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EQUILIBRIUM CONFIGURATIONS FOR NONHOMOGENEOUS
LINEARLY ELASTIC MATERIALS WITH SURFACE DISCONTINUITIES

ANTONIN CHAMBOLLE AND VITO CRISMALE

CMAP, École Polytechnique, CNRS, 91128 Palaiseau Cedex, France

Abstract. We prove a compactness and semicontinuity result that applies to minimisation
problems in nonhomogeneous linear elasticity under Dirichlet boundary conditions. This
generalises a previous compactness theorem that we proved and employed to show existence
of minimisers for the Dirichlet problem for the (homogeneous) Griffith energy.

1. Introduction

In this paper we study the minimisation of free discontinuity functionals describing energies
for linearly elastic solids with discontinuities, under Dirichlet boundary conditions. For a solid
in a given (bounded) reference configuration Ω ⊂ Rn, whose displacement field with respect
to the equilibrium is u : Ω→ Rn, the minimisation of integral functionals of the form

E(u) :=

ˆ
Ω

f(x, e(u)) dx+

ˆ
Ju

g(x, [u], νu) dHn−1 (1.1)

accounts for the interaction of the internal elastic energy and the energy dissipated in the
surface discontinuities.

The elastic properties of the solid are determined by the elastic strain e(u) = 1
2 (∇u+(∇u)T),

the symmetrized gradient of u, through a function f with superlinear growth in e(u) (often
a quadratic form) and in general depending on the material point x ∈ Ω. The surface term
is related to dissipative phenomena such as cracks, surface tension between different elastic
phases, or internal cavities, and is concentrated on the jump set Ju, representing the surface
discontinuities of u. The jump set is such that when blowing up around any x ∈ Ju, it is
approximated by a hyperplane with normal νu(x) ∈ Sn−1 and the displacement field is close
to two suitable distinct values u+(x), u−(x) ∈ Rn on the two sides of the body with respect to
this hyperplane. The jump opening, denoted by [u], is then [u](x) = u+(x)− u−(x). In order
to ensure that the volume and the surface term do not interact, it is usually assumed that g
be greater than a positive constant, or some growth condition for small values of [u] (besides
the superlinear growth of f). Therefore, the functionals we consider are bounded from below
through the Griffith-like energy ([32, 28])

G(u) :=

ˆ
Ω

|e(u)|p dx+Hn−1(Ju) , with p > 1 . (1.2)

The first main issue in the minimisation of energies of the type (1.1) when also the control
from above is only through (1.2) (in particular if g is independent of [u]) is how to obtain
suitable compactness. This is related to the lack of good a priori integrability properties for
displacements with finite energy G. In fact, a pathological situation may occur in the pres-
ence of connected components, well included in Ω, whose boundary is contained (or almost
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completely contained) in Ju: this allows to modify the displacement in these internal compo-
nents by adding any constant, so that arbitrarily large values of u may be reached without (or
slightly) modifying the energy.

Compactness results for sequences with equibounded energy (1.2) have been obtained with
increasing generality. In [11] compactness with respect to strong L1 convergence is obtained
assuming a uniform L∞ bound on the displacement field: this guarantees that the distribu-
tional symmetrized gradient Eu is a bounded Radon measure and then u belongs to the space
SBD(Ω) of special functions of bounded deformation [8], and in particular u ∈ L1(Ω;Rn). In
[21], Dal Maso introduced the space of generalised special functions of bounded deformation
GSBD(Ω) (with the smaller GSBDp(Ω), the right energy space for (1.2), see Section 2) and
proved a compactness result under a uniform mild integrability control on sequences with
bounded energy, ensuring convergence in measure.

The first compactness result for (1.2) without further constraints is obtained by Friedrich
[29] in dimension two, basing on a piecewise Korn inequality. This inequality permits to
ensure the compactness for sequences with bounded energy, up to subtracting suitable piece-
wise rigid motions, namely functions coinciding with an infinitesimal rigid motion (that is
an affine function with skew-symmetric gradient) on each element of a suitable Caccioppoli
partition P = (Pj)j of the domain (that is ∂∗P =

⋃
j ∂
∗Pj has finite surface measure; see [17]

characterising piecewise rigid motions).
In [15] we proved in any dimension that each sequence (uh)h with equibounded energy (1.2)

converges in measure (up to subsequences) to a GSBDp function u, outside an exceptional set
with finite perimeter A where |uh| → +∞. Outside the exceptional set, weak Lp convergence
for the symmetrized gradients (e(uh))h holds and Hn−1(Ju ∪ ∂∗A) ≤ lim infhHn−1(Juh). The
main ingredient for basic compactness with respect to the convergence in measure is the Korn-
Poincaré inequality for function with small jump set proven in [14], while the semicontinuity
properties are obtained through a slicing argument. In particular, this directly solves the
Dirichlet minimisation problem for the energy (1.2), with volume term possibly convex with
p-growth in e(u), but still attaining its minimum value for e(u) = 0: starting from a minimising
sequence (uh)h, a minimiser is given by any function equal to u in Ω\A and to an infinitesimal
rigid motion in A. One may argue analogously if the minimum value of f is independent of x.

However, for general nonhomogeneous materials (for instance composite materials) such
that the minimum value of f(x, ·) depends on x, this strategy does not work and a better
characterisation of the limit behaviour also in the exceptional set is required. A similar issue
arises when employing the compactness result by Ambrosio [2, 3, 5] in the space of generalised
functions of bounded variation GSBV , and in its subspace GSBV p to the minimisation of
energies ˆ

Ω

f(x,∇(u)) dx+

ˆ
Ju

g(x, [u], νu) dHn−1 (1.3)

depending on the full gradient ∇u in place of e(u). For this reason a compactness result in
GSBV p of different type has been derived in [30]: for any sequence with bounded energy
(uh)h (1.3) it is possible to find modifications yh such that the energy increases at most by 1

h ,
Ln({∇uh 6= ∇yh}) ≤ 1

h , and (yh)h converges in measure to some u ∈ GSBV p. The functions
yh are indeed obtained from uh by subtracting a piecewise constant function up to a set of
small measure, in the same spirit of the aforementioned [29] with piecewise rigid motions
replaced by piecewise constant functions.

The present work is based on a different approach: we prove that, given (uh)h with
suph(G(uh)) < +∞, for suitable piecewise rigid motions ah the sequence (uh − ah)h con-
verges in measure to some u ∈ GSBDp, such that G(u) ≤ lim infhG(uh). Differently from
[30], we have e(uh) = e(uh − ah) since we subtract piecewise rigid motions (without excep-
tional sets of small measure); this precludes in general uh − ah to be a minimising sequence,
but nevertheless the lower semicontinuity for the surface part is obtained directly in terms of
Juh . Our compactness result is the following (we use notation (2.9) for Caccioppoli partitions).

Theorem 1.1. Let p ∈ (1,+∞) and Ω ⊂ Rn be open, bounded, and Lipschitz. For any
sequence (uh)h with suphG(uh) < +∞ there exist a subsequence, not relabelled, a Caccioppoli
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partition P = (Pj)j of Ω, a sequence of piecewise rigid motions (ah)h with

ah =
∑
j∈N

ajhχPj , (1.4)

and u ∈ GSBDp(Ω) such that

|ajh(x)− aih(x)| → +∞ for Ln-a.e. x ∈ Ω, for all i 6= j , (1.5a)

and

uh − ah → u Ln-a.e. in Ω , (1.5b)

e(uh) ⇀ e(u) in Lp(Ω;Mn×n
sym ) , (1.5c)

Hn−1(Ju ∪ ∂∗P) ≤ lim inf
h→∞

Hn−1(Juh) . (1.5d)

The first step of the proof consists in finding a partition P, piecewise rigid motions ah, and u
measurable such that (1.4), (1.5a), and (1.5b) hold. In doing this, a fundamental tool is a Korn
inequality for functions with small jump set, proven in two dimensions in [18, Theorem 1.2]
and recently extended to any dimension in [13]. This permits, for every η > 0, to recover (1.4)
and (1.5b) in a set Ωη ⊂ Ω, such that Ln(Ω \ Ωη) < η. Then, the so obtained sequences of
infinitesimal rigid motions are regrouped in equivalence classes for fixed η, saying that any
(aih)h, (ajh)h (depending on η) are not equivalent if and only if (1.5a) holds for i, j. Finally,
we pass to η → 0 observing that this procedure is stable when η decreases: the objects found
in correspondence to η coincide with those found for η/2 on Ωη ∩ Ωη/2.

In the second step we prove (1.5d) through a slicing procedure. The guiding idea is that, if
(1.4), (1.5a), (1.5b) hold for n = 1 (with Ω a real interval, ah piecewise constant, and (|∇uh|)h
equibounded in Lp), then not only any jump point of u is a cluster point for (Juh)h but this
holds also for any point y ∈ ∂∗P: in fact, by (1.5a) and (1.5b), the functions uh assume
arbitrarily far values, as h→∞, in couple of points close to y but on different sides of Ω\{y},
so uh have to jump near y for h large.

We conclude by noticing that in view of (1.5d) the ah are indeed piecewise rigid motions
(they are in SBV ), so suphG(uh − ah) < +∞ and (1.5c) follows from former compactness
results.

Besides compactness, we examine the semicontinuity properties of E. The lower semiconti-
nuity of the surface term has been recently established for a large class of densities in [31], for
sequences equibounded with respect to G and converging in measure (and also for functionals
defined on piecewise rigid motions), providing a counterpart for the analysis of energies (1.3)
in [6, 7]. We then assume that the surface part is lower semicontinuous with respect to the
convergence in measure and move in two directions: we address the semicontinuity properties
both of the volume term, and of the surface term with respect to the notion of convergence
from Theorem 1.1. We prove the following result.

Theorem 1.2. Let p ∈ (1,+∞) and Ω ⊂ Rn be open, bounded, and Lipschitz. Assume that
(f1) f : Ω×Mn×n

sym → [0,∞) be a Carathéodory function;
(f2) f(x, ·) be symmetric quasi-convex for a.e. x ∈ Ω;
(f3) for suitable C > 0 and φ ∈ L1(Ω), it holds

1

C
|ξ|p ≤ f(x, ξ) ≤ φ(x) + C(1 + |ξ|p) for a.e. x ∈ Ω and every ξ ∈Mn×n

sym ;

moreover assume that
(g1) g : Ω× Rn × Sn−1 → [c,+∞) be measurable, with c > 0;
(g2) g(x, y, ν) = g(x,−y,−ν) for any x, y, ν;
(g3) g(·, y, ν) be continuous, uniformly with respect to y ∈ Rn and ν ∈ Sn−1;
(g4) for each x ∈ Ω gx = g(x, ·, ·) be such that for any cube Q and any vh → v weakly in

GSBDp(Q)ˆ
Jv

gx([v], νv) dHn−1 ≤ lim inf
h→∞

ˆ
Jvh

gx([vh], νvh) dHn−1 ;
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(g5) there is g∞ : Ω × Rn → [0,+∞] such that either g∞ ≡ +∞ or g(x, ·) is a norm for
every x ∈ Ω, and

lim
|y|→+∞

g(x, y, ν) = g∞(x, ν) uniformly w.r.to x ∈ Ω and ν ∈ Sn−1 .

