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On numerical semigroups with at most 12 left
elements

S. Eliahou and D. Marín-Aragón

Abstract

For a numerical semigroup S⊆N with embedding dimension e, conduc-
tor c and left part L = S∩ [0,c−1], set W (S) = e|L|−c. In 1978 Wilf asked,
in equivalent terms, whether W (S)≥ 0 always holds, a question known since
as Wilf’s conjecture. Using a closely related lower bound W0(S)≤W (S), we
show that if |L| ≤ 12 then W0(S) ≥ 0, thereby settling Wilf’s conjecture in
this case. This is best possible, since cases are known where |L| = 13 and
W0(S) =−1. Wilf’s conjecture remains open for |L| ≥ 13.

1 Introduction
Let N = {0,1,2, . . .} denote as usual the set of nonnegative integers. Given inte-
gers a ≤ b, we denote by [a,b[= [a,b−1] = {z ∈ Z | a ≤ z < b}, and by [a,∞[=
{z ∈ Z | a ≤ z}, the integer intervals they span. A numerical semigroup is a
submonoid S of (N,+) such that |N \ S| is finite. Equivalently, it is a subset S
of N of the form S = 〈a1, . . . ,an〉 = Na1 + · · ·+Nan where gcd(a1, . . . ,an) = 1.
The least such n is called the embedding dimension of S and is often denoted e.
The multiplicity of S is m = minS∗, where S∗ = S \ {0}. The conductor of S is
c = max(Z\S)+1, or equivalently, the least c ∈ N such [c,∞[⊆ S. The genus of
S is g = |N\S|. The left part of S is

L = {s ∈ S | s < c}= S∩ [0,c[.

The left elements of S are the elements of L. Finally, as in [5], we denote

W (S) = e|L|− c. (1)
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In 1978 Wilf asked, in equivalent terms, whether the inequality

W (S)≥ 0

holds for every numerical semigroup S [16]. This open question is now known
as Wilf’s conjecture. Various particular cases have been settled, including the six
independent cases e ≤ 3, |L| ≤ 6, m ≤ 18, g ≤ 60, c ≤ 3m and e ≥ m/3. See e.g.
[1, 2, 4, 5, 6, 8, 9, 10, 12, 11, 14, 15]. See also [3] for a recent extensive survey
on this topic.

The authors of [4] settled Wilf’s conjecture in case |L| ≤ 4. This was later
extended in [5], where a certain lower bound W0(S) ≤W (S) was introduced and
shown to satisfy W0(S) ≥ 0 whenever |L| ≤ 6. Here we further extend this result
by showing that W0(S)≥ 0 holds whenever |L| ≤ 12. This is best possible since, as
shown in [7], there are numerical semigroups S such that |L|= 13 and W0(S)< 0.
See also Section 2.2.

This paper is organized as follows. In Section 2 we recall some notation and
background, including the definition of W0(S). In Section 3 we establish W0(S)≥
0 in some special circumstances. Our main result, namely W0(S)≥ 0 if |L| ≤ 12,
and hence Wilf’s conjecture in that case, is proved in Section 4.

For extensive information on numerical semigroups, see [13].

2 Background and notation
In this section, we recall some notation and terminology introduced in [5]. Let S
be a numerical semigroup. We denote by P ⊂ S∗ the unique minimal generating
set of S, so that S = 〈P〉 and |P| = e, the embedding dimension. It coincides
with the set of primitive elements of S, i.e. those x ∈ S∗ which are not the sum
of two smaller elements of S∗. Let m,c be the multiplicity and conductor of S,
respectively. The depth of S is q = dc/me and its offset is ρ = qm− c. Thus

c = qm−ρ, ρ ∈ [0,m[. (2)

The set of decomposable elements of S is

D = S∗ \P = S∗+S∗.

Note that D contains [c+m,∞[. Indeed, if z≥ c+m, then z = m+(z−m), so that
z ∈ S∗+S∗ since both m ∈ S∗ and z−m ∈ S∗ as z−m≥ c. It follows that

P⊆ [m,c+m[. (3)
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Throughout Section 2, the symbols m,c,q and ρ will denote, often tacitly so,
the multiplicity, conductor, depth and offset of the numerical semigroup S under
consideration, respectively.

2.1 The level function λ

Let S⊆ N be a numerical semigroup. We shall further use the following notation,
as in [5].

Notation 2.1. For all j ∈ Z, we denote

I j = [ jm−ρ,( j+1)m−ρ[,

S j = S∩ I j, Pj = P∩ I j, D j = D∩ I j.

In particular, we have

Iq = [qm−ρ,(q+1)m−ρ[ = [c,c+m[.

The following set addition rules are shown in [5]. The proof is straightforward
and left to the reader.

Proposition 2.2. Let S be a numerical semigroup. For all i, j ≥ 1, we have

S1 +S j ⊆ S1+ j∪S2+ j,

Si +S j ⊆ Si+ j−1∪Si+ j∪Si+ j+1 if i, j ≥ 2. �

Notation 2.3. The level function λS : N→ N associated to S is defined by

λS(x) = j ⇐⇒ x ∈ I j ⇐⇒ jm−ρ≤ x≤ ( j+1)m−ρ−1

for all x ∈ N. In particular, if x ∈ S then λS(x) = j if and only if x ∈ S j.

In the sequel, for simplicity, we shall write λ for λS. Using this function, the
above proposition translates as follows.

Corollary 2.4. Let x,y ∈ S∗. If λ(x),λ(y)≥ 2 then

λ(x)+λ(y)−1≤ λ(x+ y)≤ λ(x)+λ(y)+1. (4)

If λ(x) = 1 or λ(y) = 1, then λ(x)+λ(y)≤ λ(x+ y)≤ λ(x)+λ(y)+1. �

Here are some more consequences.

3



Corollary 2.5. Let a,x,y ∈ S∗. Then λ(x+ y) > max{λ(x),λ(y)}. If λ(a+ x) =
λ(a+ y), then |λ(y)−λ(x)| ≤ 1.

Proof. The first statement directly follows from Corollary 2.4. As for the second
one, let i = λ(x), j = λ(y). We may assume i ≤ j. Let k = λ(a+ x). Then a+
x,a+y ∈ Sk. Hence |y−x|= |(a+y)− (a+x)| ≤m−1. It follows that j ≤ i+1,
since if j ≥ i+2 then minS j−maxSi ≥ m+1.

2.2 The number W0(S)

Notation 2.6. For a numerical semigroup S, we denote

W0(S) = |P∩L||L|−q|Dq|+ρ. (5)

Introduced in [5], this number bounds W (S) from below and is sometimes
easier to evaluate. See also [2], where W0(S) is denoted E(S). The following
result is Proposition 3.11 in [5]. For convenience, we recall the short proof.

Proposition 2.7. Let S be a numerical semigroup. Then W (S)≥W0(S).

Proof. We have W (S) = |P||L|− c = |P||L|− qm+ρ. We have m = |Pq|+ |Dq|,
since m = |Sq|= |PqtDq|, and |P|= |P∩L|+ |Pq|. It follows that

W (S) =W0(S)+ |Pq|(|L|−q).

Now |L| ≥ q, since L contains the q-subset {0,1, . . . ,q−1}m.

Corollary 2.8. Let S be a numerical semigroup such that W0(S) ≥ 0. Then S
satisfies Wilf’s conjecture.

Proof. We have W (S)≥W0(S)≥ 0.

