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Abstract. In this paper a new génération of particle filters for nonlinear discrète
time processes is proposed, based on convolution kernel probability density esti-
mation. The main advantage of this approach is to be free from the limitations
met by the current particle filters when the likelihood of the observation variable
is analytically unknown or when the observation noise is null or too small. To
illustrate this convolution kernel approach two convolution filters, counterparts of
the well-known sequential importance sampling (SIS) and sequential importance
sampling-resampling (SIS-R) filters, are considered and their stochastic convergence
to the optimal filter under different modes are proved. Their good behaviour with
respect to that of the SIS and the SIS-R filters is shown on several simulated case
studies.

Keywords: Convolution Kernels; Particle Filter; Resampling; Sequential Impor-
tance Sampling

AMS 2000 Subject Classification: Primary 62G07, 62M20, 93E11 Sec-
ondary 94A20, 62G09

1. Introduction

Nonlinear filtering, i.e., estimating the distribution of a dynamical sys-
tem state variables xt conditional on the observations of state-depen-
dent variables yt up to time t, is a real problem in many fields of
engineering. Since the development of the Kalman filter in 1960 for the
linear case, a wide variety of approximate methods were proposed to
deal with the nonlinear one. The most famous and the most widely used
by the engineers is the extended Kalman filter (EKF). For more details
about the EKF see (Jazwinski, 1970). But the EKF lacks of theoretical
support and often présents troubles in practice. Some improvements,
a few of which are presented in (Chen, 1993), were proposed as gener-
alised Kalman filters but without really overcoming these drawbacks.
Investigation in the field of nonlinear filtering has thus remained very
active.

Among the alternatives to the EKF, the Monte Carlo approaches ofîer

© 2006 Kluwer Academie Publishers. Printed in the Netherlands.



72

practical and theoretical results. The corresponding State of the art is
reviewed by (Liu & Chen, 1998) and (Doucet, 1998). The Monte Carlo
filters are divided into two families: the first one also the oldest, includes
the filters based on the sequential importance sampling (SIS) algorithm
and the second the filters based on the sequential importance sampling
resampling (SIS-R) algorithm. The principle of Monte Carlo filter based
on SIS was developed in the early 70’s, by (Handschin, 1970) and by
(Akashi & al., 1975) but due to the limitations of the processors of the
time remained dormant until the 80’s when it was revived by (Davis,
1981) and (Kitagawa, 1987). However, the SIS filters suffered from di-
vergence in long time. The new génération of Monte Carlo SIS-R filters
improved on this issue but did not completely overcome it. The idea of
introducing a resampling step in the SIS algorithm was independently
proposed by (Gordon h al., 1993) with “the boostrap filter”, (Del Moral
& al., 1992), (Del Moral, 1995) with “the Interacting Particle Filter”
(IPF) still one of the most powerful filters, and (Kitagawa, 1996). A
lot of filters based on SIS-R were then developed. A complété review
of these works is presented in (Doucet &; al., 2001). The convergence of
the IPF to the optimal filter is proved by (Del Moral, 1998), (Del Moral
& al., 2001) and (LeGland & Oudjane, 2004).
However, in spite of their theoretical properties, the filters based on SIS-
R still présent several drawbacks in practice. Systems with non-noisy
observations are not supported by these filters because the density of
the noise is used to weight the particles. Even too small observation
noise can induce divergence of the filters. Moreover, the problem of
divergence in long time has not completely disappeared. According to
(Hürzeler & Künsch, 1998) it is caused by the discrète nature of the
distribution approximations produced by the SIS-R filters. A step of
regularization on the state variable distribution was then added into the
SIS-R algorithm successively by (Hürzeler & Künsch, 1998), (Oudjane,
2000), ( Warnes, 2001) and (Musso & al., 2001), in order to produce a
probability density as approximation of the optimal filter. Actually, the
convolution kernels hâve been used to stabilize signal to noise ratios.
This idea has been introduced and analyzed in some details in (Del
Moral & Miclo, 2000) and in (LeGland & Oudjane, 2003). Practically,
the addition of this regularization step improves the behaviour of the
filters and the theoretical properties are kept. See (Oudjane, 2000)
or (LeGland h Oudjane, 2004) for the convergence of the resulting
Regularized Interacted Particle Filter (RIPF) using convolution kernel
regularization.

However these improvements do not relieve definitively from practi-
cal difficulties in case of too large (and even too small) signal-to-noise
ratio. Moreover, these regularized filters still rely on the analytical
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availability of the observation likelihood, a classic Monte-Carlo filter
assumption not frequently met in real situations. Only (Del Moral k
al., 2001), (Del Moral k Jacod, 2001) considered a context in which this
likelihood is not accessible and used a regularization of the observation
distribution.

The approach we propose is based on convolution kernel density
estimation and implicit regularization of both State and observation
variable distributions, and is free of their analytical knowledge. Only
the capability of simulating the State and observation noises is required.
The problem of null or small observation noise is also overcome. The
theoretical properties of these new particle filters rely entirely upon the
kernel probability density estimation theory and not upon that of the
current particle filter theory, even if from a certain point of view these
filters can be interpreted as generalization of that of (Del Moral k al.,
2001).

The paper is organized as follows. The next section is devoted to
reminding the Monte Carlo filtering context. A transition from the
particle filters to the convolution filters is presented in Section 3. The
algorithmic and theoretical properties of the basic Convolution Filter
(CF) are presented in Section 4 and that of the Resampled-Convolution
Filter (R-CF) in Section 5. In Section 6 the behaviour of our convolution
filters are compared with that of their counterpart interacting particle
filters and Monte Carlo filter, on simulated case studies in different noise
situations. Finally, results of kernel density estimation theory useful to
the study of the convergence properties of our convolution filters are

gathered in Appendix A and the proofs of these properties themselves
are presented in Appendix B.

