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This paper deals with the problem of boundary stabilization of 1D reaction-diffusion PDEs with a time-and space-varying reaction coefficient. The boundary control design relies on the backstepping approach. The gains of the boundary control are scheduled under two suitable event-triggered mechanisms. More precisely, gains are computed/updated on events according to two state-dependent event-triggering conditions: static-based and dynamic-based conditions, under which, the Zeno behavior is avoided and well-posedness as well as exponential stability of the closedloop system are guaranteed. Numerical simulations are presented to illustrate the results.

1. Introduction. Control design of complex systems modeled by partial differential equations (PDEs) has become a central research area. The two traditional ways to act on those complex systems are the in-domain control and boundary control. For boundary control, the backstepping method has been used as standard tool for designing feedback laws. It has initially emerged to deal with 1D reaction-diffusion parabolic PDEs in [START_REF] Boskovic | Boundary control of an unstable heat equation via measurement of domain-averaged temperature[END_REF], [START_REF] Smyshlyaev | Closed-form boundary state feedbacks for a class of 1-d partial integro-differential equations[END_REF] and since then, the method has been employed to deal with the boundary stabilization of broader classes of PDEs (for an overview see [START_REF] Krstic | Boundary control of PDEs: A course on backstepping designs[END_REF] and [START_REF] Meurer | Control of Higher Dimensional PDEs[END_REF]). One of the most remarkable features of the backstepping approach is that for some specific cases, it is possible to obtain closed-form analytical solutions for the kernels of the underlying integral Volterra transformation. Having explicit expressions for the kernels and for controllers makes implementation simpler and more precise. For instance, for reaction diffusion systems with constant parameters, closedform solutions for the kernels has been obtained in terms of special functions such as the modified Bessel function [START_REF] Smyshlyaev | Closed-form boundary state feedbacks for a class of 1-d partial integro-differential equations[END_REF]. When having a time-varying reaction coefficient, a closed-form solution can be obtained through power series for exponential stabilization [START_REF] Smyshlyaev | On control design for pdes with space-dependent diffusivity or time-dependent reactivity[END_REF], or, in the context of fixed-time stability, closed-form of time-varying kernels can be obtained using special functions as in [START_REF] Espitia | Boundary time-varying feedbacks for fixed-time stabilization of constant-parameter reaction-diffusion systems[END_REF].

Nevertheless, for general reaction diffusion PDEs (e.g. having time-and spacevarying coefficient), obtaining closed-form solutions for the kernels is in general very hard (or even not possible). For this class of PDEs with time-and space-varying coefficients, the problem of boundary stabilization has been very challenging. Timeand space varying reaction coefficients come into play in some applications such as in trajectory planing and multi-agent systems (see e.g. [START_REF] Meurer | Tracking control for boundary controlled parabolic PDEs with varying parameters: Combining backstepping and differential flatness[END_REF][START_REF] Freudenthaler | Backstepping-based extended Luenberger observer design for a Burger-type pde for multi-agent deployment[END_REF]), to mention a few. In general, the resulting kernel-PDE is of the form of hyperbolic spatial operator and first order derivative with respect to time since the kernel of the Volterra transformation has to be time-varying. This brings additional source of complexity to the problem that requires a careful well-posedness analysis and numerical methods for the solvability. The solution of the kernel, indeed, is needed to be found numerically by e.g. the method of integral operators or the so called method of successive approxi-mations (which traces back to the seminal work [START_REF] Colton | The solution of initial-boundary value problems for parabolic equations by the method of integral operators[END_REF]). In this line, some contributions have rigorously handled the well-posedness of time-varying kernels solutions where the reaction term is time and space dependent as in [START_REF] Meurer | Tracking control for boundary controlled parabolic PDEs with varying parameters: Combining backstepping and differential flatness[END_REF][START_REF] Vazquez | Control for fast and stable laminar-to-highreynolds-numbers transfer in a 2D Navier-Stokes channel flow[END_REF] and some efficient algorithms to better handle the solvability of kernels have been proposed e.g. in [START_REF] Jadachowski | An efficient implementation of backstepping observers for time-varying parabolic pdes[END_REF].

More recent contributions focus on coupled parabolic PDEs [START_REF] Orlov | Output feedback stabilization of coupled reaction-diffusion processes with constant parameters[END_REF], with space varying reaction coefficients [START_REF] Vazquez | Boundary control of coupled reaction-advection-diffusion systems with spatially-varying coefficients[END_REF][START_REF] Deutscher | Backstepping control of coupled linear parabolic PIDEs with spatially-varying coefficients[END_REF] and time-and space-varying coefficients [START_REF] Kerschbaum | Backstepping control of coupled linear parabolic PDEs with space and time dependent coefficients[END_REF] all of which able to handle more challenging issues related to the solvability, suitable choices of target systems, coupling matrices structure and well-posedness issues in general.

In this paper, we aim at stabilizing scalar 1D reaction-diffusion PDEs with a timeand space-varying reaction coefficient from a different perspective. Our approach combines some ideas from hybrid systems, specifically from the framework of statedependent switching laws, sampled-data and event-triggered sampling/control strategies. For an overview of the literature on sampled-data, event-triggered and switching strategies, we refer to e.g. [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF][START_REF] Liberzon | Switching in Systems and Control[END_REF][START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF][START_REF] Heemels | An introduction to event-triggered and selftriggered control[END_REF][START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF][START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF][START_REF] Jiang | Event-triggered control of nonlinear systems: A smallgain paradigm[END_REF][START_REF] Liu | A small-gain-approach to robust event-triggered control of nonlinear systems[END_REF] for finite-dimensional systems and to [START_REF] Logemann | Generalized sampled-data stabilization of wellposed linear infinite-dimensional systems[END_REF][START_REF] Fridman | Robust sampled-data control of a class of semilinear parabolic systems[END_REF][START_REF] Karafyllis | Sampled-data boundary feedback control of 1-D parabolic PDEs[END_REF][START_REF] Selivanov | Distributed event-triggered control of transport-reaction systems[END_REF][START_REF] Hante | Modeling and analysis of modal switching in networked transport systems[END_REF], [START_REF] Tan | Dynamic practical stabilization of sampleddata linear distributed parameter systems[END_REF][START_REF] Prieur | Stability of switched linear hyperbolic systems by Lyapunov techniques[END_REF][START_REF] Lamare | Switching rules for stabilization of linear systems of conservation laws[END_REF][START_REF] Espitia | Event-based control of linear hyperbolic systems of conservation laws[END_REF][START_REF] Espitia | Event-based boundary control of a linear 2x2 hyperbolic system via backstepping approach[END_REF][START_REF] Polyakov | On boundary finite-time feedback control for heat equation[END_REF] for some classes of infinite dimensional systems.