This corollary is the basis of our approach in this paper, whose main result is
that W0(S)≥ 0 whenever |L| ≤ 12. Note that in contrast to Wilf’s conjecture, the
number W0(S) can be negative, but such cases are extremely rare. For instance,
among the more than 1013 numerical semigroups of genus g ≤ 60, only five of
them satisfy W0(S)< 0. See [2, 7, 9]. More specifically, these five exceptions all
satisfy W0(S) = −1, |L| = 13 and c = 4m, and they occur at genus 43,51,55,55
and 59, respectively. The first one, of genus g = 43, is S = 〈14,22,23〉∪ [56,∞[.

The following result has been established in [5].

4



Theorem 2.9. Let S be a numerical semigroup of depth q ≤ 3. Then W0(S) ≥ 0.
In particular, S satisfies Wilf’s conjecture.

Consequently, in proving here that W0(S) ≥ 0 if |L| ≤ 12, we only need to
consider the case of depth q≥ 4. The next three sections focus on the Apéry set of
S with respect to m and provide tools to evaluate W0(S) and prove our main result.

2.3 The Apéry profile of S

Let S⊆ N be a numerical semigroup. We denote by

A = Ap(S,m) = {x ∈ S | x−m 6∈ S}

the Apéry set of S with respect to m. Equivalently, A = S \ (m+ S). Each Apéry
element x ∈ A is the smallest element in S of its class mod m, since x−m /∈ S.
Hence |A|= m. We have

A⊆ [0,c+m[.

Indeed, this follows from the inclusion [c+m,∞[= m+[c,∞[⊆ m+ S. We now
introduce the Apéry profile of S.

Notation 2.10. Let S be a numerical semigroup of depth q≥ 1. For all 0≤ i≤ q,
we set Ai = A∩ Ii and

αi = |Ai|.
We have A0 = {0}, so α0 = 1. Moreover, P1 = {m}tA1 and Pi ⊆ Ai for all

i≥ 2.

Definition 2.11. We call Apéry profile of S the (q−1)-tuple

α(S) = (α1, . . . ,αq−1) ∈ Nq−1.

As noted above, we have

α1 = |P1|−1 and αi ≥ |Pi| for all 2≤ i < q. (6)

Moreover, since A⊆ [0,c+m[= I0t I1t·· ·t Iq, we have

A = A0tA1t·· ·tAq. (7)

Therefore
q

∑
i=0

αi = |A|= m. (8)

This justifies why α0,αq are not included in the profile α(S), as α0 = 1 and αq
may be recovered from α(S) and m by the above formula.
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2.4 Primitive and decomposable Apéry elements
Let S be a numerical semigroup of multiplicity m and Apéry set A = S \ (m+S).
A key point in the sequel is to distinguish, in A∗ = A\{0}, the primitive elements
from the decomposable ones. Indeed, the partition

A∗ = (A∩P)t (A∩D)

plays an important role and motivates the following notation.

Notation 2.12. Let S be a numerical semigroup of depth q≥ 1. For all 1≤ i≤ q,
we set

α
′
i = |Ai∩P|, α

′′
i = |Ai∩D|.

Thus αi = α′i +α′′i for all i.

Since P⊆ [m,c+m[ as seen above, and since [m,c+m[⊆ I1∪·· ·∪ Iq, we have

|P|= 1+α
′
1 + · · ·+α

′
q. (9)

In particular,

α
′
q = |P\L| =

∣∣P∩ [c,c+m[
∣∣,

|Dq| = |D∩ [c,c+m[| =
∣∣[c,c+m[\P

∣∣,
m = |Pq|+ |Dq|.

The following properties of the Apéry set A will be widely used below, often
tacitly so.

Lemma 2.13. Let z ∈ A∩D. If z = x+ y with x,y ∈ S∗, then x,y ∈ A∗.

Proof. If x /∈ A, then x = m+ s for some s ∈ S, implying z = x+ y = m+(s+ y).
Since s+ y ∈ S, it follows that z /∈ A, contrary to the hypothesis.

Proposition 2.14. For all k ≥ 2, we have Ak∩D⊆ ∪i, j(Ai +A j) where 1≤ i≤ j
and k−1≤ i+ j ≤ k+1.

Proof. Directly follows from Proposition 2.2 and Lemma 2.13.

Corollary 2.15. If Ak 6= /0 and Ai = /0 for all 1 ≤ i ≤ k− 1 for some k ≥ 2, then
Ak = Pk.

Proof. Directly follows from the above proposition.
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2.5 Compressed Apéry elements
Throughout, let S denote a numerical semigroup with multiplicity m, conductor c
and Apéry set A = S\ (m+S).

Definition 2.16. Let s ∈ S∗. We say that s is compressed if there exist x,y ∈ S∗

such that s = x+ y and λ(s)< λ(x)+λ(y).

By Corollary 2.4, we have λ(x+ y) ≥ λ(x)+λ(y)− 1 for all x,y ∈ S∗. Thus,
the inequality λ(x+ y)< λ(x)+λ(y) is equivalent to λ(x+ y) = λ(x)+λ(y)−1.
Estimating the number of compressed elements in A is important in the sequel.
This motivates the following notation.

Notation 2.17. C =C(S) = {z ∈ A∩D | z is compressed}.

Recall from Lemma 2.13 that if z ∈ A∩D and z = x+ y with x,y ∈ S∗, then in
fact x,y ∈ A∗. Consequently, for all i, j ≥ 2, we have

(Si +S j)∩Ai+ j−1 = (Ai +A j)∩Ai+ j−1 ⊆ C. (10)

More generally, even if the description below will not be needed here, we have

C =
q⋃

k=3

Ak∩ (∪k−1
i=1 (Ai +Ak+1−i)).

The next result provides a key lower bound on ρ, where ρ is the offset as defined
in (2). See also Proposition 3.20 in [6].

Proposition 2.18. Let S be a numerical semigroup. Then ρ≥ |C|.

Proof. Let z ∈ C, and assume z = x+ y with x,y ∈ A∗ such that λ(z) = λ(x)+
λ(y)−1. Say λ(x) = i, λ(y) = j and λ(z) = i+ j−1. By the definition of Si, we
have

(Si +S j)∩Si+ j−1 ⊆ [(i+ j)m−2ρ,(i+ j)m−ρ[.

Thus z ∈ [(i+ j)m−2ρ,(i+ j)m−ρ[. Now, the only classes mod m occurring in
the latter interval are those in [−2ρ,−ρ[, a set of cardinality ρ. Since there is only
one element in A per class mod m, and since C ⊂ A, the statement follows.

In particular, we shall invoke the following simplified version.

Corollary 2.19. For all i, j ≥ 2, we have ρ≥ |(Ai +A j)∩Ai+ j−1|.

Proof. Follows from (10) and Proposition 2.18.
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2.6 Computing W0(S)

The following formulas allow to evaluate W0(S) using the Apéry profile of S as
defined in Definition 2.10 and the decomposition αq = α′q +α′′q given by Nota-
tion 2.12. Recall that both |L| and |Dq| are involved in the expression of W0(S).

Proposition 2.20. Let S⊆N be a numerical semigroup with Apéry profile α(S) =
(α1, . . . ,αq−1). Then

|L| = q+(q−1)α1 + · · ·+αq−1,

|Dq| = α0 +α1 + · · ·+αq−1 +α
′′
q.

Proof. Let s ∈ L be minimal in its class mod m. Then s ∈ L∩A. Let i≥ 0 be the
unique integer such that s ∈ Ai. Then 0≤ i≤ q−1 since s ∈ L. Let z ∈ L be such
that z≡ s mod m. Then z = s+ jm with 0≤ j ≤ q−1− i. It follows that

|L∩ (s+mN)|= q− i.

