) can be written as

F 1 (ρ, v, ϑ, η) = -ρ div v -(ρ + ρ) 1 δ X B X -I 3 : ∇v, (4.9) 
F 2 (ρ, v, ϑ, η) = 1 ρ -ρ(δ X -1)∂ t v -ρδ X ∂ t v + µ div (∇v(A X -I 3 )) + (µ + α) div 1 δ X B X (∇v) B X -(∇v) + R 0 B X ∇(ρϑ) + R 0 (B X -I 3 )(ρ∇ϑ + ϑ∇ρ) (4.10) F 3 (ρ, v, ϑ, η) = 1 c v ρ -c v δ X ρ∂ t ϑ -c v ρ(δ X -1)∂ t ϑ -R 0 ρϑ + ρϑ + ϑρ B X : ∇v +κ div (A X -I 3 )∇ϑ + α δ X (B X : ∇v) 2 + 2µ δ X ∇vB X + B X ∇v 2 , (4.11) G(ρ, v, ϑ, η) = (I 3 -A X ) ∇ϑ • n, (4.12) H(ρ, v, ϑ, η) = -µ 1 δ X ∇vB X + B X ∇v -∇ s η 1 -2µD(v)e 3 • e 3 -α 1 δ X B X -I 3 : ∇v + R 0 ρϑ, (4.13)
where A X , B X and δ X are defined in (3.5). The hypotheses (1.12)-(1.15) on the initial conditions are transformed into (3.20)-(3.23) and

ρ 0 ∈ W 1,q (F), min F ρ 0 + ρ > 0, . (4.14) 
Using the above change of variables, Theorem 1.2 can be reformulated as Theorem 4.1. Assume (p, q) satisfies (1.11) and assume that ρ and ϑ are two given positive constants such that (1.19) holds. Then there exist β > 0 and R > 0 such that, for any ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 

ρ 0 W 1,q (F ) + v 0 B 2(1-1/p) q,p (F ) 3 + ϑ 0 B 2(1-1/p) q,p (F ) + η 0 1 B 2(2-1/p) q,p (S) + η 0 2 B 2(1-1/p) q,p (S) 

R,

the system (4.3)-(4.13) admits a unique strong solution [ρ, v, ϑ, η] in the class of functions satisfying

ρ ∈ C 0 b ([0, ∞); W 1,q (F)), ∇ρ ∈ W 1,p β (0, ∞; L q (F)), ∂ t ρ ∈ L p β (0, ∞; W 1,q (F)), (4.15) 
ϑ ∈ C 0 b ([0, ∞); B 2(1-1/p) q,p (F)), ∇ϑ ∈ L p β (0, ∞; W 1,q (F)), ∂ t ϑ ∈ L p β (0, ∞; L q (F)), (4.16 
)

v ∈ W 1,2 p,q,β ((0, ∞); F) 3 , ∂ t η ∈ W 1,2 p,q,β ((0, ∞); S), (4.17) 
η ∈ C 0 b ([0, ∞); B 2(2-1/p) q,p (S)), η ∈ L p β (0, ∞; W 4,q (S)) + L ∞ (0, ∞; W 4,q (S)). (4.18) 
Moreover, min

[0,∞)×F ρ + ρ > 0, Γ 0 ∩ Γ S (η(t)) = ∅ (t ∈ [0, ∞)),
and for all t ∈ [0, ∞), X(t, •) :

F → F(η(t)) is a C 1 -diffeomorphism.
The proof of Theorem 4.1 relies on the Banach fixed point theorem and on the maximal L p -L q regularity of a linearized system over the time interval (0, ∞). In order to introduce the linearized system associated with (4.3)-(4.13), we introduce the following operator T : W 2,q 0 (S) → W 2,q (∂F) 3 defined by

(T η)(y) = η(s)e 3 if y = (s, 0) ∈ Γ S , 0 if y ∈ Γ 0 . (4.19) 
We also write η 1 = η and η 2 = ∂ t η and we consider the following system where we have replaced in (4.3)-(4.8), the nonlinearities F 1 , F 2 , F 3 , G, H by given source terms f 1 , f 2 , f 3 , g, h:

             ∂ t ρ + ρ div v = f 1 in (0, ∞) × F, ∂ t v - 1 ρ div T(ρ, v, ϑ) = f 2 in (0, ∞) × F, ∂ t ϑ -κ∆ϑ = f 3 in (0, ∞) × F, ∂ t η 1 -η 2 = 0 in (0, ∞) × F, ∂ t η 2 + ∆ 2 s η 1 -∆ s η 2 = -T(ρ, v, ϑ)e 3 • e 3 + h in (0, ∞) × S, (4.20) 
     v = T η 2 on (0, ∞) × ∂F, ∂ϑ ∂n = g on (0, ∞) × ∂F, η 1 = ∇ s η 1 • n S = 0 on (0, ∞) × ∂S, (4.21) 
η 1 (0, •) = η 0 1 , η 2 (0, •) = η 0 2 in S, ρ(0, •) = ρ 0 , v(0, •) = v 0 , ϑ(0, •) = ϑ 0 in F, (4.22) 
Our aim is to show that the linearized operator associated to the above linear system is R-sectorial in a suitable function space. 4.2. The fluid-structure operator. Here we introduce the operator associated to the linear system (4.20)- (4.22). To this aim, we first define

