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EVENT-TRIGGERED GAIN SCHEDULING OF1

REACTION-DIFFUSION PDES2

IASSON KARAFYLLIS∗, NICOLÁS ESPITIA† , AND MIROSLAV KRSTIC ‡3

Abstract. This paper deals with the problem of boundary stabilization of 1D reaction-diffusion4
PDEs with a time- and space- varying reaction coefficient. The boundary control design relies on5
the backstepping approach. The gains of the boundary control are scheduled under two suitable6
event-triggered mechanisms. More precisely, gains are computed/updated on events according to7
two state-dependent event-triggering conditions: static-based and dynamic-based conditions, under8
which, the Zeno behavior is avoided and well-posedness as well as exponential stability of the closed-9
loop system are guaranteed. Numerical simulations are presented to illustrate the results.10

Key words. reaction-diffusion systems, backstepping control design, event-triggered sampling,11
gain scheduling.12

1. Introduction. Control design of complex systems modeled by partial differ-13

ential equations (PDEs) has become a central research area. The two traditional ways14

to act on those complex systems are the in-domain control and boundary control. For15

boundary control, the backstepping method has been used as standard tool for de-16

signing feedback laws. It has initially emerged to deal with 1D reaction-diffusion17

parabolic PDEs in [2], [36] and since then, the method has been employed to deal18

with the boundary stabilization of broader classes of PDEs (for an overview see [21]19

and [26]). One of the most remarkable features of the backstepping approach is that20

for some specific cases, it is possible to obtain closed-form analytical solutions for21

the kernels of the underlying integral Volterra transformation. Having explicit ex-22

pressions for the kernels and for controllers makes implementation simpler and more23

precise. For instance, for reaction diffusion systems with constant parameters, closed-24

form solutions for the kernels has been obtained in terms of special functions such as25

the modified Bessel function [36]. When having a time-varying reaction coefficient, a26

closed-form solution can be obtained through power series for exponential stabiliza-27

tion [37], or, in the context of fixed-time stability, closed-form of time-varying kernels28

can be obtained using special functions as in [8].29

Nevertheless, for general reaction diffusion PDEs (e.g. having time- and space-30

varying coefficient), obtaining closed-form solutions for the kernels is in general very31

hard (or even not possible). For this class of PDEs with time- and space- varying32

coefficients, the problem of boundary stabilization has been very challenging. Time-33

and space varying reaction coefficients come into play in some applications such as34

in trajectory planing and multi-agent systems (see e.g. [27, 9]), to mention a few. In35

general, the resulting kernel-PDE is of the form of hyperbolic spatial operator and36

first order derivative with respect to time since the kernel of the Volterra transfor-37

mation has to be time-varying. This brings additional source of complexity to the38

problem that requires a careful well-posedness analysis and numerical methods for the39

solvability. The solution of the kernel, indeed, is needed to be found numerically by40

e.g. the method of integral operators or the so called method of successive approxi-41
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mations (which traces back to the seminal work [3]). In this line, some contributions42

have rigorously handled the well-posedness of time-varying kernels solutions where the43

reaction term is time and space dependent as in [27, 43] and some efficient algorithms44

to better handle the solvability of kernels have been proposed e.g. in [15].45

More recent contributions focus on coupled parabolic PDEs [29], with space vary-46

ing reaction coefficients [42, 4] and time- and space- varying coefficients [19] all of47

which able to handle more challenging issues related to the solvability, suitable choices48

of target systems, coupling matrices structure and well-posedness issues in general.49

50

In this paper, we aim at stabilizing scalar 1D reaction–diffusion PDEs with a time-51

and space- varying reaction coefficient from a different perspective. Our approach52

combines some ideas from hybrid systems, specifically from the framework of state-53

dependent switching laws, sampled-data and event-triggered sampling/control strate-54

gies. For an overview of the literature on sampled-data, event-triggered and switching55

strategies, we refer to e.g. [14, 23, 40, 13, 11, 32, 16, 24] for finite-dimensional systems56

and to [25, 10, 17, 35, 12],[41, 33, 22, 5, 6, 31] for some classes of infinite dimensional57

systems.58

Having said that, the main ideas in this paper state that instead of handling59

a time-varying kernel capturing the time- and space- varying coefficient, we use a60

simpler kernel capturing only the spatial variation of the reaction coefficient. This is61

possible as long as the reaction coefficient is sampled in time, thus the kernel-PDE62

reduces to a form involving space-varying coefficient only between two successive63

sampling times. In order to determine the time instants, we introduce event-triggered64

mechanisms that form an increasing sequence of triggering times (or time of events).65

At those event times, kernels are computed/updated in aperiodic fashion and only66

when needed. In other words, kernels for the control are scheduled according to some67

event triggering condition (state-dependent law). Doing so, the approach constitutes a68

kind of a gain scheduling strategy suggesting then the adopted name for our approach:69

event-triggered gain scheduling.70

Sampling in time the reaction coefficient introduces an error (called error when71

sampling) that is reflected in the target system after transformation. This requires72

the study of well-posedness issues, ISS properties ([18]) and the exponential stability73

of the closed loop system when the control gains are scheduled according to the74

event-triggered mechanisms. In this paper we propose two strategies: the first one75

relies on a static triggering condition which takes into account the effect of the error76

when sampling after transformation and the current state of the closed-loop system.77

The second strategy relies on a dynamic triggering condition which makes uses of78

a dynamic variable that can be seen as a filtered version of the static triggering79

condition. Moreover, under the two proposed strategies, the avoidance of the so80

called Zeno phenomenon is proved. Hence, we can guarantee the well-posedness as81

well as the exponential stability of the closed-loop system provided that the reaction82

coefficient is slowly time-varying.83

The paper is organized as follows. In Section 2, we introduce the class of reaction-84

diffusion parabolic systems, the control design which includes the introduction of the85

event-triggered strategies for gain scheduling and the notion of existence and unique-86

ness of solutions. Section 3 provides the main results which include the avoidance87

of the Zeno phenomenon, the well-posedness of the closed-loop system and the expo-88

nential stability result. Section 4 provides a numerical example to illustrate the main89

results. Finally, conclusions and perspectives are given in Section 5. The Appendix90

contains the proof of an auxiliary result.91
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Notation. R+ will denote the set of nonnegative real numbers. Let S ⊆ R
n be92

an open set and let A ⊆ R
n be a set that satisfies S ⊆ A ⊆ S̄ where S̄ denotes93

the closure of S. By C0(A; Ω), we denote the class of continuous functions on A,94

which take values in Ω ⊆ R. By Ck(A; Ω), where k ≥ 1 is an integer, we denote the95

class of functions on A, which takes values in Ω and has continuous derivatives of96

order k. In other words, the functions of class Ck(A; Ω) are the functions which have97

continuous derivatives of order k in S = int(A) that can be continued continuously98

to all points in ∂S ∩A. L2(0, 1) denotes the equivalence class of Lebesgue measurable99

functions f, g : [0, 1] → R for which ‖f‖ =
(

∫ 1

0
|f(x)|2dx

)1/2

< ∞ and with inner100

product 〈f, g〉 =
∫ 1

0
f(x)g(x)dx. L∞(0, 1) denotes the equivalence class of Lebesgue101

measurable functions f : [0, 1] → R for which ‖f‖∞ = ess supx∈(0,1)(|f(x)|) < +∞.102