Letting now s run through all elements of L which are minimal in their respective
classes mod m, the above discussion implies

|L|= q|A0|+(q−1)|A1|+ · · ·+ |Aq−1|,

yielding the first formula. Since m = |Pq|+ |Dq|= α′q + |Dq|, it follows that

|Dq|= m−α
′
q = m−αq +α

′′
q.

The second formula now follows from (8), i.e. m = ∑
q
i=0 αi.

2.7 Notation
We shall use the following notation throughout the remainder of the paper. Given
a numerical semigroup S, we denote by m its multiplicity, by c its conductor, by q
its depth, by ρ its offset, by L its left part, by P its set of primitive elements, by D
its set of decomposable elements, by A = S\ (m+S) its Apéry set with respect to
m, and by

α(S) = (α1, . . . ,αq−1)

its Apéry profile, where αi = |Ai| for all 0≤ i≤ q. For i≥ 1, we have αi = α′i+α′′i
where α′i = |Ai∩P| and α′′i = |Ai∩D|. We shall constantly use the formulas below
to compute the ingredients involved in

W0(S) = |P∩L||L|−q|Dq|+ρ,
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namely

|P∩L|= 1+
q−1

∑
i=1

α
′
i, |L|=

q−1

∑
i=0

(q− i)αi, |Dq|=
q−1

∑
i=0

αi +α
′′
q. (11)

Finally, as in the preceding section, we denote by C the set of compressed
Apéry elements, i.e

C = {z ∈ A∩D | ∃x,y ∈ A∗, z = x+ y, λ(z)< λ(x)+λ(y)}.
In a few cases, the estimate ρ≥ |C| provided by Proposition 2.18 will be crucially
needed in order to be able to conclude W0(S)≥ 0.

3 An occurrence of W0(S)≥ 0

In this section, we establish W0(S)≥ 0 for numerical semigroups S under suitable
assumptions on α(S) but not on |L|. We use the notation of Section 2.7 throughout.

Theorem 3.1. Let S be a numerical semigroup of depth q ≥ 4. Let h = dq/2e.
Assume that αi = 0 for all 1≤ i≤ h−1. Then W0(S)≥ 0.

Proof. Since P =∪1≤i≤q and P1 = {m}tA1, we have |P|= 1+α1+α′2+ · · ·+α′q
and

|P∩L|= 1+α1 +α
′
2 + · · ·+α

′
q−1. (12)

• Assume q odd. Then h = (q+1)/2. Since A1 = · · ·= Ah−1 = /0, we have

A∩D⊆
q−1⋃

i, j=h

(Ai +A j).

By Proposition 2.2, we have Ai +A j ⊆ Si+ j−1 t Si+ j t Si+ j+1. Since At = /0 for
t ≥ q+1, and since 2h = q−1, it follows from the above that

A∩D⊆ 2Ah.

Hence α′′q ≤ |2Ah|. It also follows that Ai = Pi for all h≤ i≤ q−1. Hence

|P∩L| = 1+αh + · · ·+αq−1

≥ 1+αh,

|L| = q+(h−1)αh +(h−2)αh+1 + · · ·+αq−1

≥ q+(h−1)αh,

|Dq| = 1+αh + · · ·+αq−1 +α
′′
q

= |P∩L|+α
′′
q.
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Thus,

W0(S) = |P∩L||L|−q|Dq|+ρ

= |P∩L||L|−q(|P∩L|+α
′′
q)+ρ

= |P∩L|(|L|−q)−qα
′′
q +ρ

= (1+αh)(h−1)αh−qα
′′
q +ρ.

Since A∩Dq ⊆ 2Ah, and since q = 2h− 1, it follows from Lemma 2.18 that
Aq∩D⊆C, where C is the subset defined in that Lemma. Consequently, we have
|Aq∩D| ≤ |C| ≤ ρ, whence

α
′′
q ≤min(|2Ah|,ρ).

Therefore
W0(S)≥ (1+αh)(h−1)αh−qmin(|2Ah|,ρ)+ρ.

The following bound will take care of the last two summands.

Claim. For all t ≥ 0, we have

−qmin(t,ρ)+ρ ≥ −(q−1)t. (13)

Indeed, if ρ ≤ t, then −qmin(t,ρ)+ρ = −(q− 1)ρ ≥ −(q− 1)t. And if ρ > t,
then −qmin(t,ρ)+ρ =−qt +ρ >−(q−1)t. This proves the claim.

Moreover, as a very crude estimate, we have

|2Ah| ≤ αh(αh +1)/2.

Hence, using (13) and the above, we get

W0(S)≥ (1+αh)(h−1)αh− (q−1)αh(αh +1)/2.

Since (q−1)/2 = h−1, it follows that W0(S)≥ 0, as desired.

• Assume q even. Then h = q/2. Since A1 = · · ·= Ah−1 = /0, we have

A∩D⊆
q−1⋃

i, j=h

(Ai +A j).

By Proposition 2.2, we have Ai +A j ⊆ Si+ j−1 t Si+ j t Si+ j+1. Since At = /0 for
t ≥ q+1, and since 2h = q, it follows from the above that

A∩D⊆ (2Ah)∪ (Ah +Ah+1).
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Moreover, we have

2Ah∩A⊆ Aq−1∪Aq, (Ah +Ah+1)∩A⊆ Aq.

Hence
A∩D⊆ (2Ah∩Aq−1)∪ (2Ah∩Aq)∪ (Ah +Ah+1)∩Aq.

We have

α
′′
q−1 = |2Ah∩Aq−1|,
α
′′
q = |(2Ah∩Aq)∪ (Ah +Ah+1)∩Aq|.

Hence
α
′′
q−1 +α

′′
q ≤ |2Ah|+ |(Ah +Ah+1)∩Aq|. (14)

Moreover, since q = 2h, Corollary 2.19 yields

|(Ah +Ah+1)∩Aq| ≤ ρ.

Moreover, we have |(Ah +Ah+1)∩Aq| ≤ αhαh+1. Hence

|(Ah +Ah+1)∩Aq| ≤min(ρ,αhαh+1). (15)

Combining (14) and (15), we get

α
′′
q−1 +α

′′
q ≤ |2Ah|+min(ρ,αhαh+1). (16)

It also follows that Ai = Pi for all h≤ i≤ q−2. Hence

|P∩L| = 1+αh + · · ·+αq−2 +α
′
q−1

≥ 1+αh +αh+1,

|L| = q+hαh +(h−1)αh+1 + · · ·+αq−1

≥ q+hαh +(h−1)αh+1,

|Dq| = 1+αh + · · ·+αq−1 +α
′′
q

= |P∩L|+α
′′
q−1 +α

′′
q.

Thus,

W0(S) = |P∩L||L|−q|Dq|+ρ

= |P∩L||L|−q(|P∩L|+α
′′
q−1 +α

′′
q)+ρ

= |P∩L|(|L|−q)−q(α′′q−1 +α
′′
q)+ρ

≥ (1+αh +αh+1)(hαh +(h−1)αh+1−q(α′′q−1 +α
′′
q)+ρ.
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Therefore, using (16), we get

W0(S)≥ (1+αh +αh+1)(hαh +(h−1)αh+1)−q(|2Ah|+min(ρ,αhαh+1))+ρ.

Using (13) again for the last two summands, we have

−qmin(ρ,αhαh+1)+ρ≥−(q−1)αhαh+1.