D(A v ) = v ∈ W 2,q (F) 3 ; v = 0 on ∂F , A v = µ ρ ∆ + α + µ ρ ∇ div, (4.23) 
and

D(A ϑ ) = ϑ ∈ W 2,q (F) ; ∂ϑ ∂n = 0 on ∂F , A ϑ = κ∆. (4.24) 
From [35, Theorem 1.4], A v is an isomorphism from D(A v ) onto L q (F) 3 for any q ∈ (1, ∞). Using trace properties, this allows us to introduce the operator

D v ∈ L(W 2,q 0 (S); W 2,q (F) 3 ), (4.25) 
where w = D v g is the solution to the system

   - µ ρ ∆w - α + µ ρ ∇(div w) = 0 in F, w = T g on ∂F. (4.26) 
By a standard transposition method, the operator D v can be extended as a bounded operator from L q (S) to L q (F) 3 .

Using the above definitions and recalling the definitions (3.34), (3.35) of A S and X S , we can write (4.20)-(4.22) as follows (in the case g = 0):

d dt       ρ v ϑ η 1 η 2       = A F S       ρ v ϑ η 1 η 2       +       f 1 f 2 f 3 0 h       ,       ρ v ϑ η 1 η 2       (0) =       ρ 0 v 0 ϑ 0 η 0 1 η 0 2       , (4.27) 
where A F S : D(A F S ) → X is defined by

X = W 1,q (F) × L q (F) 3 × L q (F) × W 2,q 0 (S) × L q (S), (4.28) 
D(A F S ) = [ρ, v, ϑ, η 1 , η 2 ] ∈ W 1,q (F) × W 2,q (F) 3 × D(A ϑ ) × D(A S ) ; v -D v η 2 ∈ D(A v ) , (4.29) 
and

A F S = A 0 F S + B F S , with A 0 F S =       ρ v ϑ η 1 η 2       =       -ρ div v A v (v -D v η 2 ) A ϑ ϑ η 2 -∆ 2 s η 1 + ∆ s η 2       and B F S       ρ v ϑ η 1 η 2       =         0 - R 0 ϑ ρ ∇ρ -R 0 ∇ϑ 0 0 -T(ρ, v, ϑ)e 3 • e 3         . ( 4.30) 
We recall that the definition of a R-sectorial operator is given in Definition 2.2. We now prove the following theorem : Theorem 4.2. Let 1 < q < ∞. Then there exists γ > 0 such that A F S -γ is an R-sectorial operator in X of angle β > π/2.

Proof. In order to prove the theorem, we first combine [16, Theorem 2.5], [START_REF] Denk | Fourier multipliers and problems of elliptic and parabolic type[END_REF]Theorem 8.2] and [14, Theorem 5.1]: there exist γ > 0 and β > π/2 such that the operators A v -γ, A ϑ -γ and A S -γ are R-sectorial operators of angle β.

Second, standard calculation shows that for λ ∈ γ + Σ β (see (2.2)),

λ(λI -A 0 F S ) -1 =     Id -ρ div(λI -A v ) -1 0 ρ div A v (λI -A v ) -1 D v (λI -A S ) -1 0 λ(λI -A v ) -1 0 -A v (λI -A v ) -1 D v λ(λI -A S ) -1 0 0 λ(λI -A ϑ ) -1 0 0 0 0 λ(λI -A S ) -1     , where D v [η 1 , η 2 ] = D v η 2 .
Using the properties of R-boundedness recalled in Section 2, we deduce that A 0 F S -γ is R-sectorial operator in X of angle β. Note that in instance, we can write

div A v (λI -A v ) -1 D v (λI -A S ) -1 = -div D v (λI -A S ) -1 + div(λI -A v ) -1 D v λ(λI -A S ) -1
and then use that D v ∈ L(W 2,q 0 (S); W 2,q (F) 3 ) ∩ L(L q 0 (S); L q (F) 3 ). Next, using trace results, for s ∈ (1/q, 1) there exists a constant C such that

B F S [ρ, v, ϑ, η 1 , η 2 ] X C ρ W 1,q (F ) + v W 1+s,q (F ) 3 + ϑ W 1+s,q (F ) [ρ, v, ϑ, η 1 , η 2 ] ∈ D(A F S ).
Since the embedding W 1+s,q (F) → W 2,q (F) is compact for s ∈ (1/q, 1), for any ε > 0 there exists C(ε) > 0 such that

B F S [ρ, v, ϑ, η 1 , η 2 ] X ε A 0 F S [ρ, v, ϑ, η 1 , η 2 ] X + C(ε) [ρ, v, ϑ, η 1 , η 2 ] X . (4.31) 
Finally using Proposition 2.5 we conclude the proof of the theorem.

4.3.