Let u : R+ × [0, 1] → R be given. u[t] denotes the profile of u at certain t ≥ 0, i.e.103

(u[t])(x) = u(t, x), for all x ∈ [0, 1]. For an interval I ⊆ R+, the space C0(I;L2(0, 1))104

is the space of continuous mappings I ∋ t 7→ u[t] ∈ L2(0, 1). H2(0, 1) denotes the105

Sobolev space of functions f ∈ L2(0, 1) with square integrable (weak) first and second-106

order derivatives f
′

(·), f ′′

(·) ∈ L2(0, 1).107

2. Problem description and control design. Consider the following scalar108

reaction-diffusion system with time- and space- varying reaction coefficient:109

ut(t, x) = εuxx(t, x) + λ(t, x)u(t, x),(2.1)110

ux(t, 0) = qu(t, 0),(2.2)111

u(t, 1) = U(t), or ux(t, 1) = U(t),(2.3)112

and initial condition:113

(2.4) u(0, x) = u0(x),114

where ε > 0, q ∈ (−∞,+∞] (the case q = +∞ is interpreted as the Dirichlet case115

(see [36])) and λ ∈ C0(R+ × [0, 1]) with λ[t] ∈ C1([0, 1]). u : [0,∞)× [0, 1] → R is the116

system state and U(t) ∈ R is the control input. The initial condition u0(x) in (2.4)117

is assumed to belong to L2(0, 1). We assume that λ ∈ C0(R+ × [0, 1]) is bounded, i.e.118

there exists a constant λ̄ > 0 such that119

(2.5) |λ(t, x)| ≤ λ̄, ∀t ≥ 0, x ∈ [0, 1].120

Moreover, we assume the following:121

Assumption 2.1. There exists a constant ϕ > 0 such that the following inequality122

holds:123

(2.6) |λ(t, x) − λ(s, x)| ≤ ϕ|t− s|, ∀x ∈ [0, 1], t, s ≥ 0.124

Assumption 2.1 means that the reaction coefficient is Lipschitz with respect to time125

with Lipschitz constant ϕ. The constant ϕ is a quantity that depends on the rate126

of change of the reaction coefficient: a high rate of change of the reaction coefficient127

implies a large value for ϕ. All subsequent results are also valid (with some modifi-128

cations) if Assumption 2.1 is replaced by the less demanding assumption of Hölder129

continuity instead of Lipschitz continuity, i.e., if we replace the right hand side of (2.6)130

by ϕ|t − s|a, where a ∈ (0, 1) is a constant. However, for simplicity we will restrict131

the presentation of the results to the Lipschitz case.132

133

3

This manuscript is for review purposes only.



In what follows, we do not consider system (2.1)-(2.3) as a time-varying system134

but we consider system (2.1)-(2.3) as a time-invariant system with two inputs: the135

control input U(t) and the distributed disturbance input λ[t] (see [38, Chapter 2]).136

Furthermore, it should be noticed that the disturbance input appears in a multiplica-137

tive way and system (2.1)-(2.3) is bilinear. Multiplicative control inputs in parabolic138

PDEs have been studied in [20] and multiplicative disturbance inputs in abstract139

infinite-dimensional systems have been studied in [28]. The fact of considering (2.1)-140

(2.3) as a time-invariant system is very important for theoretical reasons: we can141

always assume that the initial time is zero. Therefore, the proposed event-triggered142

control scheme may be seen as a feedforward control scheme that compensates the143

effect of the distributed disturbance input λ[t]. Feedforward control for infinite di-144

mensional systems has been studied in [1].145

2.1. Backstepping control design. Our aim is the global exponential stabi-146

lization of the system (2.1)-(2.3) at zero using boundary control. To that end, we147

follow the backstepping approach which makes uses of an invertible Volterra trans-148

formation to map the system into a target system simpler to handle and with desired149

stability properties. Since the reaction coefficient is both time and space varying,150

typically, the kernels of the transformation have to be chosen to depend on time.151

This brings an additional source of complexity since the resulting kernel PDE equa-152

tion contains a time-derivative of the kernel and involves the time and space varying153

coefficient. Overall, the problem is much harder to solve but has been the object of154

extensive investigation since the seminal work [3]. Numerical strategies such as the155

method of successive approximation have been widely employed (see e.g. [27] and156

[43]).157

Our approach takes a different direction. We avoid solving a kernel-PDE hyper-158

bolic spatial operator and first order derivative with respect to time capturing the159

reaction coefficient (dependent on both time and space). We use simpler kernels for160

the control under which we are still able to stabilize exponentially the closed-loop161

system. This brings some degree of robustness to the controller. Inspired by event-162

triggered control strategies (in both finite and infinite-dimensional settings), the key163

idea of our approach is to schedule the kernel gain at a certain increasing sequence of164

times. More precisely the computation and updating of the kernel are on events and165

only when needed. The time instants are determined by event-triggered mechanisms166

that form an increasing sequence{tj}j∈N with t0 = 0 which will be characterized later167

on.168

Let {tj}j∈N be an increasing sequence of times with t0 = 0 and define:169

(2.7) bj(x) := λ(tj , x), for x ∈ [0, 1].170

which is the sampled version of the reaction coefficient λ(t, x). We define also the171

error when sampling:172

(2.8) ej(t, x) := λ(t, x) − bj(x), for t ∈ [tj , tj+1), x ∈ [0, 1].173

Therefore, we can rewrite (2.1)-(2.3), for t ∈ [tj , tj+1) as follows:174

ut(t, x) = εuxx(t, x) + bj(x)u(t, x) + ej(t, x)u(t, x),(2.9)175

ux(t, 0) = qu(t, 0),(2.10)176

u(t, 1) = U(t), or ux(t, 1) = U(t).(2.11)177
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The backstepping boundary control design is performed by transforming (2.9)-(2.11)178

into a target system which will reflect of the error when sampling ej(t, x) (2.8). There-179

fore, consider the following invertible Volterra transformation, for j ≥ 0,180

wj(t, x) = u(t, x)−
∫ x

0

Kj(x, y)u(t, y)dy := (Kju[t])(x)(2.12)181

whose inverse 1 is given by182

u(t, x) = wj(t, x) +

∫ x

0

Lj(x, y)w(t, y)dy := (Ljwj [t])(x)(2.13)183

with kernels Kj, Lj ∈ C2(T ) evolving in a triangular domain given by T = {(x, y) :184

0 ≤ y ≤ x ≤ 1} and satisfying [36, Theorem 2]:185

(2.14) Kj,xx(x, y)−Kj,yy(x, y) =
(bj(y) + c)

ε
Kj(x, y),186

187

(2.15) Kjy(x, 0) = qKj(x, 0),188

189

(2.16) Kj(x, x) = − 1

2ε

∫ x

0

(bj(s) + c)ds,190

191

(2.17) Lj,xx(x, y)− Lj,yy(x, y) = − (bj(x) + c)

