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On numerical semigroups with at most 12 left elements

For a numerical semigroup S ⊆ N with embedding dimension e, conductor c and left part L = S ∩ [0, c -1], set W (S) = e|L|c. In 1978 Wilf asked, in equivalent terms, whether W (S) ≥ 0 always holds, a question known since as Wilf's conjecture. Using a closely related lower bound W 0 (S) ≤ W (S), we show that if |L| ≤ 12 then W 0 (S) ≥ 0, thereby settling Wilf's conjecture in this case. This is best possible, since cases are known where |L| = 13 and W 0 (S) = -1. Wilf's conjecture remains open for |L| ≥ 13.

The left elements of S are the elements of L. Finally, as in [START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF], we denote W (S) = e|L|c.

(1)

In 1978 Wilf asked, in equivalent terms, whether the inequality W (S) ≥ 0 holds for every numerical semigroup S [START_REF] Wilf | A circle-of-lights algorithm for the "money-changing problem[END_REF]. This open question is now known as Wilf's conjecture. Various particular cases have been settled, including the six independent cases e ≤ 3, |L| ≤ 6, m ≤ 18, g ≤ 60, c ≤ 3m and e ≥ m/3. See e.g. [START_REF] Bruns | Wilf's conjecture in fixed multiplicity[END_REF][START_REF] Delgado | On a question of Eliahou and a conjecture of Wilf[END_REF][START_REF] Dobbs | On a question of Wilf concerning numerical semigroups[END_REF][START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF][START_REF] Eliahou | A graph-theoretic approach to Wilf's conjecture[END_REF][START_REF] Fröberg | On numerical semigroups[END_REF][START_REF] Fromentin | Exploring the tree of numerical semigroups[END_REF][START_REF] Kaplan | Counting numerical semigroups by genus and some cases of a question of Wilf[END_REF][START_REF] Moscariello | On a conjecture by Wilf about the Frobenius number[END_REF][START_REF] García-García | An extension of Wilf's conjecture to affine semigroups[END_REF][START_REF] Sammartano | Numerical semigroups with large embedding dimension satisfy Wilf's conjecture[END_REF][START_REF] Sylvester | Mathematical questions with their solutions[END_REF]. See also [START_REF] Delgado | Conjecture of Wilf: a survey[END_REF] for a recent extensive survey on this topic. The authors of [START_REF] Dobbs | On a question of Wilf concerning numerical semigroups[END_REF] settled Wilf's conjecture in case |L| ≤ 4. This was later extended in [START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF], where a certain lower bound W 0 (S) ≤ W (S) was introduced and shown to satisfy W 0 (S) ≥ 0 whenever |L| ≤ 6. Here we further extend this result by showing that W 0 (S) ≥ 0 holds whenever |L| ≤ 12. This is best possible since, as shown in [START_REF] Eliahou | Near-misses in Wilf's conjecture[END_REF], there are numerical semigroups S such that |L| = 13 and W 0 (S) < 0. See also Section 2.2.

This paper is organized as follows. In Section 2 we recall some notation and background, including the definition of W 0 (S). In Section 3 we establish W 0 (S) ≥ 0 in some special circumstances. Our main result, namely W 0 (S) ≥ 0 if |L| ≤ 12, and hence Wilf's conjecture in that case, is proved in Section 4.

For extensive information on numerical semigroups, see [START_REF] Rosales | Numerical semigroups. Developments in Mathematics[END_REF].

Background and notation

In this section, we recall some notation and terminology introduced in [START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF]. Let S be a numerical semigroup. We denote by P ⊂ S * the unique minimal generating set of S, so that S = P and |P| = e, the embedding dimension. It coincides with the set of primitive elements of S, i.e. those x ∈ S * which are not the sum of two smaller elements of S * . Let m, c be the multiplicity and conductor of S, respectively. The depth of S is q = c/m and its offset is ρ = qmc. Thus

c = qm -ρ, ρ ∈ [0, m[. (2) 
The set of decomposable elements of S is 

Throughout Section 2, the symbols m, c, q and ρ will denote, often tacitly so, the multiplicity, conductor, depth and offset of the numerical semigroup S under consideration, respectively.

The level function λ

Let S ⊆ N be a numerical semigroup. We shall further use the following notation, as in [START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF].

Notation 2.1. For all j ∈ Z, we denote I j = [ jmρ, ( j + 1)mρ[, S j = S ∩ I j , P j = P ∩ I j , D j = D ∩ I j .

In particular, we have

I q = [qm -ρ, (q + 1)m -ρ[ = [c, c + m[.
The following set addition rules are shown in [START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF]. The proof is straightforward and left to the reader. Proposition 2.2. Let S be a numerical semigroup. For all i, j ≥ 1, we have

S 1 + S j ⊆ S 1+ j ∪ S 2+ j , S i + S j ⊆ S i+ j-1 ∪ S i+ j ∪ S i+ j+1 if i, j ≥ 2.
Notation 2.3. The level function λ S : N → N associated to S is defined by

λ S (x) = j ⇐⇒ x ∈ I j ⇐⇒ jm -ρ ≤ x ≤ ( j + 1)m -ρ -1
for all x ∈ N. In particular, if x ∈ S then λ S (x) = j if and only if x ∈ S j .

In the sequel, for simplicity, we shall write λ for λ S . Using this function, the above proposition translates as follows.

Corollary 2.4. Let x, y ∈ S * . If λ(x), λ(y) ≥ 2 then λ(x) + λ(y) -1 ≤ λ(x + y) ≤ λ(x) + λ(y) + 1. ( 4 
) If λ(x) = 1 or λ(y) = 1, then λ(x) + λ(y) ≤ λ(x + y) ≤ λ(x) + λ(y) + 1.
Here are some more consequences. Proof. The first statement directly follows from Corollary 2.4. As for the second one, let i = λ(x), j = λ(y). We may assume i ≤ j.

Let k = λ(a + x). Then a + x, a + y ∈ S k . Hence |y -x| = |(a + y) -(a + x)| ≤ m -1. It follows that j ≤ i + 1, since if j ≥ i + 2 then min S j -max S i ≥ m + 1.

2.2

The number W 0 (S) Notation 2.6. For a numerical semigroup S, we denote

W 0 (S) = |P ∩ L||L| -q|D q | + ρ. (5) 
Introduced in [START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF], this number bounds W (S) from below and is sometimes easier to evaluate. See also [START_REF] Delgado | On a question of Eliahou and a conjecture of Wilf[END_REF], where W 0 (S) is denoted E(S). The following result is Proposition 3.11 in [START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF]. For convenience, we recall the short proof.

Proposition 2.7. Let S be a numerical semigroup. Then W (S) ≥ W 0 (S).

Proof. We have

W (S) = |P||L| -c = |P||L| -qm + ρ. We have m = |P q | + |D q |, since m = |S q | = |P q D q |, and |P| = |P ∩ L| + |P q |. It follows that W (S) = W 0 (S) + |P q |(|L| -q).
Now |L| ≥ q, since L contains the q-subset {0, 1, . . . , q -1}m.

Corollary 2.8. Let S be a numerical semigroup such that W 0 (S) ≥ 0. Then S satisfies Wilf's conjecture.

Proof. We have W (S) ≥ W 0 (S) ≥ 0. This corollary is the basis of our approach in this paper, whose main result is that W 0 (S) ≥ 0 whenever |L| ≤ 12. Note that in contrast to Wilf's conjecture, the number W 0 (S) can be negative, but such cases are extremely rare. For instance, among the more than 10 13 numerical semigroups of genus g ≤ 60, only five of them satisfy W 0 (S) < 0. See [START_REF] Delgado | On a question of Eliahou and a conjecture of Wilf[END_REF][START_REF] Eliahou | Near-misses in Wilf's conjecture[END_REF][START_REF] Fromentin | Exploring the tree of numerical semigroups[END_REF]. More specifically, these five exceptions all satisfy W 0 (S) = -1, |L| = 13 and c = 4m, and they occur at genus 43, 51, 55, 55 and 59, respectively. The first one, of genus g = 43, is S = 14, 22, 23 ∪ [56, ∞[.