We also have the very crude estimate

|2Ah| ≤ αh(αh +1)/2.

Hence

W0(S)≥ (1+αh +αh+1)(hαh +(h−1)αh+1)−qαh(αh +1)/2− (q−1)αhαh+1.

Using q = 2h, it follows that

W0(S) = (h−1)αh+1(αh+1 +1).

Hence W0(S)≥ 0, as desired.

We conclude this section with an easy particular case.

Proposition 3.2. Let S be a numerical semigroup of depth q≥ 4 such that |P∩L| ≥
max(α′′q,q). Then W0(S)≥ ρ.

Proof. W0(S) = |P∩L||L| − q|Dq|+ρ. Recall that |L| = ∑
q−1
i=0 (q− i)αi and that

|Dq|= ∑
q−1
i=0 αi +α′′q . Hence

W0(S) = q(|P∩L|−α
′′
q)+

q−1

∑
i=1

((q− i)|P∩L|−q)αi +ρ.

Since |P∩L| ≥ α′′q and |P∩L| ≥ q by hypothesis, the claimed inequality follows.
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4 Main result
Let S be a numerical semigroup. We use the notation of Section 2.7 throughout.
Wilf’s conjecture has been successively settled for |L| ≤ 4 and |L| ≤ 6 in [4] and
[5], respectively. Here we extend these results to the case |L| ≤ 12. Even more
so, we show that if |L| ≤ 12 then W0(S) ≥ 0. As mentioned earlier, this is best
possible, since there are numerical semigroups S satisfying |L|= 13 and W0(S)<
0. At the time of writing, it remains an open problem to determine whether all
numerical semigroups S with |L|= 13 satisfy Wilf’s conjecture. In this section we
prove the following result.

Theorem 4.1. Let S be a numerical semigroup such that |L| ≤ 12. Then W0(S)≥ 0.
In particular, S satisfies Wilf’s conjecture.

By Theorem 2.9, the bound W0(S) ≥ 0 holds for all numerical semigroups of
depth q ≤ 3. Consequently, in the sequel, we shall freely assume q ≥ 4, since it
suffices to prove Theorem 4.1 in that case. In fact, it also suffices to consider the
case q≤ 7, as follows from the following proposition.

Proposition 4.2. Let S be a numerical semigroup of depth q≥ 8 such that |L| ≤ 12.
Then W0(S)≥ 0.

Proof. Let h = dq/2e. Then 12 ≥ |L| ≥ q+(q− 1)α1 + · · ·+(q− h+ 1)αh−1.
This implies αi = 0 for all 1≤ i≤ h−1. For if not, then |L| ≥ q+(q−h+1), and
since h ≤ (q+ 1)/2, we would get 12 ≥ |L| ≥ 2q− (q+ 1)/2+ 1 = (3q+ 1)/2
and hence 3q+ 1 ≤ 24, contrary to the hypothesis q ≥ 8. It now follows from
Theorem 3.1 that W0(S)≥ 0.

Finally, the following result strongly restricts the values of α1 to consider.

Lemma 4.3. Let S be a numerical semigroup of depth q ≥ 4 such that |L| ≤ 12.
Then α1 ≤ 2.

Proof. By Proposition 2.20, we have |L|= q+(q−1)α1+(q−2)α2+ · · ·+αq−1.
Hence |L| ≥ q+ (q− 1)α1. We have q ≥ 4. If α1 ≥ 3 then |L| ≥ 4+ 9 = 13,
contrary to the hypothesis on |L|.

The cases α1 = 2, 1 and 0 will now be treated successively. We shall occa-
sionally use the following notation.

Notation 4.4. For all i≥ 1, we denote by 1i = 1Ai the indicator function of Ai.
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4.1 When α1 = 2

Proposition 4.5. Let S be a numerical semigroup of depth q≥ 4 such that |L| ≤ 12.
If α1 = 2, then q = 4 and W0(S)≥ 0.

Proof. Since α1 = 2, we have 12 ≥ |L| ≥ q+ 2(q− 1) = 3q− 2. It follows that
q < 5, whence q = 4 since q≥ 4 by hypothesis. We have

|P∩L| ≥ 3, |L|= 10+2α2 +α3, |D4|= 3+α2 +α3 +α
′′
4.

Hence 2α2 +α3 ≤ 2 and so α2 ≤ 1.
• If α2 = 0, then |L|= 10+α3 and so α3 ≤ 2. Since 2A1 ⊂ S2∪S3, and since

A2 = /0 and 2S3∩S4 = /0, it follows that

A4∩D⊆ (A1 +A3).

Hence α′′4 ≤ 2α3. Therefore

W0(S) ≥ 3(10+α3)−4(3+α3 +2α3)+ρ

= 18−9α3 +ρ

≥ ρ.

• If α2 = 1, then |L|= 12+α3 and so |L|= 12 and α3 = 0. Since 2A1⊂ S2∪S3
and A3 = /0, it follows that

A4∩D⊆ (A1 +A2)∪ (2A2).

Hence α′′4 ≤ 2+1 = 3. Therefore

W0(S) ≥ 3 ·12−4(3+1+3)+ρ

= 8+ρ.

Remark 4.6. A better lower bound on W0(S) may be obtained by splitting αi as
α′i+α′′i for i= 2,3 in the above proof. For instance, we have only used |P∩L| ≥ 3.
But we could have used |P∩L| ≥ 4 if either α′2 or α′3 were assumed positive, while
if α′2 = α′3 = 0, a sharper estimate on α′′4 can been derived.

4.2 When α1 = 1

Since 12≥ |L| ≥ q+(q−1) = 2q−1, it follows that q≤ 6. We shall successively
treat the cases q = 4, 5 and 6. Throughout Section 4.2, we set

A1 = {x}.
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4.2.1 Case q = 4

Then α(S) = (1,α2,α3). We have |L|= 4+3+2α2 +α3, whence 2α2 +α3 ≤ 5,
implying α2 ≤ 2. We successively examine the cases α2 = 2,1,0. To start with,
we have

A4∩D⊆ (A1 +A2)∪ (A1 +A3)∪ (A2 +A2)∪ (A2 +A3). (17)

Subcase α2 = 2. Then α(S) = (1,2,α3). We have |L|= 11+α3, whence α3 ≤ 1.
Denote

A2 = {y1,y2}.
Since A2∩D⊆ 2A1, and since |2A1|= 1, we have α′′2 ≤ 1 whence α′2 ∈ {1,2}.
•Assume first α′2 = 1. Say y1 ∈ P,y2 ∈D. Then y2 = 2x, and |P∩L|= 3+α′3.

We have |D4|= 4+α3 +α′′4 , and

(A1 +A2)∪ (2A2) = {4x,3x,2x+ y1,x+ y1,2y1}.

Since 4x /∈ S3 and since α3≤ 1, there are at most four possibilities for A3∩D, listed
below together with their consequences on A4∩D. Note that Lemma 2.13 plays a
key role to deduce these consequences. For example, if 4x ∈ A4 or 2x+ y1 ∈ A4,
then necessarily 3x ∈ A3 or x + y1 ∈ A3, respectively. Note also that the level
function λ = λS is nondecreasing. Consequently, in the last case A3 = {2y1}
below, it follows that x+ y1 /∈ A4, for λ(x+ y1) ≤ λ(2y1) = 3 since x < y1. Here
then are the possibilities for A3∩D:

1. If A3∩D = /0 then A4∩D⊆ {3x,x+ y1,2y1}.
2. If A3∩D = {3x} then A4∩D⊆ {4x,x+ y1,2y1}.
3. If A3∩D = {x+ y1} then A4∩D⊆ {3x,2x+ y1,2y1}.
4. If A3∩D = {2y1} then A4∩D⊆ {3x,2y1}.