ε
Lj(x, y),192

193

(2.18) Ljy(x, 0) = qLj(x, 0),194

195

(2.19) Lj(x, x) = − 1

2ε

∫ x

0

(bj(s) + c)ds.196

Under (2.12), (2.14)-(2.16) and selecting the control U(t) to satisfy197

(2.20) U(t) =

∫ 1

0

Kj(1, y)u(t, y)dy, t ∈ (tj , tj+1)198

for Dirichlet actuation or by199

(2.21) U(t) = Kj(1, 1)u(t, 1) +

∫ 1

0

Kj,x(1, y)u(t, y)dy, t ∈ (tj , tj+1)200

for Neumann actuation, the transformed system, for all j ≥ 0, t ∈ (tj , tj+1), is as201

follows:202

wj,t(t, x) = εwj,xx(t, x)− cwj(t, x) + (Kjfj[t])(x),(2.22)203

wjx(t, 0) = qwj(t, 0),(2.23)204

wj(t, 1) = 0, or wjx(t, 1) = 0,(2.24)205

1see [34, Chapter 4] for details on the invertibility of the Volterra transformation.
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where206

(2.25) fj(t, x) := ej(t, x)u(t, x)207

and c is a design parameter which is chosen as c ≥ εq̄2 (for Dirichlet actuation) or208

c ≥ εq̄2 + ε/2 (for Neumann actuation) where q̄ = max{0,−q} (see [36]).209

Moreover, the following estimate holds, for all j ≥ 0210

(2.26) max {|Kj(x, y)|, |Lj(x, y)|} ≤ M exp(2Mx), for (x, y) ∈ T ,211

where M := λ̄+c
ε (see [36]).212

Definitions (2.12),(2.13) imply the following estimates, for all j ≥ 0213

(2.27) ‖(Kju[t])‖ ≤ K̃j‖u[t]‖,214

215

(2.28) ‖(Ljwj [t])‖ ≤ L̃j‖wj [t]‖,216

where K̃j and L̃j are defined, respectively by K̃j := 1+
(

∫ 1

0

(∫ x

0
|Kj(x, y)|2dy

)

dx
)1/2

217

and L̃j := 1 +
(

∫ 1

0

(∫ x

0 |Lj(x, y)|2dy
)

dx
)1/2

.218

In addition, inequality (2.26) implies the existence of a constant G > 0 such that:219

(2.29) max
{

K̃j , L̃j

}

≤ G, for j ≥ 0,220

where221

(2.30) G := 1 +

√

λ̄+ c

4ε

(

exp

(

4(λ̄+ c)

ε

)

− 1

)

222

which is independent of j.223

2.2. Well-posedness analysis. In order to study well-posedness issues for224

(2.22)-(2.24) and in turn for (2.9)-(2.11) (by virtue of the bounded invertibility the225

backstepping transformations (2.12)-(2.13)) under any event-triggered gain scheduling226

implementation, we need first a more general result (see Theorem 2.2 below) which227

establishes the notion of solution for the following reaction-diffusion system:228

(2.31)
wt(t, x) = εwxx(t, x)− cw(t, x) + (F(t)w[t])(x), x ∈ (0, 1),

a0w(t, 0) + b0wx(t, 0) = a1w(t, 1) + b1wx(t, 1) = 0,
229

where ε > 0, c, a0, b0, a1, b1 are constants with a20 + b20 > 0, a21 + b21 > 0 and for each230

t ≥ 0 the operator F(t) : L2(0, 1) → L2(0, 1) is a linear bounded operator for which231

there exist constants Ω1,Ω2 > 0 such that232

(2.32) ‖F [t]‖ ≤ Ω1, for all t ≥ 0,233

234

(2.33) ‖F(t)−F(s)‖ ≤ Ω2|t− s|, for all t, s ≥ 0.235

236
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Theorem 2.2. For every initial condition w0 ∈ L2(0, 1) and T > 0, the initial-237

boundary value problem (2.31) with238

(2.34) w[0] = w0,239

has a unique solution w ∈ C0
(

[0, T ];L2(0, 1)
)

∩C1
(

(0, T );L2(0, 1)
)

with w[t] ∈ D for240

all t ∈ (0, T ), where241

D :=
{

f ∈ H2(0, 1) : a0f(0) + b0f
′(0) = a1f(1) + b1f

′(1) = 0
}

,242

that satisfies (2.34) and (2.31) for all t ∈ (0, T ).243

Proof. See Appendix A.244

We are in position to specialize the well-posedness result to the system (2.22)-245

(2.24) so as we can construct the solution by the step method. To do so, let us take246

in (2.34) a0 = q, b0 = −1 for q < +∞; a0 = 1, b0 = 0 for q = +∞, a1 = 1, b1 = 0 for247

Dirichlet actuation and a1 = 0, b1 = 1 for Neumann actuation. In addition, it suffices248

to observe that the operator (Kjfj [t])(x) in (2.22) has the form of (F(t)wj [t])(x), i.e,249

(2.35) (F(t)wj [t])(x) = (Kj(ej [t]Ljwj [t]))(x), t ∈ [tj , tj+1)250

which is indeed the case by virtue of (2.8), (2.12), (2.13) and (2.25). Moreover,251

due to (2.6) in Assumption 2.1, the operator F(t) satisfies (2.32)-(2.33). Extending252

continuously the operator F(t) defined by (2.35) for t ≥ tj+1 and using Theorem 2.2253

we obtain the following proposition:254

Proposition 2.3. For every initial data wj [tj ] = (Kju[tj ])(x) ∈ L2(0, 1), there255

exists a unique function wj ∈ C0
(

[tj , tj+1] ;L
2(0, 1)

)

∩ C1
(

(tj , tj+1);L
2(0, 1)

)

with256

wj [t] ∈ D for t ∈ (tj , tj+1] that satisfies (2.22)-(2.24) for all t ∈ (tj , tj+1) where257

D ⊂ H2([0, 1]) is the set of functions f : [0, 1] → R for which one has f
′

(0) = qf(0)258

and f(1) = 0 for the case of Dirichlet actuation or f
′

(1) = 0 for the case of Neumann259

actuation.260

Consequently, by the bounded invertibility of the backstepping transformation, for261

every u0 ∈ L2(0, 1), we can construct a solution u ∈ C0
(

[0, limj→∞(tj)) ;L
2(0, 1)

)

262

with u[t] ∈ H2(0, 1) for t ∈ (0, limj→∞(tj)) and u ∈ C1(Ĩ;L2(0, 1)) where Ĩ =263

[0, limj→∞ (tj)) \ {tj : j = 0, 1, 2, . . .} which also satisfies (2.9)-(2.11) for all t ∈ Ĩ.264