Then, for any sequence (uh)h such that suphE(uh) < +∞ there exist a subsequence (not
relabelled), a Caccioppoli partition P of Ω, a sequence of piecewise infinitesimal rigid motions
(ah)h, and u ∈ GSBDp(Ω) such that (1.4), (1.5) hold andˆ

Ω

f(x, e(u)) dx+

ˆ
Ju∩P(1)

g(x, [u], νu) dHn−1 +

ˆ
∂∗P

g∞(x, νP) dHn−1 ≤ lim inf
h→∞

E(uh)

if g∞ is finite, while Hn−1(∂∗P) = 0 and E(u) ≤ lim infhE(uh) if g∞ ≡ +∞.

The proof relies on a blow-up argument ([27]). For the bulk part we use again the result in
[13]. Blowing up around a point x0 /∈ Ju, since the density of jump vanishes in Hn−1-measure,
the Korn-type inequality of [13] give that the rescaled function coincides with a W 1,p field up
to a small set; we then combine this with an approximation through equi-Lipschitz functions,
in the footsteps of [1, 4, 24], in order to apply Morrey’s Theorem [33] in most of the blow-up
ball.

As for the surface energy concentrated on ∂∗P, we blow-up around x0 ∈ ∂∗P to find that
the rescaled function converges in measure, up to subtracting in the two halves of the blow-up
cell two different infinitesimal rigid motions whose difference diverges as h → +∞, so that
the jump has arbitrarily large amplitude near the middle of the cell. This allows to conclude
through a slicing argument (anisotropic), together with (g5).

Theorem 1.2 ensures existence of solutions to the class of minimisation problems

min
(u,P), ∂∗P⊂Ju

{ˆ
Ω

f(x, e(u)) dx+

ˆ
Ju\∂∗P

g(x, [u], νu) dHn−1 +

ˆ
∂∗P

g∞(x, ν) dHn−1

}
under Dirichlet boundary condition. In this class of problems we minimise not only in u, but
also on the possible partitions that may be created by Ju. If g∞ ≡ +∞, minimising sequences
converge without modifications, see Proposition 4.2. The case g(x, [u], ν) = g∞(ν) = ψ(ν)
corresponds to minimise an anisotropic version of (1.2) with general nonhomogeneous bulk
energy (see Proposition 4.4; we refer to [20, Theorem 5.1] for an anisotropic version of (1.2)
in the context of epitaxially strained materials [12]).

The paper is organised as follows: in Section 2 we recall basic notions and prove two lemmas
on infinitesimal rigid motions. Section 3 is devoted to the proof of Theorem 1.1. In Section 4
we prove Theorem 1.2 and address the Dirichlet minimisation problems.

2. Preliminaries

In this section we fix the notation and recall the main tools employed in this work.

2.1. Basic notation. For every x ∈ Rn and % > 0, let B%(x) ⊂ Rn be the open ball with
center x and radius %, and let Q%(x) = x + (−%, %)n, Q±% (x) = Q%(x) ∩ {x ∈ Rn : ± x1 > 0}.
For ν ∈ Sn−1 := {x ∈ Rn : |x| = 1}, we let also Qν%(x) the cube with “center” x, sidelength
% and with a face in a plane orthogonal to ν. We omit to write the dependence on x when
x = 0. (For x, y ∈ Rn, we use the notation x ·y for the scalar product and |x| for the Euclidean
norm.) By Mn×n, Mn×n

sym , and Mn×n
skew we denote the set of n×n matrices, symmetric matrices,

and skew-symmetric matrices, respectively. We write χE for the indicator function of any
E ⊂ Rn, which is 1 on E and 0 otherwise. If E is a set of finite perimeter, we denote its
essential boundary by ∂∗E, and by Es the set of points with density s for E, see [9, Definition
3.60]. We indicate the minimum and maximum value between a, b ∈ R by a ∧ b and a ∨ b,
respectively.

We denote by Ln and Hk the n-dimensional Lebesgue measure and the k-dimensional
Hausdorff measure, respectively. The m-dimensional Lebesgue measure of the unit ball in
Rm is indicated by γm for every m ∈ N. For any locally compact subset B ⊂ Rn, (i.e. any
point in B has a neighborhood contained in a compact subset of B), the space of bounded
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Rm-valued Radon measures on B [respectively, the space of Rm-valued Radon measures on B]
is denoted by Mb(B;Rm) [resp., by M(B;Rm)]. If m = 1, we write Mb(B) for Mb(B;R),
M(B) forM(B;R), andM+

b (B) for the subspace of positive measures ofMb(B). For every
µ ∈ Mb(B;Rm), its total variation is denoted by |µ|(B). Given Ω ⊂ Rn open, we use the
notation L0(Ω;Rm) for the space of Ln-measurable functions v : Ω → Rm, endowed with the
topology of convergence in measure.

Definition 2.1. Let E ⊂ Rn, v ∈ L0(E;Rm), and x ∈ Rn such that

lim sup
%→0+

Ln(E ∩B%(x))

%n
> 0 .

A vector a ∈ Rm is the approximate limit of v as y tends to x if for every ε > 0 there holds

lim
%→0+

Ln(E ∩B%(x) ∩ {|v − a| > ε})
%n

= 0 ,

and then we write
ap lim
y→x

v(y) = a .

Definition 2.2. Let U ⊂ Rn be open and v ∈ L0(U ;Rm). The approximate jump set Jv is
the set of points x ∈ U for which there exist a, b ∈ Rm, with a 6= b, and ν ∈ Sn−1 such that

ap lim
(y−x)·ν>0, y→x

v(y) = a and ap lim
(y−x)·ν<0, y→x

v(y) = b .

The triplet (a, b, ν) is uniquely determined up to a permutation of (a, b) and a change of
sign of ν, and is denoted by (v+(x), v−(x), νv(x)). The jump of v is the function defined by
[v](x) := v+(x)− v−(x) for every x ∈ Jv.

We note that Jv is a Borel set with Ln(Jv) = 0, and that [v] is a Borel function.

2.2. BV and BD functions. Let U ⊂ Rn be open. We say that a function v ∈ L1(U)
is a function of bounded variation on U , and we write v ∈ BV (U), if Div ∈ Mb(U) for
i = 1, . . . , n, where Dv = (D1v, . . . ,Dnv) is its distributional derivative. A vector-valued
function v : U → Rm is in BV (U ;Rm) if vj ∈ BV (U) for every j = 1, . . . ,m. The space
BVloc(U) is the space of v ∈ L1

loc(U) such that Div ∈ M(U) for i = 1, . . . , d. If n = 1,
v ∈ L1(U) is a function of bounded variation if and only if its pointwise variation is finite, cf.
[9, Proposition 3.6, Definition 3.26, Theorem 3.27].

A function v ∈ L1(U ;Rn) belongs to the space of functions of bounded deformation if the
distribution Ev := 1

2 ((Dv)T +Dv) belongs toMb(U ;Mn×n
sym ). It is well known (see [8, 35]) that

for v ∈ BD(U), Jv is countably (Hn−1, n−1) rectifiable, and that

Ev = Eav + Ecv + Ejv ,

where Eav is absolutely continuous with respect to Ln, Ecv is singular with respect to Ln and
such that |Ecv|(B) = 0 if Hn−1(B) <∞, while Ejv is concentrated on Jv. The density of Eav
with respect to Ln is denoted by e(v).

The space SBD(U) is the subspace of all functions v ∈ BD(U) such that Ecv = 0. For
p ∈ (1,∞), we define SBDp(U) := {v ∈ SBD(U) : e(v) ∈ Lp(Ω;Mn×n

sym ), Hn−1(Jv) < ∞}.
Analogous properties hold for BV , such as the countable rectifiability of the jump set and the
decomposition of Dv. The spaces SBV (U ;Rm) and SBV p(U ;Rm) are defined similarly, with
∇v, the density of Dav, in place of e(v). For a complete treatment of BV , SBV functions and
BD, SBD functions, we refer to [9] and to [35, 8, 11, 19], respectively.

2.3. GBD functions. The space GBD of generalized functions of bounded deformation has
been introduced in [21]. We recall its definition and main properties, referring to that paper
for a general treatment and more details. Since the definition of GBD is given by slicing
(differently from the definition of GBV , cf. [3, 23]), we first introduce some notation. Fixed
ξ ∈ Sn−1, we let

Πξ := {y ∈ Rn : y·ξ = 0}, Bξy := {t ∈ R : y+tξ ∈ B} for any y ∈ Rn and B ⊂ Rn , (2.1)
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and for every function v : B → Rn and t ∈ Bξy, let

vξy(t) := v(y + tξ), v̂ξy(t) := vξy(t) · ξ . (2.2)

Definition 2.3 ([21]). Let Ω ⊂ Rn be a bounded open set, and let v ∈ L0(Ω;Rn). Then
v ∈ GBD(Ω) if there exists λv ∈M+

b (Ω) such that one of the following equivalent conditions
holds true for every ξ ∈ Sn−1:

(a) for every τ ∈ C1(R) with − 1
2 ≤ τ ≤ 1

2 and 0 ≤ τ ′ ≤ 1, the partial derivative
Dξ

(
τ(v · ξ)

)
= D

(
τ(v · ξ)

)
· ξ belongs toMb(Ω), and for every Borel set B ⊂ Ω∣∣Dξ

(
τ(v · ξ)

)∣∣(B) ≤ λv(B);

(b) v̂ξy ∈ BVloc(Ωξy) for Hn−1-a.e. y ∈ Πξ, and for every Borel set B ⊂ Ωˆ
Πξ

(∣∣Dv̂ξy∣∣(Bξy \ J1
v̂ξy

)
+H0

(
Bξy ∩ J1

v̂ξy

))
dHn−1(y) ≤ λv(B) ,

where J1
ûξy

:=
{
t ∈ Jûξy : |[ûξy]|(t) ≥ 1

}
.

The function v belongs to GSBD(Ω) if v ∈ GBD(Ω) and v̂ξy ∈ SBVloc(Ωξy) for every ξ ∈ Sn−1

and for Hn−1-a.e. y ∈ Πξ.

