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EVENT-TRIGGERED GAIN SCHEDULING OF
REACTION-DIFFUSION PDES

IASSON KARAFYLLIS*, NICOLAS ESPITIAT, AND MIROSLAV KRSTIC *

Abstract. This paper deals with the problem of boundary stabilization of 1D reaction-diffusion
PDEs with a time- and space- varying reaction coefficient. The boundary control design relies on
the backstepping approach. The gains of the boundary control are scheduled under two suitable
event-triggered mechanisms. More precisely, gains are computed/updated on events according to
two state-dependent event-triggering conditions: static-based and dynamic-based conditions, under
which, the Zeno behavior is avoided and well-posedness as well as exponential stability of the closed-
loop system are guaranteed. Numerical simulations are presented to illustrate the results.

Key words. reaction-diffusion systems, backstepping control design, event-triggered sampling,
gain scheduling.

1. Introduction. Control design of complex systems modeled by partial differ-
ential equations (PDEs) has become a central research area. The two traditional ways
to act on those complex systems are the in-domain control and boundary control. For
boundary control, the backstepping method has been used as standard tool for de-
signing feedback laws. It has initially emerged to deal with 1D reaction-diffusion
parabolic PDEs in [2], [36] and since then, the method has been employed to deal
with the boundary stabilization of broader classes of PDEs (for an overview see [21]
and [26]). One of the most remarkable features of the backstepping approach is that
for some specific cases, it is possible to obtain closed-form analytical solutions for
the kernels of the underlying integral Volterra transformation. Having explicit ex-
pressions for the kernels and for controllers makes implementation simpler and more
precise. For instance, for reaction diffusion systems with constant parameters, closed-
form solutions for the kernels has been obtained in terms of special functions such as
the modified Bessel function [36]. When having a time-varying reaction coefficient, a
closed-form solution can be obtained through power series for exponential stabiliza-
tion [37], or, in the context of fixed-time stability, closed-form of time-varying kernels
can be obtained using special functions as in [8].

Nevertheless, for general reaction diffusion PDEs (e.g. having time- and space-
varying coefficient), obtaining closed-form solutions for the kernels is in general very
hard (or even not possible). For this class of PDEs with time- and space- varying
coefficients, the problem of boundary stabilization has been very challenging. Time-
and space varying reaction coeflicients come into play in some applications such as
in trajectory planing and multi-agent systems (see e.g. [27, 9]), to mention a few. In
general, the resulting kernel-PDE is of the form of hyperbolic spatial operator and
first order derivative with respect to time since the kernel of the Volterra transfor-
mation has to be time-varying. This brings additional source of complexity to the
problem that requires a careful well-posedness analysis and numerical methods for the
solvability. The solution of the kernel, indeed, is needed to be found numerically by
e.g. the method of integral operators or the so called method of successive approxi-
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mations (which traces back to the seminal work [3]). In this line, some contributions
have rigorously handled the well-posedness of time-varying kernels solutions where the
reaction term is time and space dependent as in [27, 43] and some efficient algorithms
to better handle the solvability of kernels have been proposed e.g. in [15].

More recent contributions focus on coupled parabolic PDEs [29], with space vary-
ing reaction coefficients [42, 4] and time- and space- varying coefficients [19] all of
which able to handle more challenging issues related to the solvability, suitable choices
of target systems, coupling matrices structure and well-posedness issues in general.

In this paper, we aim at stabilizing scalar 1D reaction—diffusion PDEs with a time-
and space- varying reaction coefficient from a different perspective. Our approach
combines some ideas from hybrid systems, specifically from the framework of state-
dependent switching laws, sampled-data and event-triggered sampling/control strate-
gies. For an overview of the literature on sampled-data, event-triggered and switching
strategies, we refer to e.g. [14, 23, 40, 13, 11, 32, 16, 24] for finite-dimensional systems
and to [25, 10, 17, 35, 12],[41, 33, 22, 5, 6, 31] for some classes of infinite dimensional
systems.

Having said that, the main ideas in this paper state that instead of handling
a time-varying kernel capturing the time- and space- varying coefficient, we use a
simpler kernel capturing only the spatial variation of the reaction coefficient. This is
possible as long as the reaction coeflicient is sampled in time, thus the kernel-PDE
reduces to a form involving space-varying coeflicient only between two successive
sampling times. In order to determine the time instants, we introduce event-triggered
mechanisms that form an increasing sequence of triggering times (or time of events).
At those event times, kernels are computed/updated in aperiodic fashion and only
when needed. In other words, kernels for the control are scheduled according to some
event triggering condition (state-dependent law). Doing so, the approach constitutes a
kind of a gain scheduling strategy suggesting then the adopted name for our approach:
event-triggered gain scheduling.

Sampling in time the reaction coefficient introduces an error (called error when
sampling) that is reflected in the target system after transformation. This requires
the study of well-posedness issues, ISS properties ([18]) and the exponential stability
of the closed loop system when the control gains are scheduled according to the
event-triggered mechanisms. In this paper we propose two strategies: the first one
relies on a static triggering condition which takes into account the effect of the error
when sampling after transformation and the current state of the closed-loop system.
The second strategy relies on a dynamic triggering condition which makes uses of
a dynamic variable that can be seen as a filtered version of the static triggering
condition. Moreover, under the two proposed strategies, the avoidance of the so
called Zeno phenomenon is proved. Hence, we can guarantee the well-posedness as
well as the exponential stability of the closed-loop system provided that the reaction
coefficient is slowly time-varying.