2.3. Event-triggered gain scheduling. Let us consider the following Sturm-265

Liouville operator B : D → L2(0, 1) defined by266

(2.36) (Bh)(x) = −ε
d2h

dx2
(x),267

for all h ∈ D and x ∈ (0, 1) where D ⊂ H2([0, 1]) is the set of functions h : [0, 1] → R268

for which one has h
′

(0) = qh(0) and h(1) = 0 for the case of Dirichlet actuation or269

h
′

(1) = 0 for the case of Neumann actuation.270

We denote µ1 < µ2 < ... < µn < .. with limn→∞(µn) = +∞ and φn(x) ∈271

C2([0, 1],R), (n = 1, 2...) the eigenvalues and the eigenfunctions, respectively, of the272

operator B.273

2.3.1. Event-triggered gain scheduling with a static triggering condi-274

tion. We introduce the first event-triggering strategy (or mechanism) for gain sched-275

uling considered in this paper. The triggering condition is a state-dependent law and276
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determines the time instants at which the reaction coefficient has to be sampled and277

thereby when the kernel computation/updating has to be done.278

Definition 2.4 (Definition of the static event-triggeredmechanism for gain sched-279

uling). Let Kj be the kernel satisfying (2.14)-(2.16) and let fj(t, x) be given by (2.25),280

j ≥ 0. Let µ1 be the principal eigenvalue of the Sturm-Liouville operator B (2.36).281

Let R ∈ (0, 1) be a design parameter and define282

(2.37) µ := c+ εµ1.283

The static event-triggered gain scheduler is defined as follows:284

The times of events tj ≥ 0 with t0 = 0 form a finite or countable set of times285

which is determined by the following rules for some j ≥ 0:286

287

a) if {t > tj :
〈

(Kju[t]), (Kjfj [t])
〉

> µR‖(Kju[t])‖2} = ∅ then the set of the288

times of the events is {t0, ..., tj}.289

290

b) if {t > tj :
〈

(Kju[t]), (Kjfj [t])
〉

> µR‖(Kju[t])‖2} 6= ∅, then the next event291

time is given by:292

tj+1 := inf{t > tj :
〈

(Kju[t]), (Kjfj [t])
〉

> µR‖(Kju[t])‖2},(2.38)293

where u[t] denotes the solution of (2.1)-(2.3) with (2.20) or (2.21) for t ≥ tj.294

2.3.2. Event-triggered gain scheduling with a dynamic triggering con-295

dition. Inspired by [11] and [6], we introduce the second event-triggering mechanism296

for gain scheduling in this paper. It involves a dynamic variable which can be viewed297

as a filtered value of the static triggering condition in (2.38). With this strategy we298

expect to reduce updating times for the kernel scheduling and obtain larger inter-299

execution times.300

Definition 2.5 (Definition of the dynamic event-triggered mechanism for gain301

scheduling). Let Kj be the kernel satisfying (2.14)-(2.16), fj(t, x) be given by (2.25),302

j ≥ 0 and µ be given by (2.37). Let R ∈ (0, 1), η ≥ 2µ(1 − R) and θ > 0 be design303

parameters.304

The dynamic event-triggered gain scheduler is defined as follows:305

The times of events tj ≥ 0 with t0 = 0 form a finite or countable set of times306

which is determined by the following rules for some j ≥ 0:307

308

a) if {t > tj :
〈

(Kju[t]), (Kjfj [t])
〉

− µR‖(Kju[t])‖2 > 1
θm(t)} = ∅ then the set309

of the times of the events is {t0, ..., tj}.310

311

b) if {t > tj :
〈

(Kju[t]), (Kjfj [t])
〉

−µR‖(Kju[t])‖2 > 1
θm(t)} 6= ∅, then the next312

event time is given by:313

tj+1 := inf{t > tj :
〈

(Kju[t]), (Kjfj [t])
〉

− µR‖(Kju[t])‖2 >
1

θ
m(t)},(2.39)314

where u[t] denotes the solution of (2.1)-(2.3) with (2.20) or (2.21) for t > tj315

and m satisfies the ordinary differential equation316

(2.40)

ṁ(t) = −ηm(t) +
(

µR‖(Kju[t])‖2 −
〈

(Kju[t]), (Kjfj [t])
〉)

, for t ≥ tj ,317

and we set m(tj) = 0.318
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Remark 2.6. Let us remark that the static event-triggered strategy has only one319

design parameter (i.e. R ∈ (0, 1)) whereas the dynamic event-triggered strategy320

has three additional design parameters, namely, R (as in the static case), η and θ.321

Essentially, η adjusts the convergence rate of the filter (2.40) that can be characterized322

as η ≥ 2µ(1−R). The parameter θ, on the other hand, can be selected to contribute323

to sample less frequent than with the static event-triggered strategy. As a matter of324

fact, one can see the static event-triggering condition (2.38) as the limiting case of325

the dynamic event-triggering condition (2.39)-(2.40) when θ goes to +∞.326

The following result guarantees that the dynamic variable m(t) remains always pos-327

itive between two successive triggering times. This fact is going to be helpful in the328

stability analysis of the closed-loop system.329

Lemma 2.7. Under the definition of the event-triggered gain scheduling with dy-330

namic trigger condition (2.39)-(2.40), it holds, for t ∈ [tj , tj+1), j ≥ 0, that 1
θm(t) +331

µR‖(Kju[t])‖2 −
〈

(Kju[t]), (Kjfj [t])
〉

≥ 0 and m(t) ≥ 0.332

Proof. From definition of the the event-triggered gain scheduling with dynamic333

triggering condition (2.39)-(2.40), events are triggered to guarantee, for t ∈ [tj , tj+1),334

j ≥ 0 that 1
θm(t) + µR‖(Kju[t])‖2 −

〈

(Kju[t]), (Kjfj [t])
〉

≥ 0. This inequality in335

conjunction with (2.40) yields:336

(2.41) ṁ(t) ≥ −(η +
1

θ
)m(t)337

for which the Comparison principle can be used to guarantee m(t) ≥ 0, for all t ∈338

[tj , tj+1), j ≥ 0 and provided that m(tj) ≥ 0.339

Lemma 2.7 guarantees that 1
θm(tj+1)+µR‖(Kju[tj+1])‖2−

〈

(Kju[tj+1]), (Kjfj[tj+1])
〉

340

≥ 0 and that m(tj+1) ≥ 0 when tj+1 < +∞ (by continuity).341

Proposition 2.8. If the time of the next event generated by (2.38) is finite, then342

the time of the next event generated by the dynamic event triggered mechanism (2.39)-343

(2.40) is strictly larger than the time of the next event generated by the static event344

triggered mechanism (2.38).345

Proof. Without loss of generality we may assume that j = 0 (and consequently346

t0 = 0). Notice that if u[0] = 0 then both the static and dynamic event triggering347

conditions give t1 = +∞. By assumption, the time of the next event generated by the348

static strategy is finite; therefore it holds that u[0] is not zero. Consequently, K0u[0]349

is not zero.350

Let t1 be the time of the next event generated by the static event triggered mechanism351

and let T be the time of the next event generated by the dynamic one. We show next352

that T > t1 by contradiction. Assume that T ≤ t1. Define353

(2.42) q(t) := µR‖(K0u[t])‖2 −
〈

(K0u[t]), (K0f0[t])
〉

.354

Then we have by virtue of (2.38), (2.42) q(t) ≥ 0 for all t ∈ [0, t1] and by virtue355

of (2.39), (2.42) q(T ) = − 1
θm(T ), implying that m(T ) ≤ 0. Since m(0) = 0 and356