2. The filtering context

Consider a general discrète dynamical System

xt = ft(xt-u£t)
yt = ht(xt, r)t), (i)

in which xt G IRd and yt G JRq are the unobserved State variable
and observed variable respectively. et and rjt are the independent State
noise and observation noise respectively. ft and ht are two known Borel
measurable functions, possibly time-varying.
The filtering problem is to estimate the distribution of xt conditional
on the past observations yi,..., yt, the so called optimal filter. When the
density function of 7rt exists it will be noted p(xt\yi,..., yt) or p(xt\yi:t)
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or simply pt. The filtering problem only makes sense above ail when
the mapping ht is not bijective in xt. Ail the filters are developed to
deal with such a context, and generally the mappings ht is not assumed
injective. Let us remark that even when ht is bijective and the distribu-
tion of the noise r)t is known, finding the distribution of Xt conditional
on yt is generally not possible analytically. The filtering approach is
then still justified in this case.
To build up Monte Carlo filters, the following hypothèses are generally
assumed:

— the distribution, 7To, of the initial State variable Æo, is known.

— the distributions of the noises et and ry, are known for ail t G IN.

The density of ry plays a crucial rôle for Monte Carlo filters since it is
used to weight the generated particles. Let us illustrate this point by
recalling briefly the Interacting Particle Filter (IPF) algorithm, one of
our filters of reference in this paper:

— For t = 0
Génération of n particles: (xJ, * ■ •, Xq) i.i.d. ~ ttq.
Estimation of ttq: 7Tq = X)”=1 ^o^xl0 (where S£i is the Dirac measure
at Xq and Uq = i = 1, • • •, n).

— For t > 1

(i) Sampling step: (x\_l5 • • •, xf_x) ~ ^_v
(ii) Evolving step: ~ /*(£{_1, •)•
(iü) Weighting step: u\ = tt(Æ^_1)/(E"=:i i))*
(iv) Approximation step: 7r” = p

The weight u\ of each particle is given by the likelihood function =

p(yt\x). The observations yt thus influence the filter through the like-
lihood function which is assumed to exist and to be known. This as-

sumption is rather restrictive in practice. Moreover let us note that it
rules out the non-noisy case and can also cause trouble when the noise
rjt is too small and also when the noise is non-additive as in the general
System (1).
These severe drawbacks are circumvented in the approach proposed in
this paper, which as will be seen shortly, uses convolution kernels to
weight the generated particles, with furthermore interesting theoretical
and practical benefits.
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As a transition let us see beforehand a possible kernel-based improve-
ment of the particle fîlters to deal with the unknown likelihood case.

3. From the Particle Filter to the Convolution Filter

We shall illustrate this transition through the well-known IPF particle
filter of (Del Moral, 1995). This could hâve been performed with any
filter built up from the SIS or SIS-R principle.
Suppose that a limited knowledge of the distribution of rjt prevents
access to the likelihood function T^rc) = p{yt\x) and only permits to
simulate observation yt from a given xt through model (1).
Let Kh(.) be a Parzen-Rosenblatt kernel (see appendix A). In order to
clarify the présentation, we just recall at this stage that throughout the
paper, a kernel K is a bounded application from JRd —> IR, such that
f KdX = 1, where À is the Lebesgue measure. Using kernel estimation
theory we could then consistently approximate by simulating ob-
servations, and use this approximation instead of the true function in
the previous IPF algorithm. This would amount to replacing steps (iii)
and (iv) by:

(iii)’ Weighting step
For (i=l:n)

Stage 1

Stage 2

eneration of N observations:
ÿh---,ÿt ~htlx\u 1,.),

Approximation of
pN(yt\^t-i) = jm ZjLi Kh(yt - iï)-

Approximation of the weight of
^lt=PN(yt\x\ul).

Normalization of the weights: Gj\ = w\/{Ya=i t*;J).

(iv)’ Approximation step 7r” = Ya=i 51

Theorems A.l and A.2 of Appendix A give general conditions ensuring
convergence of pNto ) as N tends to oo. But the
benefit of this approximation (and the possible recovering of the IPF
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properties) is impaired by the high computing cost induced at each step
(N x n random variable générations).

The convolution kernel approach we propose to remedy to the the-
oretical and practical limitations of the particle filters do not suffer
from this computing handicap. It uses a joint (xt,yt) density estimation
which does not demand extra N x n observation simulations at each

step. Moreover the kernel density estimation theory allows a complété
original theoretical study of the convergence properties of these new
filters.
We shall introduce first the Convolution Filter, Le., the convolution
counterpart of the basic particle filter.

4. The Convolution Filter (CF)

The density of the optimal filter is defined by

/ i \ PXY(xt,yi:t) f r)\P{Xt\yi:t) = 7 T 7 (2)PY{yi:t)

where pxY(xt,yv.t) and pviyi-.t) are the {xt,yi:t) joint probability den-
sity and the marginal density of t/ut, respectively. For ail the yi.t such
that py(t/i:t) = 0, we use the usual convention p(xt\yi-.t) = 0.
Let us note zt = {xt,yi:t)-

Assumptions:

— the distribution, 7To, of the initial state variable æo, is known.
— the simulation of the noise variables et and r)t according to their

true distributions is possible for ail t G IN.
- there exists a probability measure fit such that zt ~ Pt, for ail t.
- there exists a probability measure vt such that y\-t ~ ^t, for ail t.

4.1. Kernel estimation of the optimal filter density

Let Xq (i = 1, • • •, n) be generated according to txq. For i = 1,..., n :
starting from xl0 a recursive simulation of System (1 ) t times successively,
leads to z\ = (x\,y\:t) ~ fH-
Empirical estimâtes of the measures /it and Vt are given by
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-i n i n

= and =

i=l t=l

whëre 5 zi and S„~a are Dirac measures. Kernel estimâtes p\Y andzt yut ^1

Py of the densities pxy and py are then obtained by convolution of
these empirical measures with appropriate kernels (see Appendix A for
définitions and properties):

* /*?(**) = n 12=1 Kljzt - 4)
= i E"=i KL(xt - 4)KyhJyv.t - vit),

and for py

Pv(yi-t) = Kvhn *~v\:t)-Th .

iî=l

In which K%n and are Parzen-Rosenblatt kernels of appro-
priate dimensions and Kvhn{y1:t - ÿ\.t) = Tilj=lKyhn(yj - ÿj).
An estimate of the density of the optimal filter pt{xt\y\t) is then given
by:

Pn{xt\yi:t) Pxy(zt)
Py(yi:t)

Y,UKl(w.t-ÿ\..t)

Eti Kl(yut - vit)
(3)

The basic convolution filter (CF) is defined by this density estimator.
As for the true densities, we use the convention: pn(xt\y\.t) = 0 for ail
the yyt such that Py(y\-.t) — 0. Before giving convergence properties of
CF, let us see a simple recursive algorithm for its practical computing.

