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Introduction 1.Motivations

Supergeometry was invented by physicists and mathematicians at the beginning of the seventies as a mathematical framework for the notion of supersymmetry. This notion merged out from two questions:

1. Does there exists a symmetry which exchanges Bosons and Fermions ? 2. Are they non trivial extensions of the Poincaré group, the symmetry group of Special Relativity ?

It could be tempting a priori to answer 'no' to both questions. Indeed first it is recognized for a long time that, in the theory of quantum fields, Bosons are created and annihilated by commutative operators, whereas to Fermions correspond anticommuting operators, so that it is not straightforward to figure out how these two families of operators could be exchanged. Second a 'no go' theorem of S. Coleman and J. Mandula [START_REF] Coleman | All Possible Symmetries of the S Matrix[END_REF] answers negatively to the second question. Note also that a connection between the two questions can be expected, since Bosons and Fermions can also be distinguished by the fact that their fields are transformed in two different ways by the action of the Lorentz group. However it turns out that, in some enlarged conceptual framework, the answers to both questions are positive and rely on the same ideas. The key was the introduction by A. Salam and J. Strathdee of anticommuting coordinate variables (also called Grassmann variables), which one could heuristically think as classical limits of Fermionic operators. This leads to a theory of superspaces or supermanifolds, proposed by J. Wess and B. Zumino and developped by F. Berezin, B. DeWitt, A. Rogers in which the 'classical limit' of the symmetry between Bosons and Fermions admits a geometric formulation. In this framework one can also extend the Lie algebra of the Poincaré group into a super Lie algebra, as done by Y.A. Gol'fand and E.P. Likhtman [13] and D. Volkov and V. Akulov [START_REF] Volkov | Is the neutrino a Goldstone particle ?[END_REF]. The mathematical theory of Lie super algebra and Lie super groups was then constructed by V. Kac [START_REF] Kac | Lie superalgebras[END_REF].

Supermanifolds 1.2.1 A first draft

We first need a mathematical definition of supermanifolds. Actually several theories are possible, depending on the point of view we start with and on the applications we have in mind. We hence have different, sometimes non equivalent, notions of supermanifolds which however all share the same underlying idea. The two main approaches are:

1. either we define supermanifolds indirectly by defining their (super)algebras of functions. This point of view, inspired by algebraic geometry, was developped by F. Berezin, D. Leȋtes, Y. Manin.

2. or we define supermanifolds as sets with a suitable topology. This point of view, inspired by the differential geometry, was introduced by B. DeWitt and A. Rogers (see section 5).

In both cases the definition of a supermanifold can be decomposed in two steps: first one defines the analogues R m|k (for m, k ∈ N) of R m and their open subsets and, second, we fix the rules for gluing together open subsets of R m|k to get a supermanifold of dimension m|k. However variants exist in both approaches. Here we will follow mainly the first point of view. We start by defining a basic version of it, that we propose to call 'skeletal supermanifolds'.

Definition 1.1 (Skeletal R m|k ) The skeletal super space R m|k is a 'geometric object' indirectly defined through its ring (C ∞ (R m|k ), +, •) of smooth functions. This ring is spanned algebraically over functions in1 C ∞ (R m ) by k generators θ 1 , • • • , θ k ∈ C ∞ (R m|k ) which satisfy ∀i, j, θ i θ j + θ j θ i = 0 [START_REF] Alvarez | Lectures on quantum mechanics and the index theorem[END_REF] and such that

θ 1 • • • θ k = 0. ( 2 
)
In other words,

C ∞ (R m|k ) := C ∞ (R m )[θ 1 , • • • , θ k ],
i.e. any smooth function F ∈ C ∞ (W ) can be written in an unique way as the polynomial

F = k j=0 1≤i 1 <•••<i j ≤k f i 1 •••i j θ i 1 • • • θ i j ,
where each coefficient

f i 1 •••i j belongs to C ∞ (R m ).
Similarly an open subset Ω of R m|k is defined through its ring of functions

C ∞ (Ω) which is defined to be C ∞ (|Ω|)[θ 1 , • • • , θ k ], where |Ω| is an open subset of R m .
Functions θ i are the odd coordinate functions on R m|k . Note that (1) implies in particular that (θ i )2 = 0, ∀i, i.e. each θ i is nilpotent. We say that the even dimension of R m|k is m and its odd dimension is k or, equivalentely, that the dimension of R m|k is m|k. One can summarize the properties of C ∞ (R m|k ) by introducing the following algebraic notions. Definition 1.2 (super vector space) A real super vector space V is a real Z 2graded vector space, i.e. a vector space over R which admits a decomposition V = V 0 ⊕ V 1 . Vectors in V 0 are called even, vectors in V 1 are called odd.