ṁ(t) = −ηm(t) + q(t) for all t ∈ [0, T ], we have357

(2.43) m(t) =

∫ t

0

exp(−η(t− s))q(s)ds, for all t ∈ [0, T ].358

Since q(t) ≥ 0 for all t ∈ [0, T ] we get m(T ) ≥ 0 and thus we conclude that m(T ) = 0.359

By continuity of q(t) (which follows by virtue of Proposition 2.3, the continuity of360
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all mappings involved with respect to time, and since the scalar product and the361

norm preserve continuity) and the fact that q(t) ≥ 0 for all t ∈ [0, T ], the integral362
∫ T

0 exp(−η(T − s))q(s)ds is zero only if q(t) is identically zero on [0, T ]. However,363

that is not possible since f0[0] = 0 (recall (2.7),(2.8) and (2.25)) and since q(0) =364

µR‖K0u[0]‖2 −
〈

K0u[0],K0f0[0]
〉

= µR‖K0u[0]‖2 > 0. Thus, it must hold that T >365

t1.366

3. Analysis of the closed-loop system and main results. In this section we367

present our main results: the avoidance for the Zeno behavior 2, the well-posedness368

and the exponential stability of the closed-loop system under boundary controller369

whose gains are scheduled according to the two event-triggered strategies.370

3.1. Avoidance of the Zeno phenomenon.371

3.1.1. Event-triggered gain scheduling with a static triggering condi-372

tion.373

Proposition 3.1. Under (2.38), there exists a minimal dwell-time between two374

triggering times, i.e. there exists a constant τ > 0 (independent of the initial condition375

u0) such that tj+1 − tj ≥ τ , for all j ≥ 0. More specifically, τ satisfies:376

(3.1) τ =
1

ϕ

µR

G2
,377

with µ = c + εµ1 (recall (2.37) with µ1 being the principal eigenvalue of the Sturm-378

Liouville operator B (2.36)), R ∈ (0, 1) being the design parameter involved in the379

event-triggering condition (2.38), ϕ as in Assumption 2.1 and G given by (2.30).380

Proof. Assume that an event occurs at t = tj+1, Then, from (2.38) and using381

(2.12), continuity of all mappings involved with respect to time and the Cauchy-382

Schwarz inequality, the following more conservative estimate holds:383

(3.2) ‖wj [tj+1])‖‖(Kjfj[tj+1])‖ ≥ 〈wj [tj+1], (Kjfj [tj+1])〉 ≥ µR‖wj [tj+1]‖2.384

Using (2.13), (2.25), (2.27)-(2.30) we get from (3.2):385

(3.3) G2‖wj [tj+1]‖2‖ej[tj+1]‖∞ ≥ µR‖wj[tj+1]‖2.386

Therefore,387

(3.4) G2‖ej[tj+1]‖∞ ≥ µR.388

By virtue of Assumption 2.1 in conjunction with (2.7) and (2.8), we obtain for all389

j ≥ 0390

(3.5) G2ϕ(tj+1 − tj) ≥ µR,391

from which we can deduce (using definition (3.1))392

(3.6) tj+1 − tj ≥ τ,393

being τ the minimal dwell-time (independent on initial conditions).394

2We recall, the Zeno phenomenon means infinite triggering times in a finite-time interval. In
practice, Zeno phenomenon would represent infeasible implementation into digital platforms since
one would require to sample infinitely fast.
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Proposition 3.1 allows us to conclude that lim(tj) = +∞ and thereby we can ap-395

ply Proposition 2.3 to get the following result on the existence of solutions of the396

closed-loop system (2.1)-(2.4) with control (2.20), under the static event-triggered397

gain scheduler (2.38).398

Corollary 3.2. For every initial condition u0 ∈ L2(0, 1), there exists a unique399

mapping u ∈ C0(R+;L
2(0, 1))∩C1(I;L2(0, 1)), u[t] ∈ H2(0, 1) for t > 0 that satisfies400

(2.1)-(2.4) with control (2.20) or (2.21), under the static event-triggered gain scheduler401

(2.38) for all t ∈ I and I = R+\{tj ≥ 0, j = 0, 1, 2, ...}.402

Proof. It is an immediate consequence of Proposition 2.3 and Proposition 3.1.403

Indeed, the solution is constructed (by the step method) iteratively between successive404

triggering times.405

Remark 3.3. The minimal dwell-time depends on the rate of change of the reac-406

tion coefficient. A higher rate of change of the reaction coefficient (i.e., large ϕ) would407

give a smaller minimal dwell-time (i.e., more frequent event triggering). This is ex-408

pected since a high rate of change of the reaction coefficient requires a more frequent409

update of the control law.410

3.1.2. Event-triggered gain scheduling with a dynamic triggering con-411

dition. By virtue of Proposition 2.8, the inter-execution time for the dynamic event412

triggered mechanism (2.39)-(2.40) always exceeds the inter-execution time for the413

static event triggered mechanism (2.38). Due to Proposition 3.1, the Zeno phenome-414

non is immediately excluded.415

Therefore, as in the static case, we can also conclude that lim(tj) = +∞ and416

thereby we can apply Proposition 2.3 to get the following result on the existence of417

solutions of the closed-loop system (2.1)-(2.4) with control (2.20) or (2.21), under the418

dynamic event-triggered gain scheduler (2.39)-(2.40).419

Corollary 3.4. For every initial condition u0 ∈ L2(0, 1), there exists a unique420

mapping u ∈ C0(R+;L
2(0, 1)) ∩ C1(I;L2(0, 1)), u[t] ∈ H2(0, 1) for t > 0 that satis-421

fies (2.1)-(2.4) with control (2.20) or (2.21), under the dynamic event-triggered gain422

scheduler (2.39)-(2.40) for all t ∈ I and I = R+\{tj ≥ 0, j = 0, 1, 2, ...}.423

3.2. Exponential stability analysis. We present next the stability results un-424

der our two event-triggered gain scheduling strategies.425

3.2.1. Event-triggered gain scheduling with a static triggering condi-426

tion.427

Theorem 3.5. Under Assumption 2.1, if the following condition is fulfilled,428

(3.7) ϕ <
µ2R(1−R)

G2 ln (G)
,429

where ϕ, G, µ, R are defined, respectively, in (2.6), (2.30), (2.37), (2.38); then, the430

closed-loop system (2.1)-(2.4) with control (2.20) or (2.21), under the static event-431

triggered gain scheduler (2.38), is globally exponentially stable. More specifically, there432

exists a constant σ > 0 such that433

(3.8) ‖u[t]‖ ≤ G exp(−σt)‖u[0]‖, for all t ≥ 0.434
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Proof. By using the variational characterization of eigenvalues (see [39, Section435

11.4]) in conjunction with (2.22)-(2.24),(2.25), the following estimate holds for all436

t ∈ (tj , tj+1):437

(3.9)
d

dt

(

1

2
‖wj [t]‖2

)

≤ −µ‖wj [t]‖2 + 〈wj [t], (Kjfj [t])〉 ,438

where µ = c + εµ1 (recall (2.37) µ1 being the principal eigenvalue of the Sturm-439

Liouville operator B (2.36)). We can rewrite (3.9) as follows:440

(3.10)
d

dt

(

1

2
‖wj [t]‖2

)