The following result has been established in [START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF].

Theorem 2.9. Let S be a numerical semigroup of depth q ≤ 3. Then W 0 (S) ≥ 0. In particular, S satisfies Wilf's conjecture.

Consequently, in proving here that W 0 (S) ≥ 0 if |L| ≤ 12, we only need to consider the case of depth q ≥ 4. The next three sections focus on the Apéry set of S with respect to m and provide tools to evaluate W 0 (S) and prove our main result.

The Apéry profile of S

Let S ⊆ N be a numerical semigroup. We denote by

A = Ap(S, m) = {x ∈ S | x -m ∈ S}
the Apéry set of S with respect to m. Equivalently, A = S \ (m + S). Each Apéry element x ∈ A is the smallest element in S of its class mod m, since xm / ∈ S.

Hence |A| = m. We have A ⊆ [0, c + m[.

Indeed, this follows from the inclusion

[c + m, ∞[ = m + [c, ∞[ ⊆ m + S.
We now introduce the Apéry profile of S.

Notation 2.10. Let S be a numerical semigroup of depth q ≥ 1. For all 0 ≤ i ≤ q, we set A i = A ∩ I i and

α i = |A i |.
We have A 0 = {0}, so α 0 = 1. Moreover, P 1 = {m} A 1 and P i ⊆ A i for all i ≥ 2.

Definition 2.11. We call Apéry profile of S the (q -1)-tuple α(S) = (α 1 , . . . , α q-1 ) ∈ N q-1 .

As noted above, we have

α 1 = |P 1 | -1 and α i ≥ |P i | for all 2 ≤ i < q. (6) Moreover, since A ⊆ [0, c + m[= I 0 I 1 • • • I q , we have A = A 0 A 1 • • • A q . ( 7 
) Therefore q ∑ i=0 α i = |A| = m. (8) 
This justifies why α 0 , α q are not included in the profile α(S), as α 0 = 1 and α q may be recovered from α(S) and m by the above formula.

Primitive and decomposable Apéry elements

Let S be a numerical semigroup of multiplicity m and Apéry set A = S \ (m + S).

A key point in the sequel is to distinguish, in A * = A \ {0}, the primitive elements from the decomposable ones. Indeed, the partition

A * = (A ∩ P) (A ∩ D)
plays an important role and motivates the following notation.

Notation 2.12. Let S be a numerical semigroup of depth q ≥ 1. For all 1 ≤ i ≤ q, we set

α i = |A i ∩ P|, α i = |A i ∩ D|.
Thus α i = α i + α i for all i.

Since P ⊆ [m, c + m[ as seen above, and since

[m, c + m[ ⊆ I 1 ∪ • • • ∪ I q , we have |P| = 1 + α 1 + • • • + α q . (9) 
In particular,

α q = |P \ L| = P ∩ [c, c + m[ , |D q | = |D ∩ [c, c + m[| = [c, c + m[\P , m = |P q | + |D q |.
The following properties of the Apéry set A will be widely used below, often tacitly so. Lemma 2.13. Let z ∈ A ∩ D. If z = x + y with x, y ∈ S * , then x, y ∈ A * .

Proof. If x /

∈ A, then x = m + s for some s ∈ S, implying z = x + y = m + (s + y). Since s + y ∈ S, it follows that z / ∈ A, contrary to the hypothesis.

Proposition 2.14. For all k ≥ 2, we have

A k ∩ D ⊆ ∪ i, j (A i + A j ) where 1 ≤ i ≤ j and k -1 ≤ i + j ≤ k + 1.
Proof. Directly follows from Proposition 2.2 and Lemma 2.13.

Corollary 2.15.

If A k = / 0 and A i = / 0 for all 1 ≤ i ≤ k -1 for some k ≥ 2, then A k = P k .
Proof. Directly follows from the above proposition.

Compressed Apéry elements

Throughout, let S denote a numerical semigroup with multiplicity m, conductor c and Apéry set A = S \ (m + S). Definition 2.16. Let s ∈ S * . We say that s is compressed if there exist x, y ∈ S * such that s = x + y and λ(s) < λ(x) + λ(y).

By Corollary 2.4, we have λ(x + y) ≥ λ(x) + λ(y) -1 for all x, y ∈ S * . Thus, the inequality λ(x + y) < λ(x) + λ(y) is equivalent to λ(x + y) = λ(x) + λ(y) -1. Estimating the number of compressed elements in A is important in the sequel. This motivates the following notation. Notation 2.17.

C = C(S) = {z ∈ A ∩ D | z is compressed}.
Recall from Lemma 2.13 that if z ∈ A ∩ D and z = x + y with x, y ∈ S * , then in fact x, y ∈ A * . Consequently, for all i, j ≥ 2, we have

(S i + S j ) ∩ A i+ j-1 = (A i + A j ) ∩ A i+ j-1 ⊆ C. (10) 
More generally, even if the description below will not be needed here, we have

C = q k=3 A k ∩ (∪ k-1 i=1 (A i + A k+1-i )).
The next result provides a key lower bound on ρ, where ρ is the offset as defined in [START_REF] Delgado | On a question of Eliahou and a conjecture of Wilf[END_REF]. See also Proposition 3.20 in [START_REF] Eliahou | A graph-theoretic approach to Wilf's conjecture[END_REF].

Proposition 2.18. Let S be a numerical semigroup. Then ρ ≥ |C|.

Proof. Let z ∈ C, and assume z = x + y with x, y ∈ A * such that λ(z) = λ(x) + λ(y) -1. Say λ(x) = i, λ(y) = j and λ(z) = i + j -1. By the definition of S i , we have In particular, we shall invoke the following simplified version.

(S i + S j ) ∩ S i+ j-1 ⊆ [(i + j)m -2ρ, (i + j)m -ρ[. Thus z ∈ [(i + j)m -2ρ, (i + j)m -ρ[. Now,
Corollary 2.19. For all i, j ≥ 2, we have

ρ ≥ |(A i + A j ) ∩ A i+ j-1 |.
Proof. Follows from (10) and Proposition 2.18.

Computing W 0 (S)

The following formulas allow to evaluate W 0 (S) using the Apéry profile of S as defined in Definition 2.10 and the decomposition α q = α q + α q given by Notation 2.12. Recall that both |L| and |D q | are involved in the expression of W 0 (S).

Proposition 2.20. Let S ⊆ N be a numerical semigroup with Apéry profile α(S) = (α 1 , . . . , α q-1 ). Then

|L| = q + (q -1)α 1 + • • • + α q-1 , |D q | = α 0 + α 1 + • • • + α q-1 + α q . Proof. Let s ∈ L be minimal in its class mod m. Then s ∈ L ∩ A. Let i ≥ 0 be the unique integer such that s ∈ A i . Then 0 ≤ i ≤ q -1 since s ∈ L. Let z ∈ L be such that z ≡ s mod m. Then z = s + jm with 0 ≤ j ≤ q -1 -i. It follows that |L ∩ (s + mN)| = q -i.
Letting now s run through all elements of L which are minimal in their respective classes mod m, the above discussion implies

|L| = q|A 0 | + (q -1)|A 1 | + • • • + |A q-1 |, yielding the first formula. Since m = |P q | + |D q | = α q + |D q |, it follows that |D q | = m -α q = m -α q + α q .
The second formula now follows from (8), i.e. m = ∑ q i=0 α i .

Notation

We shall use the following notation throughout the remainder of the paper. Given a numerical semigroup S, we denote by m its multiplicity, by c its conductor, by q its depth, by ρ its offset, by L its left part, by P its set of primitive elements, by D its set of decomposable elements, by A = S \ (m + S) its Apéry set with respect to m, and by α(S) = (α 1 , . . . , α q-1 ) its Apéry profile, where

α i = |A i | for all 0 ≤ i ≤ q. For i ≥ 1, we have α i = α i + α i where α i = |A i ∩ P| and α i = |A i ∩ D|.
We shall constantly use the formulas below to compute the ingredients involved in

W 0 (S) = |P ∩ L||L| -q|D q | + ρ, namely |P ∩ L| = 1 + q-1 ∑ i=1 α i , |L| = q-1 ∑ i=0 (q -i)α i , |D q | = q-1 ∑ i=0 α i + α q . ( 11 
)
Finally, as in the preceding section, we denote by C the set of compressed Apéry elements, i.e

C = {z ∈ A ∩ D | ∃x, y ∈ A * , z = x + y, λ(z) < λ(x) + λ(y)}.
In a few cases, the estimate ρ ≥ |C| provided by Proposition 2.18 will be crucially needed in order to be able to conclude W 0 (S) ≥ 0.