4.2. CF ALGORITHM

— For t = 0

Génération of æJî • • • ? ~ ^o-
Initialization of the weights: wl = 1 for (i = 1, • • •, n).

For t > l
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(i) Evolving step: x\ ~ Mxi-u .) and y\ ~

for (i = !,••• ,n).
(ii) Weight updating: wl = KIM - Vt) x

for (i ,n).
(iii) Estimation:

Pt(xt\yi-.t)
E?==i rfKi,

2^i=i

Sxt~xt)
wl (4)

4.3. Convergence properties of the CF filter

Several results of stochastic convergence and convergence rate are pro-
posed in the following for the CF filter. Proofs are given in Appendix
B.
Let us see first some results of punctual convergence.

THEOREM 4.1 (quadratic mean convergence).
If Kx and Kü are Parzen-Rosenblatt kernels, if py is positive and

continuons at y\:t and if pt(x\yi:t) is bounded then,
lim

n->oo

lim
n-4oo

The expectation is defined with respect to ail the simulated variables
(xlt,ÿ\:t)i=i,...,n, conditional on the observed variables yyt-

THEOREM 4.2 (a.s. convergence ).
If Kx and Kü are positive Parzen-Rosenblatt kernels, if py is positive
and continuons at y\-t and ifpxY{xt,yi:t) is continuons at (xt,y\:t) then

limn—>-(X) hfi ~ 0

limiMOO = oo =” PUxt\Vl:t) = <*.3.

ni+° = oo} ^ =

Results of L\-convergence are now provided which hâve no équivalent
for the usual (not regularized) particle filters since only the optimal
filter probability measure is estimated by these filters.

THEOREM 4.3 (a.s. L\-convergence ).
If Kx and are positive Parzen-Rosenblatt kernels, if py is positive
and continuons at y\:t and if Xt •-> Pxy(xt, Vi-.t) is continuons for almost
every xt, then

IhUn-^oo
lim„—>oo

hn = 0
nhjq+d .

log n
OO

lim / \Pt(xt\yi:t) -Pt(xt\yv.t)\dxt = 0 a.s.
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Proof: Theorem 4.2 and Glick’s theorem (A.3) ensure this resuit.

Let us complété this Li-norm resuit by a convergence rate resuit. This
requires us to remind the notion of class s kernel (s positive integer).

DEFINITION 4.1 (Class s kernel).
Let s G IN and s > 1. A class s kernel is a Borel measurable function
K which satisfies

(i) K is symmetric, K(—x) = K(x), x G Md.
(n) fuiK = l.

(ni) xaK(x)dx = 0 for s > 2 and 1 < |«| < s — 1.
(in) fjftd \xa\\K(x)\dx < oo for \a\ = s.

where a € INd, xa = a;"1 ... x^d and |a| = ot\ + ... + a^ with ai G
IN, i = 1,..., d.

Note that, a class s kernel, with s > 2, must necessarily take négative
values. Although in most theorems of this paper we consider positive
kernels, kernels taking négative values are allowed in nonparametric
estimation advanced works, (Devroye, 1987) for example.

Let O be an open set of JRd. Let Ws,p(ft) = {/ G Lp(O) | Daf G
Lp(Q), Va : |a| < s} be a standard Sobolev space, where Daf =
D\l • • • D^df and Dflf is the a^th partial dérivative of the function /
with respect to the ith variable.

THEOREM 4.4 (rate of L\-convergence).
Suppose that, Kp G Li(IR^) and Kz G Li(JRtq+d) are class s kernels
and that py G PTS,1(IR^) and pxy £ VEs,1(IRi9+d). Assume also that
for some e > 0, K = KP,KZ, f = PYiPxy, & — tq,tq + d, we hâve
f \\u\\ô+€K(u)2du < oo and f(l + ||u||<î'+e)/(u)du < oo. Then,

IE J \pn{xt\yi:t) - p{xt\yi:t)\dxt = 0(hsn) + 0(l/yjnh^+d).
The expectation is defined with respect to ail the simulated random
variables (x\, y\) and the observation variables y\.t.

4.4. COMMENTS

The assumptions lirn^oo nhtq+d = oo and lim^-^oo hn = 0 used in the
first three theorems imply that the number n of generated particles
must grow with t to ensure convergence. This restricting condition was
already required by the Monte Carlo filters built from the SIS algorithm.
The improvements then developed can still be considered here. The first
one is to limit the memory of the filter to T time steps backwards. It is
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easy to show that convergence results analogous to those just presented
are obtained under the more satisfying assumptions limn_>00 nh^q+d =
oo and lim^oo hn = 0. However, the optimal choice of T is difficult in
practice and such a limited memory approximation of the optimal filter
is only justified under mixing assumptions on the dynamical System
(Del Moral, 2004). Other approaches are possible, as the introduction
of a forgetting factor of the past. A more efficient one is the introduction
of a trajectory sélection step in which only simulated trajectories (y\:t)
sufficiently close to the observed one {yht) are kept, with a complété set
of theoretical convergence results (Rossi, 2004). In this paper we présent
another improvement of the basic convolution filter using a resampling
step analogous to that of the SIS-R filters, with the effect of relieving
from a necessary particle number increase with time to improve the
optimal filter estimation.

5. The Resampled-Convolution Filter (R-CF)

A resampling step can take place very easily at the beginning of each
time step cycle of the basic CF algorithm, as follows.

5.1. R-CF Algorithm

— For t = 0

let pQn be taken as the probability density of the initial State distri-
bution 7Tq.

For t > 1

(i) Resampling step: / /y»l /Y*H\Xt— 1 5 " * • 5 Xt-

(ü) Evolving step: x\ ~ ft(x{_!, .) and ÿ\ ~ ht(x\,.)
for i = 1,..., n.