Having said that, the main ideas in this paper state that instead of handling a time-varying kernel capturing the time-and space-varying coefficient, we use a simpler kernel capturing only the spatial variation of the reaction coefficient. This is possible as long as the reaction coefficient is sampled in time, thus the kernel-PDE reduces to a form involving space-varying coefficient only between two successive sampling times. In order to determine the time instants, we introduce event-triggered mechanisms that form an increasing sequence of triggering times (or time of events).

At those event times, kernels are computed/updated in aperiodic fashion and only when needed. In other words, kernels for the control are scheduled according to some event triggering condition (state-dependent law). Doing so, the approach constitutes a kind of a gain scheduling strategy suggesting then the adopted name for our approach: event-triggered gain scheduling.

Sampling in time the reaction coefficient introduces an error (called error when sampling) that is reflected in the target system after transformation. This requires the study of well-posedness issues, ISS properties ( [START_REF] Karafyllis | Input-to-State Stability for PDEs[END_REF]) and the exponential stability of the closed loop system when the control gains are scheduled according to the event-triggered mechanisms. In this paper we propose two strategies: the first one relies on a static triggering condition which takes into account the effect of the error when sampling after transformation and the current state of the closed-loop system.

The second strategy relies on a dynamic triggering condition which makes uses of a dynamic variable that can be seen as a filtered version of the static triggering condition. Moreover, under the two proposed strategies, the avoidance of the so called Zeno phenomenon is proved. Hence, we can guarantee the well-posedness as well as the exponential stability of the closed-loop system provided that the reaction coefficient is slowly time-varying.

The paper is organized as follows. In Section 2, we introduce the class of reactiondiffusion parabolic systems, the control design which includes the introduction of the event-triggered strategies for gain scheduling and the notion of existence and uniqueness of solutions. Section 3 provides the main results which include the avoidance of the Zeno phenomenon, the well-posedness of the closed-loop system and the exponential stability result. Section 4 provides a numerical example to illustrate the main results. Finally, conclusions and perspectives are given in Section 5. The Appendix contains the proof of an auxiliary result.
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Notation. R + will denote the set of nonnegative real numbers. Let S ⊆ R n be an open set and let A ⊆ R n be a set that satisfies S ⊆ A ⊆ S where S denotes the closure of S. By C 0 (A; Ω), we denote the class of continuous functions on A, which take values in Ω ⊆ R. By C k (A; Ω), where k ≥ 1 is an integer, we denote the class of functions on A, which takes values in Ω and has continuous derivatives of order k. In other words, the functions of class C k (A; Ω) are the functions which have continuous derivatives of order k in S = int(A) that can be continued continuously to all points in ∂S ∩ A. L 2 (0, 1) denotes the equivalence class of Lebesgue measurable functions f, g

: [0, 1] → R for which f = 1 0 |f (x)| 2 dx 1/2 < ∞ and with inner product f, g = 1 0 f (x)g(x)dx. L ∞ (0, 1) denotes the equivalence class of Lebesgue measurable functions f : [0, 1] → R for which f ∞ = ess sup x∈(0,1) (|f (x)|) < +∞. Let u : R + × [0, 1] → R be given. u[t] denotes the profile of u at certain t ≥ 0, i.e. (u[t])(x) = u(t, x), for all x ∈ [0, 1]. For an interval I ⊆ R + , the space C 0 (I; L 2 (0, 1))
is the space of continuous mappings I ∋ t → u[t] ∈ L 2 (0, 1). H 2 (0, 1) denotes the Sobolev space of functions f ∈ L 2 (0, 1) with square integrable (weak) first and second-

order derivatives f ′ (•), f ′′ (•) ∈ L 2 (0, 1).
2. Problem description and control design. Consider the following scalar reaction-diffusion system with time-and space-varying reaction coefficient:

u t (t, x) = εu xx (t, x) + λ(t, x)u(t, x), (2.1) 
u x (t, 0) = qu(t, 0), (2.2) u(t, 1) = U (t), or u x (t, 1) = U (t), (2.3) 
and initial condition:

(2.4) u(0, x) = u 0 (x),
where ε > 0, q ∈ (-∞, +∞] (the case q = +∞ is interpreted as the Dirichlet case (see [START_REF] Smyshlyaev | Closed-form boundary state feedbacks for a class of 1-d partial integro-differential equations[END_REF])) and λ

∈ C 0 (R + × [0, 1]) with λ[t] ∈ C 1 ([0, 1]). u : [0, ∞) × [0, 1] → R is the
system state and U (t) ∈ R is the control input. The initial condition u 0 (x) in (2.4) is assumed to belong to L 2 (0, 1). We assume that λ

∈ C 0 (R + × [0, 1]) is bounded, i.e.
there exists a constant λ > 0 such that

(2.5) |λ(t, x)| ≤ λ, ∀t ≥ 0, x ∈ [0, 1].
Moreover, we assume the following:

Assumption 2.1. There exists a constant ϕ > 0 such that the following inequality holds: In what follows, we do not consider system (2.1)-(2.3) as a time-varying system but we consider system (2.1)-(2.3) as a time-invariant system with two inputs: the control input U (t) and the distributed disturbance input λ[t] (see [START_REF] Sontag | Deterministic Finite Dimensional Systems[END_REF]Chapter 2]).

(2.6) |λ(t, x) -λ(s, x)| ≤ ϕ|t -s|, ∀x ∈ [0, 1], t,
Furthermore, it should be noticed that the disturbance input appears in a multiplicative way and system (2.1)-(2.3) is bilinear. Multiplicative control inputs in parabolic PDEs have been studied in [START_REF] Khapalov | Controllability of Partial Differential Equations Governed by Multiplicative Controls[END_REF] and multiplicative disturbance inputs in abstract infinite-dimensional systems have been studied in [START_REF] Mironchenko | Characterizations of integral input-to-state stability for bilinear systems in infinite dimensions[END_REF]. The fact of considering (2.1)-

(2.
3) as a time-invariant system is very important for theoretical reasons: we can always assume that the initial time is zero. Therefore, the proposed event-triggered control scheme may be seen as a feedforward control scheme that compensates the effect of the distributed disturbance input λ[t]. Feedforward control for infinite dimensional systems has been studied in [START_REF] Bastin | Feedforward boundary control of 2 × 2 nonlinear hyperbolic systems with application to Saint-Venant equations[END_REF].