≤ −µ(1−R)‖wj [t]‖2 − µR‖wj [t]‖2 +
〈

wj [t], (Kjfj [t])
〉

,441

where R ∈ (0, 1) is the parameter involved in (2.38).442

Therefore, from the definition of the static event-triggered gain scheduler, events443

are triggered to guarantee,
〈

wj [t], (Kjfj [t])
〉

≤ µR‖wj[t]‖2, for all t ∈ (tj , tj+1).444

Then, we obtain for all t ∈ [tj , tj+1):445

(3.11) ‖wj [t]‖2 ≤ exp (−2µ(1−R)(t− tj)) ‖wj[tj ]‖2.446

Using (2.12), (2.13), (2.27)-(2.30) and (3.11), we get:447

(3.12) ‖u[t]‖2 ≤ G2 exp(−2µ(1−R)(t− tj))‖u[tj ]‖2,448

for all t ∈ [tj , tj+1). Since u ∈ C0(R+;L
2(0, 1)), it follows that (3.12) holds for t = tj+1449

as well, i.e.450

(3.13) ‖u[tj+1]‖2 ≤ G2 exp(−2µ(1−R)(tj+1 − tj))‖u[tj ]‖2.451

Now, for all t ≥ 0, an estimate of ‖u[t]‖ in terms of ‖u[0]‖ can be derived recursively,452

by using (3.6) and the fact that there have been j events and that jτ units of time453

have (at least) been passed until t. To that end, we can apply induction on j and454

prove that, for all j ≥ 0,455

(3.14) ‖u[tj]‖2 ≤ (G2j) exp(−2µ(1−R)tj)‖u[0]‖2,456

and that tj ≥ jτ . Let j ≥ 0 be given (arbitrary) and t ∈ [tj , tj+1) (arbitrary). We457

obtain from (3.12),(3.13) and (3.14):458

(3.15) ‖u[t]‖2 ≤ (G2)j+1 exp(−2µ(1−R)t)‖u[0]‖2.459

Moreover, since j ≤ t
τ , it holds:460

(3.16) ‖u[t]‖2 ≤ G2 exp
(

−
(

2µ(1−R)− 2ln(G)
τ

)

t
)

‖u[0]‖2.461

In light of condition (3.7) in conjunction with (3.6) where τ = 1
ϕ

µR
G2 , we finally obtain:462

(3.17) ‖u[t]‖ ≤ G exp(−σt)‖u[0]‖, for all t ≥ 0,463

with σ = µ2R(1−R)−ϕG2 ln(G)
µR > 0. This concludes the proof.464

Remark 3.6. Notice that µ2R(1−R)−ϕG2 ln(G) > 0 holds true provided that ϕ465

is sufficiently small (this corresponds to the case where λ(t, x) is slowly time-varying466

coefficient). In addition, it is worth remarking that we can select R = 1
2 in order to467

maximize the allowable upper bound ϕ. Nevertheless, different values of R may be468

used in practice since the obtained estimates are conservative. The proof of Theorem469

2 provides a (conservative) explicit estimate of the convergence rate σ > 0. The470

obtained estimate shows that the smaller ϕ is (i.e., the slower the change of the471

reaction coefficient), the higher the convergence rate is.472
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3.2.2. Event-triggered gain scheduling with a dynamic triggering con-473

dition.474

Theorem 3.7. If condition (3.7) of Theorem 3.5 holds, then, the closed-loop sys-475

tem (2.1)-(2.4) with control (2.20) or (2.21), under dynamic event-triggered gain476

scheduler (2.39)-(2.40) is globally exponentially stable. More specifically, there exists477

a constant σ > 0 such that478

(3.18) ‖u[t]‖ ≤ G exp(−σt)‖u[0]‖, for all t ≥ 0.479

Proof. An estimate of the time-derivative of the following function W (t) :=480
1
2‖wj [t]‖2 +m(t) along the solutions (2.22)-(2.24),(2.25),(2.40) is given by:481

(3.19)

Ẇ (t) ≤ −µ‖wj[t]‖2 +
〈

wj [t], (Kjfj [t])
〉

− ηm(t)−
〈

wj [t], (Kjfj[t])
〉

+ µR‖wj[t]‖2482

which can be rewritten as follows:483

(3.20) Ẇ (t) ≤ −µ(1−R)
(

‖wj [t]‖2 + 2m(t)
)

−m(t)(η − 2µ(1−R)).484

By Lemma 2.7, we guarantee that m(t) ≥ 0 and since η ≥ 2µ(1−R) (recall Definition485

2.5), thus we get:486

(3.21) Ẇ (t) ≤ −2µ(1−R)W (t)487

Therefore, we obtain for t ∈ [tj , tj+1):488

(3.22)
1

2
‖wj [t]‖2 +m(t) ≤ exp(−2µ(1−R)(t− tj))

(

1

2
‖wj [tj ]‖2 +m(tj)

)

.489

Notice that 1
2‖wj [t]‖2 ≤ 1

2‖wj [t]‖2 + m(t) and that by Definition 2.5, m(tj) = 0.490

Therefore, from (3.22) we have, for all t ∈ [tj , tj+1):491

(3.23) ‖wj [t]‖2 ≤ exp(−2µ(1−R)(t− tj))‖wj [tj ]‖2.492

The remaining part of the proof follows the same reasoning as the proof of Theorem493

3.5 (see from (3.12)). This concludes the proof.494

Remark 3.8. The function W (t) is monotonically decreasing (see (3.21)), for all495

t ∈ [tj , tj+1). However, the function 1
2‖wj [t]‖2 may not be monotonically decreasing496

on that interval. The design parameter θ involved in the dynamic event-triggering497

condition (2.39)-(2.40) and also discussed in Remark 2.6, allows to limit the poten-498

tial increase of 1
2‖wj [t]‖2. Indeed, since events are triggered to guarantee 1

θm(t) +499

µR‖(Kju[t])‖2 −
〈

(Kju[t]), (Kjfj [t])
〉

≥ 0, it holds that500

d

dt

(

1

2
‖wj [t]‖2

)

≤ −µ(1−R)‖wj [t]‖2 +
1

θ
m(t).501

Notice that the larger the value of θ, the more limited the increase. We approach502

then to the case as we were dealing with the static event-triggered gain scheduler.503

4. Numerical simulations. We illustrate the results by considering (2.1)-(2.4)504

with ε = 1, q = +∞ and initial condition u0(x) = 2(x − x2). For numerical simula-505

tions, the state of the system has been discretized by finite differences on a uniform506

grid with the step h = 0.02 for the space variable. The discretization with respect to507
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Fig. 1. Profile of the time- and space- varying reaction coefficient λ(t, x) = 10+ 50
cosh2(5(t−1))

+

7 cos(5πt) + 50
cosh2(5x)

for the reaction-diffusion system (2.1)-(2.4).

time was done using the implicit Euler scheme with step size ∆t = h2. We run sim-508

ulations on a frame of 2s. We choose the time- and space- varying coefficient λ(t, x)509

to have a simple form as λ(t, x) = λc + λt(t) + λx(x). More specifically:510

(4.1) λ(t, x) = 10 +
50

cosh2(5(t− 1))
+ 7 cos(5πt) +

50

cosh2(5x)
, t > 0, x ∈ [0, 1],511

which has a profile depicted in Figure 1. We stabilize the closed-loop system (2.1)-512