The paper is organized as follows. In Section 2, we introduce the class of reaction-
diffusion parabolic systems, the control design which includes the introduction of the
event-triggered strategies for gain scheduling and the notion of existence and unique-
ness of solutions. Section 3 provides the main results which include the avoidance
of the Zeno phenomenon, the well-posedness of the closed-loop system and the expo-
nential stability result. Section 4 provides a numerical example to illustrate the main
results. Finally, conclusions and perspectives are given in Section 5. The Appendix
contains the proof of an auxiliary result.
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Notation. Ry will denote the set of nonnegative real numbers. Let S C R"™ be
an open set and let A C R™ be a set that satisfies S € A C S where S denotes
the closure of S. By C°(A;Q), we denote the class of continuous functions on A,
which take values in Q@ C R. By C*¥(A;Q), where k > 1 is an integer, we denote the
class of functions on A, which takes values in 2 and has continuous derivatives of
order k. In other words, the functions of class C¥(A; Q) are the functions which have
continuous derivatives of order k in S = int(A) that can be continued continuously
to all points in SN A. L?(0,1) denotes the equivalence class of Lebesgue measurable

1/2
functions f,g : [0,1] — R for which ||f| = (fol |f(:1c)|2dx> < o0 and with inner

product (f,g) = fol f(z)g(x)dz. L°°(0,1) denotes the equivalence class of Lebesgue
measurable functions f : [0,1] — R for which || f|lec = esssup,¢o,1)(lf(@)]) < +oo.
Let u : Ry x [0,1] — R be given. u[t] denotes the profile of u at certain ¢t > 0, i.e.
(u[t])(z) = u(t,z), for all z € [0,1]. For an interval I C R, the space C°(I; L*(0,1))
is the space of continuous mappings I > t ~ uft] € L*(0,1). H?(0,1) denotes the
Sobolev space of functions f € L?(0, 1) with square integrable (weak) first and second-
order derivatives f (), f (-) € L%(0,1).

2. Problem description and control design. Consider the following scalar
reaction-diffusion system with time- and space- varying reaction coefficient:

(2.1) ue(t, ) = gy (t, ) + At 2)ult, x),
(2.2) ug(t,0) = qu(t, 0),
(2.3) u(t,1)=U(t), or wu.(t,1)=U(t),

and initial condition:
(2.4) u(0, ) = uo(z),

where £ > 0, ¢ € (—00,+00] (the case ¢ = +0oo is interpreted as the Dirichlet case
(see [36])) and A € CO(R x [0,1]) with A[t] € C1([0,1]). u:[0,00) x [0,1] — R is the
system state and U(t) € R is the control input. The initial condition ug(z) in (2.4)
is assumed to belong to L?(0,1). We assume that A € C°(R; x [0,1]) is bounded, i.e.
there exists a constant A > 0 such that

(2.5) At z)| <A, VE>0, x€]0,1].

Moreover, we assume the following:

ASSUMPTION 2.1. There exists a constant ¢ > 0 such that the following inequality
holds:

(2.6) At x) — A(s,z)| < plt —s|, Vzel0,1], t,s>0.

Assumption 2.1 means that the reaction coefficient is Lipschitz with respect to time
with Lipschitz constant ¢. The constant ¢ is a quantity that depends on the rate
of change of the reaction coefficient: a high rate of change of the reaction coefficient
implies a large value for ¢. All subsequent results are also valid (with some modifi-
cations) if Assumption 2.1 is replaced by the less demanding assumption of Holder
continuity instead of Lipschitz continuity, i.e., if we replace the right hand side of (2.6)
by ¢|t — s|*, where a € (0,1) is a constant. However, for simplicity we will restrict
the presentation of the results to the Lipschitz case.

This manuscript is for review purposes only.
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In what follows, we do not consider system (2.1)-(2.3) as a time-varying system
but we consider system (2.1)-(2.3) as a time-invariant system with two inputs: the
control input U(t) and the distributed disturbance input A[t] (see [38, Chapter 2]).
Furthermore, it should be noticed that the disturbance input appears in a multiplica-
tive way and system (2.1)-(2.3) is bilinear. Multiplicative control inputs in parabolic
PDEs have been studied in [20] and multiplicative disturbance inputs in abstract
infinite-dimensional systems have been studied in [28]. The fact of considering (2.1)-
(2.3) as a time-invariant system is very important for theoretical reasons: we can
always assume that the initial time is zero. Therefore, the proposed event-triggered
control scheme may be seen as a feedforward control scheme that compensates the
effect of the distributed disturbance input Aft]. Feedforward control for infinite di-
mensional systems has been studied in [1].

2.1. Backstepping control design. Our aim is the global exponential stabi-
lization of the system (2.1)-(2.3) at zero using boundary control. To that end, we
follow the backstepping approach which makes uses of an invertible Volterra trans-
formation to map the system into a target system simpler to handle and with desired
stability properties. Since the reaction coefficient is both time and space varying,
typically, the kernels of the transformation have to be chosen to depend on time.
This brings an additional source of complexity since the resulting kernel PDE equa-
tion contains a time-derivative of the kernel and involves the time and space varying
coefficient. Overall, the problem is much harder to solve but has been the object of
extensive investigation since the seminal work [3]. Numerical strategies such as the
method of successive approximation have been widely employed (see e.g. [27] and
[43]).

Our approach takes a different direction. We avoid solving a kernel-PDE hyper-
bolic spatial operator and first order derivative with respect to time capturing the
reaction coefficient (dependent on both time and space). We use simpler kernels for
the control under which we are still able to stabilize exponentially the closed-loop
system. This brings some degree of robustness to the controller. Inspired by event-
triggered control strategies (in both finite and infinite-dimensional settings), the key
idea of our approach is to schedule the kernel gain at a certain increasing sequence of
times. More precisely the computation and updating of the kernel are on events and
only when needed. The time instants are determined by event-triggered mechanisms
that form an increasing sequence{t;}jen with ¢o = 0 which will be characterized later
on.

Let {t;},en be an increasing sequence of times with ¢o = 0 and define:

(2.7) bj(x) :== A(t;,z), for =z €][0,1].

which is the sampled version of the reaction coefficient A(¢,z). We define also the
error when sampling:

(2.8) ej(t,x) == A(t,z) —bj(x), for te€tj,tj+1), z€][0,1].

Therefore, we can rewrite (2.1)-(2.3), for ¢ € [t;,t;41) as follows:

(2.9) ur(t, ) = euge(t, ) + bi(2)ul(t, ) + e, (¢, x)u(t, z),
(2.10) uz(t,0) = qu(t,0),
(2.11) u(t,1)=U(®), or wug(t,1)=U(t).

4
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The backstepping boundary control design is performed by transforming (2.9)-(2.11)
into a target system which will reflect of the error when sampling e; (¢, z) (2.8). There-
fore, consider the following invertible Volterra transformation, for j > 0,

(2.12) www=umm—43@mmwmww=mwm@>
whose inverse ! is given by
(2.13) wmw=www+434ammew=wwmmm

with kernels K, L; € C*(T) evolving in a triangular domain given by 7 = {(x,y) :
0 <y <z <1} and satisfying [36, Theorem 2]:

(2.14) Kja(,) ~ K l) = B0V ),
(2.15) K, (2,0) = gk, (x,0),

(2.16) K(z,2) = —2% Om(bj(s)—i—c)ds,

(217) Liwale) ~ Lygylarg) =~ 2D )
(2.18) L, (z,0) = qL;(z,0),

(2.19) L) = -~ [ (b;(s) + e)ds.