2.1. Backstepping control design. Our aim is the global exponential stabilization of the system (2.1)-( 2.3) at zero using boundary control. To that end, we follow the backstepping approach which makes uses of an invertible Volterra transformation to map the system into a target system simpler to handle and with desired stability properties. Since the reaction coefficient is both time and space varying, typically, the kernels of the transformation have to be chosen to depend on time.

This brings an additional source of complexity since the resulting kernel PDE equation contains a time-derivative of the kernel and involves the time and space varying coefficient. Overall, the problem is much harder to solve but has been the object of extensive investigation since the seminal work [START_REF] Colton | The solution of initial-boundary value problems for parabolic equations by the method of integral operators[END_REF]. Numerical strategies such as the method of successive approximation have been widely employed (see e.g. [START_REF] Meurer | Tracking control for boundary controlled parabolic PDEs with varying parameters: Combining backstepping and differential flatness[END_REF] and [START_REF] Vazquez | Control for fast and stable laminar-to-highreynolds-numbers transfer in a 2D Navier-Stokes channel flow[END_REF]).

Our approach takes a different direction. We avoid solving a kernel-PDE hyperbolic spatial operator and first order derivative with respect to time capturing the reaction coefficient (dependent on both time and space). We use simpler kernels for the control under which we are still able to stabilize exponentially the closed-loop system. This brings some degree of robustness to the controller. Inspired by eventtriggered control strategies (in both finite and infinite-dimensional settings), the key idea of our approach is to schedule the kernel gain at a certain increasing sequence of times. More precisely the computation and updating of the kernel are on events and only when needed. The time instants are determined by event-triggered mechanisms that form an increasing sequence{t j } j∈N with t 0 = 0 which will be characterized later on.

Let {t j } j∈N be an increasing sequence of times with t 0 = 0 and define:

(2.7) b j (x) := λ(t j , x), for x ∈ [0, 1].
which is the sampled version of the reaction coefficient λ(t, x). We define also the error when sampling:

(2.8) e j (t, x) := λ(t, x) -b j (x), for t ∈ [t j , t j+1 ), x ∈ [0, 1].
Therefore, we can rewrite (2.1)-(2.3), for t ∈ [t j , t j+1 ) as follows:

u t (t, x) = εu xx (t, x) + b j (x)u(t, x) + e j (t, x)u(t, x), (2.9) u x (t, 0) = qu(t, 0), (2.10) u(t, 1) = U (t), or u x (t, 1) = U (t). (2.11)
The backstepping boundary control design is performed by transforming (2.9)-(2.11) into a target system which will reflect of the error when sampling e j (t, x) (2.8). Therefore, consider the following invertible Volterra transformation, for j ≥ 0,

w j (t, x) = u(t, x) - x 0 K j (x, y)u(t, y)dy := (K j u[t])(x) (2.12)
whose inverse1 is given by

u(t, x) = w j (t, x) + x 0 L j (x, y)w(t, y)dy := (L j w j [t])(x) (2.13)
with kernels K j , L j ∈ C 2 (T ) evolving in a triangular domain given by T = {(x, y) :

0 ≤ y ≤ x ≤ 1} and satisfying [36, Theorem 2]: (2.14) K j,xx (x, y) -K j,yy (x, y) = (b j (y) + c) ε K j (x, y), (2.15) K jy (x, 0) = qK j (x, 0), (2.16) K j (x, x) = - 1 2ε x 0 (b j (s) + c)ds, (2.17) L j,xx (x, y) -L j,yy (x, y) = - (b j (x) + c) ε L j (x, y), (2.18) L jy (x, 0) = qL j (x, 0), (2.19) L j (x, x) = - 1 2ε x 0 (b j (s) + c)ds.
Under (2.12), (2.14)-(2.16) and selecting the control U (t) to satisfy (2.20)

U (t) = 1 0 K j (1, y)u(t, y)dy, t ∈ (t j , t j+1 )
for Dirichlet actuation or by

(2.21) U (t) = K j (1, 1)u(t, 1) + 1 0 K j,x (1, y)u(t, y)dy, t ∈ (t j , t j+1 )
for Neumann actuation, the transformed system, for all j ≥ 0, t ∈ (t j , t j+1 ), is as follows:

w j,t (t, x) = εw j,xx (t, x) -cw j (t, x) + (K j f j [t])(x), (2.22) w jx (t, 0) = qw j (t, 0), (2.23) w j (t, 1) = 0, or w jx (t, 1) = 0, (2.24) where (2.25) f j (t, x) := e j (t, x)u(t, x)
and c is a design parameter which is chosen as c ≥ εq 2 (for Dirichlet actuation) or c ≥ εq 2 + ε/2 (for Neumann actuation) where q = max{0, -q} (see [START_REF] Smyshlyaev | Closed-form boundary state feedbacks for a class of 1-d partial integro-differential equations[END_REF]).

Moreover, the following estimate holds, for all j ≥ 0

(2.26) max {|K j (x, y)|, |L j (x, y)|} ≤ M exp(2M x), for (x, y) ∈ T ,
where M := λ+c ε (see [START_REF] Smyshlyaev | Closed-form boundary state feedbacks for a class of 1-d partial integro-differential equations[END_REF]).

Definitions (2.12),(2.13) imply the following estimates, for all j ≥ 0

(2.27) (K j u[t]) ≤ Kj u[t] ,
(2.28)

(L j w j [t]) ≤ Lj w j [t] ,
where Kj and Lj are defined, respectively by Kj := 1 +

1 0 x 0 |K j (x, y)| 2 dy dx 1/2
and Lj := 1 +

1 0 x 0 |L j (x, y)| 2 dy dx 1/2 .
In addition, inequality (2.26) implies the existence of a constant G > 0 such that:

(2.29) max Kj , Lj ≤ G, for j ≥ 0, where (2.30)

G := 1 + λ + c 4ε exp 4( λ + c) ε -1
which is independent of j. (2.31) 

w t (t, x) = εw xx (t, x) -cw(t, x) + (F (t)w[t])(x), x ∈ (0, 1), a 0 w(t, 0) + b 0 w x (t, 0) = a 1 w(t, 1) + b 1 w x (t, 1) = 0, where ε > 0, c, a 0 , b 0 , a 1 , b 1 are constants with a 2 0 + b 2 0 > 0, a 2 1 + b 2 1 > 0 and for each t ≥ 0 the operator F (t) : L 2 (0, 1) → L 2 (0,
w[0] = w 0 , has a unique solution w ∈ C 0 [0, T ]; L 2 (0, 1) ∩ C 1 (0, T ); L 2 (0, 1) with w[t] ∈ D for all t ∈ (0, T ),
where

D := f ∈ H 2 (0, 1) : a 0 f (0) + b 0 f ′ (0) = a 1 f (1) + b 1 f ′ (1) = 0 ,
that satisfies (2.34) and (2.31) for all t ∈ (0, T ).