In either case, we have α′′4 ≤ 3. Recall also that α3 ≤ 1 here. Hence

W0(S) = (3+α
′
3)(11+α3)−4(4+α3 +α

′′
4)+ρ

≥ (3+α
′
3)(11+α3)−4(7+α3)+ρ

≥ 4+11α
′
3 +α

′
3α3 +ρ.

• Assume now α′2 = 2, so that y1,y2 ∈ P. Then |P∩ L| = 4+α′3. We have
|D4|= 4+α3 +α′′4 , and

(2A1)∪ (A1 +A2)∪ (2A2) = {2x,x+ y1,x+ y2,2y1,y1 + y2,2y2}.
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Up to permutation of y1,y2, and using α3≤ 1 and 2x /∈ S4, here are the possibilities
for A3∩D, together with their consequences for A4∩D:

1. If A3∩D = /0 then A4∩D⊆ {x+ y1,x+ y2,2y1,y1 + y2,2y2}.
2. If A3∩D = {2x} then A4∩D⊆ {3x,x+ y1,x+ y2,2y1,y1 + y2,2y2}.
3. If A3∩D = {x+ y1} then A4∩D⊆ {x+ y2,2y1,y1 + y2,2y2}.
4. If A3∩D = {2y1} then A4∩D⊆ {x+ y1,x+ y2,y1 + y2,2y2}.
5. If A3∩D = {y1 + y2} then A4∩D⊆ {x+ y1,x+ y2,2y1,2y2}.

In either case, we have α′′4 ≤ 6. Hence

W0(S) = (4+α
′
3)(11+α3)−4(4+α3 +α

′′
4)+ρ

≥ (4+α
′
3)(11+α3)−4(10+α3)+ρ

= 4+11α
′
3 +α

′
3α3 +ρ.

Subcase α2 = 1. Then α(S) = (1,1,α3). We have |L| = 9+α3, whence α3 ≤ 3.
We also have |P∩L|= 2+α′2 +α′3 and |D4|= 3+α3 +α′′4 . Denote

A2 = {y}.

• Assume first y ∈ A2∩D. Then y = 2x, |P∩L|= 2+α′3 and A3∩D⊆ {3x}.
Thus α′′3 ≤ 1, and either

A4∩D⊆ {3x}∪ (x+P3) or A4∩D⊆ {4x}∪ (2x+P3)∪ (x+P3).

We claim that α′′4 ≤ 1+α′3 in both cases. This is clear in the first one. In the
second one, for all z ∈ P3 we have

|A4∩{2x+ z,x+ z}| ≤ 1.

Therefore |A4∩ ((2x+P3)∪ (x+P3))| ≤ |P3|, implying α′′4 ≤ 1+α′3 here as well.
Using α3 = α′3 +α′′3 ≤ α′3 +1, we have

W0(S) = (2+α
′
3)(9+α3)−4(3+α3 +α

′′
4)+ρ

≥ (2+α
′
3)(9+α3)−4(4+α

′
3 +α3)+ρ

= 2+5α
′
3−2α3 +α3α

′
3 +ρ

≥ 2+5α
′
3−2(α′3 +1)+α3α

′
3 +ρ

≥ 3α
′
3 +α3α

′
3 +ρ.
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• Assume now y ∈ A2∩P. Hence |P∩L|= 3+α′3. Here we have

A3∩D⊆ {2x,x+ y,2y}

and so α′′3 ≤ 3. Let us examine in turn the possibilities for A3∩D and their conse-
quences for A4∩D:

1. If A3∩D = /0 then A4∩D⊆ {x+ y,2y}∪ ({x,y}+P3).

2. If A3∩D = {2x} then A4∩D⊆ {3x,x+ y,2y}∪ ({x,y}+P3).

3. If A3∩D = {x+ y} then A4∩D⊆ {2y}∪ ({x,y}+P3).

4. If A3∩D = {2y} then A4∩D⊆ {x+ y,3y}∪ ({x,y}+P3).

5. If A3∩D = {2x,x+ y} then A4∩D⊆ {3x,2x+ y,2y}∪ ({x,y}+P3).

6. If A3∩D = {2x,2y} then A4∩D⊆ {3x,x+ y,2y}∪ ({x,y}+P3).

7. If A3∩D = {x+ y,2y} then A4∩D⊆ {x+2y,3y}∪ ({x,y}+P3).

8. If A3∩D = {2x,x+ y,2y} then A4∩D⊆ {3x,2x+ y,x+2y,3y}∪ ({x,y}+
P3).

Note that |{x,y}+P3| ≤ 2|P3| = 2α′3. Consequently, distinguishing between the
first seven cases and the last one, we have

α
′′
3 ≤ 2 ⇒ α

′′
4 ≤ 3+2α

′
3

α
′′
3 = 3 ⇒ α

′′
4 ≤ 4+2α

′
3.

– Assume first α′′3 ≤ 2, so that α3 ≤ α′3 +2 and α′′4 ≤ 3+2α′3. We have

W0(S) = (3+α
′
3)(9+α3)−4(3+α3 +α

′′
4)+ρ

≥ (3+α
′
3)(9+α3)−4(6+α3 +2α

′
3)+ρ

= 3+α
′
3−α3 +α

′
3α3 +ρ

≥ 1+α
′
3α3 +ρ.

– Assume now α′′3 = 3, so that α′′4 ≤ 4+2α′3. Since α3 ≤ 3, it follows that α3 =
α′′3 = 3, whence α′3 = 0 and α′′4 ≤ 4. We have

W0(S) = (3+α
′
3)(9+α3)−4(3+α3 +α

′′
4)+ρ

≥ 3 ·12−4 ·10+ρ

= −4+ρ.
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We now show that ρ≥ 6 here. Indeed, since y ∈ A2 and 3y ∈ A4, we have

2m−ρ≤ y, 3y≤ 5m−ρ−1.

Therefore 3(2m−ρ) ≤ 3y ≤ 5m−ρ− 1, implying m ≤ 2ρ− 1. Now, since m =
1+α1 +α2 +α3 +α4 ≥ 10 by (8), it follows that ρ ≥ 6, whence W0(S) ≥ 2 and
we are done.

Subcase α2 = 0. Then α(S) = (1,0,α3) here, and incidentally α3 ≤ 5 since |L| ≤
12. We have

|P∩L|= 2+α
′
3, |L|= 7+α3, |D4|= 2+α3 +α

′′
4.

Recalling that A1 = {x}, we distinguish the cases where 2x ∈ A or not.
• Assume first 2x ∈ A. Since λ(2x) ∈ {2,3} and since A2 = /0, it follows that
2x ∈ A3. Hence α′′3 = 1 and so α3 = 1+α′3. Thus

|L|= 8+α
′
3, |D4|= 3+α

′
3 +α

′′
4.

Since A4∩D ⊆ {3x}∪P3, it follows that α′′4 ≤ 1+α′3 and hence |D4| ≤ 4+2α′3.
A straightforward computation then yields

W0(S)≥ ρ.

• Assume now 2x /∈ A. It follows that A3 ⊆ P, i.e. α3 = α′3, and A4∩D⊆ x+A3.
Therefore α′′4 ≤ α3n and so |D4|= 2+α3 +α′′4 ≤ 2+2α3. This implies here

W0(S)≥ 6+ρ.

This concludes the case α1 = 1 and q = 4.