3 An occurrence of W 0 (S) ≥ 0

In this section, we establish W 0 (S) ≥ 0 for numerical semigroups S under suitable assumptions on α(S) but not on |L|. We use the notation of Section 2.7 throughout.

Theorem 3.1. Let S be a numerical semigroup of depth q ≥ 4. Let h = q/2 . Assume that

α i = 0 for all 1 ≤ i ≤ h -1. Then W 0 (S) ≥ 0.
Proof. Since P = ∪ 1≤i≤q and

P 1 = {m} A 1 , we have |P| = 1 + α 1 + α 2 + • • • + α q and |P ∩ L| = 1 + α 1 + α 2 + • • • + α q-1 . (12) 
• Assume q odd. Then h = (q + 1)/2. Since

A 1 = • • • = A h-1 = / 0, we have A ∩ D ⊆ q-1 i, j=h (A i + A j ).
By Proposition 2.2, we have A i + A j ⊆ S i+ j-1 S i+ j S i+ j+1 . Since A t = / 0 for t ≥ q + 1, and since 2h = q -1, it follows from the above that

A ∩ D ⊆ 2A h . Hence α q ≤ |2A h |. It also follows that A i = P i for all h ≤ i ≤ q -1. Hence |P ∩ L| = 1 + α h + • • • + α q-1 ≥ 1 + α h , |L| = q + (h -1)α h + (h -2)α h+1 + • • • + α q-1 ≥ q + (h -1)α h , |D q | = 1 + α h + • • • + α q-1 + α q = |P ∩ L| + α q . Thus, W 0 (S) = |P ∩ L||L| -q|D q | + ρ = |P ∩ L||L| -q(|P ∩ L| + α q ) + ρ = |P ∩ L|(|L| -q) -qα q + ρ = (1 + α h )(h -1)α h -qα q + ρ.
Since A ∩ D q ⊆ 2A h , and since q = 2h -1, it follows from Lemma 2.18 that A q ∩ D ⊆ C, where C is the subset defined in that Lemma. Consequently, we have

|A q ∩ D| ≤ |C| ≤ ρ, whence α q ≤ min(|2A h |, ρ). Therefore W 0 (S) ≥ (1 + α h )(h -1)α h -q min(|2A h |, ρ) + ρ.
The following bound will take care of the last two summands.

Claim. For all t ≥ 0, we have

-q min(t, ρ) + ρ ≥ -(q -1)t. (13) 
Indeed, if ρ ≤ t, then -q min(t, ρ) + ρ = -(q -1)ρ ≥ -(q -1)t. And if ρ > t, then -q min(t, ρ) + ρ = -qt + ρ > -(q -1)t. This proves the claim. Moreover, as a very crude estimate, we have

|2A h | ≤ α h (α h + 1)/2.
Hence, using [START_REF] Rosales | Numerical semigroups. Developments in Mathematics[END_REF] and the above, we get

W 0 (S) ≥ (1 + α h )(h -1)α h -(q -1)α h (α h + 1)/2.
Since (q -1)/2 = h -1, it follows that W 0 (S) ≥ 0, as desired.

• Assume q even. Then h = q/2.

Since A 1 = • • • = A h-1 = / 0, we have A ∩ D ⊆ q-1 i, j=h (A i + A j ).
By Proposition 2.2, we have A i + A j ⊆ S i+ j-1 S i+ j S i+ j+1 . Since A t = / 0 for t ≥ q + 1, and since 2h = q, it follows from the above that

A ∩ D ⊆ (2A h ) ∪ (A h + A h+1 ).

Moreover, we have

2A h ∩ A ⊆ A q-1 ∪ A q , (A h + A h+1 ) ∩ A ⊆ A q . Hence A ∩ D ⊆ (2A h ∩ A q-1 ) ∪ (2A h ∩ A q ) ∪ (A h + A h+1 ) ∩ A q .
We have

α q-1 = |2A h ∩ A q-1 |, α q = |(2A h ∩ A q ) ∪ (A h + A h+1 ) ∩ A q |. Hence α q-1 + α q ≤ |2A h | + |(A h + A h+1 ) ∩ A q |. (14) 
Moreover, since q = 2h, Corollary 2.19 yields

|(A h + A h+1 ) ∩ A q | ≤ ρ.

Moreover, we have |(A

h + A h+1 ) ∩ A q | ≤ α h α h+1 . Hence |(A h + A h+1 ) ∩ A q | ≤ min(ρ, α h α h+1 ). (15) 
Combining ( 14) and ( 15), we get

α q-1 + α q ≤ |2A h | + min(ρ, α h α h+1 ). (16) 
It also follows that A i = P i for all h ≤ i ≤ q -2. Hence

|P ∩ L| = 1 + α h + • • • + α q-2 + α q-1 ≥ 1 + α h + α h+1 , |L| = q + hα h + (h -1)α h+1 + • • • + α q-1 ≥ q + hα h + (h -1)α h+1 , |D q | = 1 + α h + • • • + α q-1 + α q = |P ∩ L| + α q-1 + α q . Thus, W 0 (S) = |P ∩ L||L| -q|D q | + ρ = |P ∩ L||L| -q(|P ∩ L| + α q-1 + α q ) + ρ = |P ∩ L|(|L| -q) -q(α q-1 + α q ) + ρ ≥ (1 + α h + α h+1 )(hα h + (h -1)α h+1 -q(α q-1 + α q ) + ρ.
Therefore, using ( 16), we get

W 0 (S) ≥ (1 + α h + α h+1 )(hα h + (h -1)α h+1 ) -q(|2A h | + min(ρ, α h α h+1 )) + ρ.
Using (13) again for the last two summands, we have

-q min(ρ, α h α h+1 ) + ρ ≥ -(q -1)α h α h+1.
We also have the very crude estimate

|2A h | ≤ α h (α h + 1)/2.
Hence

W 0 (S) ≥ (1 + α h + α h+1 )(hα h + (h -1)α h+1 ) -qα h (α h + 1)/2 -(q -1)α h α h+1 .
Using q = 2h, it follows that

W 0 (S) = (h -1)α h+1 (α h+1 + 1).
Hence W 0 (S) ≥ 0, as desired.

We conclude this section with an easy particular case.

Proposition 3.2. Let S be a numerical semigroup of depth q ≥ 4 such that |P∩L| ≥ max(α q , q). Then W 0 (S) ≥ ρ.

Proof. W 0 (S) = |P ∩ L||L| -q|D q | + ρ. Recall that |L| = ∑ q-1 i=0 (q -i)α i and that |D q | = ∑ q-1 i=0 α i + α q . Hence W 0 (S) = q(|P ∩ L| -α q ) + q-1 ∑ i=1 ((q -i)|P ∩ L| -q)α i + ρ.
Since |P ∩ L| ≥ α q and |P ∩ L| ≥ q by hypothesis, the claimed inequality follows.

Main result

Let S be a numerical semigroup. We use the notation of Section 2.7 throughout. Wilf's conjecture has been successively settled for |L| ≤ 4 and |L| ≤ 6 in [START_REF] Dobbs | On a question of Wilf concerning numerical semigroups[END_REF] and [START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF], respectively. Here we extend these results to the case |L| ≤ 12. Even more so, we show that if |L| ≤ 12 then W 0 (S) ≥ 0. As mentioned earlier, this is best possible, since there are numerical semigroups S satisfying |L| = 13 and W 0 (S) < 0. At the time of writing, it remains an open problem to determine whether all numerical semigroups S with |L| = 13 satisfy Wilf's conjecture. In this section we prove the following result.

Theorem 4.1. Let S be a numerical semigroup such that |L| ≤ 12. Then W 0 (S) ≥ 0. In particular, S satisfies Wilf's conjecture.