Proof. See Appendix A.

We are in position to specialize the well-posedness result to the system (2.22)-(2.24) so as we can construct the solution by the step method. To do so, let us take in (2.34) Consequently, by the bounded invertibility of the backstepping transformation, for every u 0 ∈ L 2 (0, 1), we can construct a solution u ∈ C 0 [0, lim j→∞ (t j )) ; L 2 (0, 1)

a 0 = q, b 0 = -1 for q < +∞; a 0 = 1, b 0 = 0 for q = +∞, a 1 = 1, b 1 =
[t j ] = (K j u[t j ])(x) ∈ L 2 (0, 1), there exists a unique function w j ∈ C 0 [t j , t j+1 ] ; L 2 (0, 1) ∩ C 1 (t j , t j+1 ); L 2 (0,
with u[t] ∈ H 2 (0, 1) for t ∈ (0, lim j→∞ (t j )) and u ∈ C 1 ( Ĩ; L 2 (0, 1)) where Ĩ = [0, lim j→∞ (t j )) \ {t j : j = 0, 1, 2, . . .} which also satisfies (2.9)-(2.11) for all t ∈ Ĩ. Let R ∈ (0, 1) be a design parameter and define

(2.37)

µ := c + εµ 1 .
The static event-triggered gain scheduler is defined as follows:

The times of events t j ≥ 0 with t 0 = 0 form a finite or countable set of times which is determined by the following rules for some j ≥ 0:

a) if {t > t j : (K j u[t]), (K j f j [t]) > µR (K j u[t]) 2 } = ∅ then the set of the times of the events is {t 0 , ..., t j }. b) if {t > t j : (K j u[t]), (K j f j [t]) > µR (K j u[t]) 2 } = ∅, then the next event
time is given by:

t j+1 := inf{t > t j : (K j u[t]), (K j f j [t]) > µR (K j u[t]) 2 }, (2.38)
where u[t] denotes the solution of (2.1)-(2.3) with (2.20) or (2.21) for t ≥ t j .

2.3.2.

Event-triggered gain scheduling with a dynamic triggering condition. Inspired by [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF] and [START_REF] Espitia | Event-based boundary control of a linear 2x2 hyperbolic system via backstepping approach[END_REF], we introduce the second event-triggering mechanism for gain scheduling in this paper. It involves a dynamic variable which can be viewed as a filtered value of the static triggering condition in (2.38). With this strategy we expect to reduce updating times for the kernel scheduling and obtain larger interexecution times. Definition 2.5 (Definition of the dynamic event-triggered mechanism for gain scheduling). Let K j be the kernel satisfying (2.14)-(2.16), f j (t, x) be given by (2.25), j ≥ 0 and µ be given by (2.37). Let R ∈ (0, 1), η ≥ 2µ(1 -R) and θ > 0 be design parameters.

The dynamic event-triggered gain scheduler is defined as follows:

The times of events t j ≥ 0 with t 0 = 0 form a finite or countable set of times which is determined by the following rules for some j ≥ 0:

a) if {t > t j : (K j u[t]), (K j f j [t]) -µR (K j u[t]) 2 > 1 θ m(t)} = ∅ then the set of the times of the events is {t 0 , ..., t j }. b) if {t > t j : (K j u[t]), (K j f j [t]) -µR (K j u[t]) 2 > 1 θ m(t)} = ∅, then the next
event time is given by:

t j+1 := inf{t > t j : (K j u[t]), (K j f j [t]) -µR (K j u[t]) 2 > 1 θ m(t)}, (2.39)
where u[t] denotes the solution of (2.1)-(2.3) with (2.20) or (2.21) for t > t j and m satisfies the ordinary differential equation

(2.40) ṁ(t) = -ηm(t) + µR (K j u[t]) 2 -(K j u[t]), (K j f j [t]) , for t ≥ t j ,
and we set m(t j ) = 0.
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Remark 2.6. Let us remark that the static event-triggered strategy has only one design parameter (i.e. R ∈ (0, 1)) whereas the dynamic event-triggered strategy has three additional design parameters, namely, R (as in the static case), η and θ.

Essentially, η adjusts the convergence rate of the filter (2.40) that can be characterized as η ≥ 2µ(1 -R). The parameter θ, on the other hand, can be selected to contribute to sample less frequent than with the static event-triggered strategy. As a matter of fact, one can see the static event-triggering condition (2.38) as the limiting case of the dynamic event-triggering condition (2.39)-(2.40) when θ goes to +∞.

The following result guarantees that the dynamic variable m(t) remains always positive between two successive triggering times. This fact is going to be helpful in the stability analysis of the closed-loop system.

Lemma 2.7. Under the definition of the event-triggered gain scheduling with dy-

namic trigger condition (2.39)-(2.40), it holds, for t ∈ [t j , t j+1 ), j ≥ 0, that 1 θ m(t) + µR (K j u[t]) 2 -(K j u[t]), (K j f j [t]) ≥ 0 and m(t) ≥ 0.
Proof. From definition of the the event-triggered gain scheduling with dynamic triggering condition (2.39)-(2.40), events are triggered to guarantee, for t ∈ [t j , t j+1 ), Proof. Without loss of generality we may assume that j = 0 (and consequently t 0 = 0). Notice that if u[0] = 0 then both the static and dynamic event triggering conditions give t 1 = +∞. By assumption, the time of the next event generated by the static strategy is finite; therefore it holds that u[0] is not zero. Consequently, K 0 u[0]

j ≥ 0 that 1 θ m(t) + µR (K j u[t]) 2 -(K j u[t]), (K j f j [t]) ≥ 0.
is not zero.