If x ∈ V 0 ∪ V 1 , its parity or its grading gr(x)

∈ Z 2 is 0 if x ∈ V 0 and 1 if x ∈ V 1 .
Definition 1.3 (Super algebra) A real super algebra A is a real super vector space A = A 0 ⊕A 1 endowed with an associative bilinear multiplication 2 law A×A -→ A which maps A a × A b to A c , for all a, b, c ∈ {0, 1} such that a + b = c mod 2.

A super algebra is super commutative if ∀a, b ∈ {0, 1}, ∀f ∈ A a , ∀g ∈ A b , f g = (-1) ab gf .

We see immediately that C ∞ (R m|k ) is a super algebra, and that C ∞ (R m|k ) 0 (respectively C ∞ (R m|k ) 1 ) is the subspace of even (respectively odd) polynomials in the θ i 's. Relation [START_REF] Alvarez | Lectures on quantum mechanics and the index theorem[END_REF] means that this super algebra is super commutative 3 . Examples of super algebras are the exterior algebra (or the Grassmann algebra) Λ * V of a vector space V or the set of sections of the exterior bundle Λ * E of a vector bundle over a manifold M (actually the latter example is very close to the notion of a supermanifold, see below).

With the definition of open subsets of R m|k at hand, one can define a skeletal supermanifold M of dimension m|k as follows: it is an ordinary manifold |M| of 

C ∞ (Ω) = C ∞ (|Ω|)[θ 1 , • • • , θ k ],
where Ω is an open subset of R m|k . Note that the algebra C ∞ (|U |) ≃ C ∞ (|Ω|) of smooth functions on the ordinary open subset |U | coincides with C ∞ (Ω)/J Ω , where J Ω is the ideal of nilpotent elements of C ∞ (Ω). This allows to recover the sheaf of smooth functions O |M| from O M and hence the manifold |M|. We shall not developp this description further, since most of the examples studied in this text requires only to understand R m|k (see [START_REF] Manin | Gauge field theory and complex geometry[END_REF] for details).

Skeletal supermanifolds M of dimension m|k can be constructed starting from a rank k real vector bundle E over an m-dimensional ordinary manifold |M|. We just set that the sheaf of functions on M is isomorphic to the set Γ(|M|, Λ * E) of smooth sections of the exterior algebras bundle Λ * E over |M|. We denote by S(|M|, E) = M this supermanifold and call it a split supermanifold (see e.g. [START_REF] Rogers | Supermanifolds: theory and applications[END_REF]). A theorem by M. Batchelor [START_REF] Batchelor | The structure of supermanifolds[END_REF] asserts that any supermanifold has a split structure.

We chosed the terminology 'skeletal' because, as we shall see in Section 2, if we use naively Definition 1.1 for studying physical models we run relatively quickly into inconsistencies. Hence we will need to refine this notion and to put 'flesh' on the skeletal super manifolds. However (in the algebro-geometric theory) a super manifold with flesh can be completely recovered by knowing its skeletal part.

Related algebraic notions

Clifford algebras -Let V be a real vector space endowed with a symmetric bilinear form B(•, •) and let us define the Clifford algebra C(V ) associated to (V, B(•, •)). We consider the free tensor algebra V := ∞ j=0 V ⊗j (where V ⊗0 := R) and the ideal I in V spanned by {x ⊗ y + y ⊗ x + 2B(x, y)| x, y ∈ V }. We let C(V ) to be the quotient of V by I. If (e 1 , • • • , e k ) is a basis of V , then as a vector space, C(V ) is spanned over R by all products e i 1 • • • e i j , where 0 ≤ j ≤ k and 1 ≤ i 1 < • • • < i j ≤ k, where we write xy = x ⊗ y for shortness (with the convention that, for j = 0, e i 1 • • • e i j = 1). As an algebra, C(V ) is spanned by 1, e 1 , • • • , e k assuming the conditions e i e j + e j e i = -2B(e i , e j ). If for instance B = 0, C(V ) is then nothing but the Grassmann algebra R[e 1 , • • • , e k ]. A Clifford algebra is naturally a super algebra with C(V ) = C(V ) 0 ⊕ C(V ) 1 , where C(V ) 0 (respectively C(V ) 1 ) is spanned by products e i 1 • • • e i j of an even (respectively odd) number of factors. It is however not super commutative, unless B = 0.

A simple example is the following: let L be a real Euclidean vector space of dimension 1 (i.e. isomorphic to... R) and note ǫ a normed basis of L (i.e. ǫ, ǫ = 1). As a vector space, the Clifford algebra C(L) is isomorphic to {a + bǫ| a, b ∈ R} and, because of the relation ǫ 2 = -1, we have the algebra isomorphism C(L) ≃ C. It looks like a complicated way to define C, however C(L) comes with a natural grading C(L) = C(L) 0 ⊕ C(L) 1 , where C(L) 0 = R and C(L) 1 = Rǫ (i.e. ǫ is odd). We shall use this construction in Section 8.