_2_50

Under (2.12), (2.14)-(2.16) and selecting the control U(¢) to satisfy
1
(2.20 U0 = [ Ky, 1 )
0
for Dirichlet actuation or by
1
(2.21) U(0) = K5 Du(t, ) + [ KiulLut)dy, ¢ (t.t0)
0

for Neumann actuation, the transformed system, for all j > 0, ¢ € (¢j,¢j4+1), is as
follows:

(2.22) Wi (8 @) = ewj oo (t, @) — cw;(t, @) + (K f5[1]) (),
(2.23) w;z(t,0) = qw;(t,0),
(2.24) w;(t,1) =0, or w;,(t1)=0,

Isee [34, Chapter 4] for details on the invertibility of the Volterra transformation.
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where

(2.25) fi(t,x) :==e;(t, z)u(t, z)

and c is a design parameter which is chosen as ¢ > €¢? (for Dirichlet actuation) or
¢ > q® + ¢/2 (for Neumann actuation) where ¢ = max{0, —q} (see [36]).
Moreover, the following estimate holds, for all 5 > 0

(2.26) max {|K;(z,y)|,|L;(x,y)|} < Mexp(2Mz), for (z,y)eT,

where M := 2£¢ (see [36]).

€

Definitions (2.12),(2.13) imply the following estimates, for all j > 0

(2.27) 10 ultDIl < Klult]],

(2.28) I(Ciwi DI < Lillws [l

o = . o 1 T 2 1/2
where K; and L; are defined, respectively by K; := 1+ (fo (fo Kz, y)Pdy) d;v)
fod 1 T 1/2
and L; := 1+ (fo (Jo 1L;(z,y)|*dy) da:)
In addition, inequality (2.26) implies the existence of a constant G > 0 such that:
(2.29) max {f(j,/ij} <G, for j>0,

where

20) it [ (o (0 )

which is independent of j.

2.2. Well-posedness analysis. In order to study well-posedness issues for
(2.22)-(2.24) and in turn for (2.9)-(2.11) (by virtue of the bounded invertibility the
backstepping transformations (2.12)-(2.13)) under any event-triggered gain scheduling
implementation, we need first a more general result (see Theorem 2.2 below) which
establishes the notion of solution for the following reaction-diffusion system:

wi(t, ) = ewgs (t, ) — cw(t, z) + (F(H)wlt])(x), =€ (0,1),

2.31
( ) apw(t,0) + bow, (¢,0) = aqw(t, 1) + byw,(¢,1) = 0,

where € > 0, ¢, ag, by, a1, b1 are constants with a2 + b2 > 0,a? + b3 > 0 and for each
t > 0 the operator F(t) : L?(0,1) — L?(0,1) is a linear bounded operator for which
there exist constants 21,5 > 0 such that

(2.32) | F[t]|| < 2, for all t >0,

(2.33) (|F (@) = F(s)|| < Qalt —s|, for all t,s > 0.
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THEOREM 2.2. For every initial condition wo € L?*(0,1) and T > 0, the initial-
boundary value problem (2.31) with

(2.34) w[0] = wy,

has a unique solution w € C° ([0, T]; L*(0,1)) NC* ((0,T); L*(0,1)) with wt] € D for
all t € (0,T), where

D:={f € H*0,1): agf(0) + bof'(0) = a1 f(1) + b1 f'(1) = 0},
that satisfies (2.34) and (2.31) for all t € (0,T).
Proof. See Appendix A. d

We are in position to specialize the well-posedness result to the system (2.22)-
(2.24) so as we can construct the solution by the step method. To do so, let us take
in (2.34) ag = q, bp = —1 for ¢ < +00; ag =1, bg = 0 for ¢ = +00, a; =1, by =0 for
Dirichlet actuation and a; = 0, by = 1 for Neumann actuation. In addition, it suffices
to observe that the operator (KC; f;[t])(x) in (2.22) has the form of (F(t)w;[t])(x), i.e,

(2.35) (F(Ow;[t])(x) = (Kj(e;[t]Liwst)(x), T € [tj,tj+1)

which is indeed the case by virtue of (2.8), (2.12), (2.13) and (2.25). Moreover,
due to (2.6) in Assumption 2.1, the operator F(t) satisfies (2.32)-(2.33). Extending
continuously the operator F(t) defined by (2.35) for ¢ > ¢;41 and using Theorem 2.2
we obtain the following proposition:

PROPOSITION 2.3. For every initial data wj[ ] = (K ] ult;])(z) € L3(0,1), there
exists a unique function w; € C° ([tj,t;41];L*(0,1)) N C ((t tj+1); L*(0,1)) with
w;ft] € D fort € (t;,t;41] that satisfies (2. 22) ( 24) for all t € (tj,tj41) where
D c H?([0,1]) is the set of functions f : [0,1] — R for which one has f (0) = ¢f(0)
and f(1) = 0 for the case of Dirichlet actuation or f (1) = 0 for the case of Neumann
actuation.

Consequently, by the bounded invertibility of the backstepping transformation, for
every ugp € L%*(0,1), we can construct a solution u € C° ([0, lim;_o(t;)) ; L2(O 1))
with u[t] € H?(0,1) for t € (0,lim; ,00(t;)) and u € C*(I;L?(0,1)) where I =
[0,1im; 00 (£;))\ {t; : 5 = 0,1,2,...} which also satisfies (2.9)-(2.11) for all ¢ € I.

2.3. Event-triggered gain scheduling. Let us consider the following Sturm-
Liouville operator B : D — L?(0,1) defined by

d*h

(2.36) (Bh)(z) = —EW(ZE),

for all h € D and z € (0,1) where D C H?([0,1]) is the set of functions & : [0,1] — R
for which one has h'(0) = ¢h(0) and h(1) = 0 for the case of Dirichlet actuation or
B’ (1) = 0 for the case of Neumann actuation.

We denote 1 < po < ... < fiy < .. with lim,oo(pn) = 400 and ¢, (x) €
C%([0,1],R), (n = 1,2...) the eigenvalues and the eigenfunctions, respectively, of the

operator B.