Every v ∈ GBD(Ω) has an approximate symmetric gradient e(v) ∈ L1(Ω;Mn×n
sym ) such that

for every ξ ∈ Sn−1 and Hn−1-a.e. y ∈ Πξ there holds

e(v)(y + tξ)ξ · ξ = (v̂ξy)′(t) for L1-a.e. t ∈ Ωξy ; (2.3)

the approximate jump set Jv is still countably (Hn−1, n−1)-rectifiable (cf. [21, Theorem 6.2])
and may be reconstructed from its slices through the identity

(Jξv )ξy = Jv̂ξy and v±(y + tξ) · ξ = (v̂ξy)±(t) for t ∈ (Jv)
ξ
y , (2.4)

where Jξv := {x ∈ Jv : [v] · ξ 6= 0} (it holds that Hn−1(Jv \ Jξv ) = 0 for Hn−1-a.e. ξ ∈ Sn−1). It
follows that, if v ∈ GSBD(Ω) with Hn−1(Jv) < +∞, for every Borel set B ⊂ Ω

Hn−1(Jv ∩B) = (2γn−1)−1

ˆ

Sn−1

(ˆ
Πξ

H0(Jvξy ∩B
ξ
y) dHn−1(y)

)
dHn−1(ξ) (2.5)

and the two conditions in the definition of GSBD for v hold for λv ∈M+
b (Ω) such that

λv(B) ≤
ˆ
B

|e(v)|dx+Hn−1(Jv ∩B) for every Borel set B ⊂ Ω . (2.6)

For any countably (Hn−1, n−1)-rectifiable set M ⊂ Ω with unit normal ν : M → Sn−1, it
holds that for Hn−1-a.e. x ∈M there exist the traces v+

M (x), v−M (x) ∈ Rn such that

ap lim
±(y−x)·ν(x)>0, y→x

v(y) = v±M (x) (2.7)

and they can be reconstructed from the traces of the one-dimensional slices. This has been
proven by [21, Theorem 5.2] for C1 manifolds of dimension n−1, and may be extended to
countably (Hn−1, n−1)-rectifiable sets arguing as in [10, Proposition 4.1, Step 2].

Finally, if Ω has Lipschitz boundary, for each v ∈ GBD(Ω) the traces on ∂Ω are well defined
in the sense that for Hn−1-a.e. x ∈ ∂Ω there exists tr(v)(x) ∈ Rn such that

ap lim
y→x, y∈Ω

v(y) = tr(v)(x).

For 1 < p <∞, the space GSBDp(Ω) is defined by

GSBDp(Ω) := {v ∈ GSBD(Ω): e(v) ∈ Lp(Ω;Mn×n
sym ), Hn−1(Jv) <∞} .

We say that a sequence (vk)k ⊂ GSBDp(Ω) converges weakly to v ∈ GSBDp(Ω) if

sup
k∈N

(
‖e(uk)‖Lp(Ω) +Hn−1(Juk)

)
< +∞ and uk → u in L0(Ω;Rn) . (2.8)

We say that (vk)k is bounded in GSBDp(Ω) if supk
(
‖e(uk)‖Lp(Ω) +Hn−1(Juk)

)
< +∞.
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We recall the following approximate Korn-type inequality for GSBDp functions with small
jump set in a ball, recently proven in [13]. (We fix the case ε = 1 in that result.) We refer to
[29] and [18] for Korn-type inequalities in GSBDp in two dimensions.

Theorem 2.4 ([13], Theorem 3.2). Let n ∈ N with n ≥ 2, and let p ∈ (1,+∞). Given σ ∈
(0, 1) there exist C = C(n, p) and η = η(n, p, σ), such that for every % > 0, v ∈ GSBDp(B%)
with Hn−1(Jv) ≤ η%n−1 there exist w ∈ GSBDp(B%) and a set of finite perimeter ω ⊂ B%
such that w = v in B% \ ω, Hn−1(∂∗ω) < CHn−1(Jv), w ∈W 1,p(Bσ%;Rn), andˆ

B%

|e(w)|p dx ≤ 2

ˆ
B%

|e(v)|p dx , Hn−1(Jw) ≤ Hn−1(Jv) .

Employing this result, in [13] it is proven that any function v ∈ GSBDp(Ω) is approximately
differentiable Ln-a.e. in Ω, that is for Ln-a.e. x ∈ Ω there exists ∇v(x) ∈ Mn×n (such that
e(v)(x) = (∇v(x))sym for a.e. x) for which it holds

ap lim
y→x

|v(y)− v(x)−∇v(x)(y − x)|
|y − x|

= 0 .

2.4. Caccioppoli partitions. A partition P = (Pj)j of an open set U ⊂ Rn is said a Cacciop-
poli partition of U if

∑
j∈N ∂

∗Pj < +∞. (see [9, Definition 4.16]). For Caccioppoli partitions
the following structure theorem holds.

Theorem 2.5 ([9], Theorem 4.17). Let (Pj)j be a Caccioppoli partition of U . Then⋃
j∈N

P
(1)
j ∪

⋃
i 6=j

(∂∗Pi ∩ ∂∗Pj)

contains Hn−1-almost all of U .

For any Caccioppoli partition P = (Pj)j we set

∂∗P :=
⋃
j∈N

∂∗Pj , and P(1) :=
⋃
j∈N

P
(1)
j . (2.9)

2.5. Symmetric quasi-convexity. We recall the definition of symmetric quasi-convex func-
tions, introduced in [25].

Definition 2.6 ([25]). A function f : Mn×n
sym → [0,+∞) is symmetric quasi-convex if

f(ξ) ≤ 1

Ln(D)

ˆ
D

f(ξ + e(ϕ)(x)) dx

for every bounded open set D of Rn, for every ϕ ∈W 1,∞
0 (D;Rn), and for every ξ ∈Mn×n

sym .

This property is related to the quasi-convexity in the sense of Morrey [33]; indeed f is
symmetric quasi-convex if and only if f ◦ π is quasi-convex in the sense of Morrey, where π
denotes the projection of Mn×n onto Mn×n

sym (see [25, Remark 2.3]).

2.6. Two lemmas on affine functions. We present below two lemmas that will be useful
in the slicing procedure in Theorems 1.1 and 1.2. We say that a : Rd → Rd is an infinitesimal
rigid motion if a is affine with e(a) = 1

2 (∇a+ (∇a)T) = 0.

Lemma 2.7. Let (ah)h be a sequence of infinitesimal rigid motions such that (1.4) and (1.5a)
hold. Then, for Hn−1-a.e. ξ ∈ Sn−1

|(ajh(x)− aih(x)) · ξ| → +∞ for Ln-a.e. x ∈ Ω, for all i 6= j , (2.10)

Proof. For fixed i ∈ N, j ∈ N, with i 6= j, (2.10) follows from [15, Lemma 2.7] applied to
vh = ajh − aih. This provides an Hn−1-negligible set of ξ Ni,j ⊂ Sn−1.

Then (2.10) hold for any i 6= j for every ξ ∈ Sn−1 \ N , where N =
⋃
i 6=j Ni,j is still

Hn−1-negligible. �
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Lemma 2.8. Let F ⊂ Ω be such that Hn−1(F ) < +∞, and let (ah)h be a sequence of
infinitesimal rigid motions such that (1.4) and (1.5a) hold. Then there exist two sets D ⊂ Sn−1

countable and dense in Sn−1, and N ⊂ F with Hn−1(N) = 0, such that

|(aih − a
j
h)(x) · ξ| → +∞ as h→∞ for every ξ ∈ D, x ∈ F \N, i 6= j . (2.11)

Proof. For any i 6= j, and h ∈ N, we set (aih − a
j
h)(x) = Ai,jh x + bi,jh , with Ai,jh ∈ Mn×n

skew and
bi,jh ∈ Rn. Then (aih − ajh)(x) · ξ = −Ai,jh ξ · x + bi,jh · ξ. Let us fix i 6= j and ξ such that
|(aih − a

j
h)(x) · ξ| → +∞ Ln-a.e. in Ω. We have two alternative cases (then one of these holds

for every h large enough, up to a subsequence w.r.to h):
1) ξ ∈ kerAi,jh and then (aih − a

j
h)(x) · ξ ≡ bi,jh · ξ ∈ R, with |bi,jh · ξ| → +∞;

2) ξ /∈ kerAi,jh , so that (aih−a
j
h)(x) · ξ = 0 in a hyperplane Hi,j

ξ,h with normal −Ai,jh ξ, and there
exist two sequences (sh)h, (th)h ∈ R (depending on ξ, i, j) such that sh → 0, th → +∞ and
if dist(x, {(aih − a

j
h) · ξ = 0}) > sh then |(aih − a

j
h)(x) · ξ| > th. Then

Si,jξ := {x ∈ Rn : sup
h
|(aih − a

j
h)(x) · ξ| < +∞} ⊂ {dist(·, Hi,j

ξ,h}) > sh} for h ≥ h.

This implies that Si,jξ is contained in an affine space of dimension at most n−1; moreover,

Si,jξ has dimension n−1 if ξ /∈ kerAi,jh and Ai,jh ξ

|Ai,jh ξ|
∈ Sn−1 converge to a vector in Sn−1 of

the form Ai,jξ for some Ai,j ∈ Mn×n
skew. Then Si,jξ coincides with the hyperplane with normal

−Ai,jξ ∈ Sn−1, that we denote by Hi,j
ξ .

We observe also that, since Hn−1(F ) < +∞, there exist at most countable many hyper-
planes (Hl)l∈N such that Hn−1(F ∩Hl) > 0. Let us define

E :=
⋃
l∈N

⋃
i 6=j

{ξ ∈ Sn−1 : Hi,j
ξ = Hl}, N1 := E ∪ {ξ ∈ Sn−1 : (2.10) does not hold} .

(Notice that by writing Hi,j
ξ = Hl we mean that there exists Hi,j

ξ with normal −Ai,jξ such
that Ai,jh ξ = c(h)Ai,jξ for c(h) ∈ R and h ≥ h). Since Ai,j 6= 0, for any i, j, l there exists a
set of dimension at most n−2 (given by the intersection of Sn−1 with an affine space parallel
to kerAi,j) of ξ such that −Ai,jξ = νHl . Then Hn−1(N1) = 0, recalling also Lemma 2.7. By
the discussion above it follows that

Hn−1
(
{x ∈ Ω: (|(aih − a

j
h)(x) · ξ|)h is bounded} ∩ F

)
= 0 for any ξ ∈ Sn−1 \N1 and i 6= j .

Let us define D as a countable dense set in Sn−1 with D ⊂ Sn−1 \N1, and

N :=
⋃

ξ∈D, i6=j

(
{x ∈ Ω: (|(aih − a

j
h)(x) · ξ|)h is bounded} ∩ F

)
.

Therefore Hn−1(N) = 0 and (2.11) holds true. �

3. The compactness result

This section is devoted to the proof of Theorem 1.1.

Proof of Theorem 1.1. We divide the proof in steps.

Step 1: Existence of (ah)h. Let µh := Hn−1 Juh ∈ M
+
b (Ω). Since (uh)h is bounded in

GSBDp(Ω), suph |µh|(Ω) = Hn−1(Juh) < M and then, up to a (not relabelled) subsequence,
µh

∗
⇀ µ inM+

b (Ω). We denote by

J :=
{
x ∈ Ω: lim sup

%→0+

µ(B%(x))

%n−1
> 0
}
.