Clifford algebras play an important role in physical applications since, roughly speaking, the quantization of (observable) functions on an odd supermanifold are elements of a Clifford algebra (the Hilbert space of quantum states being a spinorial representation of the Clifford representation). A Clifford algebra can so be seen as a deformation quantization of a super commutative super algebra described to first order by the bilinear form B (which can be interpreted as a Poisson bracket, see [START_REF] Kostant | Symplectic reduction, BRS cohomology, and infinite dimensional Clifford algebras[END_REF]).

Lie super algebras -A super Lie algebra g is a super vector space g = g 0 ⊕ g 1 endowed with a bilinear product law [•, •] : g×g -→ g called super Lie bracket which satisfies the following properties. First it is super skewsymmetric: ∀x, y ∈ g 0 ∪ g 1 , [x, y] + (-1) gr(x)gr(y) [y, x] = 0,

and second it satisfies a super Jacobi identity: ∀x, y, z ∈ g 0 ∪ g 1

(-1) gr(x)gr(z) [x, [y, z]] + (-1) gr(y)gr(x) [y, [z, x]] + (-1) gr(z)gr(y) [z, [x, y]] = 0. ( 4 
)
In particular a super Lie algebra is not a super algebra since it is not associative (the latter property is replaced by the super Jacobi identity). A convenient way to take into account the sign rules in these identities consists in tensoring g with a Grassmann algebra Λ L = R[η 

⊗ g) 0 = (Λ 0 L ⊗ g 0 ) ⊕ (Λ 1 L ⊗ g 1
) is a Lie algebra. Alternatively the super Jacobi identity (4) can be interpreted as follows:

1. relation (3) for x, y ∈ g 0 and (4) for x, y, z ∈ g 0 means that (g 0 , [•, •]) is a Lie algebra;

2. relation (4) for x, y ∈ g 0 and z ∈ g 1 means that, ∀x ∈ g 0 , the linear map

ad x : g 1 -→ g 1 z -→ [x, z]
satisfies ad [x,y] (z) = ad x (ad y (z))-ad y (ad x (z)), i.e. g 0 -→ End(g 1 ), x -→ ad x is a representation of g 0 ;

3. relation (4) for x ∈ g 0 and y, z ∈ g 1 means that the (symmetric) bilinear map

g 1 × g 1 -→ g 0 (y, z) -→ [y, z]
is g 0 -equivariant (hence the adjoint representation of g 0 on g 1 is somehow a 'square root' of the adjoint representation of g 0 on g 0 );

4. relation (4) for x, y, z ∈ g 1 is equivalent to [x, [x, x]] = 0, ∀x ∈ g 1 .
The classical Lie algebras are of course examples of super Lie algebra (with g 1 = {0}). Some non trivial Lie algebras come from differential Geometry. For instance consider an usual manifold M and let Ω * (M) be the space of smooth sections of the exterior bundle Λ * T * M of the cotangent bundle T * M (i.e. smooth exterior differential forms on M). Let ξ be a smooth vector field on M. Then there exists three natural operators acting on Ω * (M): the exterior differential d, the interior product by ξ, ι ξ , and the Lie derivative Lie ξ . The space g spanned by these three operators is a Lie super algebra, where g 0 is spanned by Lie ξ and g 1 is spanned by d and ι ξ . This is a way to summarize the commutation relations

[Lie ξ , d] = [Lie ξ , ι ξ ] = 0, [d, d] = 2dd = 0, [ι ξ , ι ξ ] = 2ι ξ ι ξ = 0 and the well-known Cartan identity [d, ι ξ ] = dι ξ + ι ξ d = Lie ξ , an anti-commutator.
Another example is the space of multivectors (i.e. sections of the exterior product of the tangent bundle T M) equipped with the Schouten bracket (a generalization of the Lie bracket of vector fields), see e.g. [START_REF] Tulczyjew | The graded Lie algebra of multivector fields and the generalized Lie derivative of forms[END_REF]. Then the parity of a multivector field is 1 plus its degree mod 2. Super Lie algebra play also an important role in supersymmetric theories since they precisely encode the supersymmetry of a given physical model. Among the most interesting superalgebras are the extensions of the (trivial) Lie algebra of translations of the Minkowski space-time (this is then the super Lie algebra of super translations of space-time) or of the Poincaré Lie algebra (called the super Poincaré Lie algebra).

We present examples of such Lie super algebras in Section 8. Lie super algebras are naturally associated with Lie super groups, which are particular examples of supermanifolds. However a Lie super algebra as defined here is a skeletal object, which needs some extra 'flesh' for the construction of the corresponding Lie group (what we would call a Lie algebra with flesh corresponds actually to a super Lie module, see [START_REF] Rogers | Supermanifolds: theory and applications[END_REF]).