Exponential stability of the fluid-structure semigroup. The aim of this subsection is to show that the operator A F S generates an analytic semigroup of negative type in the following subspace of X :

X m = [f 1 , f 2 , f 3 , h 1 , h 2 ] ∈ X ; F f 1 dy + ρ S h 1 ds = 0, F f 3 dy = 0 . (4.32) 
We can verify that X m is invariant under e tA F S t 0 . Therefore we can consider the restriction of A F S to the domain D(A F S ) ∩ X m ([39, Definition 2.4.1]). For this operator, we have the following result: Theorem 4.3. Let 1 < q < ∞. The part of A F S in X m generates an exponentially stable semigroup e tA F S t 0 on X m : there exists constants C > 0 and β 0 > 0 such that

e tA F S [ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 ] X Ce -β 0 t [ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 ] X , (t 0), (4.33) 
for all [ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 ] ∈ X m .

To show the above theorem, it sufficient to show that C + ⊂ ρ(A F S |D(A F S )∩Xm ). We thus consider the following resolvent problem Therefore, in order to study exponential stability of the semigroup it is necessary to consider the space X m instead of X .

                               λρ + ρ div v = f 1 in F, λv - 1 ρ div T(ρ, v, ϑ) = f 2 in F, λϑ -κ∆ϑ = f 3 in F, v = T η 2 , ∂ϑ ∂n = 0 on ∂F, λη 1 -η 2 = h 1 in S, λη 2 + ∆ 2 s η 1 -∆ s η 2 = -T(ρ, v, ϑ)e 3 • e 3 + h 2 in S, η 1 = ∇ s η 1 • n S = η 2 = 0 on ∂S.
Proof. Assume λ ∈ C + and [f 1 , f 2 , f 3 , h 1 , h 2 ] ∈ X m .
We need to show that the system (4.34) admits a unique solution [ρ, v, ϑ, η 1 , η 2 ] ∈ D(A F S ) ∩ X m together with an estimate

[ρ, v, ϑ, η 1 , η 2 ] D(A F S ) C [f 1 , f 2 , f 3 , h 1 , h 2 ] X .
The proof is divided into several parts.

Step 1: Uniqueness. Let us assume that [ρ, v, ϑ, η 1 , η 2 ] ∈ D(A F S ) ∩ X m solves the system (4.34) with [f 1 , f 2 , f 3 , h 1 , h 2 ] = 0. We notice that

[ρ, v, ϑ, η 1 , η 2 ] ∈ W 1,2 (F) × W 2,2 (F) 3 × W 2,2 (F) × W 4,2 (S) × W 2,2 (S). (4.35)
If q 2 then it is a consequence of Hölder's inequality. Else, 1 < q < 2 and we take λ 0 ∈ ρ(A F S ) to rewrite (4.34) as

(λ 0 -A F S ) [ρ, v, ϑ, η 1 , η 2 ] = (λ 0 -λ) [ρ, v, ϑ, η 1 , η 2 ]
. Since W 2,q (F) → L 2 (F) and W 2,q (S) → L 2 (S), we deduce (4.35) from the the invertibility of the operator (λ 0 -A F S ).

Multiplying (4.34) 3 by ϑ, we obtain after integration by parts Since Re λ 0, using (1.7) and using the boundary conditions we obtain v = η 2 = 0 and that ρ is a constant. Using that [ρ, v, ϑ, η 1 , η 2 ] ∈ X m we deduce that η 1 solves

   ∆ 2 s η 1 + R 0 ϑρ |F| S η 1 ds = 0 in S, η 1 = ∇ s η 1 • n S = 0 on ∂S. (4.36)
Multiplying the first equation of the above system by η 1 and integrating by parts, we deduce that η 1 = 0 and that ρ = 0.

Step 2. Existence for λ = 0. We consider the system (4.34) with λ = 0. It can be written as follows

η 2 = -h 1 in S, -κ∆ϑ = f 3 in F, ∂ϑ ∂n = 0 on ∂F, F ϑ dy = 0,            -µ∆v + R 0 ϑ∇ρ = ρf 2 + α + µ ρ ∇f 1 -R 0 ρ∇ϑ in F, div v = 1 ρ f 1 in F, v = -T h 1 in ∂F, (4.37) 
∆ 2 s η 1 = -T(ρ, v, ϑ)e 3 • e 3 -∆ s h 1 + h 2 in S, η 1 = ∇ s η 1 • n S = 0 on ∂S. (4.38) 
F ρdy + ρ S η 1 ds = 0, (4.39) 
We can solve the two first equations and obtain the existence and uniqueness of ϑ ∈ W 2,q (F) and η 2 ∈ W 2,q 0 (S) and we have the following estimate ϑ W 2,q (F ) C f 3 L q (F ) , η 2 W 2,q (S) = h 1 W 2,q (S) .