(2.4) under Dirichlet actuation with boundary control (2.20) whose kernel gains satisfy513

(2.14)-(2.16) and are scheduled according to the two event-triggered mechanisms we514

introduced in Definition 2.4 (static-based triggering condition) and Definition 2.5515

(dynamic-based triggering condition).516

The parameters of the triggering conditions are set R = 0.15, µ = c + επ2 = π2517

with c = 0. In addition, η = 16.7 and θ = 0.15.518

From (2.7), bj(x) = λ(tj , x) = λ̃j + 50
cosh2(5x)

, where λ̃j := 10 + 50
cosh2(5(tj−1))

+519

7 cos(5πtj) with {tj}j∈N according to (2.38) (static) or (2.39)-(2.40) (dynamic). In ei-520

ther cases, kernelsKj satisfying (2.14)-(2.16), for all t ∈ [tj , tj+1), admit a closed-form521

solution which is given as follows [36, Section VIII.E]:522

(4.2) Kj(x, y) = −λ̃jy

I1

(

√

λ̃j (x2 − y2)

)

√

λ̃j (x2 − y2)
− 5 tanh(5y)I0

(

√

λ̃j (x2 − y2)

)

,523

where Im(·), m ∈ Z is a modified Bessel function of the first kind of order m. Figure 2524

shows the event-triggered sampled version of the profile of the time- and space- vary-525

ing reaction coefficient (4.1) for all t ∈ [tj , tj+1), j ≥ 0 according to the static event-526

triggered gain scheduler (2.38) (depicted on the left) and the dynamic event-triggered527

gain scheduler (2.39)-(2.40) (depicted on the right). Hence, the kernel updating is528

done on events and aperiodically. One of the main features of this approach is that529

the kernel of the control does not need to be computed using the method of succes-530

sive approximations to solve a PDE kernel which involves a time- and space- varying531

coefficient (see e.g. [15, 19] which do deal with successive approximations method532

and efficient numerical schemes for the computation of kernels and further consider-533

ations for the stabilization of reaction-diffusion PDEs with time- and space- varying534
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Fig. 2. Sampled version of the profile of the time- and space- varying reaction coefficient (4.1),
i.e. λ(tj , x) for all {tj}j∈N according to the static event-triggered gain scheduler (2.38) (depicted on
the left) and the dynamic event-triggered gain scheduler (2.39)-(2.40) (depicted on the right).

coefficients). As motivated throughout the paper, it suffices to schedule the kernel535

in a suitable way and only when needed while using a simpler kernel (in some cases536

admitting closed-form solution; or in some cases when it is approximated via a simpler537

successive approximation as one is not taking into account the time-dependence).538

Figures 3 and 4 show the time-evolution of the L2 norm of the closed-loop sys-539

tem (2.1)-(2.4), (4.1) and the time-evolution of the boundary control (2.20), respec-540

tively, under static event-triggered gain scheduler (2.38) (red dashed line) and dy-541

namic event-triggered gain scheduler (2.39)-(2.40) (blue line). For both figures, on542

the right, there are zooms of the two curves to illustrate the difference. It can be543

observed that under the two strategies, the behavior is similar with same theoretical544

guarantees. Finally, we run simulations for 100 different initial conditions given by
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0.4

0.45

0.5

0.55
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Fig. 3. Time-evolution of the L2 norm of the closed-loop system (2.1)-(2.4), (4.1) with boundary
control (2.20) under static event-triggered gain scheduler (2.38) (red dashed line) and dynamic event-
triggered gain scheduler (2.39)-(2.40) (blue line). On the right, there is a zoom of the two curves to
illustrate the difference.

545
u0(x) =

√

2/n sin(
√
nπx) +

√
n(x − x2), for n = 1, . . . , 100 on a frame of 2s. We546

compare the static event triggered mechanism with respect to the dynamic one while547

computing the inter-execution times between two triggering times. We compare sev-548

eral cases by tuning different parameters. For all cases, η is selected as η = 2µ(1−R).549

The mean value of the numbers of events generated under the two strategies is re-550

15

This manuscript is for review purposes only.



0 0.5 1 1.5

-7

-6

-5

-4

-3

-2

-1

0

1

0.1 0.2 0.3 0.4 0.5 0.6

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Fig. 4. Time-evolution of the boundary control under static event-triggered gain scheduler
(2.38) (red dashed line) and under dynamic event-triggered gain scheduler (2.39)-(2.40) (blue line).
On the right, there is a zoom of the two curves to illustrate the difference.

ported in Table 1. The mean value and coefficient of variation (ratio between the551

standard deviation and the mean value) of inter-execution times for both approaches552

are reported in Tables 2 and 3, respectively. In addition, Figure 5 shows the density of553

the inter-execution times (axis in logarithmic scale). The red bars correspond to the554

inter-execution times under the static event triggered mechanism (2.38); whereas the555

blue bars correspond to the dynamic event triggered mechanism (2.39)-(2.40) result-556

ing in larger inter-execution times. Therefore, it can be asserted that, as expected,557

with the dynamic triggering condition one obtains larger inter-execution times and558

we can reduce the number of events rendering the strategy slightly less conserva-559

tive. In general, dynamic event-triggered strategies may offer benefits with respect to560

static strategies as in the framework of even-triggered control (in finite and infinite561

dimensional settings).562

Table 1

Mean value of the number of events generated under the static event-triggered gain scheduler
(2.38) and under dynamic event-triggered gains scheduler (2.39)-(2.40).

R = 0.15, η = 16.7 R = 0.5 η = 9.86
Static ET 39.93 18.58

Dynamic ET (θ = 100) 37.08 17.6
Dynamic ET (θ = 1) 29.8 16.02

Dynamic ET (θ = 0.015) 17.01 8.99

Table 2

Mean value of inter-execution times for static event-triggered gain scheduler (2.38) and for
dynamic event-triggered gains scheduler (2.39)-(2.40).

R = 0.15, η = 16.7 R = 0.5 η = 9.86
Static ET 0.0460 0.0738

Dynamic ET (θ = 100) 0.0354 0.0521
Dynamic ET (θ = 1) 0.0374 0.0582

Dynamic ET (θ = 0.015) 0.0546 0.1112
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Fig. 5. Density of the inter-execution times (axis in logarithmic scale) computed for 100 differ-

ent initial conditions given by u0(x) =
√

2/n sin(
√
nπx)+

√
n(x−x2), for n = 1, . . . , 100 on a frame

of 2s. The parameters of the event-triggered strategies are: R = 0.5, η = 9.86 and θ = 0.015. The red
bars correspond to the density of inter-execution times under the static event triggered mechanism
(2.38); whereas the blue bars correspond to the dynamic event triggered mechanism (2.39)-(2.40)
resulting in larger inter-execution times.

Table 3

Coefficient of variation of inter-execution times for static event-triggered gain scheduler (2.38)
and for dynamic event-triggered gains scheduler (2.39)-(2.40).