By [9, Theorem 2.56], the set J is σ-finite with respect to the measure Hn−1, so in particular
Ln(J) = 0. Let us fix σ ∈ ( 1

2 , 1) and consider η = η(σ) and C > 0 such that the conclusion of
Theorem 2.4 holds true in correspondence to σ. (We assume n and p fixed once for all.)
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Substep 1.1: Existence of (ah)h up to a set of small measure. Let us fix η ∈ (0, η). In the
following we perform a construction in correspondence of σ and η; to ease the notation, we
do not write explicitly the dependence on these parameters in the objects introduced in the
construction. Afterwards (starting from (3.6)), we shall keep track of the dependence on η.

By definition of J , for any x ∈ Ω \ J there exists %0 = %0(x, η) such that µ(B%(x)) ≤ η
2%
n−1

for every % ∈ (0, %0). Then, in view of the weak∗ convergence of µh to µ, for every % ∈ (0, %0)
such that µ(∂B%(x)) = 0 (notice that this holds for all % except countable many) we have
that limh→∞ µh(B%(x)) = µ(B%(x)). This implies that there exists h0 = h0(x, η) such that
µh(B%(x)) < η%n−1 for every h ≥ h0 and a.e. % < %0. Notice that by continuity this holds also
for every % < %0, so that

µh(B%(x)) < η%n−1 for every h ≥ h0, % < %0 .

Applying Theorem 2.4 in correspondence to uh ∈ GSBDp(B%(x)) we deduce that for every
x ∈ Ω \J , h ≥ h0, and % < %0 there exist vh,%,x ∈ GSBDp(B%(x)) and a set of finite perimeter
ωh,%,x ⊂ B%(x) such that vh,%,x = uh in B%(x) \ ωh,%,x, vh,%,x ∈W 1,p(Bσ%(x);Rn), andˆ

B%(x)

|e(vh,%,x)|p dx ≤ 2

ˆ
B%(x)

|e(uh)|p dx , (3.1a)

Hn−1(∂∗ωh,%,x) ≤ CHn−1(Juh ∩B%(x)) , (3.1b)

Ln(ωh,%,x) ≤ C η
n
n−1 %n . (3.1c)

In particular, by Korn and Korn-Poincaré inequalities applied to vh,%,x in Bσ%(x), there exist
infinitesimal rigid motions ah,%,x such thatˆ

Bσ%(x)

(
|vh,%,x − ah,%,x|p

∗
+ |∇(vh,%,x − ah,%,x)|p

)
dx ≤ C

ˆ
B%(x)

|e(uh)|p dx . (3.2)

We notice that the family

F := {Bσ%(x) : x ∈ Ω \ J, % < %0(x)}

is a fine cover of Ω \ J (cf. [9, Section 2.4]). Then, by Vitali’s Covering Theorem, there exists
a disjoint family of balls (Bσ%(xi)(xi))i ⊂ F with Ln

(
(Ω \ J) \

⋃
i∈NBσ%(xi)(xi)

)
= 0. In

particular, there exists N , depending on η, such that

Ln
(

(Ω \ J) \
N⋃
i=1

Bσ%(xi)(xi)
)
< η . (3.3)

Let us fix i ∈ {1, . . . , N}. There exist (we set %i ≡ %(xi)) sequences of sets of finite perimeter
(ωh,%i,xi)h contained inB%i(xi), of functions (vh,%i,xi)h ⊂ GSBDp(B%i(xi))∩W 1,p(Bσ%i(xi);Rn)
with vh,%i,xi = uh in B%i(xi) \ ωh,%i,xi , and of infinitesimal rigid motions (ah,%i,xi)h such that
(3.1) and (3.2) hold for % = %i, x = xi.

Then, by (3.1b) and (3.1c), up to a subsequence (not relabelled) the characteristic functions
of the sets ωh,%i,xi converge weakly∗ in BV (B%i(xi)) as h→ +∞ to a set ω%i,xi ⊂ B%i(xi) with

Ln(ω%i,xi) ≤ C η
n
n−1 %i

n . (3.4)

Moreover, again up to a (not relabelled) subsequence,

vh,%i,xi − ah,%i,xi ⇀ u%i,xi in W 1,p(Bσ%i(xi);Rn) . (3.5)

We may assume that the convergences above hold along the same subsequence, independently
on i ∈ {1, . . . , N}. Let us denote

ωη :=

N⋃
i=1

(
ω%i,xi ∩Bσ%i(xi)

)
, aηh :=

N∑
i=1

ah,%i,xiχBσ%i (xi) , uη :=

N∑
i=1

u%i,xiχBσ%i (xi) . (3.6)

By (3.4) we get
Ln(ωη) ≤ C(σ, n) η

n
n−1 Ln(Ω) , (3.7a)
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and (3.3), (3.5) imply that

uh − aηh → uη in Lp(Ω \ Eη;Rn) , for Eη := ωη ∪
(

(Ω \ J) \
N⋃
i=1

Bσ%(xi)(xi)
)
. (3.7b)

We may now find a partition Pη = (P ηj )j of Ω \ Eη and a function ũ ∈ Lp(Ω \ Eη;Rn) such
that, up to extracting a further subsequence with respect to h, in correspondence to any Pj
there is a sequence (aηh,j)h such that

|aηh,j(x)− aηh,i(x)| → +∞ for a.e. x ∈ Ω whenever i 6= j (3.8a)

and
uh − aηh,j → ũη in L0(P ηj ;Rn) . (3.8b)

In fact, this is done as follows by regrouping the sequences of infinitesimal rigid motions in
each Bσ%i(xi) in equivalence classes, up to extracting a further subsequence.

First, we claim that any sequence of infinitesimal rigid motions (ak)k in Ω, up to a sub-
sequence either converges uniformly to an infinitesimal rigid motion (with values in Rn) or
satisfies |ak(x)| → +∞ for every x in Ω with the exception of a set of x of dimension at
most n−1. In fact, the first situation corresponds to the case where the coefficients of ak
are uniformly bounded on a subsequence. In the opposite case, if ak(x) = Akx + bk for
Ak ∈ Mn×n

skew and bk ∈ Rn, we may assume (up to a subsequence) that either |Ak| → +∞
or |bk| → +∞. Then, for k large (this implies that either Ak 6= 0 or bk 6= 0), it holds that
{ak = 0} ≡ {x ∈ Rn : ak(x) = 0} is an affine space of dimension at most n−1; moreover, there
are two sequences sk → 0, tk → +∞ such that if dist(x, {ak = 0}) > sk then |ak|(x) > tk (if
{ak = 0} = ∅, for suitable tk we have that |ak| > tk everywhere). Then (ak(x))k is bounded if
and only if dist(x, {ak = 0}) < sk for every k large enough, and this proves the claim.

Thus, denoting aih ≡ ah,%i,xi for every i ∈ N, we may extract a subsequence (not relabelled)
such that any sequence in

G := {(a1
h)h} ∪

⋃
1≤i<j≤N

{(aih − a
j
h)h} .

either converges uniformly to an infinitesimal rigid motion or diverges a.e. in Ω. We say that
i 6= j are in the same equivalence class if and only if (aih − a

j
h)h converges uniformly to an

infinitesimal rigid motion.
We conclude (3.8) by considering the union of the Bσ%i(xi) \ ωη for the i’s in the same

equivalence class, to get a partition Pη = (P ηj )j , and by fixing a sequence of infinitesimal rigid
motions as representative in each P ηj . Notice that when we fix a given representative (aηh,j)h
in each P ηj we are able to guarantee the pointwise convergence of (uh − aηh,j)h, but we loose a
global Lp control on uh − aηh,j .

Substep 1.2: Conclusion of Step 1. Let us now take the sequence ηk := η2−k for k ∈ N. By a
diagonal argument we may assume that (3.7) hold for the same subsequence (uh)h for every
ηk, for suitable ωηk , Eηk , a

ηk
h , uηk . Moreover, we find partitions Pηk such that (3.8) hold for

ηk in place of η.
Consider two P ηk1j and P ηk2i such that

Ln(P
ηk1
j ∩ P ηk2i ) > 0 .

We notice that the sequences of infinitesimal rigid motions (a
ηk1
h,j )h and (a

ηk2
h,i )h belong to the

same equivalence class, since aηk1h,j − a
ηk2
h,i → ũηk1 − ũηk2 in L0(P

ηk1
j ∩ P ηk2i ;Rn). This means

that for any k, the partition Pηk+1 coincides with the partition Pηk in Ω\ (Eηk ∪Eηk+1). Then
the partition P̃ηk of Ω \

⋂
j≤k E

ηj given by

P̃ηk := Pηj in Ω \ Eηj for every j ≤ k

is well defined, and such that the analogue of (3.8a) holds, that is for P̃ ηkj , P̃ ηki ∈ P̃ηk

|aηkh,j(x)− aηkh,i(x)| → +∞ for a.e. x ∈ B1(0) whenever i 6= j . (3.9)
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Since Ln(
⋂
j≤k E

ηj ) ≤ Ln(Eηk) → 0 as k → +∞ and since the subsequence (with respect to
h) is independent of k, we obtain in the limit that there exists a partition P = (Pj)j of Ω (up
to a Ln-negligible set) and piecewise infinitesimal rigid functions defined as in (1.4) such that
(1.5a) holds and

uh − ah → u in L0(Ω;Rn) . (3.10)

Step 2: Proof of (1.5d). In this step we follow a slicing strategy, in the spirit of [15, The-
orem 1.1]. In particular, the first part of the argument above is similar to that in [15, The-
orem 1.1, lower semicontinuity]. We remark that we cannot directly apply that result (see
Remark 3.2).

We then fix ξ ∈ Sn−1 in a set of full Hn−1-measure of Sn−1 for which (2.10) holds (cf.
Lemma 2.7), and introduce

Iξy(uh) :=

ˆ

Ωξy

|(u̇h)ξy|p dt , (3.11)

where (u̇h)ξy is the density of the absolutely continuous part of D(ûh)ξy, the distributional
derivative of (ûh)ξy ((ûh)ξy ∈ SBV

p
loc(Ωξy) for every ξ ∈ Sn−1 and for Hn−1-a.e. y ∈ Πξ, since

uh ∈ GSBDp(Ω); we denote here and in the following ûh for ûh). Thereforeˆ

Πξ

Iξy(uh) dHn−1(y) =

ˆ

Ω

|e(uh)(x)ξ · ξ|p ≤
ˆ

Ω

|e(uh)|p dx ≤M , (3.12)

by Fubini-Tonelli’s theorem and since (uh)h is bounded in GSBDp(Ω). Let uk = uhk be a
subsequence of uh such that

lim
k→∞

Hn−1(Juk) = lim inf
h→∞

Hn−1(Juh) < +∞ , (3.13)

so that, by (2.5), (3.12), and Fatou’s lemma, we have that for Hn−1-a.e. ξ ∈ Sn−1

lim inf
k→∞

ˆ

Πξ

(
H0
(
J(ûk)ξy

)
+ εIξy(uk)

)
dHn−1(y) < +∞ , (3.14)

for a fixed ε ∈ (0, 1). Let us fix ξ ∈ Sn−1 such that (2.10) and (3.14) hold. Then there is a
subsequence um = ukm of uk, depending on ε and ξ, such that

(ûm − âm)ξy → ûξy in L0(Ωξy) for Hn−1-a.e. y ∈ Πξ (3.15)

and

lim
m→∞

ˆ

Πξ

(
H0
(
J(ûm)ξy

)
+ εIξy(um)

)
dHn−1(y)

= lim inf
k→∞

ˆ

Πξ

(
H0
(
J(ûk)ξy

)
+ εIξy(uk)

)
dHn−1(y) .