By Theorem 2.9, the bound W 0 (S) ≥ 0 holds for all numerical semigroups of depth q ≤ 3. Consequently, in the sequel, we shall freely assume q ≥ 4, since it suffices to prove Theorem 4.1 in that case. In fact, it also suffices to consider the case q ≤ 7, as follows from the following proposition. Proposition 4.2. Let S be a numerical semigroup of depth q ≥ 8 such that |L| ≤ 12. Then W 0 (S) ≥ 0.

Proof. Let h = q/2 . Then 12 ≥ |L| ≥ q + (q -1)α 1 + • • • + (q -h + 1)α h-1 .
This implies α i = 0 for all 1 ≤ i ≤ h -1. For if not, then |L| ≥ q + (qh + 1), and since h ≤ (q + 1)/2, we would get 12 ≥ |L| ≥ 2q -(q + 1)/2 + 1 = (3q + 1)/2 and hence 3q + 1 ≤ 24, contrary to the hypothesis q ≥ 8. It now follows from Theorem 3.1 that W 0 (S) ≥ 0.

Finally, the following result strongly restricts the values of α 1 to consider. Lemma 4.3. Let S be a numerical semigroup of depth q ≥ 4 such that |L| ≤ 12. Then α 1 ≤ 2.

Proof. By Proposition 2.20, we have

|L| = q + (q -1)α 1 + (q -2)α 2 + • • • + α q-1 .
Hence |L| ≥ q + (q -1)α 1 . We have q ≥ 4. If α 1 ≥ 3 then |L| ≥ 4 + 9 = 13, contrary to the hypothesis on |L|.

The cases α 1 = 2, 1 and 0 will now be treated successively. We shall occasionally use the following notation. Notation 4.4. For all i ≥ 1, we denote by 1 i = 1 A i the indicator function of A i .

4.1 When α 1 = 2 Proposition 4.5. Let S be a numerical semigroup of depth q ≥ 4 such that |L| ≤ 12.

If α 1 = 2, then q = 4 and W 0 (S) ≥ 0.

Proof. Since α 1 = 2, we have 12 ≥ |L| ≥ q + 2(q -1) = 3q -2. It follows that q < 5, whence q = 4 since q ≥ 4 by hypothesis. We have

|P ∩ L| ≥ 3, |L| = 10 + 2α 2 + α 3 , |D 4 | = 3 + α 2 + α 3 + α 4 .
Hence 2α 2 + α 3 ≤ 2 and so α 2 ≤ 1.

• If α 2 = 0, then |L| = 10 + α 3 and so α 3 ≤ 2. Since 2A 1 ⊂ S 2 ∪ S 3 , and since A 2 = / 0 and 2S 3 ∩ S 4 = / 0, it follows that

A 4 ∩ D ⊆ (A 1 + A 3 ).
Hence α 4 ≤ 2α 3 . Therefore

W 0 (S) ≥ 3(10 + α 3 ) -4(3 + α 3 + 2α 3 ) + ρ = 18 -9α 3 + ρ ≥ ρ.
• If α 2 = 1, then |L| = 12 + α 3 and so |L| = 12 and α 3 = 0. Since 2A 1 ⊂ S 2 ∪ S 3 and A 3 = / 0, it follows that

A 4 ∩ D ⊆ (A 1 + A 2 ) ∪ (2A 2 ).
Hence

α 4 ≤ 2 + 1 = 3. Therefore W 0 (S) ≥ 3 • 12 -4(3 + 1 + 3) + ρ = 8 + ρ.
Remark 4.6. A better lower bound on W 0 (S) may be obtained by splitting α i as α i + α i for i = 2, 3 in the above proof. For instance, we have only used |P ∩ L| ≥ 3.

But we could have used |P ∩ L| ≥ 4 if either α 2 or α 3 were assumed positive, while if α 2 = α 3 = 0, a sharper estimate on α 4 can been derived.

When α 1 = 1

Since 12 ≥ |L| ≥ q + (q -1) = 2q -1, it follows that q ≤ 6. We shall successively treat the cases q = 4, 5 and 6. Throughout Section 4.2, we set Then α(S) = (1, α 2 , α 3 ). We have |L| = 4 + 3 + 2α 2 + α 3 , whence 2α 2 + α 3 ≤ 5, implying α 2 ≤ 2. We successively examine the cases α 2 = 2, 1, 0. To start with, we have 

A 1 = {x}.
A 4 ∩ D ⊆ (A 1 + A 2 ) ∪ (A 1 + A 3 ) ∪ (A 2 + A 2 ) ∪ (A 2 + A 3 ). ( 17 
) Subcase α 2 = 2. Then α(S) = (1, 2, α 3 ). We have |L| = 11 + α 3 , whence α 3 ≤ 1. Denote A 2 = {y 1 , y 2 }. Since A 2 ∩ D ⊆ 2A 1 ,
(A 1 + A 2 ) ∪ (2A 2 ) = {4x, 3x, 2x + y 1 , x + y 1 , 2y 1 }.

Since 4x /

∈ S 3 and since α 3 ≤ 1, there are at most four possibilities for A 3 ∩D, listed below together with their consequences on A 4 ∩ D. Note that Lemma 2.13 plays a key role to deduce these consequences. For example, if 4x ∈ A 4 or 2x + y 1 ∈ A 4 , then necessarily 3x ∈ A 3 or x + y 1 ∈ A 3 , respectively. Note also that the level function λ = λ S is nondecreasing. Consequently, in the last case A 3 = {2y 1 } below, it follows that x + y 1 / ∈ A 4 , for λ(x + y 1 ) ≤ λ(2y 1 ) = 3 since x < y 1 . Here then are the possibilities for A 3 ∩ D:

1. If A 3 ∩ D = / 0 then A 4 ∩ D ⊆ {3x, x + y 1 , 2y 1 }. 2. If A 3 ∩ D = {3x} then A 4 ∩ D ⊆ {4x, x + y 1 , 2y 1 }. 3. If A 3 ∩ D = {x + y 1 } then A 4 ∩ D ⊆ {3x, 2x + y 1 , 2y 1 }. 4. If A 3 ∩ D = {2y 1 } then A 4 ∩ D ⊆ {3x, 2y 1 }.
In either case, we have α 4 ≤ 3. Recall also that α 3 ≤ 1 here. Hence

W 0 (S) = (3 + α 3 )(11 + α 3 ) -4(4 + α 3 + α 4 ) + ρ ≥ (3 + α 3 )(11 + α 3 ) -4(7 + α 3 ) + ρ ≥ 4 + 11α 3 + α 3 α 3 + ρ.
• Assume now α 2 = 2, so that y 1 , y 2 ∈ P. Then |P ∩ L| = 4 + α 3 . We have |D 4 | = 4 + α 3 + α 4 , and

(2A 1 ) ∪ (A 1 + A 2 ) ∪ (2A 2 ) = {2x, x + y 1 , x + y 2 , 2y 1 , y 1 + y 2 , 2y 2 }.
Up to permutation of y 1 , y 2 , and using α 3 ≤ 1 and 2x / ∈ S 4 , here are the possibilities for A 3 ∩ D, together with their consequences for A 4 ∩ D:

1. If A 3 ∩ D = / 0 then A 4 ∩ D ⊆ {x + y 1 , x + y 2 , 2y 1 , y 1 + y 2 , 2y 2 }. 2. If A 3 ∩ D = {2x} then A 4 ∩ D ⊆ {3x, x + y 1 , x + y 2 , 2y 1 , y 1 + y 2 , 2y 2 }. 3. If A 3 ∩ D = {x + y 1 } then A 4 ∩ D ⊆ {x + y 2 , 2y 1 , y 1 + y 2 , 2y 2 }. 4. If A 3 ∩ D = {2y 1 } then A 4 ∩ D ⊆ {x + y 1 , x + y 2 , y 1 + y 2 , 2y 2 }. 5. If A 3 ∩ D = {y 1 + y 2 } then A 4 ∩ D ⊆ {x + y 1 , x + y 2 , 2y 1 , 2y 2 }.
In either case, we have α 4 ≤ 6. Hence 