4.2.2 Case q = 5

We now tackle the case α1 = 1 and q = 5, i.e. α(S) = (1,α2,α3,α4). We have
|L|= 9+3α2 +2α3 +α4, whence 3α2 +2α3 +α4 ≤ 3, implying α2 ≤ 1.

Subcase α2 = 1. Then α(S) = (1,1,α3,α4). Then |L| = 12 and α3 = α4 = 0.
Moreover, |D5|= α0 +α1 +α2 +α′′5 = 3+α′′5 . Set

A2 = {y}.
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•Assume first y∈D. Then y= 2x. Since A3 =A4 = /0 by hypothesis, it follows
that |P∩L|= 2 and A5∩D⊆ {3x}. Therefore α′′5 ≤ 1. We conclude that

W0(S) = 2 ·12−5(3+α
′′
5)+ρ

≥ 4+ρ.

•Assume now y∈ P. Then |P∩L|= 3 and A5∩D⊆ {2y} since λ(2x)≤ 3 and
λ(x+ y)≤ 4. Hence α′′5 ≤ 1 and

W0(S) = 3 ·12−5(3+α
′′
5)+ρ

≥ 16+ρ.

Subcase α2 = 0. Then α(S)= (1,0,α3,α4) and |L|= 9+2α3+α4. Hence α3≤ 1.
Moreover, |D5|= α0 +α1 +α3 +α4 +α′′5 = 2+α3 +α4 +α′′5 . We have A2 = /0.

Subsubcase α3 = 1. Then α(S) = (1,0,1,α4). We have |L|= 11+α4, hence
α4 ≤ 1. Since A2 = /0, we have 2x ∈ A if and only if 2x ∈ A3.
• Assume first 2x ∈ A. Then A3 = {2x} since A2 = /0 and α3 = 1. Hence

A4∩D⊆ {3x} and A5∩D⊆ {3x,4x}∪ (x+A4∩P). Therefore

α
′′
4 = 14(3x), α

′′
5 ≤ 15(3x)+15(4x)+α

′
4. (18)

Note also that if 4x ∈ A5, then A4 = {3x} by Lemma 2.13 and the bound α4 ≤ 1.
We have

|P∩L|= 2+α
′
4, |L|= 11+α4, |D5|= 3+α4 +α

′′
5 = 3+α

′
4 +14(3x)+α

′′
5.

A straightforward computation, using (18), then yields

W0(S) = (2+α
′
4)(11+α4)−5(3+α

′
4 +14(3x)+α

′′
5)+ρ

≥ (2+α
′
4)(11+α4)−5(3+2α

′
4 +14(3x)+15(3x)+15(4x))+ρ

≥ 7−3 ·14(3x)−5 ·15(3x)−5 ·15(4x)+ρ.

If 4x /∈ A5 then W0(S) ≥ 2+ ρ since 14(3x) + 15(3x) ≤ 1 and we are done. If
4x ∈ A5, then 3x ∈ A4 as noted above, whence W0(S)≥−1+ρ. But then 4x ∈C,
since λ(4x) = 5 whereas λ(2x) = 3. Thus ρ ≥ |C| ≥ 1, implying W0(S) ≥ 0, as
desired.
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• Assume now 2x /∈ A. Then α′3 = α3 = 1 and |P∩ L| = 3+α′4. We have
A5∩D ⊆ (A1 +A3)∪ (A1 +A4), whence α′′5 ≤ 2 since α1 = α3 = 1 and α4 ≤ 1.
Therefore |D5|= 3+α4 +α′′5 ≤ 6, so that

W0(S) = (3+α
′
4)(11+α4)−5|D5|+ρ

≥ 3 ·11−30+ρ

≥ 3+ρ.

Subsubcase α3 = 0. Then α(S) = (1,0,0,α4). We have |L| = 9+α4, hence
α4 ≤ 3 and |D5| = 2+α4 +α′′5 . Since A2 = A3 = /0, and since 2 ≤ λ(2x) ≤ 3,
it follows that 2x /∈ A and A4 = P4. Thus A5 ∩D ⊆ x+P4, so that α′′5 ≤ α4 and
|P∩L|= 2+α4. It follows that

W0(S) ≥ (2+α
′
4)(9+α4)−5(2+α4 +α

′′
5)+ρ

≥ (2+α
′
4)(9+α4)−5(2+2α4)+ρ

≥ 8+α4 +α
2
4 +ρ.

This concludes the case α1 = 1 and q = 5.

4.2.3 Case q = 6

Still for α1 = 1, we now tackle the last case q= 6. Then α(S) = (1,α2,α3,α4,α5).
We have |L|= 11+4α2+3α3+2α4+α5, whence α2 = α3 = α4 = 0 and α5 ≤ 1.

Subcase α5 = 1. Then α(S) = (1,0,0,0,1). We have |L| = 12 and |D6| = α0 +
α1+α5+α′′6 = 3+α′′6 . Recall that A1 = {x}. Since λ(2x)≤ 3 and A2 =A3 =A4 =
/0, it follows that 2x /∈ A. Whence A5 = P5, i.e. α′5 = α5 = 1, and A6∩D⊆ x+A5.
Hence lP∩Ll = 4 and α′′6 ≤ 1. Consequently |D6| ≤ 4, and

W0(S) ≥ 3 ·12−6 ·4+ρ

= 12+ρ.

Subcase α5 = 0. Then α(S) = (1,0,0,0,0). We have |L|= 11 and |D6|= 2+α′′6 .
Since A1 = {x} and A2,A3,A4,A5 are all empty, it follows that |P∩ L| = 2 and
A6∩D = /0, i.e. α′′6 = 0. Thus

W0(S) = 2 ·11−6 ·2+ρ = 10+ρ.

Summarizing, we have shown that if |L| ≤ 12, α1 = 1 and q = 6, then W0(S)≥
10+ρ. This concludes the case |L| ≤ 12 and α1 = 1.
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4.3 When α1 = 0

As noted at the beginning of Section 4, it suffices to consider the cases 4≤ q≤ 7.

4.3.1 Case q = 4

Then α(S) = (0,α2,α3). Since dq/2e= 2 here, Theorem 3.1 yields W0(S)≥ 0.

4.3.2 Case q = 5

Then α(S) = (0,α2,α3,α4). We have 12 ≥ |L| = 5+ 3α2 + 2α3 +α4. Hence
α2 ≤ 2. We now examine successively the cases α2 = 2,1,0. Since A1 = /0, it
follows that A2 ⊂ P.

Subcase α2 = 2. Then α(S) = (0,2,α3,α4). We have |L|= 11+2α3+α4. Hence
α3 = 0 and α4 ≤ 1. Since A2 ⊂ P, we have α′2 = α2 = 2 here. Thus |P∩L| ≥ 3.
Set

A2 = {x1,x2}.

Assume first α4 = 1. Then α(S) = (0,2,0,1), so that |L|= 12 and |D5|= 4+
α′′5 . Denote A4 = {z}.
• If z ∈ P, then |P∩L|= 4 and 2A2∩ (A3∪A4) = /0. Now

A5∩D⊆ 2A2∪ (A2 +A4).