(3.16)

As for (3.15), we notice that it follows from Fubini-Tonelli’s theorem and the convergence in
measure of uh−ah to u (see (3.10)), which corresponds to tanh(uh−ah)→ tanh(u) ∈ L1(Ω;Rn)
(with tanh(v) = (tanh(v · e1), . . . , tanh(v · en)) for every v : Ω→ Rn). Therefore, by (3.16) and
Fatou’s lemma, we have that for Hn−1-a.e. y ∈ Πξ

lim inf
m→∞

(
H0
(
J(ûm)ξy

)
+ εIξy(um)

)
< +∞ , (3.17)

Moreover, we infer that if ξ satisfies (2.10), then

for Hn−1-a.e. y ∈ Πξ |(âih − â
j
h)ξy(t)| = |(âih − â

j
h)ξy(0)| → +∞ for every t ∈ Ωξy . (3.18)

Indeed, since e(aih) = 0 for every i, h, then, for fixed h, (âih − â
j
h)ξy is constant in Ωξy. Thus

|(aih − a
j
h) · ξ| → +∞ in

⋃
{Ωξy : y ∈ Πξ s.t. |(aih − a

j
h)(y) · ξ| → +∞} ,

and (3.18) holds true.
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Let us consider y ∈ Πξ satisfying (3.15), (3.17), (3.18), and such that (ûm)ξy ∈ SBVloc(Ωξy)
for every m. Then we may extract a subsequence uj = umj from um, depending also on y, for
which

lim
j→∞

(
H0
(
J(ûj)

ξ
y

)
+ εIξy(uj)

)
= lim inf

m→∞

(
H0
(
J(ûm)ξy

)
+ εIξy(um)

)
(3.19)

and
(ûj − âj)ξy → ûξy L1-a.e. in Ωξy ,

|(âi1j − â
i2
j )ξy(t)| = |(âi1j − â

i2
j )ξy(0)| → +∞ for t ∈ Ωξy and i1 6= i2 . (3.20)

In the following, we denote (similarly to (2.9), in dimension one)

∂Pξy :=
⋃
j∈N

∂(Pj)
ξ
y ⊂ Ωξy .

Since, by (3.19), the number of jump points of (ûj)
ξ
y is bounded uniformly with respect to

j, up to pass to a subsequence of ((ûj)
ξ
y)j we may assume that for every j

H0
(
J(ûj)

ξ
y

)
= Ny ∈ N .

Therefore we have My ≤ Ny cluster points in the limit, denoted by

t1, . . . , tMy
.

Using the equiboundedness of Iξy(uj), which follows from (3.19), we get that, for L1-almost
any choice of t ∈ (tl, tl+1),

t 7→ (ûj)
ξ
y(t)− (ûj)

ξ
y(t) are equibounded with respect to j in W 1,p

loc (tl, tl+1) , (3.21)

by the Fundamental Theorem of Calculus, and then this sequence converges locally uniformly
in (tl, tl+1), as j →∞.

Let us prove that
∂Pξy ⊂ {t1, . . . , tMy

} (3.22)
We argue by contradiction, assuming that there exists l ∈ {1, . . . ,My} and i1 such that
∂(Pi1)ξy ∩ (tl, tl+1) 6= ∅. If this holds, there exist two sequences of infinitesimal rigid motions
(ai1j )j , (ai2j )j (the latter corresponds to some Pi2 with i1 6= i2) such that

(ûj − âi1j )ξy → ûξy L1-a.e. in (Pi1)ξy ∩ (tl, tl+1),

(ûj − âi2j )ξy → ûξy L1-a.e. in (Pi2)ξy ∩ (tl, tl+1) ,
(3.23)

with L1
(
(Pi1)ξy ∩ (tl, tl+1)

)
, L1

(
(Pi2)ξy ∩ (tl, tl+1)

)
> 0. But this gives, with (3.21) and since

âij are infinitesimal rigid motions and ûξy : Ωξy → R, that (âi1j − â
i2
j )ξy is constant in Ωξy and

uniformly bounded with respect to j. This is in contradiction with (3.20). Therefore, (3.22)
is proven.

Moreover, for every l there exists a unique i ∈ N such that

(ûj − âij)ξy → ûξy in W 1,p
loc (tl, tl+1) (3.24)

and in particular the above convergence is locally uniform in (tl, tl+1). Since aij are rigid
motions, we also have that

‖u̇ξy‖Lp(K) ≤ lim inf
j→∞

‖(u̇h)ξy‖Lp(tl,tl+1) for every compact set K ⊂ (tl, tl+1) ,

so
ûξy ∈ SBV p(Ωξy) and Jûξy ⊂ {t1, . . . , tMy} .

This implies, with (3.19), that

H0
(
Jûξy ∪ ∂P

ξ
y

)
= H0

(
Jûξy ∩ (Pξy)(1)

)
+H0(∂Pξy) ≤ lim inf

m→∞

(
H0
(
J(ûm)ξy

)
+ ε Iξy(um)

)
. (3.25)

Notice that we have expressed Jûξy ∪ ∂P
ξ
y as the disjoint union

(
Jûξy ∩ (Pξy)(1)

)
∪ ∂Pξy , denoting

(Pξy)(1) :=
⋃
j∈N

(
(Pj)

ξ
y

)(1)
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(recall (2.9) and that E(1) denotes the point where E ⊂ Rd has density 1 with respect to Ld;
above d = 1).

Integrating over y ∈ Πξ and using Fatou’s lemma with (3.16) we getˆ

Πξ

[
H0
(
Jûξy ∩ (Pξy)(1)

)
+H0(∂Pξy)

]
dHn−1(y)

≤ lim inf
k→∞

ˆ

Πξ

[
H0
(
J(ûk)ξy

)
+ ε
(
Iξy(uk) + IIξy(uk)

)]
dHn−1(y)

(3.26)

for Hn−1-a.e. ξ ∈ Sn−1. In particular we deduce that each Pj has finite perimeter (cf. [9,
Remark 3.104]) and

∑
j∈NHn−1(∂∗Pj) < +∞.

Integrating further (3.26) over ξ ∈ Sn−1, by (2.5), (3.12), and (3.13) we get

Hn−1
(
Ju ∪

⋃
j∈N

∂∗Pj

)
≤ CMε+ lim inf

h→∞
Hn−1(Juh) , (3.27)

for a universal constant C. By the arbitrariness of ε, (1.5d) follows.

Step 3: Proof of (1.5c). In order to prove (1.5c) it is enough to combine what we have
proven so far with the compactness and lower semicontinuity result [21, Theorem 11.3] (or [15,
Theorem 1.1]). In fact, the sequence (uh− ah)h is bounded in GSBDp(Ω): by definition of ajh
we have that

e(uh − ah) = e(uh) , Juh−ah ⊂ Juh ∪
⋃
j∈N

∂∗Pj ,

and we know that (uh)h is bounded in GSBDp(Ω) and
∑
j Hn−1(∂∗Pj) < +∞, by (1.5d).

Since we know that uh − ah → u, we are allowed to apply [21, Theorem 11.3] (or [15, Theo-
rem 1.1], knowing that the exceptional set A therein is empty). We deduce

e(uh) = e(uh − ah) ⇀ e(u) in Lp(Ω;Mn×n
sym ) ,

so (1.5c) is proven and the general proof is concluded. �

Remark 3.1. With the notation of Theorem 1.1, the sequence (uh − ah)h is bounded in
GSBDp(Ω). This is proven in Step 3.

Remark 3.2. We cannot directly apply [15, Theorem 1.1] to uh − ajh for every j in Step 2.
Indeed, we would obtain Hn−1

(
(Ju ∩ P (1)

j ) ∪ ∂∗Pj) ≤ lim infh→∞Hn−1(Juh), but the j’s are
countable many and we cannot localize on right-hand side, since the Pj ’s are not open sets.

4. Lower semicontinuity and minimisation

In this section we first prove our main lower semicontinuity result, concerning a class of free
discontinuity functionals with general bulk and surface energy densities. In the second part
we apply Theorem 1.2 to the minimisation of free discontinuity functionals with general bulk
and surface energy densities.

Proof of Theorem 1.2. Up to a subsequence, we may assume that

lim inf
h→∞

E(uh) = lim
h→∞

E(uh) < +∞ . (4.1)

In view of the growth assumptions on f and g, we have that (uh)h is bounded in GSBDp(Ω).
Thus we may apply Theorem 1.1 to find a subsequence (not relabelled), a Caccioppoli partition
P of Ω, a sequence of piecewise infinitesimal rigid motions (ah)h, and u ∈ GSBDp(Ω) satisfying
(1.4) and (1.5).

By (4.1) we obtain that, up to a further subsequence,

f(x, e(uh))Ln Ω + g(x, [uh], νuh)Hn−1 Juh =: µh
∗
⇀ µ inM+

b (Ω)
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as h→∞. Therefore, by the Besicovitch derivation theorem and the Radon-Nikodym decom-
position for µ (cf. [9, Theorem 2.2]), the result will follow from the estimates

dµ

dLn
(x0) ≥ f

(
x0, e(u)(x0)

)
for Ln- a.e. x0 ∈ Ω (4.2)

and
dµ

dHn−1
(x0) ≥ g

(
x0, [u](x0), νu(x0)

)
for Hn−1-a.e. x0 ∈ Ju ∩ P(1) ,

dµ

dHn−1
(x0) ≥ g∞(x0, νP) for Hn−1-a.e. x0 ∈ ∂∗P .

(4.3)

Step 1: Proof of (4.2). We divide this step into different substeps.