Using that [f 1 , f 2 , f 3 , h 1 , h 2 ] ∈ X m , we can solve (4.37) (see, for instance [START_REF] Temam | Theory and numerical analysis[END_REF]Proposition 2.3,p.35]) and we obtain the existence and uniqueness of (ρ, v) ∈ W 1,q (F)/R × W 2,q (F) 3 with the following estimate

v W 2,q (F ) 3 + ρ W 1,q (F )/R f 1 W 1,q (F ) + f 2 L q (F ) 3 + f 3 L q (F ) + h 1 W 2,q 0 ( 
S) . Then we decompose ρ = ρ m + ρ avg , with

ρ avg = 1 |F| F ρ dy = - ρ |F| S η 1 ds
and we can rewrite (4.38) as

   ∆ 2 s η 1 + R 0 ϑρ |F| S η 1 ds = -T(ρ m , v, ϑ)e 3 • e 3 -∆ s h 1 + h 2 in S, η 1 = ∇ s η 1 • n S = 0 on ∂S. (4.40)
Using the Fredholm alternative, the above system admits a unique solution η 1 ∈ W 4,q (S) and

η 1 W 4,q (S) C [f 1 , f 2 , f 3 , h 1 , h 2 ] X .
Step 3. Existence for λ ∈ C + , λ = 0. By setting ρ = 1 λ (f 1 -ρ div v), the system (4.34) can be rewritten as

                           λv - 1 ρ div T λ (v, ϑ) = f 2 in F, λϑ -κ∆ϑ = f 3 in F, v = T η 2 , ∂ϑ ∂n = 0 on ∂F, λη 1 -η 2 = h 1 in S, λη 2 + ∆ 2 s η 1 -∆ s η 2 = -T λ (v, ϑ)e 3 • e 3 + h 2 in S, η 1 = ∇ s η 1 • n S = η 2 = 0 on ∂S. (4.41) 
where

T λ (v, ϑ) = 2µD(v) + α + R 0 ϑρ λ div v -R 0 ρϑ I 3 , f 2 = f 2 - R 0 ϑ λρ ∇f 1 , h 2 = h 2 + R 0 ϑ λ f 1 | S .
Let us set X = L q (F) 3 × L q (F) × W 2,q 0 (S) × L q (S). We define (see (4.23))

D(A v,λ ) = D(A v ), A v,λ = µ ρ ∆ + α + µ ρ + R 0 ρϑ λ ∇ div .
In view of [START_REF] Shibata | On a resolvent problem for the linearized system from the dynamical system describing the compressible viscous fluid motion[END_REF]Theorem 1.4] and of the Fredholm theorem, for each λ with Re λ 0, A v,λ is an isomorphism from D(A v,λ ) onto L q (F) 3 for any q ∈ (1, ∞). Let D v,λ ∈ L(W 2,q 0 (S), W 2,q (F) 3 ) defined by D v,λ g = w, where w is the solution to the problem

     - µ ρ ∆w - α + µ ρ + R 0 ρϑ λ ∇(div w) = 0 in F, w = T g on ∂F.
We introduce the unbounded operator A λ : D(A λ ) → X defined by

D(A λ ) = [v, ϑ, η 1 , η 2 ] ∈ W 2,q (F) 3 × D(A ϑ ) × D(A S ) ; v -D v,λ η 2 ∈ D(A v,λ ) , and 
A λ     v ϑ η 1 η 2     =     A v,λ (v -D v,λ η 2 ) -R 0 ∇ϑ A ϑ ϑ η 2 -∆ 2 s η 1 + ∆ s η 2 -T λ (v, ϑ)e 3 • e 3     .
With the above notations, the system (4.41) can be written as This completes the proof of the proposition.

(λI -A λ )[v, ϑ, η 1 , η 2 ] = f 2 , f 3 , h 1 , h 2 . ( 4 
v, ϑ, η 1 , η 2 ] ∈ W 2,2 (F) 3 × W 2,2 (F) × W 4,2 (S) × W 2,2 (S). ( 4 
4.4. Maximal L p -L q regularity of the linear system. Assume

p, q ∈ (1, ∞), 1 p + 1 2q = 1, 1 p + 1 2q = 1 2 . ( 4 

.44)

Note that (1.11) implies (4.44). In order to show the maximal L p -L q regularity of the system (4.20)-(4.22), we first introduce the following decomposition: for any f ∈ L 1 (F),

f = f m + f avg , with F f m dy = 0, f avg = |F| -1 F f (y) dy. ( 4 

.45)

We use the same decomposition and the same notation for L 1 (∂F) and L 1 (S).

Let us recall some standard results on the heat equation and on the linearized compressible Navier-Stokes system: Lemma 4.5. There exists β 1 > 0 such that, for any β ∈ (0, β 1 ) and for any η 2, † ∈ W 2,4 p,q,β ((0, ∞); S) with η 2, † (0, •) ≡ 0, the following linear system

         ∂ t ρ † + ρ div v † = 0 in (0, ∞) × F, ∂ t v † - 1 ρ div T(ρ † , v † , 0) = 0 in (0, ∞) × F, v † = T η 2, † on (0, ∞) × ∂F, ρ † (0, •) = 0, v † (0, •) = 0 in F. (4.46) 
admits a unique solution

ρ † = ρ †,m + ρ †,avg , ρ †,m ∈ W 1,p β (0, ∞; W 1,q (F)), ∂ t ρ †,avg ∈ L p β (0, ∞), (4.47) v † ∈ W 1,2 p,q,β ((0, ∞) × F). ( 4 

.48)

Moreover, the following estimate holds

ρ †,m W 1,p β (0,∞;W 1,q (F )) + ρ †,avg L ∞ (0,∞) + ∂ t ρ †,avg L p β (0,∞) + v † W 1,2 p,q,β ((0,∞)×F ) C η 2, † W 2,4
p,q,β ((0,∞)×S) . (4.49) Proof. Let χ be the cut-off function defined in (3.38) and we define w † (t, y 1 , y 2 , y 3 ) := χ(y 1 , y 2 , y 3 )η 2, † (t, y 1 , y 2 )e 3 (t, y) ∈ (0, ∞) × F.