We refer to [START_REF] Freed | Five lectures on supersymmetry[END_REF][START_REF] Rogers | Supermanifolds: theory and applications[END_REF] for quickly accessible expositions of the theory of super Lie algebras and to [START_REF] Deligne | Classical fields and supersymmetry[END_REF][START_REF] Deligne | Notes on spinors[END_REF][START_REF] Varadarajan | Supersymmetry for mathematicians: an introduction[END_REF][START_REF] Kac | Lie superalgebras[END_REF] for more details.

The superparticle: a first overview

Recall that supersymmetry was introduced as a hypothetical symmetry of a quantum field theory which would exchange Bosons with Fermions. However most quantum field descriptions of a particle are connected with a classical field description, i.e. a variational problem. So we can expect that the supersymmetry can be read at this classical level as a symmetry group which acts on solutions of the Euler-Lagrange equations of some variational problem: we shall see that this is indeed true.

The model

A simple example is a superparticle evolving in a Riemannian manifold N . A first (and relatively rough) description of this system is through a pair (x, ψ), where

• x is a smooth map from R to N
• ψ is a section of the pull-back bundle x * (ΠT M), i.e. for all t ∈ R, ψ(t) belongs to ΠT x(t) N . Here ΠT x(t) N is the space modelled on T x(t) N with opposite parity, i.e. odd. This means that the set of smooth functions on ΠT

x(t) N is R[α 1 , • • • , α n ] ≃ Λ * T * x(t) N , where (α 1 , • • • , α n ) is a basis of T * x(t) N .
In other words (x, ψ) can be understood as a map from R to the split manifold S(N , T * N ) (up to some difficulties discussed at the end of §3.2.1).

Here we have used the notation ΠT x(t) N , where Π is a vector space functor which reverses the parity (odd versus even) of a given Z 2 graded vector space. This notation is useful because of its concision but one should keep in mind that Π is never a super algebra morphism.

The Lagrangian for the superparticle is

L[x, ψ] := R 1 2 | ẋ| 2 + 1 2 ψ, ∇ ẋψ dt, where, if ψ(t) = ψ i (t) ∂ ∂x i , ∇ ẋψ(t) = dψ i dt (t) + Γ i jk (x(t)) ẋj (t)ψ k (t) ∂ ∂x i (the Γ i jk '
s being Christoffel's symbols). We already see here that the ψ i 's should be anticommuting quantities: if not then we would have 1 2 ψ, ∇ ẋψ = 1 4 d dt ψ, ψ , so that the second term in the Lagrangian would be unuseful.

The Euler-Lagrange system of equations is

∇ ẋ ẋ = 1 2 R(ψ, ψ) ẋ ∇ ẋψ = 0. ( 5 
)
Again R(ψ, ψ) ẋ = R(x) ijk l ψ i ψ j ẋk ∂ ∂x l does not necessarily vanish precisely because ψ i and ψ j anticommute. When contemplating this Euler-Lagrange system we see a difficulty due to our too naive approach. Indeed in the first Euler-Lagrange equation ẍl + Γ l jk (x) ẋj ẋk = 1 2 R(x) ijk l ψ i ψ j ẋk , the left hand side is real valued whereas the right hand side contains the bilinear quantity ψ i ψ j . However ψ i ψ j cannot be real (although it is even) because it is nilpotent (it squares to zero). Hence Remark 2.1 The coordinates x i of the map x cannot be real valued because of [START_REF] Batchelor | Two approaches to supermanifolds[END_REF].

The action L enjoys a particular symmetry (which corresponds actually to a supersymmetry) as follows: we consider the transformation 1ητ Q acting on the field (x, ψ) defined by:

x

-→ x -ηψ ψ -→ ψ + η ẋ. ( 6 
)
Here an important point is that η which plays the role of an infinitesimal parameter is odd. Otherwise this transformation would exchange odd fields with even ones. Note however that x cannot not be mapped into an ordinary map by [START_REF] Coleman | All Possible Symmetries of the S Matrix[END_REF] because the components of ηψ cannot be real; hence this confirms the conclusion claimed in Remark 2.1. The 'vector' (-ηψ(t), η ẋ(t)) can be interpreted as a vector tangent to ΠT N to (x(t), ψ(t)). Let us compute the effect of this infinitesimal transformation on the action L: we need to compute the term ητ Q δL(x, ψ) in the development

L(x -ηψ, ψ + η ẋ) = L(x, ψ) -ητ Q δL(x, ψ). Observing that (6) implies that ẋ -→ ẋ -η∇ ẋψ ∇ ẋψ -→ ∇ ẋψ + η∇ ẋ ẋ, we obtain that ητ Q δL(x, ψ) = R ẋ, η∇ ẋψ + 1 2 -η ẋ, ∇ ẋψ + 1 2 ψ, -η∇ ẋ ẋ dt = 1 2 η R d dt ψ, ẋ dt = 1 2 η [ ψ(+∞), ẋ(+∞) -ψ(-∞), ẋ(-∞) ] .
This quantity does not vanish in general, but is exact. So the transformation [START_REF] Coleman | All Possible Symmetries of the S Matrix[END_REF] should formally change infinitesimally a solution of the Euler-Lagrange equations into another one 4 . This symmetry gives rise to a conserved quantity (a version of Noether theorem): let us introduce a smooth compactly supported function χ ∈ C ∞ 0 (R) and, instead of (6), apply to (x, ψ) the infinitesimal transformation

x -→ x -ηχψ ψ -→ ψ + ηχ ẋ, ( 7 
) with ẋ -→ ẋ -η (χ∇ ẋψ + χψ) ∇ ẋψ -→ ∇ ẋψ + η (χ∇ ẋ ẋ + χ ẋ) .
Then we have