Let t 1 be the time of the next event generated by the static event triggered mechanism and let T be the time of the next event generated by the dynamic one. We show next that T > t 1 by contradiction. Assume that T ≤ t 1 . Define (2.42)

q(t) := µR (K 0 u[t]) 2 -(K 0 u[t]), (K 0 f 0 [t]) .
Then we have by virtue of (2.38), (2.42) q(t) ≥ 0 for all t ∈ [0, t 1 ] and by virtue of (2.39), (2.42) q(T ) = -1 θ m(T ), implying that m(T ) ≤ 0. Since m(0) = 0 and ṁ(t) = -ηm(t) + q(t) for all t ∈ [0, T ], we have

(2.43) m(t) = t 0 exp(-η(t -s))q(s)ds, for all t ∈ [0, T ].
Since q(t) ≥ 0 for all t ∈ [0, T ] we get m(T ) ≥ 0 and thus we conclude that m(T ) = 0.

By continuity of q(t) (which follows by virtue of Proposition 2.3, the continuity of all mappings involved with respect to time, and since the scalar product and the norm preserve continuity) and the fact that q(t) ≥ 0 for all t ∈ [0, T ], the integral T 0 exp(-η(Ts))q(s)ds is zero only if q(t) is identically zero on [0, T ]. However, that is not possible since f 0 [0] = 0 (recall (2.7),(2.8) and (2.25)) and since q(0)

= µR K 0 u[0] 2 -K 0 u[0], K 0 f 0 [0] = µR K 0 u[0] 2 > 0. Thus, it must hold that T > t 1 .
3. Analysis of the closed-loop system and main results. In this section we present our main results: the avoidance for the Zeno behavior2 , the well-posedness and the exponential stability of the closed-loop system under boundary controller whose gains are scheduled according to the two event-triggered strategies.

3.1. Avoidance of the Zeno phenomenon.

3.1.1. Event-triggered gain scheduling with a static triggering condition.

Proposition 3.1. Under (2.38), there exists a minimal dwell-time between two triggering times, i.e. there exists a constant τ > 0 (independent of the initial condition u 0 ) such that t j+1t j ≥ τ , for all j ≥ 0. More specifically, τ satisfies: Proof. Assume that an event occurs at t = t j+1 , Then, from (2.38) and using (2.12), continuity of all mappings involved with respect to time and the Cauchy-Schwarz inequality, the following more conservative estimate holds:

(3.1) τ = 1 ϕ µR G 2 , with µ = c + εµ 1 (recall (2.
(3.2) w j [t j+1 ]) (K j f j [t j+1 ]) ≥ w j [t j+1 ], (K j f j [t j+1 ]) ≥ µR w j [t j+1 ] 2 .
Using (2.13), (2.25), (2.27)-(2.30) we get from (3.2):

(3.3) G 2 w j [t j+1 ] 2 e j [t j+1 ] ∞ ≥ µR w j [t j+1 ] 2 .
Therefore, ) for all t ∈ I and I = R + \{t j ≥ 0, j = 0, 1, 2, ...}.

(3.4) G 2 e j [t j+1 ] ∞ ≥ µR.

Exponential stability analysis.

We present next the stability results under our two event-triggered gain scheduling strategies.

3.2.1.

Event-triggered gain scheduling with a static triggering condition.

Theorem 3.5. Under Assumption 2.1, if the following condition is fulfilled,

(3.7) ϕ < µ 2 R(1 -R) G 2 ln (G) ,
where ϕ, G, µ, R are defined, respectively, in (2. (3.9) d dt

1 2 w j [t] 2 ≤ -µ w j [t] 2 + w j [t], (K j f j [t]) ,
where µ = c + εµ 1 (recall (2.37) µ 1 being the principal eigenvalue of the Sturm-Liouville operator B (2.36)). We can rewrite (3.9) as follows:

(3.10) d dt

1 2 w j [t] 2 ≤ -µ(1 -R) w j [t] 2 -µR w j [t] 2 + w j [t], (K j f j [t]) ,
where R ∈ (0, 1) is the parameter involved in (2.38).

Therefore, from the definition of the static event-triggered gain scheduler, events are triggered to guarantee,

w j [t], (K j f j [t]) ≤ µR w j [t] 2
, for all t ∈ (t j , t j+1 ).

Then, we obtain for all t ∈ [t j , t j+1 ):

(3.11) w j [t] 2 ≤ exp (-2µ(1 -R)(t -t j )) w j [t j ] 2 .
Using (2.12), (2.13), (2.27)-(2.30) and (3.11), we get:

(3.12) u[t] 2 ≤ G 2 exp(-2µ(1 -R)(t -t j )) u[t j ] 2 ,
for all t ∈ [t j , t j+1 ). Since u ∈ C 0 (R + ; L 2 (0, 1)), it follows that (3.12) holds for t = t j+1 as well, i.

) u[t j+1 ] 2 ≤ G 2 exp(-2µ(1 -R)(t j+1 -t j )) u[t j ] 2 . e. (3.13 
Now, for all t ≥ 0, an estimate of u[t] in terms of u[0] can be derived recursively, by using (3.6) and the fact that there have been j events and that jτ units of time have (at least) been passed until t. To that end, we can apply induction on j and prove that, for all j ≥ 0,

(3.14) u[t j ] 2 ≤ (G 2j ) exp(-2µ(1 -R)t j ) u[0] 2 ,
and that t j ≥ jτ . Let j ≥ 0 be given (arbitrary) and t ∈ [t j , t j+1 ) (arbitrary). We obtain from (3.12),(3.13) and (3.14):

(3.15) u[t] 2 ≤ (G 2 ) j+1 exp(-2µ(1 -R)t) u[0] 2 .
Moreover, since j ≤ t τ , it holds:

(3.16) u[t] 2 ≤ G 2 exp -2µ(1 -R) -2ln(G) τ t u[0] 2 .
In light of condition (3.7) in conjunction with (3.6) where τ = 1 ϕ µR G 2 , we finally obtain:

(3.17) u[t] ≤ G exp(-σt) u[0] , for all t ≥ 0, with σ = µ 2 R(1-R)-ϕG 2 ln(G)
µR > 0. This concludes the proof.