2.3.1. Event-triggered gain scheduling with a static triggering condi-
tion. We introduce the first event-triggering strategy (or mechanism) for gain sched-
uling considered in this paper. The triggering condition is a state-dependent law and

7
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determines the time instants at which the reaction coefficient has to be sampled and
thereby when the kernel computation/updating has to be done.

DEFINITION 2.4 (Definition of the static event-triggered mechanism for gain sched-Jj
uling). Let K be the kernel satisfying (2.14)-(2.16) and let f;(t, x) be given by (2.25),
j > 0. Let puy be the principal eigenvalue of the Sturm-Liowville operator B (2.36).
Let R € (0,1) be a design parameter and define

(2.37) wi=c+en.

The static event-triggered gain scheduler is defined as follows:
The times of events t; > 0 with to = 0 form a finite or countable set of times
which is determined by the following rules for some j5 > 0:

a) if {t >t : <(/cju[t]),(/cjfj[t])> > uR||(K;ult]) |2} = 0 then the set of the
times of the events is {to, ..., t;}.

b) if {t > t;: <(1Cju[t]), (Iijj[t])> > pR|(Kjult])||?} # 0, then the next event
time is given by:

(2.38) tjpr =inf{t > ¢;: <(chu[t]), (K f [t])> > uR||(Kjult)|?},
where ult] denotes the solution of (2.1)-(2.3) with (2.20) or (2.21) fort > t;.

2.3.2. Event-triggered gain scheduling with a dynamic triggering con-
dition. Inspired by [11] and [6], we introduce the second event-triggering mechanism
for gain scheduling in this paper. It involves a dynamic variable which can be viewed
as a filtered value of the static triggering condition in (2.38). With this strategy we
expect to reduce updating times for the kernel scheduling and obtain larger inter-
execution times.

DEFINITION 2.5 (Definition of the dynamic event-triggered mechanism for gain
scheduling). Let K be the kernel satisfying (2.14)-(2.16), f;(t,x) be given by (2.25),
j >0 and p be given by (2.37). Let R € (0,1), n > 2u(1 — R) and 6 > 0 be design
parameters.

The dynamic event-triggered gain scheduler is defined as follows:

The times of events t; > 0 with to = 0 form a finite or countable set of times

which is determined by the following rules for some 5 > 0:

W) i {t >ty = {UCult), U516 ) — uRICule) |2 > Jm(®)} = 0 then the set
of the times of the events is {to,...,t;}.

) if {t >t = {(Csult)), (C; 516)) ) — iR GC;ulf]) |2 > Bm(e)} # 0, then the net
event time s given by:

(239) t50 =int{t > 13+ {UCsuld), (350D ) — R (KD > gm(t)},

where ult] denotes the solution of (2.1)-(2.3) with (2.20) or (2.21) for t > t;
and m satisfies the ordinary differential equation
(2.40)

tin(t) = —nm(t) + (R (Kl = ((Cult), 0 5518)) ) for 21,

and we set m(t;) = 0.

This manuscript is for review purposes only.
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Remark 2.6. Let us remark that the static event-triggered strategy has only one
design parameter (i.e. R € (0,1)) whereas the dynamic event-triggered strategy
has three additional design parameters, namely, R (as in the static case), n and 6.
Essentially,  adjusts the convergence rate of the filter (2.40) that can be characterized
as n > 2u(1 — R). The parameter 6, on the other hand, can be selected to contribute
to sample less frequent than with the static event-triggered strategy. As a matter of
fact, one can see the static event-triggering condition (2.38) as the limiting case of
the dynamic event-triggering condition (2.39)-(2.40) when 6 goes to +oo.

The following result guarantees that the dynamic variable m(t) remains always pos-
itive between two successive triggering times. This fact is going to be helpful in the
stability analysis of the closed-loop system.

LEMMA 2.7. Under the definition of the event-triggered gain scheduling with dy-
namic trigger condition (2.39)-(2.40), it holds, for t € [t;,t;41), j > 0, that $m(t) +

BRI (C;ult) 2 — {(Csuld]), (K, (2 = 0 and m(t) > 0.

Proof. From definition of the the event-triggered gain scheduling with dynamic
triggering condition (2.39)-(2.40), events are triggered to guarantee, for ¢ € [t;,t;+1),
>0 that 2m(t) + pR|(K;ult)]? - <(1cju[t]),(/cj fj[t])> > 0. This inequality in
conjunction with (2.40) yields:

1
(2.41) () 2 (1 + Z)m(t)
for which the Comparison principle can be used to guarantee m(t) > 0, for all ¢ €
[tj,tj+1), 7 > 0 and provided that m(t;) > 0. O

Lemma 2.7 guarantees that gm (1) +uR| (KKjultj1]) > —((Csultj]), (K; flt+1]))
> 0 and that m(t;41) > 0 when ;41 < 400 (by continuity).

PROPOSITION 2.8. If the time of the next event generated by (2.38) is finite, then
the time of the next event generated by the dynamic event triggered mechanism (2.39)-
(2.40) is strictly larger than the time of the next event generated by the static event
triggered mechanism (2.38).

Proof. Without loss of generality we may assume that j = 0 (and consequently
to = 0). Notice that if u[0] = 0 then both the static and dynamic event triggering
conditions give t; = +00. By assumption, the time of the next event generated by the
static strategy is finite; therefore it holds that u[0] is not zero. Consequently, ou[0]
is not zero.

Let ¢1 be the time of the next event generated by the static event triggered mechanism
and let T be the time of the next event generated by the dynamic one. We show next
that T' > ¢; by contradiction. Assume that T < t;. Define

(2.42) q(t) = pRI|(Kou[t)* — ((Koult]), (Kofo[t]))-

Then we have by virtue of (2.38), (2.42) ¢(t) > 0 for all ¢t € [0,¢1] and by virtue
of (2.39), (2.42) q(T) = —4m(T), implying that m(T) < 0. Since m(0) = 0 and
m(t) = —mm(t) + q(t) for all t € [0,T], we have

(2.43) m(t) = /0 exp(—n(t — s))q(s)ds, for all t e [0,T].