W 0 (S) = (4 + α 3 )(11 + α 3 ) -4(4 + α 3 + α 4 ) + ρ ≥ (4 + α 3 )(11 + α 3 ) -4(10 + α 3 ) + ρ = 4 + 11α 3 + α 3 α 3 + ρ. Subcase α 2 = 1. Then α(S) = (1, 1, α 3 ). We have |L| = 9 + α 3 ,
A 4 ∩ D ⊆ {3x} ∪ (x + P 3 ) or A 4 ∩ D ⊆ {4x} ∪ (2x + P 3 ) ∪ (x + P 3 ).
We claim that α 4 ≤ 1 + α 3 in both cases. This is clear in the first one. In the second one, for all z ∈ P 3 we have

|A 4 ∩ {2x + z, x + z}| ≤ 1. Therefore |A 4 ∩ ((2x + P 3 ) ∪ (x + P 3 ))| ≤ |P 3 |, implying α 4 ≤ 1 + α 3 here as well. Using α 3 = α 3 + α 3 ≤ α 3 + 1, we have W 0 (S) = (2 + α 3 )(9 + α 3 ) -4(3 + α 3 + α 4 ) + ρ ≥ (2 + α 3 )(9 + α 3 ) -4(4 + α 3 + α 3 ) + ρ = 2 + 5α 3 -2α 3 + α 3 α 3 + ρ ≥ 2 + 5α 3 -2(α 3 + 1) + α 3 α 3 + ρ ≥ 3α 3 + α 3 α 3 + ρ.
• Assume now y ∈ A 2 ∩ P. Hence |P ∩ L| = 3 + α 3 . Here we have

A 3 ∩ D ⊆ {2x, x + y, 2y}
and so α 3 ≤ 3. Let us examine in turn the possibilities for A 3 ∩ D and their consequences for A 4 ∩ D:

1. If A 3 ∩ D = / 0 then A 4 ∩ D ⊆ {x + y, 2y} ∪ ({x, y} + P 3 ). 2. If A 3 ∩ D = {2x} then A 4 ∩ D ⊆ {3x, x + y, 2y} ∪ ({x, y} + P 3 ). 3. If A 3 ∩ D = {x + y} then A 4 ∩ D ⊆ {2y} ∪ ({x, y} + P 3 ). 4. If A 3 ∩ D = {2y} then A 4 ∩ D ⊆ {x + y, 3y} ∪ ({x, y} + P 3 ). 5. If A 3 ∩ D = {2x, x + y} then A 4 ∩ D ⊆ {3x, 2x + y, 2y} ∪ ({x, y} + P 3 ). 6. If A 3 ∩ D = {2x, 2y} then A 4 ∩ D ⊆ {3x, x + y, 2y} ∪ ({x, y} + P 3 ). 7. If A 3 ∩ D = {x + y, 2y} then A 4 ∩ D ⊆ {x + 2y, 3y} ∪ ({x, y} + P 3 ). 8. If A 3 ∩ D = {2x, x + y, 2y} then A 4 ∩ D ⊆ {3x, 2x + y, x + 2y, 3y} ∪ ({x, y} + P 3 ).
Note that |{x, y} + P 3 | ≤ 2|P 3 | = 2α 3 . Consequently, distinguishing between the first seven cases and the last one, we have

α 3 ≤ 2 ⇒ α 4 ≤ 3 + 2α 3 α 3 = 3 ⇒ α 4 ≤ 4 + 2α 3 .
-Assume first α 3 ≤ 2, so that α 3 ≤ α 3 + 2 and α 4 ≤ 3 + 2α 3 . We have

W 0 (S) = (3 + α 3 )(9 + α 3 ) -4(3 + α 3 + α 4 ) + ρ ≥ (3 + α 3 )(9 + α 3 ) -4(6 + α 3 + 2α 3 ) + ρ = 3 + α 3 -α 3 + α 3 α 3 + ρ ≥ 1 + α 3 α 3 + ρ.
-Assume now α 3 = 3, so that α 4 ≤ 4 + 2α 3 . Since α 3 ≤ 3, it follows that α 3 = α 3 = 3, whence α 3 = 0 and α 4 ≤ 4. We have

W 0 (S) = (3 + α 3 )(9 + α 3 ) -4(3 + α 3 + α 4 ) + ρ ≥ 3 • 12 -4 • 10 + ρ = -4 + ρ.
We now show that ρ ≥ 6 here. Indeed, since y ∈ A 2 and 3y ∈ A 4 , we have 8), it follows that ρ ≥ 6, whence W 0 (S) ≥ 2 and we are done.

2m -ρ ≤ y, 3y ≤ 5m -ρ -1. Therefore 3(2m -ρ) ≤ 3y ≤ 5m -ρ -1, implying m ≤ 2ρ -1. Now, since m = 1 + α 1 + α 2 + α 3 + α 4 ≥ 10 by (
Subcase α 2 = 0. Then α(S) = (1, 0, α 3 ) here, and incidentally α 3 ≤ 5 since |L| ≤ 12. We have

|P ∩ L| = 2 + α 3 , |L| = 7 + α 3 , |D 4 | = 2 + α 3 + α 4 .
Recalling that A 1 = {x}, we distinguish the cases where 2x ∈ A or not. • Assume first 2x ∈ A. Since λ(2x) ∈ {2, 3} and since A 2 = / 0, it follows that 2x ∈ A 3 . Hence α 3 = 1 and so α 3 = 1 + α 3 . Thus

|L| = 8 + α 3 , |D 4 | = 3 + α 3 + α 4 . Since A 4 ∩ D ⊆ {3x} ∪ P 3 , it follows that α 4 ≤ 1 + α 3 and hence |D 4 | ≤ 4 + 2α 3 .
A straightforward computation then yields W 0 (S) ≥ ρ.

• Assume now 2x / ∈ A. It follows that A 3 ⊆ P, i.e. α 3 = α 3 , and A 4 ∩ D ⊆ x + A 3 . Therefore α 4 ≤ α 3 n and so

|D 4 | = 2 + α 3 + α 4 ≤ 2 + 2α 3 . This implies here W 0 (S) ≥ 6 + ρ.
This concludes the case α 1 = 1 and q = 4.

Case q = 5

We now tackle the case α 1 = 1 and q = 5, i.e. α(S) = (1, α 2 , α 3 , α 4 ). We have

|L| = 9 + 3α 2 + 2α 3 + α 4 , whence 3α 2 + 2α 3 + α 4 ≤ 3, implying α 2 ≤ 1. Subcase α 2 = 1. Then α(S) = (1, 1, α 3 , α 4 ). Then |L| = 12 and α 3 = α 4 = 0. Moreover, |D 5 | = α 0 + α 1 + α 2 + α 5 = 3 + α 5 . Set A 2 = {y}.
• Assume first y ∈ D. Then y = 2x. Since A 3 = A 4 = / 0 by hypothesis, it follows that |P ∩ L| = 2 and A 5 ∩ D ⊆ {3x}. Therefore α 5 ≤ 1. We conclude that

W 0 (S) = 2 • 12 -5(3 + α 5 ) + ρ ≥ 4 + ρ.
• Assume now y ∈ P. Then |P ∩ L| = 3 and A 5 ∩ D ⊆ {2y} since λ(2x) ≤ 3 and λ(x + y) ≤ 4. Hence α 5 ≤ 1 and

W 0 (S) = 3 • 12 -5(3 + α 5 ) + ρ ≥ 16 + ρ. Subcase α 2 = 0. Then α(S) = (1, 0, α 3 , α 4 ) and |L| = 9+2α 3 +α 4 . Hence α 3 ≤ 1. Moreover, |D 5 | = α 0 + α 1 + α 3 + α 4 + α 5 = 2 + α 3 + α 4 + α 5 . We have A 2 = / 0. Subsubcase α 3 = 1. Then α(S) = (1, 0, 1, α 4 ). We have |L| = 11 + α 4 , hence α 4 ≤ 1. Since A 2 = / 0, we have 2x ∈ A if and only if 2x ∈ A 3 . • Assume first 2x ∈ A. Then A 3 = {2x} since A 2 = / 0 and α 3 = 1. Hence A 4 ∩ D ⊆ {3x} and A 5 ∩ D ⊆ {3x, 4x} ∪ (x + A 4 ∩ P). Therefore α 4 = 1 4 (3x), α 5 ≤ 1 5 (3x) + 1 5 (4x) + α 4 . (18) 
Note also that if 4x ∈ A 5 , then A 4 = {3x} by Lemma 2.13 and the bound α 4 ≤ 1.