(iii) Estimation step:

PtMyi-.t)
£%lKUVt-ÿ\) (5)

Remark: even though the dependence of the xt density estimator p” on
the past observed values yi.t-l is not explicit in (5), the resampling step
makes it effective, as shown by the following convergent properties of
the filter.
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5.2. Convergence properties of the R-CF filter

Ail the convergence results proper to the CF filter are kept and even
improved since they are now free of any particle number increase with
time. We shall just show it through the study of the L\-convergence of
the filter.

THEOREM 5.1 (a.s. L\-convergence ).
If Kx and Ky are positive Parzen-Rosenblatt kernels, ifhn is decreasing
with n, if p(-\yi:t-\) is positive and continuons at yt and if there exist
M > 0 such that p(yt\xt) < M for ail t and a G]0,1[ such that nh^ =
0(na), then

f V nhj+q _ rI imn^oo logn - oo ^ lim / (Xt\y1:t)-pt(xt\yi:t)\dxt = 0 a.s.
[ lirn^oo hn = 0

THEOREM 5.2 (rate of convergence).
Suppose that, K» e ii(E.?) and Kxy = KxKy e Li(TB?+i) are class s
kernels and thatpY = p(yt\yi:t-i) € 1FS,1(IR9) andpXy — P&t, yt\yv.t-l) G
kFs,1(IR9+d). Assume also that for some £ > 0, for K = Ky,Kxy,
f = py,Pxy; ô = + d, we hâve f \\u\\ô+eK(u)2dx < oo and
/(I + ||w||5+e)/(w)du < oo. Then

IE i/i"' (xt\yi:t) - p(xt\yi:t)\àxt = Ut[0(hsn) + 0(1/fnhn+d )].

with ut = 2t — 1.

The expectation is defined with respect to ail the simulated random
variables (x\,ÿl) and the observation variables y\:t.

5.3. COMMENTS

As wanted, by comparison with the CF filter convergence conditions the
assumptions hm^oo nhj+d/ log n = oo and lim„_>00 hn — 0 ensuring
convergence of the R-CF to the optimal filter, are more satisfactory
and the rate of convergence with respect to the particle number is less
time dépendent.

6. Simulated case studies

The behaviour of the proposed CF and R-CF convolution filters are
now compared with that of their SIS and SIS-R counterparts, on a
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well-known bench-mark nonlinear dynamical System, for different State
and observation noise situations.
Let us consider the following System, considered by (Netto & al., 1978),
(Kitagawa, 1996; Kitagawa, 1998) and (Doucet, 1998; Doucet & al.,
2001) among others.

5*1-
X2

+ + 8cos(1.2t) + ut

20 + Wt'

where xq ~ N(0,5).

The competing filters are:
MCF : Monte Carlo Filter.

IPF : Interacted particle Filter.
IPF-R : Interacted particle Filter post-Regularised.
CF : Convolution Filter.

R-CF : Resampled Convolution Filter.
In the three different situations:

Case 1 : vt ~ 1V(0,1) and wt ~ N(0,0.12).
Case 2 : vt ~ N(0,1) and wt ~ N{0,1).
Case 3 : vt ~ N(0,10) and wt ~ N(0,1).

For each of the three noise cases and for a given number n of parti-
clés, the behaviours of the respective filters are compared through a
mean squared error criterion computed for each filter over N = 100
trajectories of length L = 500 time steps:

( N

mse=tE
t=1 \N h\ 3=1

in which Xjj is the true value of the State variable for the jth trajec-
tory at time t and Xjj is the estimate of E[xjtt\yj,u * • • iVj,t] given by
- X)”_i Xj>t the mean of the n particles generated according to the filter
at time t.

A Gaussian kernel is used to build up the CF and R-CF filters and to
regularize the IPF filter (i.e., to compute the IPF-R). The kernel band-
width is taken as hn = std(Æj,..., Æ^/n1/5, as usually recommended.
Table 1 shows that in Case 1 (small observation noise) only the CF and
R-CF filters perforai safely, whereas the MCF, IPF and IPF-R filters
ail diverge whatever the number of particles used.
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Table I. Case 1: vt ~ N(0,1) and wt ~ N(0,0.12)
Nb of particles MCF IPF IPF-R CF R-CF

N==20 0 0 0 0 17.39

N==50 0 0 0 16.80 10.27

N==100 0 0 0 14.70 9.26

N==200 0 0 0 13.98 8.93

N==500 0 0 0 12.92 8.09

N==5000 0 0 0 13.26 7.58

For greater observation noise (Case 2 and 3) the performances of the
interacting particle filters and convolution filters are rather close to each
other, with a slight advantage for the R-CF filter.

Table IL Case 2: vt ~ N(0,1) and wt ~ N(Q,1)
Nb of particles MCF IPF IPF-R CF R-CF

N=20 27.57 32.52 25.90 24.53 24.33

'Z II O 22.60 19.63 15.84 19.55 15.70

ZII H-a oo 19.73 13.54 11.67 16.26 12.43

Z II Is2 O O 17.88 11.77 10.91 15.98 11.39

N=500 16.19 10.94 10.70 14.76 10.89

2 II ooo 14.66 10.60 10.64 14.29 10.65

N=5000 12.55 10.56 10.54 13.90 10.46

Table III. Case 3: vt ~ N(0,10) and wt ~ N(0,1)
Nb of particles MCF IPF IPF-R 1 CF R-CF

N=20 60.76 53.95 50.21 46.69 38.55

N=50 53.14 33.60 31.08 41.31 27.99

N=10Û 47.31 25.96 25.55 36.50 24.75

ooIIZ 46.30 24.16 23.70 37.76 23.89

N=500 44.23 22.96 22.59 34.60 23.07

N=1000 41.62 22.20 22.26 36.27 22.31

N=5000 37.45 21.71 21.69 36.72 21.68
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7. Conclusion

The convolution kernel estimation theory offers a set of probability
density estimation tools which are very efficient when large samples
of observations distributed according to the distribution to be esti-
mated are available. Following these lines the simulation of the state
and observation variables of a dynamical System from a given initial
state distribution, through the System noise simulation, allows to build
up several types of convergent estimate of the optimal filter of the
System, given an observed trajectory. This new convolution-based filter-
ing approach can take place within the particle filter family. However
besides the estimator construction itself, it differs from these filters
by several important traits such as the required assumptions (no use
of the observation likelihood), the structure of the noises (additive or
not), the intrinsic regularization of the distribution estimate (a density),
the estimation stability (enhanced robustness to small noise) and even
no restriction about System without observation noise. Moreover, one
can notice the rather simple form taken by the convolution filter algo-
rithms proposed, in particular that of the R-CF filter which achieved
the best performances in ail our case studies. The analytical study of the
convergent properties of these new filters, quite different from that of
the usual particle filters, takes advantage of general results from kernel
estimation theory. Finally, no attention was paid in this paper to issues
of more practical than theoretical importance as the choice of the type of
convolution kernel to use and that of the kernel bandwidth parameter.
A deeper recourse to nonparametric density estimation theory could
help in improving these choices.