R = 0.15, η = 16.7 R = 0.5 η = 9.86
Static ET 1.9814 2.203

Dynamic ET (θ = 100) 2.110 2.693
Dynamic ET (θ = 1) 2.6251 2.8905

Dynamic ET (θ = 0.015) 2.3457 2.0965

5. Conclusion. In this paper, we have addressed the problem of exponential563

stabilization of a reaction-diffusion PDE with time- and space- varying reaction coef-564

ficient. The boundary control design relies on the backstepping method and the gains565

are computed/updated on events according to two event-triggered gain scheduling566

schemes. Two event-triggered strategies are prosed for gain scheduling: static and567

dynamic. The latter involves a dynamic variable that can be viewed as the filtered568

value of the static one. It has been observed that under this strategy it is possible569

to reduce the number of events for the gain scheduling. We show that under the two570

proposed event-triggered gain scheduling schemes Zeno behavior is avoided, which571

allows to prove well-posedness as well as the exponential stability of the closed-loop572

system.573

Our approach can be seen as an efficient way of kernel computation as it is sched-574

uled aperiodically, when needed and relying on the current state information of the575
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closed-loop system and the time- and space- varying reaction coefficient which is con-576

sidered as a distributed input disturbance. Furthermore, the boundary controller is577

seen as a feedforward one. This work constitutes an effort towards the “robustifica-578

tion” of boundary controllers designed under backstepping method.579

In future work, we expect to combine these results with event-triggered control580

strategies for boundary controlled reaction-diffusion PDEs systems recently intro-581

duced in [7] (which deals with constant reaction coefficient only). The results in this582

paper may suggest that the triggering times for gain scheduling may be synchronized583

with the time instants for control updating. The control is going to be piecewise584

constant and not piecewise continuous as in the present work. This would represent585

a more realistic way of actuation on the PDE system towards digital realizations. Fi-586

nally, we expect to study observers to come up with an observer-based event-triggered587

gain scheduling scheme for this class of reaction diffusion PDEs. This would require588

to handle new arising challenging issues (e.g. event-triggered gain scheduling of the589

output injection gains, point-wise estimates whenever ones samples the output mea-590

surement, the avoidance of the Zeno phenomena, among many others).591

Appendix A. Proof ot Theorem 2.2.592

Proof. It suffices to show that there exists k > 0 such that for each w0 ∈ L2(0, 1)593

and T > 0 the initial value problem594

(A.1)
ẏ[t] + (A+ kI)y[t] = F(t)y[t],

y[0] = w0,
595

has a unique classical solution on [0, T ] in the sense described in [30] where A : D →596

L2(0, 1) is the Sturm-Liouville operator defined by the following formula for every597

f ∈ D :598

(A.2) (Af)(x) = −εf ′′(x) + cf(x), for x ∈ (0, 1).599

Notice that any solution y[t] of (A.1) provides a solution of the initial-boundary value600

problem (2.31) with (2.34) by means of the formula w[t] = exp(kt)y[t] and any solution601

w[t] of the initial boundary value problem (2.31) with (2.34) provides a solution of602

the initial value problem (A.1) by means of the formula y[t] = exp(−kt)w[t].603

The fact that A is a (non-singular) Sturm-Liouville operator guarantees that604

the eigenvalues λn, n = 1, 2, . . . of A are all real with lim (λn) = +∞ and that the605

eigenfunctions φn ∈ C2([0, 1]), n = 1, 2, . . . of A with Aφn = λnφn and ‖φn‖ = 1 form606

an orthonormal basis of L2(0, 1). It follows that the semigroup607

S(t)u =

∞
∑

n=1

exp (−λnt) 〈φn, u〉φn, for u ∈ L2(0, 1) and t > 0,608

is a C0 semigroup on L2(0, 1) (see [44], page 178 ). Consequently, −A is the infinites-609

imal generator of a C0 semigroup on L2(0, 1).610

The fact that −A is the infinitesimal generator of an analytic semigroup follows611

from the fact that the eigenvalues λn, n = 1, 2, . . . of A are all real with lim (λn) = +∞612

Indeed, we can directly apply Theorem 5.2 on page 61 in [30] when λ1 > 0. When613

λ1 < 0 then we can apply Theorem 5.2 on page 61 in [30] to the operator −A − rI614

with r > −λ1 (which generates the C0 semigroup exp(−rt)S(t); see explanations on615

page 61 in [30]).616
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Since −A is the infinitesimal generator of a C0 semigroup S(t), t ≥ 0 on L2(0, 1)617

and since for each t ≥ 0 the operator F(t) : L2(0, 1) → L2(0, 1) is a linear bounded618

operator for which there exist constants Ω1,Ω2 > 0 such that (2.32) and (2.33) hold, it619

follows from Theorem 1.2 on page 184 in [30] that there exists a unique mild solution620

y ∈ C0
(

[0, T ];L2(0, 1)
)

of the initial value problem (A.1), i.e.,621

(A.3) y[t] = exp(−kt)S(t)w0+

∫ t

0

exp(−k(t−s))S(t−s)F(s)y[s]ds, for all t ∈ [0, T ].622

Theorem 2.2 on page 4 in [30] implies the existence of constants M,ω > 0 such that623

the estimate ‖S(t)‖ ≤ M exp(ωt) holds for all t ≥ 0. Exploiting the previous estimate624

in conjunction with (A.3) and (2.32), we get for all t ∈ [0, T ] :625

(A.4) ‖y[t]‖ ≤ M exp(−(k − ω)t) ‖w0‖+
Mc

k − ω
max

0≤s≤T
(‖y[s]‖), for all t ∈ [0, T ].626

Selecting k > 0 so that Mc
k−ω < 1, estimate (A.4) implies the following estimate:627

(A.5) max
0≤s≤T

(‖y[s]‖) ≤
(

1− Mc

k − ω

)−1

M ‖w0‖ .628

We next define629

(A.6) g(t) = F(t)y[t], t ∈ [0, T ].630

Inequalities (A.5), (2.32) and definition (A.6) imply that g ∈ Lp
(

[0, T ];L2(0, 1)
)

for631

every p ∈ [1,+∞). Definition (A.6) allows us to conclude that the mild solution632

y ∈ C0
(

[0, T ];L2(0, 1)
)

of the initial value problem (A.1) is also a mild solution of633

the inhomogeneous initial value problem:634

(A.7)
ż[t] + (A+ kI)z[t] = g(t),

z[0] = w0,
635

i.e., z[t] = y[t] for t ∈ [0, T ]. Since −A is the infinitesimal generator of an analytic636

semigroup S(t) on L2(0, 1), it follows from Theorem 3.1 on page 110 in [30] that for637

every p ∈ (1,+∞), the mapping t → y[t] is locally Hölder continuous on (0, T ] with638

exponent p−1
p . Using (2.32),(2.33) and the fact that g(t) = F(t)y[t] for t ∈ [0, T ], it639

follows that for every p ∈ (1,+∞), the mapping t → g[t] is locally Hölder continuous640

on (0, T ] with exponent p−1
p . By virtue of Corollary 3.3 on page 113 in [30] we conclude641

that y[t] is the unique classical solution of (A.1).642
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