Since ¢(t) > 0 for all t € [0,T] we get m(T) > 0 and thus we conclude that m(T) = 0.
By continuity of ¢(¢) (which follows by virtue of Proposition 2.3, the continuity of

9
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all mappings involved with respect to time, and since the scalar product and the
norm preserve continuity) and the fact that ¢(¢t) > 0 for all ¢ € [0,T], the integral
fOT exp(—n(T — s))q(s)ds is zero only if ¢(t) is identically zero on [0,T]. However,
that is not possible since fy[0] = 0 (recall (2.7),(2.8) and (2.25)) and since ¢(0) =
pR[[Kou[0]]1> — (Koul0], Ko fo[0]) = pR|Kou[0]]|* > 0. Thus, it must hold that T >
t1. a

3. Analysis of the closed-loop system and main results. In this section we
present our main results: the avoidance for the Zeno behavior 2, the well-posedness
and the exponential stability of the closed-loop system under boundary controller
whose gains are scheduled according to the two event-triggered strategies.

3.1. Avoidance of the Zeno phenomenon.

3.1.1. Event-triggered gain scheduling with a static triggering condi-
tion.

PROPOSITION 3.1. Under (2.38), there exists a minimal dwell-time between two
triggering times, i.e. there exists a constant T > 0 (independent of the initial condition
uo) such that tj41 —t; > 7, for all j > 0. More specifically, T satisfies:

_ 1uR

(31) T = ;Ea

with = ¢+ ey (recall (2.37) with py being the principal eigenvalue of the Sturm-
Liouville operator B (2.36)), R € (0,1) being the design parameter involved in the
event-triggering condition (2.38), ¢ as in Assumption 2.1 and G given by (2.30).

Proof. Assume that an event occurs at ¢ = t;41, Then, from (2.38) and using
(2.12), continuity of all mappings involved with respect to time and the Cauchy-
Schwarz inequality, the following more conservative estimate holds:

(3.2) l[w; (£ DTS, £ [t ) > (w;slEial, (G5 f5ti4])) > pRlw; ]

Using (2.13), (2.25), (2.27)-(2.30) we get from (3.2):

(3.3) G?||w; [t ]l [tj41]lloo = pRlw;[tj41]]1>-
Therefore,
(3.4) G?llej[tjr1]lloe > 1R

By virtue of Assumption 2.1 in conjunction with (2.7) and (2.8), we obtain for all
j=0

(3.5) G*p(tjt1 —t;) > pR,

from which we can deduce (using definition (3.1))

(3.6) liv1—t; >,

being 7 the minimal dwell-time (independent on initial conditions). a

2We recall, the Zeno phenomenon means infinite triggering times in a finite-time interval. In
practice, Zeno phenomenon would represent infeasible implementation into digital platforms since
one would require to sample infinitely fast.

10
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Proposition 3.1 allows us to conclude that lim(¢;) = +oo and thereby we can ap-
ply Proposition 2.3 to get the following result on the existence of solutions of the
closed-loop system (2.1)-(2.4) with control (2.20), under the static event-triggered
gain scheduler (2.38).

COROLLARY 3.2. For every initial condition ug € L?(0,1), there ezists a unique
mapping u € C°(Ry; L?(0,1))NCY(I; L*(0,1)), ult] € H?(0,1) fort > 0 that satisfies
(2.1)-(2.4) with control (2.20) or (2.21), under the static event-triggered gain scheduler
(2.38) forallt € I and I =Ry \{t; >0,7=0,1,2,...}.

Proof. Tt is an immediate consequence of Proposition 2.3 and Proposition 3.1.
Indeed, the solution is constructed (by the step method) iteratively between successive
triggering times. a

Remark 3.3. The minimal dwell-time depends on the rate of change of the reac-
tion coefficient. A higher rate of change of the reaction coefficient (i.e., large ¢) would
give a smaller minimal dwell-time (i.e., more frequent event triggering). This is ex-
pected since a high rate of change of the reaction coefficient requires a more frequent
update of the control law.

3.1.2. Event-triggered gain scheduling with a dynamic triggering con-
dition. By virtue of Proposition 2.8, the inter-execution time for the dynamic event
triggered mechanism (2.39)-(2.40) always exceeds the inter-execution time for the
static event triggered mechanism (2.38). Due to Proposition 3.1, the Zeno phenome-
non is immediately excluded.

Therefore, as in the static case, we can also conclude that lim(¢;) = +oo and
thereby we can apply Proposition 2.3 to get the following result on the existence of
solutions of the closed-loop system (2.1)-(2.4) with control (2.20) or (2.21), under the
dynamic event-triggered gain scheduler (2.39)-(2.40).

COROLLARY 3.4. For every initial condition ug € L?(0,1), there ezists a unique
mapping u € C°(Ry; L?(0,1)) N CY(I; L?(0,1)), ult] € H*(0,1) for t > 0 that satis-
fies (2.1)-(2.4) with control (2.20) or (2.21), under the dynamic event-triggered gain
scheduler (2.39)-(2.40) for allt € I and I =R \{t; >0, =0,1,2,...}.

3.2. Exponential stability analysis. We present next the stability results un-
der our two event-triggered gain scheduling strategies.

3.2.1. Event-triggered gain scheduling with a static triggering condi-
tion.

THEOREM 3.5. Under Assumption 2.1, if the following condition is fulfilled,

12R(1 - R)

(3:7) @mG)

where ¢, G, p, R are defined, respectively, in (2.6), (2.30), (2.37), (2.38); then, the
closed-loop system (2.1)-(2.4) with control (2.20) or (2.21), under the static event-
triggered gain scheduler (2.38), is globally exponentially stable. More specifically, there
exists a constant o > 0 such that

(3.8) [ult][| < Gexp(=at)[[u[0]]l, for all t=0.

11

This manuscript is for review purposes only.



138

439
440

441

162

463

164

165
166
167
468
469
170
171
472

Proof. By using the variational characterization of eigenvalues (see [39, Section
11.4]) in conjunction with (2.22)-(2.24),(2.25), the following estimate holds for all
t € (tj,tj41):

(39 % (St < sy 617 + G, (1500

where p = ¢+ epy (recall (2.37) p1 being the principal eigenvalue of the Sturm-
Liouville operator B (2.36)). We can rewrite (3.9) as follows:

310) 5 (Gosl) < -1 = Rwsldl? = ahulal? + (w0, (1),

where R € (0,1) is the parameter involved in (2.38).
Therefore, from the definition of the static event-triggered gain scheduler, events

are triggered to guarantee, <wj[t],(Iijj[t])> < pR|lw;[t]]|?, for all t € (tj,t541).
Then, we obtain for all ¢ € [t;,t;41):

(3.11) [[w;[8]]* < exp (=2p(1 = R)(t — t;)) [lw;[t;]]|.
Using (2.12), (2.13), (2.27)-(2.30) and (3.11), we get:
(3.12) [ult]]|* < G* exp(=2u(1 = R)(t — t;))||ult;]]|,

forallt € [t;,t;+1). Since u € C°(Ry; L*(0,1)), it follows that (3.12) holds for t = ¢4
as well, i.e.