Appendix

A. Eléments of kernel estimation theory

DEFINITION A.l. A kernel K is a bounded function from Dtd -> H,
such that f KdX = l, where À is the Lebesgue measure.

Example: the simple Gaussian kernel

DEFINITION A.2. A Parzen-Rosenblatt kernel is a kernel such that

||æ||—>oo
lim \\x\\dK(x) = 0.
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DEFINITION A.3. Let X\, ■ ■ ■, Xn be i.i.d. random variables with com-
mon density f. The kernel estimator of f, fn, associated with the kernel
K is given by

U(X) = ~ p K{^h^L) = * 6 Ud-
Where hn > 0 is the bandwidth parameter and pn = ^ Ya=i $Xi is the
empirical measure associated to X\, • • •, Xn.

We often use the practical notation Khn (x) = £*<*>• ^elRd-

LEMMA A.l ( Bochner). Let K be a Parzen-Rosenblatt kernel and g G
L^IR^), then for ail x where g is continuons

\im(g*Kh)(x) = g(x).
h—yQ

Proof: see (Bosq & Lecoutre, 1987).

THEOREM A.l. For any f G L2, if fn is associated with a Parzen-
Rosenblatt kernel, we hâve

hn ->■ 0, nh„ -> 00 ==» IE[fn(x) - f{x)]2 -)• 0.

Proof: the theorem was proved by (Parzen, 1962) for d = 1 and by
(Cacoullos, 1966) for d > 1 .

THEOREM A.2. If fn is associated with a positive Parzen-Rosenblatt
kernel, we hâve

nhd
hn ->■ 0, -—— ^00 => /n(^) f{x) a.s.

log n

whenever f is continuons at x.

Proof: see for example (Rao, 1983).

THEOREM A.3 (Glick). If{fn} is a sequence of density estimâtes con-
verging almost everywhere to a density in probability (or almost surely),
then f \fn ~ f\ —> 0 in probability (or almost surely).

Proof: the theorem was proved by (Glick, 1974), a proof is also given
in (Devroye, 1987).
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THEOREM A.4 (rate of convergence). Suppose that K G Li(IRd) is a
kernel of class s > 1 and let f G Ws'1 be a probabüity density over IRd.
Assume further that for some £ > 0 we hâve f \\x\\d+eK(x)2dx < oo
and f(l + \\x\\d+€)f (x)dx < oo. Then,

nf \fn-f\]=0(h‘n) + 0(l/f^4).
Proof: the theorem was proved by (Holmstrôm & Klemelâ, 1992).

B. Proofs

B.l. Proof of Theorem 4.1 (quadratic mean convergence
OF THE CF FILTER)

The expectations are defined with respect to ail the simulated (£J,y|),
conditional on the observed y\-t-

pn{xt\yi:t) -p(xt\yi:t) pn{xt\yi;t)

I P3cy(xtiyi:t)
E[pÿ(yi:t)]

Pn{xt\yi:t)

fâ\py(yi:t)} -Py{yi:t))

p(xt\yi:t)

Pxy(xuyi-.t) - PXYjxuyut)
E[py(yi;*)]

fPXY(xt,yi:t)
_ Pxy(xuy\:t)\

\ JE\p^(yi:t)] py{yi:t) '

According to Lemma A.l one has

lim hn -> 0, lim nhî? oc =>
n—>oo n-+oo

lim JE[pï(yl:t)}n—>oo
py(yi:t),

which implies

lim (PxYjxuyut) _ Pxy{xt,yi:t)\ _

n->oo V JË\pn(y1:t)] py(yiit) '

In addition, Theorem A.l ensures that

lim hn -> 0, lim nh^+d -> oo IE[p^y(zt, y\:t)-pxy{xu yi,t)f = 0,
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which implies

lim mfXY(^)-Pxy(^yi,)? -f 0.n—► oo

It only remains to study the behaviour of

pn{xt\yi:t)IE

By construction

E[Py(2/l:t)] (lE[py(yi:t)] ”Py(yi:t))

Pn(®t|yi:t) E"=1/ff(yi:*-ÿî;()
= E"=i Wi-Kjfte - si),

where

Wi

and by applying Jensen inequality

, i = 1, • • •, n.

pn(^bm)2<E^(^"Æï) •
i=l

Then

IE p"(xt|y1;()(IE^]-p?)|ÿî:t,...,ÿî

< f^Wj(]E[pJ] -pî.)2E[^(æt>£î)2|ÿi;;
1=1

= è ^(^by] - Py)2 f Kh(xt - x\)2p(x\\ÿ\:t)àx\
i—l

= Td^Wi (lË[py] - Py)2 / KX(u)2p(^ - u/l|ÿî;t)dunn i-1 ^

< ^(E^]-P?)2/X1(“)2du-
where M = supXt>î/1;t p(®É|yi:t)-
In addition,



e[œW]-p?-]2 = v Pï
lnV\Kl(y1:(-ÿi:f)]
W toi:* - Vl:t)2} - E[KÎ(yht - p1;t)]2]
^((Khf*py) - 5E[(Py)]2.

and according to Bochner’s lemma (A.l) applied to py with the kernel
(ifS)2//((ifS)2),

a K9)2 *PY){yi:t) = PY{yi:t) J (Ky(v))2dv.
Then

n^œ[iE[pJ(y1;()]-p?(!/i:t)]2^py(yi:t) / (^eW)2dt).
Finally

®[Py(Pi:t)] Py- (î/i:t)l2 / Kx(u)2duMnhftTB

ensuring that

E[P?(P1:«)]2

M f Kx(v)2du J & (y)2 dv
py(yi:t)

- pfelyirt)]2 = 0.