Remark 3.6. Notice that µ 2 R(1 -R) -ϕG 2 ln(G) > 0 holds true provided that ϕ is sufficiently small (this corresponds to the case where λ(t, x) is slowly time-varying coefficient). In addition, it is worth remarking that we can select R = 1 2 in order to maximize the allowable upper bound ϕ. Nevertheless, different values of R may be used in practice since the obtained estimates are conservative. The proof of Theorem 2 provides a (conservative) explicit estimate of the convergence rate σ > 0. The obtained estimate shows that the smaller ϕ is (i.e., the slower the change of the reaction coefficient), the higher the convergence rate is. 

(3.18) u[t] ≤ G exp(-σt) u[0]
, for all t ≥ 0.

Proof. An estimate of the time-derivative of the following function W (t) := 

1 2 w j [t] 2 + m(t)
(3.19) Ẇ (t) ≤ -µ w j [t] 2 + w j [t], (K j f j [t]) -ηm(t) -w j [t], (K j f j [t]) + µR w j [t] 2
which can be rewritten as follows:

(3.20) Ẇ (t) ≤ -µ(1 -R) w j [t] 2 + 2m(t) -m(t)(η -2µ(1 -R)).
By Lemma 2.7, we guarantee that m(t) ≥ 0 and since η ≥ 2µ(1 -R) (recall Definition 2.5), thus we get:

(3.21) Ẇ (t) ≤ -2µ(1 -R)W (t)
Therefore, we obtain for t ∈ [t j , t j+1 ):

(3.22) 1 2 w j [t] 2 + m(t) ≤ exp(-2µ(1 -R)(t -t j )) 1 2 w j [t j ] 2 + m(t j ) .
Notice that 1 2 w j [t] 2 ≤ 1 2 w j [t] 2 + m(t) and that by Definition 2.5, m(t j ) = 0.

Therefore, from (3.22) we have, for all t ∈ [t j , t j+1 ):

(3.23)

w j [t] 2 ≤ exp(-2µ(1 -R)(t -t j )) w j [t j ] 2 .
The remaining part of the proof follows the same reasoning as the proof of Theorem 3.5 (see from (3.12)). This concludes the proof.

Remark 3.8. The function W (t) is monotonically decreasing (see (3.21)), for all t ∈ [t j , t j+1 ). However, the function 1 2 w j [t] 2 may not be monotonically decreasing on that interval. The design parameter θ involved in the dynamic event-triggering condition (2.39)-(2.40) and also discussed in Remark 2.6, allows to limit the potential increase of 1 2 w j [t] 2 . Indeed, since events are triggered to guarantee 1 θ m(t)

+ µR (K j u[t]) 2 -(K j u[t]), (K j f j [t]) ≥ 0, it holds that d dt 1 2 w j [t] 2 ≤ -µ(1 -R) w j [t] 2 + 1 θ m(t).
Notice that the larger the value of θ, the more limited the increase. We approach then to the case as we were dealing with the static event-triggered gain scheduler.

4. Numerical simulations. We illustrate the results by considering (2.1)-(2.4) with ε = 1, q = +∞ and initial condition u 0 (x) = 2(xx 2 ). For numerical simulations, the state of the system has been discretized by finite differences on a uniform grid with the step h = 0.02 for the space variable. The discretization with respect to
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This manuscript is for review purposes only. time was done using the implicit Euler scheme with step size ∆t = h 2 . We run simulations on a frame of 2s. We choose the time-and space-varying coefficient λ(t, x)

to have a simple form as λ(t, x) = λ c + λ t (t) + λ x (x). More specifically: (4.1) λ(t, x) = 10 + 50 cosh 2 (5(t -1)) + 7 cos(5πt) + 50 cosh 2 (5x)

, t > 0, x ∈ [0, 1],
which has a profile depicted in Figure 1. We stabilize the closed-loop system (2.1)- 

K j (x, y) = -λj y I 1 λj (x 2 -y 2 ) λj (x 2 -y 2 ) -5 tanh(5y)I 0 λj (x 2 -y 2 ) ,
where I m (•), m ∈ Z is a modified Bessel function of the first kind of order m. Figure 2 shows the event-triggered sampled version of the profile of the time-and space-varying reaction coefficient (4.1) for all t ∈ [t j , t j+1 ), j ≥ 0 according to the static eventtriggered gain scheduler (2.38) (depicted on the left) and the dynamic event-triggered gain scheduler (2.39)-(2.40) (depicted on the right). Hence, the kernel updating is done on events and aperiodically. One of the main features of this approach is that the kernel of the control does not need to be computed using the method of successive approximations to solve a PDE kernel which involves a time-and space-varying coefficient (see e.g. [START_REF] Jadachowski | An efficient implementation of backstepping observers for time-varying parabolic pdes[END_REF][START_REF] Kerschbaum | Backstepping control of coupled linear parabolic PDEs with space and time dependent coefficients[END_REF] which do deal with successive approximations method and efficient numerical schemes for the computation of kernels and further considerations for the stabilization of reaction-diffusion PDEs with time-and space-varying coefficients). As motivated throughout the paper, it suffices to schedule the kernel in a suitable way and only when needed while using a simpler kernel (in some cases admitting closed-form solution; or in some cases when it is approximated via a simpler successive approximation as one is not taking into account the time-dependence). 

0 (x) = 2/n sin( √ nπx) + √ n(x -x 2
), for n = 1, . . . , 100 on a frame of 2s. We compare the static event triggered mechanism with respect to the dynamic one while computing the inter-execution times between two triggering times. We compare several cases by tuning different parameters. For all cases, η is selected as η = 2µ(1 -R).

The mean value of the numbers of events generated under the two strategies is re- ported in Table 1. The mean value and coefficient of variation (ratio between the standard deviation and the mean value) of inter-execution times for both approaches are reported in Tables 2 and3, respectively. In addition, Figure 5 shows the density of the inter-execution times (axis in logarithmic scale). The red bars correspond to the inter-execution times under the static event triggered mechanism (2.38); whereas the blue bars correspond to the dynamic event triggered mechanism (2.39)-(2.40) resulting in larger inter-execution times. Therefore, it can be asserted that, as expected, with the dynamic triggering condition one obtains larger inter-execution times and we can reduce the number of events rendering the strategy slightly less conservative. In general, dynamic event-triggered strategies may offer benefits with respect to static strategies as in the framework of even-triggered control (in finite and infinite dimensional settings). to reduce the number of events for the gain scheduling. We show that under the two proposed event-triggered gain scheduling schemes Zeno behavior is avoided, which allows to prove well-posedness as well as the exponential stability of the closed-loop system.