We have

|P ∩ L| = 2 + α 4 , |L| = 11 + α 4 , |D 5 | = 3 + α 4 + α 5 = 3 + α 4 + 1 4 (3x) + α 5 .
A straightforward computation, using (18), then yields

W 0 (S) = (2 + α 4 )(11 + α 4 ) -5(3 + α 4 + 1 4 (3x) + α 5 ) + ρ ≥ (2 + α 4 )(11 + α 4 ) -5(3 + 2α 4 + 1 4 (3x) + 1 5 (3x) + 1 5 (4x)) + ρ ≥ 7 -3 • 1 4 (3x) -5 • 1 5 (3x) -5 • 1 5 (4x) + ρ. If 4x / ∈ A 5 then W 0 (S) ≥ 2 + ρ since 1 4 (3x) + 1 5 (3x
) ≤ 1 and we are done. If 4x ∈ A 5 , then 3x ∈ A 4 as noted above, whence W 0 (S) ≥ -1 + ρ. But then 4x ∈ C, since λ(4x) = 5 whereas λ(2x) = 3. Thus ρ ≥ |C| ≥ 1, implying W 0 (S) ≥ 0, as desired.

• Assume now 2x / ∈ A. Then α 3 = α 3 = 1 and |P ∩ L| = 3 + α 4 . We have

A 5 ∩ D ⊆ (A 1 + A 3 ) ∪ (A 1 + A 4 ), whence α 5 ≤ 2 since α 1 = α 3 = 1 and α 4 ≤ 1. Therefore |D 5 | = 3 + α 4 + α 5 ≤ 6, so that W 0 (S) = (3 + α 4 )(11 + α 4 ) -5|D 5 | + ρ ≥ 3 • 11 -30 + ρ ≥ 3 + ρ.
Subsubcase α 3 = 0. Then α(S) = (1, 0, 0, α 4 ). We have |L| = 9 + α 4 , hence α 4 ≤ 3 and

|D 5 | = 2 + α 4 + α 5 . Since A 2 = A 3 = /
0, and since 2 ≤ λ(2x) ≤ 3, it follows that 2x / ∈ A and A 4 = P 4 . Thus A 5 ∩ D ⊆ x + P 4 , so that α 5 ≤ α 4 and

|P ∩ L| = 2 + α 4 . It follows that W 0 (S) ≥ (2 + α 4 )(9 + α 4 ) -5(2 + α 4 + α 5 ) + ρ ≥ (2 + α 4 )(9 + α 4 ) -5(2 + 2α 4 ) + ρ ≥ 8 + α 4 + α 2 4 + ρ.
This concludes the case α 1 = 1 and q = 5.

Case q = 6

Still for α 1 = 1, we now tackle the last case q = 6. Then α(S) = (1, α 2 , α 3 , α 4 , α 5 ).

We have |L| = 11 + 4α 2 + 3α 3 + 2α 4 + α 5 , whence α 2 = α 3 = α 4 = 0 and α 5 ≤ 1.

Subcase α 5 = 1. Then α(S) = (1, 0, 0, 0, 1). We have |L| = 12 and |D 6 | = α 0 + α 1 +α 5 +α 6 = 3+α 6 . Recall that A 1 = {x}. Since λ(2x) ≤ 3 and 

A 2 = A 3 = A 4 = / 0, it
W 0 (S) = |P ∩ L||L| -5|D 5 | + ρ ≥ 3 • 12 -5 • 7 + ρ = 1 + ρ
and we are done here.

• Assume now α 3 = α 3 = 2. Thus y 1 , y 2 ∈ P and so |P ∩ L| = 4. We have Subsubcase α 3 = 1. Then α(S) = (0, 1, 1, α 4 ). We have

A 5 ∩ D ⊆ {2x} ∪ (x + A 3 ) ∪ (2A 3 ∩ A 5 ).
|P ∩ L| = 2 + α 3 + α 4 , |L| = 10 + α 4 , |D 5 | = 3 + α 4 + α 5 . (19) 
We examine four subcases, depending on which multiples of x belong to A. Whether 4x belongs to A 5 or not will be measured by 1 5 (4x) ∈ {0, 1}, where 1 i = 1 A i denotes the indicator function of A i for all i. Thus,

α 5 ≤ 1 5 (4x) + α 4 ,
and so

|P ∩ L| = 2 + α 4 , |L| = 11 + α 4 , |D 5 | = 4 + α 4 + α 5 ≤ 4 + 2α 4 + 1 5 (4x). (20)
Plugging this data into (5), we get

W 0 (S) ≥ 2 + 3α 4 + α 2 4 -5 • 1 5 (4x) + ρ.
If either α 4 = 0 or 1 5 (4x) = 0, then W 0 (S) ≥ ρ and we are done. If α 4 = 0 and 1 5 (4x) = 1, then W 0 (S) ≥ -3 + ρ. But in this case, we claim that ρ ≥ 3. Indeed, both 2x, 3x are compressed Apéry elements, since λ(x) = 2, λ(2x) = 3, λ(3x) = 4 and 2x = x+x, 3x = x+2x. Moreover, since 1 5 (4x) = 1 here, then 4x is also a compressed Apéry element, using λ(4x) = 5 and 4x = 2x+2x. Hence {2x, 3x, 4x} ⊆ C. Since ρ ≥ |C|, this proves ρ ≥ 3 as claimed and yields W 0 (S) ≥ 0, as desired.

Case 2. 2x ∈ A 3 , 3x / ∈ A 4 . Then A 3 = {2x} and A 4 ⊂ P, so that α 4 = α 4 . We have A 5 ∩ D ⊆ {3x} ∪ (x + A 4 ).

Hence α 5 ≤ 1 + α 4 , and so

|P ∩ L| = 2 + α 4 , |L| = 10 + α 4 , |D 5 | = 3 + α 4 + α 5 ≤ 4 + 2α 4 .
Hence W 0 (S) ≥ 2α 4 + α 2 4 + ρ and we are done in the present case. Case 3. 2x ∈ A 4 . Then A 3 = A 3 ∩ P, so that α 3 = α 3 = 1. We set A 3 = {y}. We have {2x} ⊆ A 4 ∩ D ⊆ {2x, x + y} and A 5 ∩ D ⊆ {3x, 2y, x + y}. Since x + y cannot belong to both A 4 , A 5 , it follows that α 4 + α 5 ≤ 4.

Assume first α 4 = 2. We then have 

|P ∩ L| = 3 + α 4 , |L| = 12, |D 5 | = 3 + α 4 + α 4 + α 5 ≤ 7 + α 4 . (21 
α 4 = α 4 + 1 4 (x + y), α 5 ≤ 1 + 1 5 (x + y).

It follows that

|P ∩ L| = 3 + α 4 , |L| = 10 + α 4 + 1 4 (x + y), |D 5 | ≤ 4 + α 4 + 1 4 (x + y) + 1 5 (x + y).
A straightforward computation, using 1 4 (x + y) + 1 5 (x + y) ≤ 1, then yields

W 0 (S) ≥ 10 + 8α 4 + α 2 4 + (α 4 -2) • 1 4 (x + y) -5 • 1 5 (x + y) + ρ ≥ 5 + ρ
and we are done.