(χητ Q ) δL(x, ψ) = R χ ẋ, η∇ ẋψ + 1 2 -η ẋ, ∇ ẋψ + 1 2 ψ, -η∇ ẋ ẋ dt + R ẋ, η χψ + 1 2 ψ, -η χ ẋ dt = 1 2 η R χ d dt ψ, ẋ dt - 3 2 η R χ d dt ψ, ẋ dt = -η R χ d dt ψ, ẋ dt.
In all these computations we have used that η, ψ i and ψi anticommute. We hence conclude that the quantity ψ, ẋ is conserved, i.e. Noether's theorem holds here 5 , hence the symmetry which generates our fields transformation should have a geometrical interpretation. Eventually this 'Noether's charge' has an interesting physical meaning, since the corresponding quantum operator is nothing but the Dirac operator on N (see [START_REF] Alvarez | Lectures on quantum mechanics and the index theorem[END_REF][START_REF] Freed | Five lectures on supersymmetry[END_REF][START_REF] Rogers | Supermanifolds: theory and applications[END_REF][START_REF] Witten | Index of Dirac operators[END_REF]). Also we can interpret the transformation acting on the set of fields

Q := -ητ Q : (x, ψ) -→ (-ηψ, η ẋ)
as a tangent vector field to the infinite dimensional set of fields (x, ψ):

Q(x, ψ) = R η -ψ(t) ∂ ∂x(t) + ẋ(t) ∂ ∂ψ(t) dt
It is interesting to choose two different anticommuting variables η 1 and η 2 and to compute the commutator of the 'vector fields'

Q 1 := -η 1 τ Q and Q 2 := -η 2 τ Q .
This can be done by computing the action of

Q 1 • Q 2 : Q 2 Q 1 x ψ -→ -η 2 ψ η 2 ẋ -→ -η 1 (η 2 ẋ) η 1 (-η 2 ∇ ẋψ) = -η 1 η 2 ẋ ∇ ẋψ ,
and the action of Q 2 • Q 1 (vice-versa). Then by using the fact that the Levi-Civita connection ∇ is torsion-free, we can write that

[Q 1 , Q 2 ](x, ψ) = Q 1 (Q 2 (x, ψ)) - Q 2 (Q 1 (x, ψ)) and deduce that [η 1 τ Q , η 2 τ Q ](x, ψ) = [Q 1 , Q 2 ](x, ψ) = -2η 1 η 2 ∇ ẋ(x, ψ).
Factoring out by η 1 and η 2 (and taking into account the fact that the odd numbers η i anticommute also with the odd operator τ Q ) we deduce that

[τ Q , τ Q ](x, ψ) = 2∇ ẋ(x, ψ).
Here the notation [τ Q , τ Q ] does not recover a commutator, but an anticommutator

([τ Q , τ Q ] = 2τ Q τ Q ).
We conclude that the action of τ Q on fields should be related somehow to an infinitesimal geometric symmetry which behaves like the square root of the time translation generator 2 d dt .

The superfield formulation

As we shall see in more details in Section 6 there is an alternative, more elegant way to picture geometrically this symmetry by viewing the multiplet (x, ψ) as the components of a single superfield Φ = x + θψ, from the supertime R 1|1 on which the ring of functions is C ∞ (R)[θ] (i.e. θ is here an odd coordinate) to N . Then the Lagrangian action can be written as L[Φ] := -1 2 R 1|1 dt dθ DΦ, ∂Φ ∂t , where D := ∂ ∂θθ ∂ ∂t . And the transformation (6) results from an infinitesimal translation in R 1|1 by the vector ητ Q , where τ Q := ∂ ∂θ + θ ∂ ∂t . However another limitation of our temporary definition of a supermanifold is that: Remark 2.2 The superfield Φ does not belong to C ∞ (R 1|1 , N ) according to the definition of maps in C ∞ (R 1|1 ), since ψ is odd.