Our approach can be seen as an efficient way of kernel computation as it is scheduled aperiodically, when needed and relying on the current state information of the closed-loop system and the time-and space-varying reaction coefficient which is considered as a distributed input disturbance. Furthermore, the boundary controller is seen as a feedforward one. This work constitutes an effort towards the "robustification" of boundary controllers designed under backstepping method.

In future work, we expect to combine these results with event-triggered control strategies for boundary controlled reaction-diffusion PDEs systems recently introduced in [START_REF] Espitia | Event-triggered boundary control of constantparameter reaction-diffusion PDEs: a small-gain approach[END_REF] (which deals with constant reaction coefficient only). The results in this paper may suggest that the triggering times for gain scheduling may be synchronized with the time instants for control updating. The control is going to be piecewise constant and not piecewise continuous as in the present work. This would represent a more realistic way of actuation on the PDE system towards digital realizations. Finally, we expect to study observers to come up with an observer-based event-triggered gain scheduling scheme for this class of reaction diffusion PDEs. This would require to handle new arising challenging issues (e.g. event-triggered gain scheduling of the output injection gains, point-wise estimates whenever ones samples the output measurement, the avoidance of the Zeno phenomena, among many others).

D ⊂ H 2 (

 2 [0, 1]) is the set of functions f : [0, 1] → R for which one has f ′ (0) = qf (0) and f (1) = 0 for the case of Dirichlet actuation or f ′ (1) = 0 for the case of Neumann actuation.

2. 3 .Definition 2 . 4 (

 324 Event-triggered gain scheduling. Let us consider the following Sturm-Liouville operator B : D → L 2 (0, 1) defined by(2.36) (Bh)(x) = -ε d 2 h dx 2 (x),for all h ∈ D and x ∈ (0, 1) whereD ⊂ H 2 ([0, 1]) is the set of functions h : [0, 1] → Rfor which one has h ′ (0) = qh(0) and h(1) = 0 for the case of Dirichlet actuation or h ′ (1) = 0 for the case of Neumann actuation.We denote µ 1 < µ 2 < ... < µ n < .. with lim n→∞ (µ n ) = +∞ and φ n (x) ∈ C 2 ([0, 1], R), (n = 1, 2...) the eigenvalues and the eigenfunctions, respectively, of the operator B.2.3.1. Event-triggered gain scheduling with a static triggering condition. We introduce the first event-triggering strategy (or mechanism) for gain scheduling considered in this paper. The triggering condition is a state-dependent law and determines the time instants at which the reaction coefficient has to be sampled and thereby when the kernel computation/updating has to be done. Definition of the static event-triggered mechanism for gain scheduling). Let K j be the kernel satisfying (2.14)-(2.16) and let f j (t, x) be given by (2.25), j ≥ 0. Let µ 1 be the principal eigenvalue of the Sturm-Liouville operator B (2.36).

37 )

 37 with µ 1 being the principal eigenvalue of the Sturm-Liouville operator B (2.36)), R ∈ (0, 1) being the design parameter involved in the event-triggering condition (2.38), ϕ as in Assumption 2.1 and G given by (2.30).

Fig. 1 .

 1 Fig. 1. Profile of the time-and space-varying reaction coefficient λ(t, x) = 10 +

( 2 . 4 ) 5 (

 245 under Dirichlet actuation with boundary control (2.20) whose kernel gains satisfy (2.14)-(2.16) and are scheduled according to the two event-triggered mechanisms we introduced in Definition 2.4 (static-based triggering condition) and Definition 2.dynamic-based triggering condition). The parameters of the triggering conditions are set R = 0.15, µ = c + επ 2 = π 2 with c = 0. In addition, η = 16.7 and θ = 0.15. From (2.7), b j (x) = λ(t j , x) = λj + 50 cosh 2 (5x) , where λj := 10 + 50 cosh 2 (5(tj -1))

Fig. 2 .

 2 Fig. 2. Sampled version of the profile of the time-and space-varying reaction coefficient (4.1), i.e. λ(t j , x) for all {t j } j∈N according to the static event-triggered gain scheduler (2.38) (depicted on the left) and the dynamic event-triggered gain scheduler (2.39)-(2.40) (depicted on the right).

Figures 3 and 4 Fig. 3 .

 43 Figures 3 and 4 show the time-evolution of the L 2 norm of the closed-loop system (2.1)-(2.4), (4.1) and the time-evolution of the boundary control (2.20), respectively, under static event-triggered gain scheduler (2.38) (red dashed line) and dynamic event-triggered gain scheduler (2.39)-(2.40) (blue line). For both figures, on the right, there are zooms of the two curves to illustrate the difference. It can be observed that under the two strategies, the behavior is similar with same theoretical guarantees. Finally, we run simulations for 100 different initial conditions given by

  u

Fig. 4 .

 4 Fig. 4. Time-evolution of the boundary control under static event-triggered gain scheduler (2.38) (red dashed line) and under dynamic event-triggered gain scheduler (2.39)-(2.40) (blue line).On the right, there is a zoom of the two curves to illustrate the difference.

R

  = 0.15, η = 16.7 R = 0.5 η = 9

Fig. 5 . 5 .

 55 Fig. 5. Density of the inter-execution times (axis in logarithmic scale) computed for 100 different initial conditions given by u 0 (x) = 2/n sin( √ nπx) + √ n(x -x 2 ), for n = 1, . . . , 100 on a frame of 2s. The parameters of the event-triggered strategies are: R = 0.5, η = 9.86 and θ = 0.015. The red bars correspond to the density of inter-execution times under the static event triggered mechanism (2.38); whereas the blue bars correspond to the dynamic event triggered mechanism (2.39)-(2.40) resulting in larger inter-execution times.

  Theorem 2.2. For every initial condition w 0 ∈ L 2 (0, 1) and T > 0, the initial-

	boundary value problem (2.31) with
	(2.34)	
		1) is a linear bounded operator for which
	there exist constants Ω 1 , Ω 2 > 0 such that
	(2.32)	F [t] ≤ Ω 1 , for all t ≥ 0,
	(2.33)	

F (t) -F (s) ≤ Ω 2 |t -s|, for all t, s ≥ 0.
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  Proposition 3.1 allows us to conclude that lim(t j ) = +∞ and thereby we can apply Proposition 2.3 to get the following result on the existence of solutions of the closed-loop system (2.1)-(2.4) with control (2.20), under the static event-triggered gain scheduler(2.38). for all t ∈ I and I = R + \{t j ≥ 0, j = 0, 1, 2, ...}.Remark 3.3. The minimal dwell-time depends on the rate of change of the reaction coefficient. A higher rate of change of the reaction coefficient (i.e., large ϕ) would give a smaller minimal dwell-time (i.e., more frequent event triggering). This is expected since a high rate of change of the reaction coefficient requires a more frequent update of the control law.