Since |2A2| ≤ 3 and |A2 +A4| ≤ |A2|, it follows that α′′5 ≤ 5. Hence

W0(S) = |P∩L||L|−5|D5|+ρ

≥ 4 ·12−5 ·9+ρ

= 3+ρ

and we are done if z ∈ P.
• If z∈D, then |P∩L|= 3 and z∈ A2 since A3 = /0. Hence, up to renumbering,

either z = 2x1 or z = x1+x2. If z = 2x1 then A5∩D⊆ {3x1,x1+x2,2x2}, whereas
if z = x1+x2, then A5∩D⊆ {2x1,2x2}. In either case, we have α′′5 ≤ 3. Therefore
|D5| ≤ 7. It follows that

W0(S) = |P∩L||L|−5|D5|+ρ

≥ 3 ·12−5 ·7+ρ

= 1+ρ
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and we are done as well if z ∈ D.

Assume now α4 = 0. Then α(S) = (0,2,0,0), so that |L|= 11 and |D5|= 3+
α′′5 . In that case, we have A5 ⊆ 2A2, whence α′′5 ≤ 3 and |D5| ≤ 6. It follows that

W0(S)≥ 3 ·11−5 ·6+ρ≥ 3+ρ.

That concludes the subcase α2 = 2, i.e. α(S) = (0,2,α3,α4) here.

Subcase α2 = 1. Then α(S) = (0,1,α3,α4). We have |L|= 8+2α3 +α4. Hence
α3 ≤ 2. Since A2 ⊂ P, we have α′2 = α2 = 1 here. Set

A2 = {x}.

Subsubcase α3 = 2. Then α(S)= (0,1,2,α4). We have |L|= 12+α4, whence
|L|= 12 and α4 = 0. Thus α(S)= (0,1,2,0). Hence |D5|= 4+α′′5 . Since A3∩D⊆
2A2, it follows that α′′3 ≤ 1 and hence α′3 ∈ {1,2}. Therefore |P∩L| ≥ 3. Set

A3 = {y1,y2}.

•Assume first α′3 = 1. Hence α′′3 = 1, and up to renumbering, we may assume
y1 = 2x, y2 ∈ P. Hence |P∩L|= 3 and

A5∩D⊆ {3x,x+ y2,2y2}.

Therefore α′′5 ≤ 3 and so |D5| ≤ 7. We then have

W0(S) = |P∩L||L|−5|D5|+ρ

≥ 3 ·12−5 ·7+ρ

= 1+ρ

and we are done here.
• Assume now α′3 = α3 = 2. Thus y1,y2 ∈ P and so |P∩L|= 4. We have

A5∩D⊆ {2x}∪ (x+A3)∪ (2A3∩A5).

Thus α′′5 ≤ 3+ |2A3∩A5|, and of course |2A3∩A5| ≤ |2A3| ≤ 3 since |A3|= 2. At
this point we have

|D5| ≤ 7+ |2A3∩A5|.
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Therefore

W0(S) = |P∩L||L|−5|D5|+ρ

≥ 4 ·12−5 · (7+ |2A3∩A5|)+ρ

= 13−5|2A3∩A5|+ρ.

Now ρ≥ |2A3∩A5|, since 2A3∩A5 ⊆C and |C| ≤ ρ. Hence

W0(S)≥ 13−4|2A3∩A5|.

But |2A3∩A5| ≤ 3 as seen above. It follows that W0(S)≥ 1 and we are done here.

Subsubcase α3 = 1. Then α(S) = (0,1,1,α4). We have

|P∩L|= 2+α
′
3 +α

′
4, |L|= 10+α4, |D5|= 3+α4 +α

′′
5. (19)

We examine four subcases, depending on which multiples of x belong to A.
Case 1. 2x ∈ A3,3x ∈ A4. Then A3 = {2x} since α3 = 1, and A4∩D = {3x}.

Hence α4 = α′4 +1. Moreover,

A5∩D⊆ {4x}∪ (x+A4∩P).

Whether 4x belongs to A5 or not will be measured by 15(4x) ∈ {0,1}, where
1i = 1Ai denotes the indicator function of Ai for all i. Thus,

α
′′
5 ≤ 15(4x)+α

′
4,

and so

|P∩L|= 2+α
′
4, |L|= 11+α

′
4, |D5|= 4+α

′
4 +α

′′
5 ≤ 4+2α

′
4 +15(4x). (20)

Plugging this data into (5), we get

W0(S)≥ 2+3α
′
4 +α

′2
4 −5 ·15(4x)+ρ.

If either α′4 6= 0 or 15(4x) = 0, then W0(S) ≥ ρ and we are done. If α′4 = 0 and
15(4x) = 1, then W0(S) ≥ −3+ρ. But in this case, we claim that ρ ≥ 3. Indeed,
both 2x,3x are compressed Apéry elements, since λ(x) = 2,λ(2x) = 3,λ(3x) = 4
and 2x= x+x,3x= x+2x. Moreover, since 15(4x)= 1 here, then 4x is also a com-
pressed Apéry element, using λ(4x)= 5 and 4x= 2x+2x. Hence {2x,3x,4x}⊆C.
Since ρ≥ |C|, this proves ρ≥ 3 as claimed and yields W0(S)≥ 0, as desired.
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Case 2. 2x ∈ A3,3x /∈ A4. Then A3 = {2x} and A4 ⊂ P, so that α4 = α′4. We
have

A5∩D⊆ {3x}∪ (x+A4).

Hence α′′5 ≤ 1+α4, and so

|P∩L|= 2+α4, |L|= 10+α4, |D5|= 3+α4 +α
′′
5 ≤ 4+2α4.

Hence W0(S)≥ 2α4 +α2
4 +ρ and we are done in the present case.

Case 3. 2x ∈ A4. Then A3 = A3∩P, so that α′3 = α3 = 1. We set A3 = {y}.
We have {2x} ⊆ A4 ∩D ⊆ {2x,x+ y} and A5 ∩D ⊆ {3x,2y,x+ y}. Since x+ y
cannot belong to both A4,A5, it follows that α′′4 +α′′5 ≤ 4.

Assume first α4 = 2. We then have

|P∩L|= 3+α
′
4, |L|= 12, |D5|= 3+α

′
4 +α

′′
4 +α

′′
5 ≤ 7+α

′
4. (21)

It follows that W0(S)≥ 12(3+α′4)−5(7+α′4)+ρ≥ 1+ρ and we are done.
Assume now α4 = 1. Then A4 = {2x} and |L|= 11. If α′′5 ≤ 2, then

|P∩L|= 3, |L|= 11, |D5|= 4+α
′′
5 ≤ 6.

It follows that W0(S) ≥ 3 ·11−5 ·6+ρ ≥ 3+ρ and we are done. But if α′′5 = 3,
i.e. if A5∩D = {3x,2y,x+y}, then we only get W0(S)≥−2+ρ. But in this case,
since 3x,2y ∈C, it follows that ρ≥ 2 whence W0(S)≥ 0 as desired.

Case 4. 2x /∈ A. Then as above, A3 = A3 ∩P, so that α′3 = α3 = 1, and we
set A3 = {y}. If x+ y ∈ A, then it belongs to either A4 or A5. But in any case,
x+ 2y /∈ A since λ(x+ 2y) ≥ 6, as easily seen. It follows that A4 ∩D ⊆ {x+ y}
and A5∩D⊆ {x+ y,2y}. Hence

α4 = α
′
4 +14(x+ y), α

′′
5 ≤ 1+15(x+ y).

It follows that

|P∩L|= 3+α
′
4, |L|= 10+α

′
4+14(x+y), |D5| ≤ 4+α

′
4+14(x+y)+15(x+y).