(3.13) [ultj]l? < G2 exp(=2u(1 = R)(t;+1 — t;))ult;]II*.

Now, for all ¢t > 0, an estimate of ||u[t]|| in terms of ||u[0]|] can be derived recursively,
by using (3.6) and the fact that there have been j events and that j7 units of time
have (at least) been passed until ¢t. To that end, we can apply induction on j and
prove that, for all j > 0,

(3.14) lult;]I* < (G*) exp(=2u(1 = R)t;)|[u[0]||?,

and that ¢; > j7. Let j > 0 be given (arbitrary) and ¢ € [t;,t;41) (arbitrary). We
obtain from (3.12),(3.13) and (3.14):

(3.15) lult]]|* < (G*)7*F exp(—=2u(1 — R)t)|u[0][|*.

Moreover, since j < £, it holds:

(3.16) Juft]|? < G2 exp (= (201 — B) — 22 ) Jufo]) 2

In light of condition (3.7) in conjunction with (3.6) where 7 = i’é—f, we finally obtain:
(3.17) lu[t]|| < G exp(—ot)||u[0]]], forall t >0,

with o = KRAZRI—¢G In(G) - () Thig concludes the proof. O

nR

Remark 3.6. Notice that y?R(1 — R) — ¢G?In(G) > 0 holds true provided that ¢

is sufficiently small (this corresponds to the case where A(t, z) is slowly time-varying
coefficient). In addition, it is worth remarking that we can select R = % in order to
maximize the allowable upper bound ¢. Nevertheless, different values of R may be
used in practice since the obtained estimates are conservative. The proof of Theorem
2 provides a (conservative) explicit estimate of the convergence rate ¢ > 0. The
obtained estimate shows that the smaller ¢ is (i.e., the slower the change of the

reaction coefficient), the higher the convergence rate is.
12
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3.2.2. Event-triggered gain scheduling with a dynamic triggering con-
dition.

THEOREM 3.7. If condition (3.7) of Theorem 3.5 holds, then, the closed-loop sys-
tem (2.1)-(2.4) with control (2.20) or (2.21), under dynamic event-triggered gain
scheduler (2.39)-(2.40) is globally exponentially stable. More specifically, there exists
a constant o > 0 such that

(3.18) lu[t]|| < Gexp(—ot)||u[0]]], for all t>0.

Proof. An estimate of the time-derivative of the following function W (t) :=
{lw; [t]||* + m(t) along the solutions (2.22)-(2.24),(2.25),(2.40) is given by:
(3.19)

W (1) < —plhg el + (wyle], O, 5518) ) — mne) — (wyle], (6, 5514) ) + nRlhwy ]
which can be rewritten as follows:
(3.20) W (t) < —p(1 = R) (lw;[t]]|* + 2m(t)) —m(t)(n — 2u(1 — R)).

By Lemma 2.7, we guarantee that m(t) > 0 and since p > 2u(1 — R) (recall Definition
2.5), thus we get:

(3.21) W(t) < —2u(1 — R)W(t)

Therefore, we obtain for t € [t;,t;11):
1 1
322 gl m(0) < ep(-2u0 - R 1) (Flusll +m)).

Notice that i||w;[t]||> < 3|lw;[t]||> + m(t) and that by Definition 2.5, m(t;) = 0.

Therefore, from (3.22) we have, for all ¢ € [t;,t;41):
(3.23) lwj[t]]1* < exp(=2p(1 = R)(t — t;))lw; [t5]]I*.

The remaining part of the proof follows the same reasoning as the proof of Theorem
3.5 (see from (3.12)). This concludes the proof. 0

Remark 3.8. The function W () is monotonically decreasing (see (3.21)), for all
t € [tj, tj+1). However, the function 3| w;[t][|> may not be monotonically decreasing
on that interval. The design parameter 6 involved in the dynamic event-triggering
condition (2.39)-(2.40) and also discussed in Remark 2.6, allows to limit the poten-
tial increase of 1||w;[t]]|?. Indeed, since events are triggered to guarantee $m(t) +

uRI|(K5ult])|? = ((Kjult). (K £5[1) ) 0. it holds that

4
di

(3hoslel?) < =2 = Rl + o

Notice that the larger the value of 6, the more limited the increase. We approach
then to the case as we were dealing with the static event-triggered gain scheduler.

4. Numerical simulations. We illustrate the results by considering (2.1)-(2.4)
with e = 1, ¢ = +00 and initial condition ug(x) = 2(x — 2?). For numerical simula-
tions, the state of the system has been discretized by finite differences on a uniform
grid with the step h = 0.02 for the space variable. The discretization with respect to

13
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F1G. 1. Profile of the time- and space- varying reaction coefficient \(t,z) = 10+
7 cos(5mt) + for the reaction-diffusion system (2.1)-(2.4).

50
cosh?(5(t—1)) +

50
cosh2(5z)

time was done using the implicit Euler scheme with step size At = h%2. We run sim-
ulations on a frame of 2s. We choose the time- and space- varying coefficient A(t, x)
to have a simple form as A\(t,x) = Ac + A¢(t) + Az (z). More specifically:

50 50
— 4+ Tcos(bmt) + ———,
cosh?(5(t — 1)) (5mt) cosh?(5z)

which has a profile depicted in Figure 1. We stabilize the closed-loop system (2.1)-
(2.4) under Dirichlet actuation with boundary control (2.20) whose kernel gains satisfy
(2.14)-(2.16) and are scheduled according to the two event-triggered mechanisms we
introduced in Definition 2.4 (static-based triggering condition) and Definition 2.5
(dynamic-based triggering condition).

The parameters of the triggering conditions are set R = 0.15, y = c+en? =7
with ¢ = 0. In addition, n = 16.7 and 6 = 0.15.