Let us set u

† = v † -w † . Then (ρ † , u † ) solves              ∂ t ρ † + ρ div u † = f 1, † in (0, ∞) × F, ∂ t u † - 1 ρ div T(ρ † , u † , 0) = f 2, † in (0, ∞) × F, u † = 0 on (0, ∞) × ∂F, ρ † (0, •) = 0, v † (0, •) = 0 in F, (4.50) 
where

f 1, † = -ρ div w † , f 2, † = -∂ t w † - 1 ρ div T(0, w † , 0).
It is easy to see that

f 1, † L p β (0,∞;W 1,q (F )) + f 2 L p β (0,∞;L q (F ))
C η 2, † W 2,4 p,q,β ((0,∞)×S) , for any β > 0. We look for a solution to the system (4.50) of the form ρ † = ρ †,m +ρ †,avg , where (ρ †,m , u † ) solves the system (4.50) with f 1, † replaced by f 1, †,m and ρ †,avg = t 0 f 1, †,avg (s) ds. By [16, Theorem 2.9], there exists β 1 > 0 such that for any β ∈ (0,

β 1 ), (f 1, †,m , f 2, † ) ∈ L p β (0, ∞; W 1,q (F)) × L p β (0, ∞; L q (F)), we have ρ †,m W 1,p β (0,∞;W 1,q (F )) + v † W 1,2 p,q,β ((0,∞)×F ) C f 1, † L p β (0,∞;W 1,q (F )) + f 2 L p β (0,∞;L q (F )) .
Combining the above estimates we obtain the conclusion of the lemma.

Combining Step 3 of the proof of Theorem 3.2 and [12, Proposition 6.4], we deduce the following result: Lemma 4.6. Assume β > 0. There exists γ 1 > 0 such that for any

ϑ 0 ∈ B 2(1-1/p) q,p (F), f 3 ∈ L p β (0, ∞; L q (F)), g ∈ F (1-1/q)/2 p,q,β (0, ∞; L q (∂F)) ∩ L p β (0, ∞; W 1-1/q,q (∂F)) with ∂ϑ 0 ∂n = g(0, •) on ∂F, the following heat equation          ∂ t ϑ + γ 1 ϑ -κ∆ϑ = f 3 in (0, ∞) × F, ∂ϑ ∂n = g on (0, ∞) × ∂F, ϑ (0, •) = ϑ 0 in F. (4.51)
admits a unique solution ϑ ∈ W 1,2 p,q,β ((0, ∞); F). Moreover, we have the following estimate

ϑ W 1,2 p,q,β ((0,∞);F ) C ϑ 0 B 2(1-1/p) q,p (F ) + f 3 L p β (0,∞;L q (F )) + g F (1-1/q)/2 p,q,β (0, 
∞;L q (∂F ))

+ g L p β (0,∞;W 1-1/q,q (∂F )) . (4.52) We consider the subset of initial conditions

J p,q := ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 ∈ W 1,q (F)×B 2(1-1/p) q,p (F) 3 ×B 2(1-1/p) q,p (F)×B 2(2-1/p) q,p (S)×B 2(1-1/p) q,p (S) 
η 0 1 = ∇ s η 0 1 • n S = 0 on S, v 0 = T η 0 2 on ∂F and η 0 2 = 0 on ∂S if 1 p + 1 2q < 1, ∇ s η 0 2 • n S = 0 on ∂S if 1 p + 1 2q < 1 2 (4.53) + h L p β (0,∞;L q (S)) + h L ∞ (0,∞) + ∂ t h L p β (0,∞) .
We take β = min(β 0 , β 1 ) > 0 where β 0 is the constant in Theorem 4.3 and where β 1 is the constant in Lemma 4.5. We decompose the solution of the system (4.20)-(4.22) as follows

ρ = ρ + ρ + ρ † , v = v + v † , ϑ = ϑ + ϑ + ϑ , η 1 = η 1, + η 1, † , η 2 = η 2, + η 2, † , (4.55) 
where ϑ is the solution of (4.51) given by Lemma 4. where [ρ , v , ϑ , η 1, , η 2, ] is solution of the following system

               ∂ t ρ + ρ div v = f 1,m in (0, ∞) × F, ∂ t v - 1 ρ div T(ρ , v , ϑ ) = f 2 -R 0 ∇ϑ in (0, ∞) × F, ∂ t ϑ -κ∆ϑ = γ 1 ϑ ,m in (0, ∞) × F, ∂ t η 1, -η 2, = 0 in (0, ∞) × F, ∂ t η 2, + ∆ 2 s η 1, -∆ s η 2, = -T(ρ , v , ϑ )e 3 • e 3 + h + R 0 ρϑ |S in (0, ∞) × S, (4.57) 
     v = T η 2, on (0, ∞) × ∂F, ∂ϑ ∂n = 0 on (0, ∞) × ∂F, η 1, = ∇ s η 1, • n S = 0 on (0, ∞) × ∂S, (4.58) η 1, (0, •) = η 0 1 , η 2, (0, •) = η 0 2 in S, ρ (0, •) = ρ 0 -ρ (0), v (0, •) = v 0 , ϑ (0, •) = 0 in F. (4.59)
and where 