Conclusion

We have seen a first example of a supersymmetric model, an opportunity to test the concept of a skeletal supermanifold, and some points must be clarified:

1. to give a sense to (5) and [START_REF] Deligne | Notes on spinors[END_REF], which requires in our example to change the mathematical definition of x and also symmetrically of ψ (Remark 2.1);

2. to extend the definition of a map on a supermanifold in such a way that the superfield Φ = x + θψ makes sense (Remark 2. Let us first consider the second point: one of the more natural ideas which comes in mind to answer it would be to assume that the components ψ i of ψ are not R-valued but takes values in, say R[η 1 ], where η 1 is an odd parameter which is different from θ (to ensure that θη 1 = 0). However this would imply that the right hand side of the first equation of ( 5) is 1 2 R(ψ, ψ) ẋ = 0, because η 1 η 1 = 0. This would solve the first point, but in a stupid way and the superparticle equation would have little interest since the equation on x would not be coupled to ψ. Hence a refined solution is to assume that the components of ψ take values in, say R[η 1 , η 2 ], where θ, η 1 , η 2 are three different odd parameters. Then the right hand side of (5) would be proportional to η 1 η 2 . This means that the components of x should not be real but with values in R[η 1 η 2 ]. Now we observe that there are no a priori reason for using only two odd parameters η 1 , η 2 . Hence we can answer the two first questions by assuming that all the fields x and ψ are R[η 1 , • • • , η L ]-valued, where L is arbitrary, possibly infinite and that x is an even polynomial on (η 1 , • • • , η L ), whereas ψ is an odd polynomial. There are different ways to implement this idea. We here privilege the point of view inspired by algebraic geometry, i.e. to view any odd parameter as a coordinate function on some 'space'. Hence the ring R[η 1 , • • • , η L ] has to be thought as the ring of functions on some space R 0|L and the field Φ = x + θψ as a map on R 1|1 × R 0|L ≃ R 1|1+L . Then the conditions that x (respectively ψ) is an even (respectively odd) function of the η i 's can be encapsulated by requiring that Φ is an even function of (θ,

η 1 , • • • , η L ).
All that show that we need a definition of the set C ∞ (R 1|1 × R 0|L , N ) 0 of even maps from R 1|1 × R 0|L to N . It should be the set of Φ such that, for any local coordinate y : N ⊃ U -→ R, one can make sense of y • Φ and such that y

• Φ ∈ C ∞ (R 1|1 × R 0|L , R) 0 .
A precise statement of this property will be given in §3.1.

More generally the mathematical description of a σ-model6 on a supermanifold M, i.e. a field defined on M and with values on a (possibly super) manifold N will be obtained through an even smooth map from M × R 0|L to N , where the choice of the value of L has to be precised and its meaning can be interpreted in different ways.

Hence we are led to another definition of a supermanifold, that we propose to call 'supermanifolds with flesh', see §2. [START_REF] Batchelor | The structure of supermanifolds[END_REF].

This change of paradigm changes also the content of the last question, which relies on our intuitive picture of a supermanifold. We invite the Reader to build his own vision, after reading the next sections (see also [START_REF] Freed | Five lectures on supersymmetry[END_REF][START_REF] Hélein | A representation formula for maps on supermanifolds[END_REF]).

A new definition

Definition 2.1 A supermanifold with flesh is a product M m|k × R 0|L , where M m|k is a skeletal supermanifold and L ∈ N is 'sufficiently large'.

A map with flesh on the supermanifold M m|k and with values in an ordinary manifold N n|ℓ is an even smooth map from M m|k × R 0|L to N n|ℓ .

We postpone the precise definition of what is an even smooth map from M m|k ×R 0|L to N n|ℓ to the next paragraph (3.1). Moreover we stayed vague about the the precise value of L and there are several ways to implement its role.

• Either one let L to be infinite and we precise some topology: this point of view is connected to the theory of G ∞ -functions and G ∞ -manifolds developped by B. DeWitt and A. Rogers and which will be briefly expounded in Section 5.

• Or one looks for the minimal value of L which is needed in order to make the computations consistent (we need at least L > k): this is connected to the theory of GH ∞ -functions (an intermediate between the G ∞ and H ∞ theories, see Section 5), see [START_REF] Rogers | Graded manifolds, supermanifolds and infinite-deimensional Grassmann algebras[END_REF].

• Or we let the value of L to be free and arbitrary: it means that a map with flesh Φ : M m|k -→ N n|ℓ represents the collection of all even maps Φ :

M m|k × R 0|L -→ N n|ℓ , for L ∈ N.
Equivalentely, as explained in the solution of the Fall Problem 2 in [START_REF] Witten | [END_REF], a 'map' Φ : M m|k -→ N n|ℓ should be considered as a functor from the category of odd vector spaces R 0|L (or more generally superspaces) to even skeletal maps Φ :

M m|k × R 0|L -→ N n|ℓ .
The strategy to understand maps with flesh between supermanifolds is then based on two steps:

1. first define smooth maps (and in particular even ones) between skeletal supermanifolds. This is the subject of the next Section;

2. then specialize the preceding analysis to maps on the skeletal super manifold M m|k × R 0|L and deduce a description of maps with flesh on M m|k .