A straightforward computation, using 14(x+ y)+15(x+ y)≤ 1, then yields

W0(S) ≥ 10+8α
′
4 +α

′2
4 +(α′4−2) ·14(x+ y)−5 ·15(x+ y)+ρ

≥ 5+ρ

and we are done.
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Subsubcase α3 = 0. Then α(S) = (0,1,0,α4). We have

|P∩L|= 2+α
′
4, |L|= 8+α4, |D5|= 2+α4 +α

′′
5.

Here A3 = /0, and α4 ≤ 4 since |L| ≤ 12 by assumption.
Case 1. 2x ∈ A. Then 2x ∈ A4tA5. Thus

A4∩D⊆ {2x}, A5∩D⊆ {2x,3x}∪ (x+A4∩P).

Hence α4 = α′4 +α′′4 = α′4 +14(2x) and α′′5 ≤ 15(2x)+15(3x)+α′4. We have

|P∩L|= 2+α
′
4, |L|= 8+α

′
4+14(2x), |D5| ≤ 2+2α

′
4+14(2x)+15(2x)+15(3x).

A straightforward computation then yields

W0(S)≥ 6−3 ·14(2x)−5 ·15(2x)−5 ·15(3x)+ρ.

If 3x /∈ A, then 15(3x) = 0 and W0(S) ≥ 1+ ρ. The case 3x ∈ A is more del-
icate. It implies 3x ∈ A5, i.e. 15(3x) = 1, and then of course 2x ∈ A4, i.e.
14(2x) = 1 and 15(2x) = 0. Thus W0(S) ≥ −2+ ρ. It remains to show ρ ≥ 2.
Since (λ(x),λ(2x),λ(3x)) = (2,4,5) here, it follows that 3x ∈ C, whence ρ ≥ 1.
This is not strong enough yet. However, since (λ(2x),λ(3x)) = (4,5), we have

4m−ρ≤ 2x, 3x≤ 6m−ρ−1.

Therefore 3(4m−ρ)/2≤ 3x≤ 6m−ρ−1, implying ρ≥ 2 as desired, and hence
W0(S)≥ 0.

Case 2. 2x /∈ A. Then A3 = A4 ∩D = /0. Hence A4 = A4 ∩P and A5 ∩D ⊆
x + A4. That is, we have α4 = α′4 and α′′5 ≤ α4. Thus |D5| ≤ 2+ 2α4, and a
straightforward computation yields

W0(S)≥ 6+ρ.

4.3.3 Case q = 6

Then α(S) = (0,α2,α3,α4,α5). We have 12 ≥ |L| = 6+ 4α2 + 3α3 + 2α4 +α5,
whence α2 ≤ 1.

Subcase α2 = 1. Then |L| = 10+ 3α3 + 2α4 +α5, implying α3 = 0 and α4 ≤ 1.
Thus α(S) = (0,1,0,α4,α5). We set

A2 = {x},

25



with x ∈ P since A2∩D = /0. We have A3 = /0.

Subsubcase α4 = 1. Then |L|= 12, whence α5 = 0 and so α(S)= (0,1,0,1,0).
Set A4 = {z}. Since A3 = A5 = /0, it follows that 2x ∈ A if and only if 2x = z. That
is, either z ∈ A∩P and 2x /∈ A, or else z = 2x. In either case, we have

A6∩D⊆ x+A4,

whence α′′6 ≤ 1. Summarizing, we have

|P∩L|= 2+α
′
4, |L|= 12, |D6|= 3+α

′′
6 ≤ 4.

It follows that
W0(S)≥ (2+α

′
4) ·12−6 ·4+ρ≥ ρ

and we are done here.

Subsubcase α4 = 0. Then α(S) = (0,1,0,0,α5). Since λ(2x) ∈ [3,5] and
A3 = A4 = /0, we have 2x ∈ A if and only if 2x ∈ A5. Therefore A5∩D⊆ {2x}, i.e.
α′′5 ≤ 1. However 3x /∈ A6. For if 3x ∈ A6, then 2x ∈ A5 by Lemma 2.13, whence

5m−ρ≤ 2x, 3x≤ 7m−ρ−1.

Thus 3(5m−ρ)/2 ≤ 3x ≤ 7m−ρ− 1, whence ρ ≥ m+ 2, in contradiction with
ρ ∈ [0,m[. Therefore A6∩D⊆ x+(A5∩P), i.e. α′′6 ≤ α′5. Summarizing, we have

|P∩L|= 2+α
′
5, |L|= 10+α5, |D6|= 2+α5 +α

′′
6 ≤ 2+α5 +α

′
5.

A straightforward computation then yields

W0(S)≥ 8−4α
′′
5 +ρ,

whence W0(S)≥ 4+ρ since α′′5 ≤ 1.

Subcase α2 = 0. Then α(S) = (0,0,α3,α4,α5) and Theorem 3.1 yields W0(S) ≥
0.

4.3.4 Case q = 7

Here α(S) = (0,α2,α3,α4,α5,α6). Then 12≥ |L| ≥ 7+5α2, whence α2 ≤ 1.
• If α2 = 1, then |L| = 12 and α3 = · · · = α6 = 0. It follows that A∩D = /0,

whence α′′7 = 0. Thus |P∩L|= 2 and |D7|= 2. Therefore

W0(S) = 2 ·12−7 ·2+ρ = 10+ρ
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and we are done in this case.
• If α2 = 0, then |L|= 7+4α3 +3α4 +2α5 +α6, whence α3 ≤ 1.
•• Assume α3 = 1. Then α(S) = (0,0,1,α4,α5,α6) and |L|= 11+2α5 +α6,

whence α4 = α5 = 0 and α6 ≤ 1. Thus in fact, α(S) = (0,0,1,0,0,α6) and |L|=
11+α6. We set

A3 = {x}.
Of course x ∈ P since A1 = A2 = /0. Since A4 = A5 = /0, it follows that A6∩D ⊆
{2x}. Moreover, since (S3 +S6)∩S7 = /0, we also have A7∩D⊆ {2x}. Thus

α
′′
6 = 16(2x), α

′′
7 = 17(2x).

Summarizing, we have

|P∩L|= 2+α
′
6, |L|= 11+α6, |D7|= 2+α6+α

′′
7 = 2+α

′
6+16(2x)+17(2x).

A straightforward computation, using 16(2x)+17(2x)≤ 1, then yields

W0(S)≥ 1+ρ

and we are done.
•• Finally, assume α3 = 0. Then α(S) = (0,0,0,α4,α5,α6). In that case, since

α1 = · · ·= αh−1 = 0 where h = dq/2e= 4, Theorem 3.1 implies W0(S)≥ 0.

4.3.5 Case q≥ 8

For depth q≥ 8, Proposition 4.2 yields W0(S)≥ 0.

4.4 Concluding remarks
Having examined above all possible Apéry profiles α(S) compatible with |L| ≤ 12,
the proof of Theorem 4 is now complete.

As mentioned earlier, among the more than 1013 numerical semigroups of
genus g≤ 60, exactly five of them satisfy W0(S)< 0. These five exceptions have
depth q = 4 and Apéry profile α(S) = (2,0,3), yielding |L| = 4+ 2 · 3+ 3 = 13.
Moreover, they satisfy c = 4m, |P∩L| = |P1| = 3 and α′′4 = 4, whence |D4| = 10
and W0(S) = 3 ·13−4 ·10 =−1.

Infinite families of numerical semigroups satisfying W0(S)< 0 have been con-
structed in [2, 7]. However, they all turn out to satisfy W (S)≥ 0. It would be very
interesting to characterize those S satisfying W0(S)< 0, but that will likely be hard
to achieve. Less ambitiously, can one determine how many such cases occur in,
say, genus g≤ 100?
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