Substep 1.1: Choice of the blow up point x0 and first properties. We pick x0 in a subset of Ω of
full Ln-measure, satisfying the following four criteria. First, we notice that by the definition
of Radon-Nikodym derivative and [9, Theorem 2.2] we have that for Ln-a.e. x0 ∈ Ω

dµ

dLn
(x0) = lim

%→0+

µ(B%(x0))

γn %n
. (4.4)

Second, in [13] it is proven that every function in GSBDp is approximately differentiable
Ln-a.e., namely that for Ln-a.e. x0 ∈ Ω there exists ∇u(x0) ∈ Mn×n (such that e(u)(x0) =
(∇u(x0))sym for a.e. x0) for which it holds

ap lim
x→x0

|u(x)− u(x0)−∇u(x0)(x− x0)|
|x− x0|

= 0 . (4.5)

Third, we take
x0 ∈ P(1) , (4.6)

which is a set of full Ln-measure in Ω. The fourth and last criterion employed in the choice
of x0 is based on the properties of f . Since f is a Carathéodory function, arguing as in [24,
proof of Theorem 1.2], by Scorza Dragoni Theorem (see, e.g., [26], p. 235) one deduces that
there exists F ⊂ Ω with Ln(Ω \ F ) = 0 such that for any x0 ∈ F there exists a compact set
Kx0

⊂ Ω (depending on x0) such that

f |Kx0×Mn×nsym
is continuous in Kx0×Mn×n

sym and x0 ∈ Kx0 ∩K(1)
x0

. (4.7)

Then the set of points x0 satisfying (4.4), (4.5), (4.6), and (4.7) is of full Ln-measure in Ω.
Let us choose x0 in this set.

Let us fix a sequence (%k)k converging to 0 such that µ(∂B%k(x0)) = 0 for every k (in fact
this is true for any % > 0 except at most countable many). Then, by (4.4) we have that

γn
dµ

dLn
(x0) = lim

k→∞
lim
h→∞

µh(B%k(x0))

%nk

= lim
k→∞

lim
h→∞

1

%nk

{ˆ
B%k (x0)

f(x, e(uh)(x)) dx+

ˆ
Juh∩B%k (x0)

g(x, [uh], νuh) dHn−1

}
.

(4.8)

Moreover, by (4.5), (4.6), and (1.5b) it holds that

ux0

k,h(y) :=
(uh − ah)(x0 + %ky)− u(x0)

%k
→ ∇u(x0) y in L0(B1;Rn) , (4.9)

as h, k → 0 in this order, limk→∞ %
−(n−1)
k Hn−1(∂∗P ∩B%k(x0)) = 0, and so

lim
k→∞

lim
h→∞

Hn−1(Jah ∩B%k(x0))

%n−1
k

= 0 . (4.10)
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Substep 1.2: Blow up argument: change of variables. We perform a blow up procedure in
correspondence of a point x0 ∈ Ω chosen as above, in order to prove (4.2).

Let us consider the functions ux0

k,h, defined in (4.9). We notice that (4.8) and (g2) imply
that for a suitable C̃ > 0

lim sup
k→∞

lim sup
h→∞

1

%nk
Hn−1(Juh ∩B%k(x0)) ≤ C̃ .

Together with (4.10), by a change of variable this gives that

lim sup
k→∞

lim sup
h→∞

Hn−1(Jux0k,h
) = 0 . (4.11)

Setting
fk(y, ξ) := f(x0 + εky, ξ) ,

by (4.8) we obtain that

γn
dµ

dLn
(x0) ≥ lim sup

k→∞
lim sup
h→∞

ˆ
B1

fk(y, e(ux0

k,h)(y)) dy . (4.12)

Then a diagonal argument allows to define functions vk := ux0

k,hk
such that (4.9), (4.11), and

(4.12) hold true for vk (and considering the limit or the lim sup only in k).
Eventually we observe that, due to (4.7),

lim
k→∞

fk(y, ξ) = f(x0, ξ) for a.e. y ∈ B1, locally uniformly in Mn×n
sym . (4.13)

In fact, the pointwise convergence follows from the fact that x0 ∈ Kx0
∩K(1)

x0 , and the local
uniform convergence in Mn×n

sym by the continuity of f in Kx0 ×Mn×n
sym .

Substep 1.3: Blow up argument: lower semicontinuity. Let us fix σ ∈ (0, 1). In correspondence
of σ we find positive constants η(σ) and C such that the conclusion of Theorem 2.4 holds.
Fix also δ ∈ (0, η(σ)

C̃
), where C̃ is the constant in (4.11). We notice that, up to consider a

subsequence (not relabelled), we may assume that∑
k∈N
Hn−1(Jvk) <

(
C−1 ∧ 1

)
δ . (4.14)

In particular, we have that Hn−1(Jvk ∩ B1) < η(σ) for every k, and we may apply [13,
Theorem 2.2] to the functions vk ∈ GSBDp(B1). This provides functions wk ∈ GSBDp(B1)∩
W 1,p(Bσ;Rn) and sets of finite perimeter ωk ⊂ B1 such that

wk = vk in B1 \ ωk, Hn−1(∂∗ωk) < CHn−1(Jvk), (4.15)

Hn−1(Jwk) ≤ Hn−1(Jvk), andˆ
B1

|e(wk)|p dx ≤ 2

ˆ
B1

|e(vk)|p dx . (4.16)

By (4.14), and (4.15), and the fact that Ln(ωk) ≤ C %kHn−1(Jvk) < CHn−1(Jvk), we have
that

Ln(ωδ) < δ for ωδ :=
⋃
k∈N

ωk , (4.17)

and
wk = vk in B1 \ ωδ for every k ∈ N . (4.18)

By (4.15) and (4.16) we deduce that wk are equibounded in W 1,p(Bσ;Rn) and Ln({wk 6=
vk})→ 0, so that

wk(y) ⇀ ∇u(x0) y in W 1,p(Bσ;Rn) .

We now perform a further approximation, through a sequence of equi-Lipschitz functions.
This is done for two reasons: first, to employ (4.13) since therein the convergence holds for ξ
in compact sets; second, to pass to the limit in the integral of f(x0, e(wk)) over the set Bσ \ωδ,
which is not in general open and so the semicontinuity theorem in [1] does not apply directly.
Then we recall, adapting to the present case, what proven in [24, Proposition 3.1], in the spirit
of [1] and [4].
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In correspondence to δ, there exist a Borel set Eδ with Ln(Eδ) < δ (this replaces the
sequence (Ek)k with Ln(Ek) → 0 as k → ∞ in [24, Proposition 3.1]) and for every m and
k ∈ N there exist ŵk,m ∈W 1,∞(Bσ;Rn), Ek,m ⊂ Bσ Borel sets such that

‖ŵk,m‖L∞ + Lip(ŵk,m) ≤ C(n,B1)m, ŵk,m = wk in Bσ \ Ek,m , (4.19)

and, up to extracting a subsequence with respect to k, ŵk,m
∗
⇀ ŵm in W 1,∞(Bσ;Rn) for every

m, with

lim
m→∞

lim sup
k→∞

ˆ
Ek,m\Eδ

(
1 + fk(y, e(ŵk,m))

)
dy = 0 ,

lim
m→∞

mp Ln(Am) = 0 , for Am := {ŵm 6= ∇u(x0) ·} ∩ (Bσ \ Eδ) .
(4.20)

It follows thatˆ
B1

fk(y, e(vk)) dy ≥
ˆ
Bσ\ωδ

fk(y, e(wk)) dy ≥
ˆ
Bσ\(Eδ∪ωδ∪Ek,m)

fk(y, e(ŵk,m)) dy

=

ˆ
Bσ\(Eδ∪ωδ)

fk(y, e(ŵk,m)) dy −
ˆ
Ek,m\(Eδ∪ωδ)

fk(y, e(ŵk,m)) dy

(4.21)

recalling that fk ≥ 0, wk = vk in B1 \ ωδ, and ŵk,m = wk in Bσ \ Ek,m. We now use the fact
that ŵk,m

∗
⇀ ŵm in W 1,∞(Bσ;Rn) (so that (ŵk,m)k is a sequence of equi-Lipschitz functions

and
(
f(x0, e(ŵk,m))

)
k
is equi-integrable in Bσ) and (4.13), to deduce that

lim inf
k→∞

ˆ
Bσ\(Eδ∪ωδ)

fk(y, e(ŵk,m)) dy = lim inf
k→∞

ˆ
Bσ\(Eδ∪ωδ)

f(x0, e(ŵk,m)) dy ,

≥
ˆ
Bσ\(Eδ∪ωδ)

f(x0, e(ŵm)) dy .

(4.22)

We observe that in the equality above we used (4.13), and to prove the latter estimate it is
enough to apply Morrey’s Lower Semicontinuity Theorem in an arbitrary open set containing
Bσ \ (Eδ ∪ ωδ) and observe that for any ε > 0, thanks to the equi-integrability, we can find
an open set B′ε ⊃ Bσ \ (Eδ ∪ ωδ) such that the integrals of f(x0, e(ŵk,m)) (for every k) and
f(x0, e(ŵm)) over Q′ε \

(
Bσ \ (Eδ ∪ ωδ)

)
are less than ε.

The second estimate in (4.20), (4.19), and f ≥ 0 imply thatˆ
Bσ\(Eδ∪ωδ)

f(x0, e(ŵm)) dy ≥ Ln
(
Bσ \ (Eδ ∪ ωδ ∪Am)

)
f(x0, e(u)(x0)) . (4.23)

Moreover, employing again fk ≥ 0,ˆ
Ek,m\(ωδ∪Eδ)

fk(y, e(ŵk,m)) dy ≤
ˆ
Ek,m\Eδ

fk(y, e(ŵk,m)) dy . (4.24)

Collecting (4.21), (4.22), (4.24), (4.23), (4.20), and passing to the lim inf in k and to the
limit in m, we obtain that

lim inf
k→∞

ˆ
B1

fk(y, e(vk)) dy ≥ Ln
(
Bσ \ (Eδ ∪ ωδ)

)
f(x0, e(u)(x0)) > γn(σn − 2δ)f(x0, e(u)(x0)) .

Passing to the limit first as δ → 0 and then as σ → 1, by (4.12) (recall the definition vk = ux0

k,hk
)

we deduce (4.2).

Step 2: Proof of (4.10). We denote J ′u := (Ju ∩ P(1)) ∪ ∂∗P.
Substep 2.1: Choice of the blow up point x0 and first properties. Since J ′u is countably rectifiable
and thanks to (2.7), for Hn−1-a.e. x0 ∈ J ′u there exist u+(x0), u−(x0) ∈ Rn, ν0 ∈ Sn−1 such
that

ap lim
x∈(Qν0% (x0))±

x→x0

u(x) = u±(x0) . (4.25)

Notice that ν0 denotes νu(x0) if x0 ∈ Ju and the outer normal to Pi at x0, if x0 ∈ ∂∗P and
x0 ∈ ∂∗Pi ∩ ∂∗Pj for i < j. We remark that u+(x0) 6= u−(x0) for x0 ∈ Ju.
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Moreover, since µ is a positive bounded Radon measure and J ′u is countably rectifiable,
there exists the Radon-Nikodym derivative of µ with respect to Hn−1 J ′u (which is σ-finite)
and it holds (see e.g. [9, Theorems 1.28 and 2.83])

dµ

dHn−1
(x0) = lim

%→0+

µ(Qν0% (x0))

%n−1
for Hn−1-a.e. x0 ∈ J ′u . (4.26)

We thus fix x0 such that both (4.25) and (4.26) hold for x0. Moreover, let us consider the
sets D ⊂ Sn−1 and N ⊂ ∂∗P given by Lemma 2.8 applied to F = ∂∗P, and fix x0 /∈ N .