Note that we may adapt Definition 2.1 of a map between supermanifolds to sections of fiber bundles or connections.

Maps between skeletal supermanifolds

In this section we define maps between skeletal supermanifolds M m|q and N n|ℓ (of respective dimensions m|q and n|ℓ and where, in the following applications, we may have q = k + L and M m|q = M m|k × R 0|L ). The strategy (as in [START_REF] Freed | Five lectures on supersymmetry[END_REF][START_REF] Deligne | Classical fields and supersymmetry[END_REF]) is the following: rather than defining a map Φ : M m|q -→ N n|ℓ directly we set how it acts on functions by the pull-back (or composition) operation f -→ Φ * f = f • Φ. We will essentially use the fact that Φ * should be a morphism between the two superalgebras C ∞ (M m|q , R) and C ∞ (N n|ℓ , R).

The morphism property

Given two skeletal supermanifolds M m|q and N n|ℓ , a smooth map Φ : M m|q -→ N n|ℓ , is defined by duality through the induced morphism of algebras

Φ * : C ∞ (N n|ℓ , R), +, . -→ C ∞ (M m|q , R), +, . A -→ Φ * A,
where we can think secretly that Φ * A = A • Φ. Recall also that we denote by C ∞ (M m|q , R) 0 and C ∞ (N n|ℓ , R) 0 the subalgebras of even elements of respectively C ∞ (M m|q , R) and C ∞ (N n|ℓ , R). Then we will say that Φ * is an even morphism (or equivalentely that Φ :

M m|q -→ N n|ℓ is an even map) if Φ * maps C ∞ (N n|ℓ , R) 0 to C ∞ (M m|q , R) 0 and maps C ∞ (N n|ℓ , R) 1 to C ∞ (M m|q , R) 1 .
The important thing is to check the morphism property, i.e. that Φ * (1) = 1, where 1 is the constant equal to one (the unit in algebraic terms)

(8) ∀λ, µ ∈ R, ∀A, B ∈ C ∞ (N n|ℓ , R), Φ * (λA + µB) = λΦ * A + µΦ * B ( 9 
)
and

∀A, B ∈ C ∞ (N n|ℓ , R), Φ * (AB) = (Φ * A)(Φ * B). (10) 
These conditions impose severe constraints [START_REF] Freed | Five lectures on supersymmetry[END_REF]. In the following we analyze their consequences through some examples.

Some examples

The goal of this paragraph is to experiment maps from a skeletal supermanifold according to the previous definition.

Maps

Φ : R m|0 -→ R 0|ℓ
(From an even vector space to an odd vector space.) This amounts to look at morphisms

Φ * from R[θ 1 , • • • , θ ℓ ] to C ∞ (R m ). Any function F ∈ R[θ 1 , • • • , θ ℓ ] writes F = F ∅ + ℓ i=1 F i θ i + 1 2 ℓ i 1 ,i 2 =1 F i 1 i 2 θ i 1 θ i 2 + • • • = ℓ j=0 1≤i 1 ,•••,i j ≤ℓ F i 1 •••i j θ i 1 • • • θ i j ,
where the F i 1 •••i j 's are real constants. Thus, because of ( 9), it suffices to characterize all pull-back images Φ * (θ

i 1 • • • θ i j ). For j = 0, (8) implies that Φ * F ∅ = F ∅ . For j ≥ 1 we remark that (θ i 1 • • • θ i j ) 2 = 0. We deduce by (10) that (Φ * (θ i 1 • • • θ i j )) 2 = Φ * ((θ i 1 • • • θ i j ) 2 ) = 0 and hence, since Φ * (θ i 1 • • • θ i j ) ∈ C ∞ (R m ), this forces Φ * (θ i 1 • • • θ i j ) = 0. Hence Φ * F = F ∅ = F (0), i.e. the pull-back image of F by Φ is a constant function, R m R 0|p Figure 1: A map from R m to R 0|p
whose value is equal to F ∅ , which can be interpreted as the value of F 'at 0 ∈ R 0|ℓ '.

In other words Φ looks like a constant function and its constant 'value', if it would make sense, is 0; we can hence conclude that Φ ≡ 0. This reflects the fact that 0 is the only 'classical' point in R 0|ℓ .

The study of morphisms of the type Φ : R m|0 -→ R n|ℓ is completely similar: one finds that such morphisms are of the form Φ * F = F • ϕ, where ϕ : R m -→ R n is an ordinary smooth map. In particular if Φ = x + θψ maps R to R 1|1 or, more generally, to ΠT M, the morphism property forces ψ = 0.