Subsubcase α 3 = 0. Then α(S) = (0, 1, 0, α 4 ). We have

|P ∩ L| = 2 + α 4 , |L| = 8 + α 4 , |D 5 | = 2 + α 4 + α 5 .
Here A 3 = / 0, and α 4 ≤ 4 since |L| ≤ 12 by assumption. Case 1. 2x ∈ A. Then 2x ∈ A 4 A 5 . Thus

A 4 ∩ D ⊆ {2x}, A 5 ∩ D ⊆ {2x, 3x} ∪ (x + A 4 ∩ P). Hence α 4 = α 4 + α 4 = α 4 + 1 4 (2x) and α 5 ≤ 1 5 (2x) + 1 5 (3x) + α 4 . We have |P∩L| = 2+α 4 , |L| = 8+α 4 +1 4 (2x), |D 5 | ≤ 2+2α 4 +1 4 (2x)+1 5 (2x)+1 5 (3x).
A straightforward computation then yields A straightforward computation, using 1 6 (2x) + 1 7 (2x) ≤ 1, then yields W 0 (S) ≥ 1 + ρ and we are done.

W 0 (S) ≥ 6 -3 • 1 4 (2x) -5 • 1 5 (2x) -5 • 1 5 (3x) + ρ. If 3x / ∈ A, then 1 5 (3x) = 0 and W 0 (S) ≥ 1 + ρ. The case 3x ∈ A is more del- icate. It implies 3x ∈ A 5 , i.e.
•• Finally, assume α 3 = 0. Then α(S) = (0, 0, 0, α 4 , α 5 , α 6 ). In that case, since α 1 = • • • = α h-1 = 0 where h = q/2 = 4, Theorem 3.1 implies W 0 (S) ≥ 0.

Case q ≥ 8

For depth q ≥ 8, Proposition 4.2 yields W 0 (S) ≥ 0.

Concluding remarks

Having examined above all possible Apéry profiles α(S) compatible with |L| ≤ 12, the proof of Theorem 4 is now complete.

As mentioned earlier, among the more than 10 13 numerical semigroups of genus g ≤ 60, exactly five of them satisfy W 0 (S) < 0. These five exceptions have depth q = 4 and Apéry profile α(S) = ( 2 Infinite families of numerical semigroups satisfying W 0 (S) < 0 have been constructed in [START_REF] Delgado | On a question of Eliahou and a conjecture of Wilf[END_REF][START_REF] Eliahou | Near-misses in Wilf's conjecture[END_REF]. However, they all turn out to satisfy W (S) ≥ 0. It would be very interesting to characterize those S satisfying W 0 (S) < 0, but that will likely be hard to achieve. Less ambitiously, can one determine how many such cases occur in, say, genus g ≤ 100?

1 Introduction

 1 Let N = {0, 1, 2, . . .} denote as usual the set of nonnegative integers. Given integers a ≤ b, we denote by [a, b[= [a, b -1] = {z ∈ Z | a ≤ z < b}, and by [a, ∞[= {z ∈ Z | a ≤ z}, the integer intervals they span. A numerical semigroup is a submonoid S of (N, +) such that |N \ S| is finite. Equivalently, it is a subset S of N of the form S = a 1 , . . . , a n = Na 1 + • • • + Na n where gcd(a 1 , . . . , a n ) = 1. The least such n is called the embedding dimension of S and is often denoted e. The multiplicity of S is m = min S * , where S * = S \ {0}. The conductor of S is c = max(Z \ S) + 1, or equivalently, the least c ∈ N such [c, ∞[ ⊆ S. The genus of S is g = |N \ S|. The left part of S is L = {s ∈ S | s < c} = S ∩ [0, c[.

D

  = S * \ P = S * + S * . Note that D contains [c + m, ∞[. Indeed, if z ≥ c + m, then z = m + (zm), so that z ∈ S * + S * since both m ∈ S * and zm ∈ S * as zm ≥ c. It follows that P ⊆ [m, c + m[.

Corollary 2 . 5 .

 25 Let a, x, y ∈ S * . Then λ(x + y) > max{λ(x), λ(y)}. If λ(a + x) = λ(a + y), then |λ(y)λ(x)| ≤ 1.

  the only classes mod m occurring in the latter interval are those in [-2ρ, -ρ[, a set of cardinality ρ. Since there is only one element in A per class mod m, and since C ⊂ A, the statement follows.
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  and since |2A 1 | = 1, we have α 2 ≤ 1 whence α 2 ∈ {1, 2}. • Assume first α 2 = 1. Say y 1 ∈ P, y 2 ∈ D. Then y 2 = 2x, and |P ∩ L| = 3 + α 3 . We have |D 4 | = 4 + α 3 + α 4 , and

whence α 3 ≤ 3 .

 3 We also have |P ∩ L| = 2 + α 2 + α 3 and |D 4 | = 3 + α 3 + α 4 . Denote A 2 = {y}. • Assume first y ∈ A 2 ∩ D. Then y = 2x, |P ∩ L| = 2 + α 3 and A 3 ∩ D ⊆ {3x}. Thus α 3 ≤ 1, and either

  follows that 2x / ∈ A. Whence A 5 = P 5 , i.e. α 5 = α 5 = 1, and A 6 ∩ D ⊆ x + A 5 . Hence lP ∩ Ll = 4 and α 6 ≤ 1. Consequently |D 6 | ≤ 4, andW 0 (S) ≥ 3 • 12 -6 • 4 + ρ = 12 + ρ.Subcase α 5 = 0. Then α(S) = (1, 0, 0, 0, 0). We have |L| = 11 and |D 6 | = 2 + α 6 .Since A 1 = {x} and A 2 , A 3 , A 4 , A 5 are all empty, it follows that |P ∩ L| = 2 andA 6 ∩ D = / 0, i.e. α 6 = 0. Thus W 0 (S) = 2 • 11 -6 • 2 + ρ = 10 + ρ.Summarizing, we have shown that if |L| ≤ 12, α 1 = 1 and q = 6, then W 0 (S) ≥ 10 + ρ. This concludes the case |L| ≤ 12 and α 1 = 1. and we are done as well if z ∈ D.Assume now α 4 = 0. Then α(S) = (0, 2, 0, 0), so that |L| = 11 and |D 5 | = 3 + α 5 . In that case, we have A 5 ⊆ 2A 2 , whence α 5 ≤ 3 and |D 5 | ≤ 6. It follows thatW 0 (S) ≥ 3 • 11 -5 • 6 + ρ ≥ 3 + ρ.That concludes the subcase α 2 = 2, i.e. α(S) = (0, 2, α 3 , α 4 ) here.Subcase α 2 = 1. Then α(S) = (0, 1, α 3 , α 4 ). We have |L| = 8 + 2α 3 + α 4 . Hence α 3 ≤ 2. Since A 2 ⊂ P, we have α 2 = α 2 = 1 here. Set A 2 = {x}. Subsubcase α 3 = 2. Then α(S) = (0, 1, 2, α 4 ). We have |L| = 12+α 4 , whence |L| = 12 and α 4 = 0. Thus α(S) = (0, 1, 2, 0). Hence |D 5 | = 4+α 5 . Since A 3 ∩D ⊆ 2A 2 , it follows that α 3 ≤ 1 and hence α 3 ∈ {1, 2}. Therefore |P ∩ L| ≥ 3. Set A 3 = {y 1 , y 2 }. • Assume first α 3 = 1. Hence α 3 = 1, and up to renumbering, we may assume y 1 = 2x, y 2 ∈ P. Hence |P ∩ L| = 3 and A 5 ∩ D ⊆ {3x, x + y 2 , 2y 2 }. Therefore α 5 ≤ 3 and so |D 5 | ≤ 7. We then have

Thus α 5 ≤ 3 +

 53 |2A 3 ∩ A 5 |, and of course |2A 3 ∩ A 5 | ≤ |2A 3 | ≤ 3 since |A 3 | = 2. At this point we have |D 5 | ≤ 7 + |2A 3 ∩ A 5 |. Therefore W 0 (S) = |P ∩ L||L| -5|D 5 | + ρ ≥ 4 • 12 -5 • (7 + |2A 3 ∩ A 5 |) + ρ = 13 -5|2A 3 ∩ A 5 | + ρ. Now ρ ≥ |2A 3 ∩ A 5 |, since 2A 3 ∩ A 5 ⊆ C and |C| ≤ ρ. Hence W 0 (S) ≥ 13 -4|2A 3 ∩ A 5 |.But |2A 3 ∩ A 5 | ≤ 3 as seen above. It follows that W 0 (S) ≥ 1 and we are done here.