	Corollary 3.2. For every initial condition u 0 ∈ L 2 (0, 1), there exists a unique mapping u ∈ C 0 (R + ; L 2 (0, 1)) ∩ C 1 (I; L 2 (0, 1)), u[t] ∈ H 2 (0, 1) for t > 0 that satisfies (2.1)-(2.4) with control (2.20) or (2.21), under the static event-triggered gain scheduler
	(2.38) Proof. It is an immediate consequence of Proposition 2.3 and Proposition 3.1.
	Indeed, the solution is constructed (by the step method) iteratively between successive
	triggering times.	
	By virtue of Assumption 2.1 in conjunction with (2.7) and (2.8), we obtain for all
	j ≥ 0	
	(3.5)	G 2 ϕ(t j+1 -t j ) ≥ µR,
	from which we can deduce (using definition (3.1))
	(3.6)	t j+1 -t j ≥ τ,
	being τ the minimal dwell-time (independent on initial conditions).

3.1.2. Event-triggered gain scheduling with a dynamic triggering condition. By virtue of Proposition 2.8, the inter-execution time for the dynamic event triggered mechanism (2.39)-(2.40) always exceeds the inter-execution time for the static event triggered mechanism (2.38). Due to Proposition 3.1, the Zeno phenomenon is immediately excluded. Therefore, as in the static case, we can also conclude that lim(t j ) = +∞ and thereby we can apply Proposition 2.3 to get the following result on the existence of solutions of the closed-loop system (2.1)-(2.4) with control (2.20) or (2.21), under the dynamic event-triggered gain scheduler (2.39)-(2.40). Corollary 3.4. For every initial condition u 0 ∈ L 2 (0, 1), there exists a unique mapping u ∈ C 0 (R + ; L 2 (0, 1)) ∩ C 1 (I; L 2 (0, 1)), u[t] ∈ H 2 (0, 1) for t > 0 that satisfies (2.1)-(2.4) with control (2.20) or (2.21), under the dynamic event-triggered gain scheduler (2.39)-(2.40

  By using the variational characterization of eigenvalues (see[START_REF] Strauss | Partial Differential Equations[END_REF] Section 11.4]) in conjunction with (2.22)-(2.24),(2.25), the following estimate holds for all t ∈ (t j , t j+1 ):

	6), (2.30), (2.37), (2.38); then, the
	closed-loop system (2.1)-(2.4) with control (2.20) or (2.21), under the static event-
	triggered gain scheduler (2.38), is globally exponentially stable. More specifically, there
	exists a constant σ > 0 such that
	(3.8)

u[t] ≤ G exp(-σt) u[0] , for all t ≥ 0. 11
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Proof.

  Theorem 3.7. If condition (3.7) of Theorem 3.5 holds, then, the closed-loop sys-

	3.2.2. Event-triggered gain scheduling with a dynamic triggering con-
	dition.
	tem (2.1)-(2.4) with control (2.20) or (2.21), under dynamic event-triggered gain
	scheduler (2.39)-(2.40) is globally exponentially stable. More specifically, there exists
	a constant σ > 0 such that

  along the solutions (2.22)-(2.24),(2.25),(2.40) is given by:

Table 1

 1 Mean value of the number of events generated under the static event-triggered gain scheduler (2.38) and under dynamic event-triggered gains scheduler (2.39)-(2.40).

		R = 0.15, η = 16.7 R = 0.5 η = 9.86
	Static ET	39.93	18.58
	Dynamic ET (θ = 100)	37.08	17.6
	Dynamic ET (θ = 1)	29.8	16.02
	Dynamic ET (θ = 0.015)	17.01	8.99

Table 2

 2 Mean value of inter-execution times for static event-triggered gain scheduler (2.38) and for dynamic event-triggered gains scheduler (2.39)-(2.40).

see[START_REF] Riesz | Functional Analysis[END_REF] Chapter 4] for details on the invertibility of the Volterra transformation.

This manuscript is for review purposes only.

We recall, the Zeno phenomenon means infinite triggering times in a finite-time interval. In practice, Zeno phenomenon would represent infeasible implementation into digital platforms since one would require to sample infinitely fast.

Appendix A. Proof ot Theorem 2.2.

Proof. It suffices to show that there exists k > 0 such that for each w 0 ∈ L 2 (0, 1) and T > 0 the initial value problem

has a unique classical solution on [0, T ] in the sense described in [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF] where A : D → L 2 (0, 1) is the Sturm-Liouville operator defined by the following formula for every 

an orthonormal basis of L 2 (0, 1). It follows that the semigroup

is a C 0 semigroup on L 2 (0, 1) (see [START_REF] Zabczyk | Mathematical Control Theory: An Introduction[END_REF], page 178 ). Consequently, -A is the infinitesimal generator of a C 0 semigroup on L 2 (0, 1).

The fact that -A is the infinitesimal generator of an analytic semigroup follows from the fact that the eigenvalues λ n , n = 1, 2, . . . of A are all real with lim (λ n ) = +∞ Indeed, we can directly apply Theorem 5.2 on page 61 in [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF] when λ 1 > 0. When λ 1 < 0 then we can apply Theorem 5.2 on page 61 in [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF] to the operator -A -rI with r > -λ 1 (which generates the C 0 semigroup exp(-rt)S(t); see explanations on page 61 in [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF]).
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Since -A is the infinitesimal generator of a C 0 semigroup S(t), t ≥ 0 on L 2 (0, 1)

and since for each t ≥ 0 the operator F (t) : L 2 (0, 1) → L 2 (0, 1) is a linear bounded operator for which there exist constants Ω 1 , Ω 2 > 0 such that (2.32) and (2.33) hold, it follows from Theorem 1.2 on page 184 in [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF] that there exists a unique mild solution 

Selecting k > 0 so that Mc k-ω < 1, estimate (A.4) implies the following estimate:

We next define

Inequalities (A. [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF] we conclude that y[t] is the unique classical solution of (A.1).