□

B.2. Proof of Theorem 4.2 (a.s. convergence of the CF
filter)

By construction

Pn(xt\yi:t) Pn(xuy\:t)
pn(yv.t)

Theorem A.2 ensures that

Pn(xt,yi:t) -> p{xt,yi:t) a.s.
Pn(yi:t) -> p{yi:t) a.s.
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As p(yi-.t) is assumed positive, the resuit is proved.
□

B.3. Proof of Theorem 4.4 (Li-convergence rate of the
CF filter)

Unless specified the expectations are defined with respect to ail the
simulated (x\,y\) and observed yu.t variables.
Let B+ = {yht : Pviybt) > 0}, we hâve

IE J \pn{xt\yi:t)-p{xt\yht)\dxt IE \pn{xt\yi;t)-p{xt\yi-.t)\dxt}
We shall then suppose yut £ B+ in the following équations:

Pxy(zt) Pxy(zt)pn{xt\yi:t) - p(xt\yu.t) Pv(vt:t) Pv(yt:t)

PXY
_ pxx_

Py py

PxyPy - PxyPy

PyPy

PxyPy - PxyPy + PxyPy ~ PxyPy

PyPy

Pxy(py ~ Py) +Py(Pxy ” Pxy)
PyPy

then

PY L
Pxy ~ Pxy + {py - Py)Px\y

\pn(xt\yut) -p{xt\yu.t)\ < IPxy(xuyi:t) -PXY(xt,yi:t)\
Py {yi:t)
+ \py(yi:t) - PY(yi:t)\Px\Y(Xt\yi:t)

I \pn(xt\yut) - p{xt\yu.t)\dxt < -J-—Aj \pxY(xt,yut) ~ PxY(xt,yi:t)\dxpy{yi:t)
+\py(yht) - PY(yi:t)\ JPx\Y(xt\yi-.t)dxt]

1 J \pxy(xuyi:t) -PXY{xt,yi:t)\dxtpy{yi:t)
+ \PY{yi:t) - PY(yi:t)
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Now

Eyi:f J \pn(xt\yi:t)-p{xt\yi:t)\dxt = JJ \pn(xt\yi:t) -p(xt\yi:t)\dxtPY{yi:t)dyi:t

+ / \py(yi:t) -Py(î/l:«)|dj/l:t.

So

^WJIbxiY -Px|yIIli] < IbxY -PxyIIli + Iby -PyIIli,
then

E[lbx|y-PxiyIIli] < lE[|bxy -PxyIIli] + E[lby “ PyIIli]-
Finally, according to Theorem A.4

n\\PnxÏY-Px\Yhi) = Q(K) + 0(l/v^4p) + Q(h‘n) + 0(l/y/^4?)
= 0(hsn) + 0(l/ïjnhiï+d).

□

B.4. Proof of Theorem 5.1

For t = 1 the resuit is true according to Theorem 4.3. Let us assume it
is true until time t and let us show it is still true at time t + 1.
The three following lemmas will be useful to ensure this resuit.

LEMMA B.l. Let u(x) and v(x) be two probability densities on IRd and
f = min(ii,u). Let U and V be respectively the subsets ofhRd on which
min(u, v) = u and min(u, v) = v. Let I = U fl V. Then -—x J

__ , is1—
2 I j %} | QCC

a probability density.

Proof of the lemma

If — lu u + fvv ~ fiu
= 1 _ fuc u + Sgv ~ Il u
— 1 — [ fv u ~ h u] + fv v ~ fiu
= l — fy U + fy V
= 1 - fv(U - v)
= l — 7} f \u~ v\ according to Scheffe’s lemma.

□
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Now let
=

By assumption
lim An = 0 a.s.

n—>oo

(6)

Let 5” = (x},..., x™) be sampled from pjh We shall show that there
exists a subsample of , x\l,..., x\Mn and a new sample x\l,..., x\Nn,
which together can be considered as sampled from pt. Such a device was
used by (Devroye, 1987) to study the robustness of kernel estimâtes.
Let us define the three following functions:

fn =

9n =

hn —

min(p?,pt)
i-An ’

x

pt-minfp? ,pt)

Let us note that by Lemma B.l, fn,gn and hn are density functions
and that

Vt — An ■ Çn ~b (1 An) • /n,
Pt — An • hn + (1 — An) ■ fn•

This shows that each x\ sampled according to p” is sampled from gn
with probability An. Let Z\,...,Zn be random variables such that
Zi = 1 if x\ ~ gn and Zi = 0 if x\ ~ fn. The Zi are thus Bernoulli
variables with parameter An. Nn = Zi is then a binomial variable:
Nn ~ An)-
Mn = n — Nn is the random number of x\ sampled from fn. Let
x\l,... ,xtMn be this subsample, 1 < i\ < ... < < n. Let Im =

and IN = {l,...,n} - IMn-
Consider now the new following random sample:

x\ if i € Im
x\ with x\ hn, if i e In

for i = 1, n. (7)

can then be considered as a Virtual random sample from the
unknown pt which holds Mn éléments in common with the previous
sample S? drawn from p”.
By applying System (1) to the actual xj,..., x” and then to the Virtual
x\ for i e IN, one gets {x}+l,pj+1),..., 2/?+i) and (£}+1, y\+l) for
i e In- Thus one gets new actual and Virtual samples, (a;J+1, y}+i), • • •

..., W+i, Vt+i) and (xl+1,ÿ}+l),..., ÿ?+1) respectively, with Mn
common pairs.
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With the fïrst sample, let us build the R-CF estimate of the optimal
filter:

p^(xM - âü'^tw. -vù,) • (8)
With the second sample, we can consider the Virtual kernel estimate of
the optimal filter:

Pt+i(xt+i\yi-.t) =
Eti x - &M)K(vt+i - eui)

E?=i Kl(vt+i - ÿ\+\) (9)

built from particles x\+l themselves born from particles x\ sampled
from the true unknown pt{xt\y\-t)- This Virtual estimate can then be
considered as a simple convolution filter for one time step ahead.
Now we can write

\\Pt+l(xt+l\yi:t) -Pt+l(St+l|yi:t)||L1 < \\Pt+l(xt+l\yi:t) - Pt+lixt+llyi-MLi
+ \\Pt+l (s«+l\yi:t) - Pt+1 (xt+1 \yi:t) hx •

And according to Theorem 4.3 for CF filters, we hâve

limn_>oo
limn-^oo

sain
logn

= oo

hn = 0
=* Ji™ \\p?+l(Xt+i\yi:t)-pt+l(xt+l\yi:t)\\Ll = 0 a.s.