Case 1 .

 1 2x ∈ A 3 , 3x ∈ A 4 . Then A 3 = {2x} since α 3 = 1, and A 4 ∩ D = {3x}. Hence α 4 = α 4 + 1. Moreover, A 5 ∩ D ⊆ {4x} ∪ (x + A 4 ∩ P).

)

  It follows that W 0 (S) ≥ 12(3 + α 4 ) -5(7 + α 4 ) + ρ ≥ 1 + ρ and we are done. Assume now α 4 = 1. Then A 4 = {2x} and |L| = 11. If α 5 ≤ 2, then |P ∩ L| = 3, |L| = 11, |D 5 | = 4 + α 5 ≤ 6. It follows that W 0 (S) ≥ 3 • 11 -5 • 6 + ρ ≥ 3 + ρ and we are done. But if α 5 = 3, i.e. if A 5 ∩ D = {3x, 2y, x + y}, then we only get W 0 (S) ≥ -2 + ρ. But in this case, since 3x, 2y ∈ C, it follows that ρ ≥ 2 whence W 0 (S) ≥ 0 as desired. Case 4. 2x / ∈ A. Then as above, A 3 = A 3 ∩ P, so that α 3 = α 3 = 1, and we set A 3 = {y}. If x + y ∈ A, then it belongs to either A 4 or A 5 . But in any case, x + 2y / ∈ A since λ(x + 2y) ≥ 6, as easily seen. It follows that A 4 ∩ D ⊆ {x + y} and A 5 ∩ D ⊆ {x + y, 2y}. Hence

  1 5 (3x) = 1, and then of course 2x ∈ A 4 , i.e. 1 4 (2x) = 1 and 1 5 (2x) = 0. Thus W 0 (S) ≥ -2 + ρ. It remains to show ρ ≥ 2. Since (λ(x), λ(2x), λ(3x)) = (2, 4, 5) here, it follows that 3x ∈ C, whence ρ ≥ 1. This is not strong enough yet. However, since (λ(2x), λ(3x)) = (4, 5), we have4mρ ≤ 2x, 3x ≤ 6mρ -1. Therefore 3(4mρ)/2 ≤ 3x ≤ 6mρ -1,implying ρ ≥ 2 as desired, and hence W 0 (S) ≥ 0. Case 2. 2x / ∈ A. Then A 3 = A 4 ∩ D = / 0. Hence A 4 = A 4 ∩ P and A 5 ∩ D ⊆ x + A 4 . That is, we have α 4 = α 4 and α 5 ≤ α 4 . Thus |D 5 | ≤ 2 + 2α 4 , and a straightforward computation yields W 0 (S) ≥ 6 + ρ.

4. 3 . 3 4 . 3 . 4

 33434 Case q = 6 Then α(S) = (0, α 2 , α 3 , α 4 , α 5 ). We have 12 ≥ |L| = 6 + 4α 2 + 3α 3 + 2α 4 + α 5 , whence α 2 ≤ 1.Subcase α 2 = 1. Then |L| = 10 + 3α 3 + 2α 4 + α 5 , implying α 3 = 0 and α 4 ≤ 1. Thus α(S) = (0, 1, 0, α 4 , α 5 ). We setA 2 = {x}, with x ∈ P since A 2 ∩ D = / 0. We have A 3 = / 0. Subsubcase α 4 = 1.Then |L| = 12, whence α 5 = 0 and so α(S) = (0, 1, 0, 1, 0). Set A 4 = {z}. Since A 3 = A 5 = / 0, it follows that 2x ∈ A if and only if 2x = z. That is, either z ∈ A ∩ P and 2x / ∈ A, or else z = 2x. In either case, we haveA 6 ∩ D ⊆ x + A 4 ,whence α 6 ≤ 1. Summarizing, we have|P ∩ L| = 2 + α 4 , |L| = 12, |D 6 | = 3 + α 6 ≤ 4. It follows that W 0 (S) ≥ (2 + α 4 ) • 12 -6 • 4 + ρ ≥ ρand we are done here.Subsubcase α 4 = 0. Then α(S) = (0, 1, 0, 0, α 5 ). Since λ(2x) ∈ [3, 5] andA 3 = A 4 = / 0, we have 2x ∈ A if and only if 2x ∈ A 5 . Therefore A 5 ∩ D ⊆ {2x}, i.e. α 5 ≤ 1. However 3x / ∈ A 6 . For if 3x ∈ A 6 , then 2x ∈ A 5 by Lemma 2.13, whence 5mρ ≤ 2x, 3x ≤ 7mρ -1. Thus 3(5mρ)/2 ≤ 3x ≤ 7mρ -1, whence ρ ≥ m + 2,in contradiction with ρ ∈ [0, m[. Therefore A 6 ∩ D ⊆ x + (A 5 ∩ P), i.e. α 6 ≤ α 5 . Summarizing, we have |P ∩ L| = 2 + α 5 , |L| = 10 + α 5 , |D 6 | = 2 + α 5 + α 6 ≤ 2 + α 5 + α 5 .A straightforward computation then yieldsW 0 (S) ≥ 8 -4α 5 + ρ, whence W 0 (S) ≥ 4 + ρ since α 5 ≤ 1.Subcase α 2 = 0. Then α(S) = (0, 0, α 3 , α 4 , α 5 ) and Theorem 3.1 yields W 0 (S) ≥ 0. Case q = 7Here α(S) = (0, α 2 , α 3 , α 4 , α 5 , α 6 ). Then 12 ≥ |L| ≥ 7 + 5α 2 , whence α 2 ≤ 1.• If α 2 = 1, then |L| = 12 and α 3 = • • • = α 6 = 0. It follows that A ∩ D = / 0, whence α 7 = 0. Thus |P ∩ L| = 2 and |D 7 | = 2. Therefore W 0 (S) = 2 • 12 -7 • 2 + ρ = 10 + ρand we are done in this case.• If α 2 = 0, then |L| = 7 + 4α 3 + 3α 4 + 2α 5 + α 6 , whence α 3 ≤ 1.•• Assume α 3 = 1. Then α(S) = (0, 0, 1, α 4 , α 5 , α 6 ) and |L| = 11 + 2α 5 + α 6 , whence α 4 = α 5 = 0 and α 6 ≤ 1. Thus in fact, α(S) = (0, 0, 1, 0, 0, α 6 ) and |L| = 11 + α 6 . We setA 3 = {x}. Of course x ∈ P since A 1 = A 2 = / 0. Since A 4 = A 5 = / 0, itfollows that A 6 ∩ D ⊆ {2x}. Moreover, since (S 3 + S 6 ) ∩ S 7 = / 0, we also have A 7 ∩ D ⊆ {2x}. Thus α 6 = 1 6 (2x), α 7 = 1 7 (2x). Summarizing, we have |P ∩ L| = 2 + α 6 , |L| = 11 + α 6 , |D 7 | = 2 + α 6 + α 7 = 2 + α 6 + 1 6 (2x) + 1 7 (2x).

  , 0, 3), yielding |L| = 4 + 2 • 3 + 3 = 13. Moreover, they satisfy c = 4m, |P ∩ L| = |P 1 | = 3 and α 4 = 4, whence |D 4 | = 10 and W 0 (S) = 3 • 13 -4 • 10 = -1.

When α 1 = 0

As noted at the beginning of Section 4, it suffices to consider the cases 4 ≤ q ≤ 7.

Case q = 4

Then α(S) = (0, α 2 , α 3 ). Since q/2 = 2 here, Theorem 3.1 yields W 0 (S) ≥ 0.

Then α(S) = (0, α 2 , α 3 , α 4 ). We have 12 ≥ |L| = 5 + 3α 2 + 2α 3 + α 4 . Hence α 2 ≤ 2. We now examine successively the cases

Assume first α 4 = 1. Then α(S) = (0, 2, 0, 1), so that |L| = 12 and |D 5 | = 4 + α 5 . Denote A 4 = {z}.

• If z ∈ P, then |P ∩ L| = 4 and 2A 2 ∩ (A 3 ∪ A 4 ) = / 0. Now