Recalling the pointwise convergence of uh − ah to u, by a change of variables we obtain
from (4.25) that

(uh − ah)(x0 + %k·)→ u0 := u+(x0)χ
Q
ν0,+
1

+ u−(x0)χ
Q
ν0,−
1

in L0(Qν01 ;Rn) (4.27)

as h→∞, k →∞. Analogously to (4.8), we fix a vanishing sequence (%k)k with µ(∂Qν0%k(x0)) =
0, and then

dµ

dHn−1
(x0) = lim

k→∞
lim
h→∞

µh(Qν0%k(x0))

%n−1
k

= lim
k→∞

lim
h→∞

1

%n−1
k

{ˆ
Q
ν0
%k

(x0)

f(x, e(uh)(x)) dx+

ˆ
Juh∩Q

ν0
%k

(x0)

g(x, [uh], νuh) dHn−1

}
.

(4.28)

Substep 2.2: Blow up argument for x0 ∈ Ju ∩ P(1). Given x0 ∈ Ju ∩ P(1), there exists j ∈ N
such that x0 ∈ P(1)

j . Then

lim
h→+∞

|ah − ajh| = 0 Ln-a.e. in Qν01 , (4.29)

for ajh the infinitesimal rigid motion corresponding to Pj , cf. (1.4). Up to choosing a subse-
quence hk in (4.27), by (4.29) we get

ṽk := (uhk − a
j
hk

)(x0 + %k·)→ u0 := u+(x0)χ
Q
ν0,+
1

+ u−(x0)χ
Q
ν0,−
1

in L0(Qν01 ;Rn) . (4.30)

By (4.28) and assumptions (g1), (g3) we obtain that

dµ

dHn−1
(x0) = lim

k→∞

{ˆ
Q
ν0
1

f(x, e(ṽk)(x)) dx+

ˆ
Jṽk∩Q

ν0
1

g(x0, [ṽk], νṽk) dHn−1

}
. (4.31)

We remark that above we used that g does not depend separately on the two traces v+ and
v− but only on [v]. This allowed us to infer that for any function v and infinitesimal rigid
motion a the surface part evaluated on v is equal to the surface part evaluated on v − a.

By the growth assumptions on f and g it follows that (ṽk)k converges weakly inGSBDp(Qν01 )
to u0.

Therefore, (g4) and (4.31) imply that

g
(
x0, [u](x0), νu(x0)

)
=

ˆ
Ju0

gx0
([u0], ν0) dHn−1

≤ lim inf
k→∞

ˆ
Jṽk∩Q

ν0
1

gx0
([ṽk], νṽk) dHn−1 ≤ dµ

dHn−1
(x0) .

Substep 2.3: Blow up argument for x0 ∈ ∂∗P. Assume that x0 ∈ ∂∗Pi ∩ ∂∗Pj , for i < j. Let
us take a subsequence hk such that the convergences in (4.27) and (4.28) hold along hk, as
k →∞. Then we denote

vk(y) := uhk(x0 + %ky) for y ∈ Qν01 .

These functions satisfy (by a change of variables in (4.28))

dµ

dHn−1
(x0) = lim

k→∞

{ˆ
Q
ν0
1

f(x, e(vk)(x)) dx+

ˆ
Jwk∩Q

ν0
1

g(x, [vk], νvk) dHn−1

}
(4.32)
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and, by (4.27),
(uhk − ahk)(x0 + %k·)→ u0 in L0(Qν01 ;Rn)

as k → ∞. In particular, since x0 ∈ ∂∗Pi ∩ ∂∗Pj , setting a+
k (y) := ajhk(x0 + %ky) and

a−k (y) := aihk(x0 + %ky) for y ∈ Qν01 , we have that

vk − a+
k = (uhk − a

j
hk

)(x0 + %k·)→ u+(x0) in L0(Qν0,+1 ;Rn) ,

vk − a−k = (uhk − aihk)(x0 + %k·)→ u−(x0) in L0(Qν0,−1 ;Rn) .
(4.33)

Moreover, in view of the choice x0 /∈ N it holds that |(a+
k −a

−
k ) ·ξ| → +∞ uniformly in Qν01 , as

k →∞, for any ξ ∈ D (recall that N and D are given by Lemma 2.8). Since e(a+
k − a

−
k ) = 0,

we get
|(â+

k − â
−
k )ξy| ≡ |(â+

k − â
−
k )ξy(0)| → +∞ as k →∞, for any ξ ∈ D . (4.34)

Case g∞(x0, ν0) ∈ R. Assume that g∞(x0, ν0) ∈ R, so that g∞ takes finite values, and fix
η > 0 small. We find ξ0 = ξ0(ν0, η) ∈ D ⊂ Sn−1 such that ξ0 satisfies (2.10) and∣∣∣∣g∞(x0, ν0)− |ν0 · ξ0|

g∗x0,∞(ξ0)

∣∣∣∣ < η , (4.35)

where g∗x0,∞ is the dual norm of g∞(x0, ·), given by φ∗(ξ) := supφ(ν)≤1 |ν · ξ|. This is done by

choosing a vector ξ in Sn−1 such that g∞(x0, ν0) = |ν0·ξ|
g∗x0,∞

(ξ)
and by continuity, using that D

is dense in Sn−1.
By (g5) there is a function κ : [0,+∞)→ [0,+∞) with limt→+∞ κ(t) = 0 such that

g(x, y, ν) > g∞(x, ν)− κ(t) for every x ∈ Ω, |y| > t, and ν ∈ Sn−1,

and, from (g3), g(x, y, ν) > g∞(x0, ν) − κ(t) in a neighbourhood of x0. By the definition of
dual norm, (g5), (4.35), and since |[vk] · ξ0| ≤ |[vk]|, we get

g(x, [vk], νvk) ≥ (g∞(x0, νvk)− κ(t))χ{|[vk]|>t} ≥

(
|νvk · ξ0|
g∗x0,∞(ξ0)

− κ(t)− η

)
χ|{[vk]·ξ0|>t} (4.36)

Hn−1-a.e. in Jvk ∩Q
ν0
1 . We observe that

lim sup
k→∞

Hn−1(Jvk ∩Q
ν0
1 ) =: L < +∞ , (4.37)

since g takes values in [c,+∞). Then, using also (4.32) and (4.36) we obtain that

dµ

dHn−1
(x0) ≥ lim inf

k→∞

{ˆ
Q
ν0
1

|e(vk)ξ0 · ξ0|p

C
dx+

ˆ
Jvk∩Q

ν0
1

(
|νvk · ξ0|
g∗x0,∞(ξ0)

χ{|[vk]·ξ0|>t} + ε

)
dHn−1

}
− (κ(t) + η + ε)L

= lim inf
k→+∞

ˆ
Πξ0

F ξ0,εy,t ((v̂k)ξ0y ) dHn−1(y)− (κ(t) + η + ε)L

(4.38)

with

F ξ0,εy,t (v) :=
1

C

ˆ
(Q

ν0
1 )

ξ0
y

|v′(s)|p ds +H0({s : |[v](s)| > t}) 1

g∗x0,∞(ξ0)
+ εH0(Jv)

for v : (Qν01 )ξ0y → R. We observe that the second relation in (4.38) follows from the Area
Formula (cf. e.g. [34, (12.4)]) and the slicing property (2.4).

Fatou’s lemma and (4.38) give that lim infk F
ξ0,ε
y,t ((v̂k)ξ0y ) < +∞ for Hn−1-a.e. y ∈ Πξ0 , so

we may find, for Hn−1-a.e. y ∈ Πξ0 , a subsequence v̂m = v̂km (depending on y) such that

lim
m→∞

F ξ0,εy,t ((v̂m)ξ0y ) = lim inf
k→∞

F ξ0,εy,t ((v̂k)ξ0y ) , H0
(
J

(v̂m)
ξ0
y

)
= Ny ∈ N . (4.39)
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Recalling (4.33), we may also choose the subsequence (km)m such that, denoting by (v̂m−â±m)ξ0y
the functions (v̂km − â±km)ξ0y , it holds

(v̂m − â±m)ξ0y → u±(x0) · ξ0 in L0
(
(Qν0,±1 )ξ0y

)
. (4.40)

We now claim that there exists m ∈ N such that{
s ∈ (Qν0,±1 )ξ0y : |[(v̂m)ξ0y ](s)| > t

}
6= ∅ for m ≥ m. (4.41)

Indeed, let us argue by contradiction assuming that (4.41) is not true. Then, by (4.39),

D
(
(v̂m)ξ0y

)(
(Qν0,±1 )ξ0y

)
≤
ˆ

(Q
ν0
1 )

ξ0
y

∣∣∣((v̂m)ξ0y
)′

(s)
∣∣∣ds+ tNy ≤ Ĉ , (4.42)

for a suitable Ĉ > 0 independent of m. Therefore, for any s+ ∈ (Qν0,+1 )ξ0y , s− ∈ (Qν0,−1 )ξ0y ,

|(â+
m − â−m)ξ0y | ≡ |(â+

m)ξ0y (s+)− (â−m)ξ0y (s−)|

=
∣∣∣(v̂m − â−m)ξ0y (s−)− (v̂m − â+

m)ξ0y (s+) +
(

(v̂m)ξ0y (s+)− (v̂m)ξ0y (s−)
)∣∣∣ .

From the identity above we obtain a contradiction for m large enough, since the left-hand side
tends to +∞ by (4.34) while the right-hand side is bounded by (4.40) and (4.42). This proves
(4.41).

In particular, (4.41) implies that limm→∞ F ξ0,εy,t ((v̂m)ξ0y ) ≥ 1
g∗x0,∞

(ξ0) . Recalling (4.39) and

integrating in Πξ0 = Πξ0(Qν01 ), by Fatou’s lemma, (4.38), and the arbitrariness of t, η, ε, we
get

dµ

dHn−1
(x0) ≥ |ν0 · ξ0|

g∗x0,∞(ξ0)
. (4.43)

The second estimate in (4.3) follows now by (4.35) and the arbitrariness of η.