It thus remains to study the behaviour of

\\Pt+i(xt+l\yi:t)-Pt+l{xt+l\yi:t)\\Lx = J \Pt+l(Xt+l\yi:t)-pï+l(xt+l\yi:t)\àxt+1.

Let

Dn(xt+1) =Pt+i(xt+i\yi:t)-Pt+Axt+i\yi:t)>

then by définition one has
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SU z *m)Qm - vUi)
EÎU Khjvt+i - yi+i)

Eti *£>m ~ îUiMJm+i - a+i)
E?=iKJyt+i -ÿj+i)

Efai *%>t+i - 4+i)^L(^+i ~ iin)
Eti *?„(*«-sî+i)

Et! K£>m - 4+iWl(yt+1 - y\+1)
Eti^„(yt+i-%Vi)

Eti ~ - ÿj+i)
E?=1^Lte+i-ÿî+i)

Etl - tftfl)
Eti ^>+1 - n+i)

This implies

\Dn(xt+1)\ < E^„fe+1 - *l+1)«îL(ifc+i - Æh)
i=l

1 1
*

Eti KJvt+i - yhi) ~ EÎU kKvm - Si»)
1 n

+Eti^L(yw-ÿw)l£ ^"(æt+1 ” x‘+l)if"-(y!+1 " y’t+l)
-èKL(xw - ^t+i^ILtet+i - ôî») •

As (zj+1,$+1) = (4+i>yt+i) for i e 7m, One gets:
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EC Qm - xl+1)Kl (yt+1 - y‘+1)
ES.1 K(yt+i - Cl) EJ=i Kl(yt+1 - Cl)

x| E KSvm -Ci) - E 0+1 - Ci)
îG/at iG/jY

+
1

EE.1 kISvm - Ci) I £ Xî’(a;!+1 xi+i)^"(y‘+1 y‘+l)
- y, *!.(*•+1 - iiXb. - Ci)

ieiN

By assumption, the kernel üfjj is a density, then

EiaN Khn(yt+1 - yj+i) - Ete/W ^?n(yt+i - y|+i)J \Dn(xt+i)\dxt+i <

+ Eig/jy ^n(y^+i ~ yl+i) + Eie/^ ^!n(y*+i ~ $+i)
E?=i^n(yt+i -yî+i)

Finally we get

dxt+i < 2

<

Etg/jy ^/tn (y<+1 y^+i) ~k Etg/^r -^Otn(yt+i yt+i)
E"=l 0+1 - Cl)

2-/vn ]Yn Et^/^ ^(yt+i — yt+i) A?,, Eig/jy ^Oin(yt+1 ~ ^t+i)
n P V'n

n E?=i Kï(yt+i - ÿ|+1)

^ÿ(^±i_2î±i)
< 2NnhqNn k Eie/„ + 7^ E«=/w

»*s’ Cr=iCbm-fo)

ÿ*+l ÿt+l
_ ta

<

According to Theorem A.2, it holds

n X^L^+i ~ y{+i) ->• p(yt+i|yi:t) 0.5.
î=i

and p(y«+i|yi:«) is positive by assumption.
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:i±l) xy(ül±! h.±±)■ Vt+l-Vt+i
Let us show that ^ El€/„ hll'n ' and £i€Jjv W,Nn

are a.s. asymptotically bounded.
Let us consider the first term and to alleviate notations let

Nn

X,-
v\+\ ^

hNn
for i G In-

Let Mn = lEp^lXt] and Zi = Xi - Mn with Tt the set of ail generated
variables through the instant t. The variables Zi,..., Zn are identically
and independently distributed conditional on Tt-
We hâve

Nn

®[(Ezi)4] = JV»]Etzf] +
4i , Xn(Xn 1) , 2l2-IE\Zi

i=1

because ’E[ZiZjZkZl] = E[E[Z<|7i]]E[ZJ-Z*Zj|.Ft]] = 0 for ail (j,M)
among {1,... ,n} - i. Aeeording to Markov-Tchebyehev inequality we
deduce

1 ^ E[|X- E,-ni Zi\A\
p(\jrY,z<\>e) < n J71 i=1

TE[Zf] TE[Zf]2
~

N„3e4 + 2:N£e* ■
Let us study the terms IE[Zj] et E[Z^]:

nzïi = nnzï\m
= EtlE^I^-lElXil^]2]
< E[E[Xf|^]].

(10)

However

E[X2|Ji] = J
/. Kv{Vt+lh ^+1 )2

^Nn p{ÿt+i\yi:t)dÿt+]

rhinKy(uŸ_. , .

/ ~Yq p{yt+1 - hu\yi:t)duj ri ht

<

<

/
'N,

Ry{u)2
hNn

Mdu

Mi
hq 5
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with Mi = M f K2 and p(yt\xt) < M, M exists by assumption. The
inequality p(yt+\\yv.t) < M uses from the joint-density p(xt+1, ÿt+i\yv.t)
and from the link between xt+\ and ÿt+i which is in accordance with the
model. Indeed, ÿt+i is obtained by applying the équation of observation
of the System to xt+1- Thus we can write

P(ÿt+i\yi-.t) = J p{xt+i,ÿt+i\yi:t)dxt+i
= J P{ÿt+l\àt+l)p{xt+i\yi:t)àxt+i
< / Mp{xt+i\yi:t)àxt+i
< M.