From (2.7), bj(z) = A(tj,z) = S\j + Fs}?;ﬁ’ where j\j = 10 + m% +
7 cos(bmt;) with {t;};en according to (2.38) (static) or (2.39)-(2.40) (dynamic). In ei-
ther cases, kernels K; satisfying (2.14)-(2.16), for all t € [t;,¢;41), admit a closed-form

solution which is given as follows [36, Section VIILE]:

(4.1) At,z) =10+ t>0, z€l0,1],

2

(42)  Kj(z,y) = —5\jyh ( S y2)) — 5tanh(5y)Io ( A (2 — yQ)) :

X (@2 —y?)
where I,,(-), m € Z is a modified Bessel function of the first kind of order m. Figure 2
shows the event-triggered sampled version of the profile of the time- and space- vary-
ing reaction coefficient (4.1) for all ¢ € [t;,t;41), j > 0 according to the static event-
triggered gain scheduler (2.38) (depicted on the left) and the dynamic event-triggered
gain scheduler (2.39)-(2.40) (depicted on the right). Hence, the kernel updating is
done on events and aperiodically. One of the main features of this approach is that
the kernel of the control does not need to be computed using the method of succes-
sive approximations to solve a PDE kernel which involves a time- and space- varying
coefficient (see e.g. [15, 19] which do deal with successive approximations method
and efficient numerical schemes for the computation of kernels and further consider-
ations for the stabilization of reaction-diffusion PDEs with time- and space- varying

14
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F1G. 2. Sampled version of the profile of the time- and space- varying reaction coefficient (4.1),
i.e. A(tj,x) for all {t;}jen according to the static event-triggered gain scheduler (2.38) (depicted on
the left) and the dynamic event-triggered gain scheduler (2.39)-(2.40) (depicted on the right).

coefficients). As motivated throughout the paper, it suffices to schedule the kernel
in a suitable way and only when needed while using a simpler kernel (in some cases
admitting closed-form solution; or in some cases when it is approximated via a simpler
successive approximation as one is not taking into account the time-dependence).
Figures 3 and 4 show the time-evolution of the L? norm of the closed-loop sys-
tem (2.1)-(2.4), (4.1) and the time-evolution of the boundary control (2.20), respec-
tively, under static event-triggered gain scheduler (2.38) (red dashed line) and dy-
namic event-triggered gain scheduler (2.39)-(2.40) (blue line). For both figures, on
the right, there are zooms of the two curves to illustrate the difference. It can be
observed that under the two strategies, the behavior is similar with same theoretical
guarantees. Finally, we run simulations for 100 different initial conditions given by

1.6 ' ' ' — 0.65 F

0.6 -

0.55 -

(all
[[ule]]

0.5

045

0.4

FIG. 3. Time-evolution of the L? norm of the closed-loop system (2.1)-(2.4), (4.1) with boundary
control (2.20) under static event-triggered gain scheduler (2.38) (red dashed line) and dynamic event-
triggered gain scheduler (2.39)-(2.40) (blue line). On the right, there is a zoom of the two curves to
illustrate the difference.

up(x) = /2/nsin(y/nrz) + /n(z — 22), for n = 1,...,100 on a frame of 2s. We
compare the static event triggered mechanism with respect to the dynamic one while
computing the inter-execution times between two triggering times. We compare sev-
eral cases by tuning different parameters. For all cases, 7 is selected as n = 2u(1 — R).
The mean value of the numbers of events generated under the two strategies is re-

15

This manuscript is for review purposes only.



[, S, B, BN, B, B, BN, B, BN, SN, )|

u(t)

A

u(t)
&
2

1 1
0.5 0.6

Fic. 4. Time-evolution of the boundary control under static event-triggered gain scheduler
(2.38) (red dashed line) and under dynamic event-triggered gain scheduler (2.39)-(2.40) (blue line).
On the right, there is a zoom of the two curves to illustrate the difference.

ported in Table 1. The mean value and coefficient of variation (ratio between the
standard deviation and the mean value) of inter-execution times for both approaches
are reported in Tables 2 and 3, respectively. In addition, Figure 5 shows the density of
the inter-execution times (axis in logarithmic scale). The red bars correspond to the
inter-execution times under the static event triggered mechanism (2.38); whereas the
blue bars correspond to the dynamic event triggered mechanism (2.39)-(2.40) result-
ing in larger inter-execution times. Therefore, it can be asserted that, as expected,
with the dynamic triggering condition one obtains larger inter-execution times and
we can reduce the number of events rendering the strategy slightly less conserva-
tive. In general, dynamic event-triggered strategies may offer benefits with respect to
static strategies as in the framework of even-triggered control (in finite and infinite
dimensional settings).

TABLE 1
Mean value of the number of events generated under the static event-triggered gain scheduler
(2.38) and under dynamic event-triggered gains scheduler (2.39)-(2.40).

R=0.15,7=16.7T | R=0.571n=9.86
Static ET 39.93 18.58
Dynamic ET (6 = 100) 37.08 17.6
Dynamic ET (6 = 1) 29.8 16.02
Dynamic ET (6 = 0.015) 17.01 8.99
TABLE 2

Mean wvalue of inter-execution times for static event-triggered gain scheduler (2.38) and for
dynamic event-triggered gains scheduler (2.39)-(2.40).

R=0.1517=167| R=0.57=9.86
Static ET 0.0460 0.0738
Dynamic ET (9 = 100) 0.0354 0.0521
Dynamic ET ( = 1) 0.0374 0.0582
Dynamic ET (9 = 0.015) 0.0546 0.1112
16
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F1G. 5. Density of the inter-execution times (axis in logarithmic scale) computed for 100 differ-
ent initial conditions given by ug(z) = \/2/nsin(y/nrz) +/n(x —x2), forn =1,...,100 on a frame
of 2s. The parameters of the event-triggered strategies are: R = 0.5, n = 9.86 and 6 = 0.015. The red
bars correspond to the density of inter-execution times under the static event triggered mechanism
(2.38); whereas the blue bars correspond to the dynamic event triggered mechanism (2.39)-(2.40)
resulting in larger inter-execution times.

TABLE 3
Coefficient of variation of inter-execution times for static event-triggered gain scheduler (2.38)
and for dynamic event-triggered gains scheduler (2.39)-(2.40).