[ρ † , v † , ϑ † , η 1, † , η 2, † ] is solution of the following system                ∂ t ρ † + ρ div v † = 0 in (0, ∞) × F, ∂ t v † - 1 ρ div T(ρ † , v † , ϑ † ) = 0 in (0, ∞) × F, ∂ t ϑ † -κ∆ϑ † = 0 in (0, ∞) × F, ∂ t η 1, † -η 2, † = 0 in (0, ∞) × F, ∂ t η 2, † + ∆ 2 s η 1, † -∆ s η 2, † = -T(ρ † , v † , ϑ † )e 3 • e 3 + h + R 0 ϑρ + R 0 ρϑ in (0, ∞) × S, (4.60) 
     v † = T η 2, † on (0, ∞) × ∂F, ∂ϑ † ∂n = 0 on (0, ∞) × ∂F, η 1, † = ∇ s η 1, † • n S = 0 on (0, ∞) × ∂S, (4.61) η 1, † (0, •) = 0, η 2, † (0, •) = 0 in S, ρ † (0, •) = 0, v † (0, •) = 0, ϑ † (0, •) = 0 in F. ( 4 
d dt       ∂ t ρ † ∂ t v † ∂ t ϑ † ∂ t η 1, † ∂ t η 2, †       = A F S       ∂ t ρ † ∂ t v † ∂ t ϑ † ∂ t η 1, † ∂ t η 2, †       +       0 0 0 0 ∂ t h + R 0 ϑf 1,avg + R 0 ργ 1 ϑ ,avg       ,       ∂ t ρ † ∂ t v † ∂ t ϑ † ∂ t η 1, † ∂ t η 2, †       (0) =       0 0 0 0 0       . ( 4 

.64)

Using that ∂ t h+R 0 ϑf 1,avg +R 0 ργ 1 ϑ ,avg ∈ L p β (0, ∞), and combining as above Theorem 4.2, Theorem 4.3 and Corollary 2.4, we infer that

∂ t ρ † , ∂ t v † , ∂ t ϑ † , ∂ t η 1, † , ∂ t η 2, † ∈ L p β (0, ∞; D(A F S ) ∩ X m ) ∩ W 1,p β (0, ∞; X m ). ( 4 

.65)

In particular, η 2, † ∈ W 2,4 p,q,β ((0, ∞); S). Gathering the above properties, we have obtained the following theorem:

Theorem 4.7. Assume (4.44). There exists β > 0 such that for any [ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 ] ∈ J p,q , [f 1 , f 2 , f 3 , g, h, h] ∈ R cc p,q,β , h = h + h, the system (4.20)-(4.22) admits a unique solution satisfying (4.15)-(4.18) and ρ L ∞ (0,∞;W 1,q (F )) + ∇ρ W 1,p β (0,∞;L q (F )) 3 + ∂ t ρ L p β (0,∞;W 1,q (F )) + v W 1,2 p,q,β ((0,∞);F ) 3 + ϑ L ∞ (0,∞;B 2(1-1/p) q,p (F )) + ∇ϑ L p β (0,∞;W 1,q (F )) 3 + ∂ t ϑ L p β (0,∞;L q (F ))

+ η 1 L ∞ (0,∞;B 2(2-1/p) q,p (S)) + η 2 W 1,2 p,q,β ((0,∞);S)

C L [ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 ]

Jp,q

+ [f 1 , f 2 , f 3 , g, h, h] R cc p,q,β
. (4.69)

Moreover, we can decompose the solution as (4.67)-(4.68), with ρ ∈ W 1,p β (0, ∞; W 1,q (F)), ϑ ∈ W 1,2 p,q,β ((0, ∞); F), ρ, ϑ ∈ L ∞ (0, ∞) 2 , ∂ t ρ, ∂ t ϑ ∈ L p β (0, ∞) 2 , (4.70) and ρ W 1,p β (0,∞;W 1,q (F )) + ϑ W 1,2 p,q,β ((0,∞);F ) [ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 ] ∈ J p,q , where J p,q is defined by (4.53). For R > 0, we define B R as follows

+ ρ, ϑ L ∞ (0,∞) 2 + ∂ t ρ, ∂ t ϑ L p β (0,∞) 2 C L [ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 ] Jp,q + [f 1 , f 2 , f 3 , g, h, h]
B R = [f 1 , f 2 , f 3 , g, h, h] ∈ R cc p,q,β ; f 1 , f 2 , f 3 , g, h, h R cc p,q,β R , (4.72) 
where R cc p,q,β is defined by (4.54). By using Lemma 4.6 with f 3 = 0 and g = 0, we see that there exists a constant C > 0 independent of R such that if [ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 ]