Finally we get

^2i (h)

Let us study now IE[Z^]:

E[Zf] = E
= E

mzîW]
E[X!4|^] - 4E[XI3|Jf(]E[Xi|^] - 4E[X,|^]E[Xi|^]3

+6E[X2|X(]E[X;|.Ft]2 + ElXtlJPy4
< E

However

and

E[X4|^(] + 6E[X2|J-(]EÎXi|/i]2 + E[Xi|Ji]4

nNn
Mhq

< -jir1 < m

f Ry{

*Nn

yt+i-ÿlt+i

E[X4|Ji] = / - v t4*" -p(ÿt+i\yi:t)dÿMJ hNn

rhlK«(u)4,. , .
= / TAq p(yt+l - hu\yi:t)d

J ri m

<

<

I Ry(u)‘
h3qnNn

Mdu

M2
h3qnNn
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with M2 = Af/if4. Weget

HZ*} < + 6^-Af2 + M4.h3qnNn hNn
(12)

The application of (11) and (12) to (10) leads to

1 Nn

iVn i=1

M4 M2
+

6MiM2
+

M?
NW'mtiiïe* NWNe* 2IV2/^4'

By assumption, there exists g; > 0 such that iVTi^y = 0(Na), then the
sériés of general term ^ + $ e< converges.Tl iVjT, ■‘vTl H Nn

According to Borel Cantelli lemma, we deduce ^ <£* converge a.s.
to zéro as Nn tends to infinity. Let

Vt+l-Vt+i

lim TT
Nn —KX3 iVn Ek'( ‘

ie/jv
1E[ Vt]

nNn
0 a.s.

as

Kv(yt+i ÿlt±\\
0 < IE[—-Tg^ -\Tt

hNn
„ Mhl

~

h'».
xv ( ———Ëi±i^

where hn < hxn. Hence Y,ieiN jjr* is a.s. asymptoticallyn Nn
bounded.

The application of the same reasoning to YlieiN tfr* leadsNn

to the same resuit.
Thus for large Nn we hâve

/ Dn(xt+i)\dxt+i <
2Nnh«

MK + MîA
hN«

nhl J Ek K? (*«-&,)

< 4Nn M
-

n iT,UKl(yt+1-ÿl+lY
And finally for large n and Nn

[ \Dn(xt+i)\dxt+i = 0(—) a.s.J Tl

However is the empirical estimate of An € [0, 1]. By Hoeffding’s
inequality (Hoeffding, 1963), for any An,

P(|— — An| > e) < 2exp{—2ns2}.
n

(13)
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As linin^oo An = 0 a.s., (13) implies that limn_>00 ^ = 0 a.s.. This
complétés the proof of the theorem.

□

B.5. Proof of Theorem 5.2

To alleviate notations let us dénoté transitorily
Py = p{yt\yi:t-i), pxy = p(xt, yt\yi:t-i), px\y = p(xt\yi-.t)-
Py = pn{yt\yi:t-i), Pxy = pn(xt,yt\yi.t-i), pnX\Y = Pn(xt\yi.t),
estimated from couples (arj, y\) born from particles x\_x generated from
pn(xt-i\yi:t-i).
py = p(yt\y\-.t-i), the Virtual estimate of py from particles sampled
from p(xt-i\yi:t-i) the true optimal filter distribution, as given by (7).
p^y = pn(xt, yt\yi-.t-i)-, the virtual estimate of pXY from the same
particles x\.
Then by définition

Px\Y ~ PX\Y
Pxy

_ Pxy.
Py Py

PxyPy ~PxyPy

PyPy

PxyPy - PxyPy + PxyPy ~ PxyPy

PyPy

Pxy(py ~ Py) + Py(Pxy ~ Pxy)
PyPy

Py 1
Pxy - Pxy + {py ~ Py)Px\y

\Px\Y~PX\y\ < PY
IPxy ~ Pxy| + IPy ~ Py\Px

We deduce

\Px\y - Px\y\ py < |Pxy ~ Pxy\ + |Py ~ PyI Px\y
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which implies

-Px\Y\PvdXdY < j \pxy ~ Pxy\àXdY
+ j \PY -PÎ\pnx\YàXàY

or

^yt\yi:t-il\\Px\Y - Px\yWli] < Wpxy-PxyWli + Wpy - PyWli
and

HWPx\y ~ Px\yWl\] < 3E[||pnXY ~ PxyWli] + HWPy ~ Py\\li]-
Now

HWpxy - PxyWli] < HWpxy ~ PxyWli] + E[Ry - PxyWli]
and

E[R-pr||ii] < EtR-pî-IUil + IEIR-pylU!].
As the Virtual x\ are generated according to the optimal filter Px\y, by
Theorem A.4 it holds

HWPxy - PxyWli] = 0(h‘n) + 0(l/\fXYd)
and also

EOIpï- - pkIIli] = 0(K) + 0{
Now, let us turn to the term IE[||pJy ~~ PxyWli] and consider again the
quantity An (6) previously introduced:

An = ^Wp^ixt-llVht-l) — Pt-l{%t-U |yi:t—l)||Xrl-
Let us notice that p'xy and Pxy are built from Mn = n - Nn com-
mon couples (x\,ylt) born from Mn common particles x\_^ with Nn ~

$(n, An)- Then

Br -PxyWli = \\ I £ ~ ÀWlSvt - v\)
i€/„

~Khn(xt - xl)Khn(yt - ÿt)\dxtdyt
< Mil
— n '

As JE[^|An] = A„,it holds
E[IRK-»y)IU,] < 2E[An]
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and by the same arguments

IE[||pÿ -Pylltj < 2E[A„].
Finally

n\\Pnx\Y - Py|y||] < 4E[A„] + 0(hsn) + 0(l/V^F3)
namely
IE \pn(xt\yi:t) - p(xt\vi*)\\Li\ < 2E[||p?_1(a;f_i|yi:t-.i) - pt-i(xt-u \yut-i)\\Li

+ok) + o(i/^).
Furthermore for t = 1, according to Theorem A.4, it holds

IE Pn{xi\yi) - p{xi\yi)\\Ll] < 0{hsn) + 0{l/\Jnhqn+d)
which by ascending recursion leads to

®[l|p"(æt|!/l:t) -P(®f|yi:()l|z,l] < (2* - l)(0(/t“) +
□
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