Case g∞ ≡ +∞. We have to prove (with the usual notation ν0 = ν(x0)) that

Hn−1(∂∗P) = 0 . (4.44)

Assume by contradiction that there is ∂∗P \ N 6= ∅ (for N given by Lemma 2.8), and let
x0 ∈ ∂∗P \N . Then, by the assumption (g5), for any fixed large M > 0 there exists tM such
that

g(x, [vk], νvk) ≥Mχ{|[vk]|>tM} ≥M |νvk · ξ0|χ{|[vk]·ξ0|>tM} (4.45)
for any ξ0 ∈ D. Arguing as in the case g∞(x0, ν0) ∈ R, with (4.36) replaced by (4.45), we
obtain that dµ

dHn−1 (x0) ≥ M |ν0 · ξ0| for every M > 0 and ξ0 ∈ D. Taking ξ0 such that
|ν0 · ξ0| < 1

2 we obtain a contradiction for M > 2 dµ
dHn−1 (x0). Then ∂∗P ⊂ N , and (4.44) is

proven.
Therefore the general proof is concluded. �

Remark 4.1. In [31] a class of functions g : (Rn)3 → [0,+∞) satisfying for any bounded open
set Ω ⊂ Rnˆ
Jv

g(v+, v−, νv) dHn−1 ≤ lim inf
h→∞

ˆ
Jvh

g(v+
h , v

−
h , νvh) dHn−1 if vh → v weakly in GSBDp(Ω)

has been provided. This is the class of symmetric jointly convex functions, which are charac-
terized by (see [31, Definition 3.1 and Theorem 5.1])

g(i, j, ν) = sup
h∈N

(fh(i)− fh(j)) · ν for all (i, j, ν) ∈ (Rn)3 with i 6= j

where fh : Rn → Rn is a uniformly continuous, bounded, and conservative vector field (that
is, there exists a potential Fh ∈ C1(Rn) for which ∇Fh = fh) for every h ∈ N. Any symmetric
jointly convex function depending only on the difference i − j provides a function satisfying
(g4). Examples of such functions are (see [31, Section 4])

g1(y, ν) = g̃(|y|) for g̃ : [0,+∞)→ [0,+∞) increasing with
g̃(t)

t
nonincreasing in (0,+∞) ,
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g2(y, ν) = sup
{ξk}nk=1 orthornormal basis

(
n∑
k=1

θk
(
y · ξk

)2|ν · ξk|2)1/2

for θk ∈ C(R; [0,+∞)) even and subadditive, for k = 1, . . . , n (this class has been introduced
and studied in a BD setting in [22]), and

g3(y, ν) = ψ(ν)

for ψ a norm.

From Theorem 1.2 we deduce existence for the following minimisation problems with Dirich-
let conditions, in the propositions below. In the following Ω ⊂ Rn is a bounded, open,
connected and Lipschitz domain. Moreover, we assume that u0 ∈ W 1,p(Rn;Rn) and that
∂DΩ ⊂ ∂Ω be relatively open with ∂DΩ = Ω̃ ∩ ∂Ω for a bounded, open, connected domain
Ω̃ ⊃ Ω.

We consider first the simpler cases corresponding to g∞ ≡ +∞ and g independent of the
jump amplitude, in Propositions 4.4 and 4.4. Then we consider the case with general f , g as
in Theorem 1.2, which formally includes the other two cases. We prefer to state three different
results since the proofs of Propositions 4.4 and 4.4 are more direct.

Proposition 4.2. Assume f , g as in Theorem 1.2, with g∞ ≡ +∞. Then the problem

min
u=u0∈Ω̃\Ω

{ ˆ
Ω

f(x, e(u)) dx+

ˆ
Ju

g(x, [u], νu) dHn−1

}
admits a solution in GSBDp(Ω̃). In particular, this holds for g(y, ν) = g̃(|y|) with g̃ : [0,+∞)→
[0,+∞) increasing, unbounded, and such that g̃(t)

t is nonincreasing.

Proof. Let us apply Theorem 1.2 to a minimising sequence (uh)h for (4.2) in GSBDp(Ω̃).
Since g∞ ≡ +∞, we have that the partition P of Ω̃ is trivial, and the fact that uh = u0 in
Ω̃ \ Ω gives that uh → u in L0(Ω̃;Rn). In particular uh = u0 in Ω̃ \ Ω and using again that
g∞ ≡ +∞ we get the lower semicontinuity of the functional E to minimise. �

Remark 4.3. In the above assumptions, if g(y, ν) ≥ c̃|y| for some c̃ > 0, the solutions to (4.2)
belong to SBDp(Ω̃). In fact, this follows from the fact that [u] ∈ L1(Ju;Rn): under such
condition, every GSBD function is in SBD, as shown in [16, Theorem 2.9] (take Av = Ev

therein, cf. [16, Remark 2.5]). For other surface densities g, such as g(y, ν) = c +
√
|y|, one

obtains existence for the Dirichlet problem in GSBDp.

Proposition 4.4. Assume f as in Theorem 1.2 and let g : Ω×Sn−1 → [c,+∞) be continuous
in the first variable and such that g(x, ·) is a norm for every x ∈ Ω. Then the problem

min
u=u0∈Ω̃\Ω

{ ˆ
Ω

f(x, e(u)) dx+

ˆ
Ju

g(x, νu) dHn−1

}
admits a solution in GSBDp(Ω̃).

Proof. Let us apply Theorem 1.2 to a minimising sequence (uh)h. By (1.5) we obtain a function
u ∈ GSBDp(Ω̃), with u = u0 in Ω̃ \ Ω. In fact, by (1.5a) and (1.5b) the set Ω̃ \ Ω has to be
contained in the same element P1 of the Caccioppoli partition, corresponding to a1

h ≡ 0.
Moreover, recalling Theorem 2.5 we have thatˆ

Ω

f(x, e(u)) dx+

ˆ
Ju

g(x, νu) dHn−1 ≤
ˆ

Ω

f(x, e(u)) dx+

ˆ
(Ju∩P(1))∪∂∗P

g(x, νu) dHn−1

≤ lim inf
h→+∞

ˆ
Ω

f(x, e(uh)) dx+

ˆ
Juh

g(x, νuh) dHn−1

= inf
u=u0∈Ω̃\Ω

ˆ
Ω

f(x, e(u)) dx+

ˆ
Ju

g(x, νu) dHn−1 .

Therefore u is a solution to the problem (4.4) and ∂∗P ⊂ Ju. �
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We consider now the case of general g.

Proposition 4.5. Assume f , g as in Theorem 1.2. Then the problem

min
u=u0∈Ω̃\Ω

P⊂Ω̃ Caccioppoli partition, ∂∗P⊂Ju

{̂
Ω

f(x, e(u)) dx+

ˆ
Ju\∂∗P

g(x, [u], νu) dHn−1+

ˆ
∂∗P

g∞(x, ν) dHn−1

}

admits a solution in GSBDp(Ω̃).

Proof. Let us denote

F (u,P) :=


ˆ

Ω

f(x, e(u)) dx+

ˆ
Ju\∂∗P

g(x, [u], νu) dHn−1+

ˆ
∂∗P

g∞(x, ν) dHn−1 if ∂∗P ⊂ Ju,

+∞ otherwise,

and fix a minimising sequence (uh,Ph) for F . We observe that, for Ph = (Ph,j)j we can assume
that Ω̃ \ Ω ⊂ Ph,1 and find piecewise rigid functions ãh such that

ãh =
∑
j∈N

ãjhχPh,j , (4.46)

ã1
h ≡ 0, |ãjh(x)− ãih(x)| → +∞ for Ln-a.e. x ∈ Ω, for all i 6= j , (4.47)

and
E(uh − ãh) < F (uh,Ph) +

1

h
(4.48)

for every h ∈ N. In fact, since uh ∈ GSBDp(Ω̃) it holds that [uh] : Juh → Rn is measurable,
and then there exists for every h a vanishing sequence (shk)k such that

Hn−1(Juh \ {|[uh]| > k}) < shk . (4.49)

Moreover, since Hn−1(∂∗Ph) < +∞, for every h, k ∈ N there exists mh
k ∈ N such that∑

j>mhk

Hn−1(∂∗Ph,j) < k−1 . (4.50)

Then we choose, in correspondence of (Ph,j)j , a sequence (ãjh)j ⊂ Rn (that is, each ãjh is
a constant function) with ã1

h ≡ 0 (in view of the Dirichlet boundary conditions), such that
|ãjh − ãih| > 2k for i 6= j ≤ mh

k . By (4.49) and (4.50) we find that

Hn−1(∂∗Ph \ {|[uh − ãh]| < k}) < shk + k−1 .

This implies, in view of (g5) and since g is a measurable function taking finite values, that
there is k ∈ N, depending on h, large enough so that (4.48) holds true.

Let us now apply Theorem 1.2 to the sequence (uh − ãh)h ⊂ GSBDp(Ω̃) (that satisfies
the assumptions of Theorem 1.2 by (4.48)): this provides a function u ∈ GSBDp(Ω̃) and
a sequence (âh)h of piecewise rigid functions corresponding to a partition P̂ = (P̂j)j (in
particular, Jâh = ∂∗P̂) such that

uh − ãh − âh → u Ln-a.e.
andˆ

Ω

f(x, e(u)) dx+

ˆ
Ju∩P̂(1)

g(x, [u], νu) dHn−1 +

ˆ
∂∗P̂

g∞(x, νP) dHn−1 ≤ lim inf
h→+∞

E(uh − ãh) .

(4.51)
In particular, in view of the boundary conditions we may take Ω̃ \ Ω ⊂ P̂1, â1

h ≡ 0 and we
have that ∂∗P̂ ∩ Ω̃ ⊂ Ω and u = u0 in Ω̃ \ Ω. Collecting (4.48), (4.51), and since (uh,Ph)h is
a minimising sequence for F , we have thatˆ

Ω

f(x, e(u)) dx+

ˆ
Ju∩P̂(1)

g(x, [u], νu) dHn−1 +

ˆ
∂∗P̂

g∞(x, νP) dHn−1 ≤ inf
v,P

F (v,P) . (4.52)

We notice now that we can find a piecewise rigid function ã with ã = 0 in Ω̃ \Ω and Jã ⊂ ∂∗P̂
for which ∂∗P̂ ⊂ Ju−ã. This follow from the fact that there are at most countable many
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s ∈ Rn such that Hn−1(∂∗P̂ ∩{[u] = s}) > 0. Moreover, since ∂∗P̂ ⊂ Ju−ã (and in view of the
fact that g depends only on the jump amplitude, cf. below (4.31)), we have that for û = u− ãˆ

Ω

f(x, e(u)) dx+

ˆ
Ju∩P̂(1)

g(x, [u], νu) dHn−1 =

ˆ
Ω

f(x, e(û)) dx+

ˆ
Jû∩P̂(1)

g(x, [û], νû) dHn−1 .

(4.53)
Therefore, in view of the fact that ∂∗P̂ ⊂ Jû, by (4.52) and (4.53) we get that (û, P̂) is a
minimiser for F . This concludes the proof. �

Remark 4.6. The minimisation problem in Proposition 4.5 formally reduces to those one in
Proposition 4.2 and 4.4 noticing that P = {Ω̃} when g∞ ≡ +∞ (cf. Theorem 1.2) and the
functional in Proposition 4.5 does not depend on P when g depends only on ν and coincides
with g∞.
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