Jp,q CR, (4.73) then B R is a nonempty closed subset of the Banach space R p,q,β = [f 1 , f 2 , f 3 , g, h, h] ; f 1 ∈ L p β (0, ∞, W 1,q (F)), f 2 ∈ L p β (0, ∞; L q (F)) 3 , f 3 ∈ L p ∞ (0, ∞; L q (F)), g ∈ F

(1-1/q)/2 p,q,β (0, ∞; L q (∂F)) ∩ L p β (0, ∞; W 1-1/q,q (∂F)), h ∈ L ∞ (0, ∞), ∂ t h ∈ L p β (0, ∞), h ∈ L p β (0, ∞; L q (S)) . (4.74) We define the map

Ξ R : B R -→ B R , [f 1 , f 2 , f 3 , g, h, h] -→ [F 1 , F 2 , F 3 , G, H, H] , (4.75) 
where [ρ, v, ϑ, η, ∂ t η] is the solution to the system (4.20)-(4.22) associated with [f 1 , f 2 , f 3 , g, h] and [ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 ] , (see Theorem 4.7), where F 1 , F 2 , F 3 and G are given by (4.9)-(4.12) and where

H = -µ 1 δ X ∇vB X + B X ∇v -∇ s η 1 -2µD(v)e 3 • e 3 -α 1 δ X B X -I 3 : ∇v + R 0 ρ ϑ + R 0 ρ ϑ + R 0 ρ ϑ, (4.76) 
and H = R 0 ρ ϑ. (4.77) In the above definitions, we have used the decomposition of ρ and ϑ given by (4.67)-(4.68). We can check that H defined by (4.13) satisfies H = H + H. In order to prove Theorem 4.1, it is enough to show that the mapping Ξ R is well defined, Ξ(B R ) ⊂ B R and Ξ |B R is a strict contraction, for R small enough.

Throughout this subsection, C will be a positive constant depending on p, q and β but independent of R, which may change from line to line. To simplify the computations, we assume that R ∈ (0, 1).

Since 2 < p < ∞ and 3 < q < ∞, one has (see, for instance [38, [START_REF]Fluid-structure interaction and biomedical applications[END_REF], p. 196])

B 2(1-1/p) q,p (F) → W 1,q (F) → L ∞ (F).

Therefore, from Theorem 4.7, we obtain v L ∞ β (0,∞;W 1,q (F )) 3 + ϑ L ∞ (0,∞;W 1,q (F )) + ∇ϑ L p β (0,∞;L ∞ (F )) 3 + η L ∞ (0,∞;W 3,q (S)) + η L ∞ (0,∞;C 2 (S)) CR. (4.78)

From the definition of X 0 from (3.2) and from (4.73) we deduce that ∇X 0 -I 3 W 2,q (F ) 9 CR.

Using the above estimate and the definition of X (see (3.18)) it follows that ∇X -I 3 L ∞ (0,∞;W 1,q (F )) 9 ∇X 0 -I 3 W 2,q (F ) 9 + C ∇v L p β (0,∞;W 1,q (F )) 9 CR. (4.79)

In particular, by choosing R sufficiently small, we have

∇X -I 3 L ∞ ((0,∞)×F ) 9 1 2 .
Thus X is a C 1 -diffeomorphism for R small enough. Moreover, by combining the above estimates with (3.5) and using that ∂ t X = v, we also deduce B X -I 3 L ∞ (0,∞;W 1,q (F )) 9 CR, ∂ t B X L p (0,∞;W 1,q (F )) 9 CR, B X L ∞ (0,∞;W 1,q (F )) 9 C, (4.80) δ X -1 L ∞ (0,∞;W 1,q (F )) CR, ∂ t δ X L p (0,∞;W 1,q (F )) CR, δ X L ∞ (0,∞;W 1,q (F )) C. (4.81)

Consequently, for R small enough δ X 1 2 for all (t, y) ∈ (0, ∞) × F. (4.82)

We thus deduce 1 δ X -1

L ∞ (0,∞;W 1,q (F ))

CR, ∂ t 1 δ X L p (0,∞;W 1,q (F ))

CR, 1 δ X L ∞ (0,∞;W 1,q (F )) C.

(4.83)
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 3444 Remark If λ = 0, integrating the first and third equation of (4.34) and using the boundary conditions of v and ϑ we obtain F f 1 dy + ρ S h 1 ds = 0 and F f 3 dy = 0.

Fϑ|η 2 |

 2 dy = 0, we obtain ϑ = 0. Next, multiplying (4.34) 2 by v, (4.34) 6 by η 2 , after integration by parts and taking the real part, we deduce 2 ds + Re λ S |∆ s η 1 | 2 + S |∇ s η 2 | 2 = 0.

  .43) Then ϑ = 0 and multiplying (4.41) by v and by η 2 , we deduce as in Step 1 that [v, ϑ, η 1 , η 2 ] = 0.