R=015,7=167] R=057n=9.86
Static ET 1.9814 2.203
Dynamic ET (0 = 100) 2.110 2.693
Dynamic BT (6 = 1) 2.6251 2.8905
Dynamic ET (0 = 0.015) 2.3457 2.0965

5. Conclusion. In this paper, we have addressed the problem of exponential
stabilization of a reaction-diffusion PDE with time- and space- varying reaction coef-
ficient. The boundary control design relies on the backstepping method and the gains
are computed/updated on events according to two event-triggered gain scheduling
schemes. Two event-triggered strategies are prosed for gain scheduling: static and
dynamic. The latter involves a dynamic variable that can be viewed as the filtered
value of the static one. It has been observed that under this strategy it is possible
to reduce the number of events for the gain scheduling. We show that under the two
proposed event-triggered gain scheduling schemes Zeno behavior is avoided, which
allows to prove well-posedness as well as the exponential stability of the closed-loop
system.

Our approach can be seen as an efficient way of kernel computation as it is sched-
uled aperiodically, when needed and relying on the current state information of the
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closed-loop system and the time- and space- varying reaction coefficient which is con-
sidered as a distributed input disturbance. Furthermore, the boundary controller is
seen as a feedforward one. This work constitutes an effort towards the “robustifica-
tion” of boundary controllers designed under backstepping method.

In future work, we expect to combine these results with event-triggered control
strategies for boundary controlled reaction-diffusion PDEs systems recently intro-
duced in [7] (which deals with constant reaction coefficient only). The results in this
paper may suggest that the triggering times for gain scheduling may be synchronized
with the time instants for control updating. The control is going to be piecewise
constant and not piecewise continuous as in the present work. This would represent
a more realistic way of actuation on the PDE system towards digital realizations. Fi-
nally, we expect to study observers to come up with an observer-based event-triggered
gain scheduling scheme for this class of reaction diffusion PDEs. This would require
to handle new arising challenging issues (e.g. event-triggered gain scheduling of the
output injection gains, point-wise estimates whenever ones samples the output mea-
surement, the avoidance of the Zeno phenomena, among many others).

Appendix A. Proof ot Theorem 2.2.

Proof. Tt suffices to show that there exists k > 0 such that for each wo € L?(0,1)
and T > 0 the initial value problem

ylt] + (A + kDylt] = F(t)ylt],

(A1)
y[O] = Wo,

has a unique classical solution on [0, 7] in the sense described in [30] where A : D —
L?(0,1) is the Sturm-Liouville operator defined by the following formula for every
febD:

(A.2) (Af)(z) = —ef"(x) + cf(x), for x € (0,1).

Notice that any solution y[t] of (A.1) provides a solution of the initial-boundary value
problem (2.31) with (2.34) by means of the formula w[t] = exp(kt)y[t] and any solution
wlt] of the initial boundary value problem (2.31) with (2.34) provides a solution of
the initial value problem (A.1) by means of the formula y[t] = exp(—kt)w][t].

The fact that A is a (non-singular) Sturm-Liouville operator guarantees that
the eigenvalues \,,n = 1,2,... of A are all real with lim (\,,) = 400 and that the
eigenfunctions ¢, € C?([0,1]),n = 1,2, ... of A with Ag,, = A\,¢,, and ||¢,|| = 1 form
an orthonormal basis of L%(0,1). It follows that the semigroup

Stu=">"exp(=Ant) (pn,u) dn, for u € L*(0,1) and t > 0,

n=1

is a Cp semigroup on L?(0,1) (see [44], page 178 ). Consequently, —A is the infinites-
imal generator of a Cyy semigroup on L?(0,1).

The fact that —A is the infinitesimal generator of an analytic semigroup follows
from the fact that the eigenvalues A,,,n = 1,2,... of A are all real with lim (\,) = 400
Indeed, we can directly apply Theorem 5.2 on page 61 in [30] when A; > 0. When
A1 < 0 then we can apply Theorem 5.2 on page 61 in [30] to the operator —A — rI
with r > —X; (which generates the Cy semigroup exp(—rt)S(¢); see explanations on
page 61 in [30]).
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Since —A is the infinitesimal generator of a Cy semigroup S(t),t > 0 on L%(0,1)
and since for each ¢t > 0 the operator F(t) : L2(0,1) — L?(0,1) is a linear bounded
operator for which there exist constants Q1,2 > 0 such that (2.32) and (2.33) hold, it
follows from Theorem 1.2 on page 184 in [30] that there exists a unique mild solution
y € C°([0,T]; L*(0,1)) of the initial value problem (A.1), i.e.,

(A.3) y[t] = exp(—kt)S(t)w0+/O exp(—k(t—s))S(t—s)F(s)y[s]ds, for all t € [0,T].

Theorem 2.2 on page 4 in [30] implies the existence of constants M,w > 0 such that
the estimate ||.S(t)|| < M exp(wt) holds for all t > 0. Exploiting the previous estimate
in conjunction with (A.3) and (2.32), we get for all ¢t € [0,T] :

(A4) ol M exp(—(k = )0) ol + 72 mas (lyls]l), for all ¢ € 0,7,

Selecting k& > 0 so that kl‘f & <1, estimate (A.4) implies the following estimate:

(A5) g (lolell) < (1= 225 ) 3

We next define
(A.6) g(t) = F(t)y[t], te][0,T].

Inequalities (A.5), (2.32) and definition (A.6) imply that g € L? ([0,T]; L*(0,1)) for
every p € [1,400). Definition (A.6) allows us to conclude that the mild solution
y € C°([0,T]; L*(0,1)) of the initial value problem (A.1) is also a mild solution of
the inhomogeneous initial value problem:

(A7)

ie., z[t] = y[t] for t € [0,T]. Since —A is the infinitesimal generator of an analytic
semigroup S(t) on L?(0,1), it follows from Theorem 3.1 on page 110 in [30] that for
every p € (1,4+00), the mapping t — y[t] is locally Holder continuous on (0,7] with
exponent p;1_ Using (2.32),(2.33) and the fact that g(¢t) = F(t)y[t] for t € [0,T], it
follows that for every p € (1,400), the mapping ¢ — g[t] is locally Holder continuous
on (0, T'] with exponent %. By virtue of Corollary 3.3 on page 113 in [30] we conclude

that y[t] is the unique classical solution of (A.1).
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