γ 1 ϑ

 1 ,avg (r) dr, ρ (t

, η 0 2 ∈

 2 .62) Let us show that the decomposition (4.55) is valid. First, we can check thatϑ , ρ ∈ C 0 b ([0, ∞)), ∂ t ϑ , ∂ t ρ ∈ L p β (0, ∞).Second, for the system (4.57)-(4.59), we note that from (4.32) and (4.53)f 1,m , f 2 -R 0 ∇ϑ , γ 1 ϑ ,m , 0, h + R 0 ρϑ |S ∈ L p β (0, ∞; X m ), ρ 0 -ρ (0), v 0 , 0, η 0 1 (X m , D(A F S )) 1-1/p,p .From Theorem 4.2 and Theorem 4.3 we know that A F S + βI is a R-sectorial operator on X m and generates an analytic exponential stable semigroup on X m . Therefore, by Corollary 2.4, the system (4.57)-(4.59) admits a unique solutionρ , v , ϑ , η 1, , η 2, ∈ L p β (0, ∞; D(A F S ) ∩ X m ) ∩ W 1,p β (0, ∞; X m ). (4.63)Finally, let us consider the system (4.60)-(4.62). Note that ϑ † ≡ 0. Moreover

  use Lemma 4.5 to deduce (ρ † , v † ) satisfies (4.47)-(4.48). Let us also write ρ = ρ + ρ †,m , ρ = ρ + ρ †,avg , ϑ = ϑ + ϑ , ϑ = ϑ , (4.67) so that ρ = ρ + ρ, ϑ = ϑ + ϑ. (4.68)

5 .

 5 Proof of Theorem 4.1. In this subsection, we prove Theorem 4.1 (or equivalently Theorem 1.2): we show the existence and uniqueness of global in time solutions for the system (4.3)-(4.13) under a smallness assumption on the initial data. Let us assume the hypotheses of Theorem 4.1, with β given by Theorem 4.7. Assume

  Then there exists T > 0 such that the system (3.7)-(3.18) admits a unique strong solution

The regularity properties in

(3.19

) and (3.21) can be obtained from (1.12), (1.13) by applying

[START_REF] Maity | Lp theory for the interaction between the incompressible Navier-Stokes system and a damped beam[END_REF] Lemma 2.1]

. Using the above change of variables, our main result in Theorem 1.1 can be rephrased as Theorem 3.1. Assume (p, q) satisfies (1.11) and that [ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 ] satisfies (3.19)-(3.23) and (1.18).

  .42) Proceeding as in the proof of Theorem 4.2, one can show the existence of λ ∈ ρ(A λ ). Using that A λ has compact resolvent and the Fredholm alternative theorem, the existence and uniqueness of a solution to the system (4.41) are equivalent. Let us consider a solution of (4.41) with f 2 , f 3 , h 1 , h 2 = 0. As in Step 1, we can deduce that [

with ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 Jp,q S) .

We also consider the following subset for the source terms:

p,q,β (0,∞;L q (∂F ))∩L p β (0,∞;W 1-1/q,q (∂F ))

Using the above estimates and (3.5), we also obtain

For more details about the proof of the above estimates, we refer to [START_REF] Haak | Mathematical analysis of the motion of a rigid body in a compressible Navier-Stokes-Fourier fluid[END_REF]Lemma 3.19]. From (4.12) and (3.23), we notice that

Using the above estimates we deduce that F 1 , F 2 , F 3 , G and H, H defined by (4.9)-(4.12) and (4.76)-(4.77) satisfy the estimate

To details on the proof of (4.87) can be found in [START_REF] Haak | Mathematical analysis of the motion of a rigid body in a compressible Navier-Stokes-Fourier fluid[END_REF]Proposition 3.20]. This shows that Ξ(B R ) ⊂ B R for R small enough.

To show that Ξ R | B R is a strict contraction, we proceed similarly: we consider

and we denote by [ρ (i) , v (i) , ϑ (i) , η (i) , ∂ t η (i) ] the solutions to the system (4.20)-(4.20) associated with [f

3 , g (i) , h (i) , h (i) ] and [ρ 0 , v 0 , ϑ 0 , η 0 1 , η 0 2 ] (see Theorem 4.7). We can thus define

3 , g (i) , h (i) , h (i) .

We also write

2 , f

3 , g (1) , h (1) , h (1) ] -[f

2 , f

3 , g (2) , h (2) , h (2) ] ,

[ρ, v, ϑ, η] = [ρ (1) , v (1) , ϑ (1) , η (1) ] -[ρ (2) , v (2) , ϑ (2) , η (2) ] ,

[ ρ, ϑ] = [ ρ (1) , ϑ (1) ] -[ ρ (2) , ϑ (2) ] , [ ρ, ϑ] = [ ρ (1) , ϑ (1) ] -[ ρ (2) , ϑ (2) ] .

Therefore, from Theorem 4.7, we obtain

and

In particular, from (3.18),

By combining the above estimates with (3.5) and with (4.79), we deduce

Using the above estimates we deduce that F 1 , F 2 , F 3 , G and H, H defined by (4.9)-(4.12), (4.76), (4.77) satisfy the estimate

(1-1/q)/2 p,q,β (0,∞;L q (∂F ))∩L p β (0,∞;W 1-1/q,q (∂F ))

+ H (1) -H (2) L p β (0,∞;L q (S))

+ H (1) -H (2) L ∞ (0,∞)

This shows that Ξ |B R is a strict contraction, for R small enough. This completes the proof of Theorem 4.1 and Theorem 1.2.