Maps

Φ : R 0|1 -→ N n|0 ≃ N
(From an 'odd line' to an (even) standard manifold.) This the opposite situation. We look for morphisms Φ * : 9) implies that a and b are linear functionals. Then Condition [START_REF] Deligne | [END_REF] amounts to

C ∞ (N ) -→ R[θ]. Any such map is characterized by two functionals a, b : C ∞ (N ) -→ R such that, ∀f ∈ C ∞ (N ), Φ * f = a(f ) + b(f )θ. Condition (
a(f g) = a(f )a(g), (11) b 
(f g) = a(f )b(g) + b(f )a(g). (12) 
The first relation [START_REF] Freed | Five lectures on supersymmetry[END_REF] implies that there exists some point m ∈ N such that a(f ) = f (m), ∀f . Then the second one (12

) reads b(f g) = f (m)b(g) + b(f )g(m), which implies 7 that b is a derivation. So that there exists ξ ∈ T m N such that b(f ) = df m (ξ), ∀f . Thus 0|1 ξ m R N Figure 2: A map from R 0|1 to N Φ * f = f (m) + df m (ξ)θ, ∀f ∈ C ∞ (N ).
Hence Φ is characterized by a point in the tangent bundle T N .

Maps

Φ : R 0|2 -→ N n|0 ≃ N
(From an 'odd plane' to an (even) standard smooth manifold.) The analysis is similar. We analyze morphisms Φ * :

C ∞ (N ) -→ R[θ 1 , θ 2 ]: they are characterized by four linear functionals a, b 1 , b 2 , c : C ∞ (N ) -→ R such that ∀f ∈ C ∞ (N ), Φ * f = a(f ) + b 1 (f )θ 1 + b 2 (f )θ 2 + c(f )θ 1 θ 2 . Relation (10) for two functions f, g ∈ C ∞ (N ) gives that Φ * (f g) = a(f g) + b 1 (f g)θ 1 + b 2 (f g)θ 2 + c(f g)θ 1 θ 2
should be equal to

Φ * f Φ * g = (a(f ) + b 1 (f )θ 1 + b 2 (f )θ 2 + c(f )θ 1 θ 2 ) × (a(g) + b 1 (g)θ 1 + b 2 (g)θ 2 + c(g)θ 1 θ 2 ) = a(f )a(g) + (a(f )b 1 (g) + b 1 (f )a(g)) θ 1 + (a(f )b 2 (g) + b 2 (f )a(g)) θ 2 + (a(f )c(g) + c(f )a(g) + b 1 (f )b 2 (g) -b 2 (f )b 1 (g)) θ 1 θ 2 .
Again, by identifying coefficients of 1, θ 1 and θ 2 , we deduce that there exists some point m ∈ N such that a(f ) = f (m) and there exist two vectors

ξ 1 , ξ 2 ∈ T m N such that b 1 (f ) = df m (ξ 1 ) and b 2 (f ) = df m (ξ 2
). However by identifying the θ 1 θ 2 coefficients we obtain:

c(f g) = f (m)c(g) + c(f )g(m) + df m (ξ 1 )dg m (ξ 2 ) -df m (ξ 2 )dg m (ξ 1 ).
From f g = gf we deduce that the left hand side should be symmetric in f and g. However the right hand side is symmetric in f and g only if

(df ∧ dg) m (ξ 1 , ξ 2 ) = 0, ∀f, g ∈ C ∞ (N ).
This is possible only if ξ 1 and ξ 2 are linearly dependant

8 , i.e. ∃ξ ∈ T m N , ∃λ 1 , λ 2 ∈ R, s.t. ξ 1 = λ 1 ξ and ξ 2 = λ 2 ξ. If so we then conclude for c that ∃ζ ∈ T m N such that c(f ) = df m (ζ). Hence Φ * f = f (m) + (λ 1 θ 1 + λ 2 θ 2 )df m (ξ) + θ 1 θ 2 df m (ζ).
7 assuming that Φ * is continuous with respect to the C 1 topology 8 Such a conclusion does not look very natural: it is related to the fact that we did not assume that Φ is even.

The structure of a map of an open subset of R m|q

We here generalize and precise the observations of the previous section. These results were obtained in [START_REF] Hélein | A representation formula for maps on supermanifolds[END_REF]. We assume in the following that |Ω| is an open subset of R m and N is an ordinary manifold of dimension n.

First we introduce the following notations: for any positive integer j we let

I q (j) := {(i 1 , • • • i j ) ∈ [[1, q]] j |i 1 < • • • < i j }, we denote by I = (i 1 , • • • i j ) ∈ I q (j)
a multi-index and we write η I := η i 1 • • • η i j . We use also the convention I q (0) = {∅}. We let I q := ∪ q j=0 I q (j),

I q 0 := ∪ [q/2] j=0 I q (2j), I q 1 := ∪ [(q-1)/2] j=0
I q (2j + 1) and

I q 2 := ∪ [q/2] j=1 I q (2j).
We denote by π : |Ω| × N -→ N the canonical projection map and consider the vector bundle π * T N : the fiber over each point (x, m) ∈ |Ω| × N is the tangent space T m N . For any I ∈ I q 2 , we choose a smooth section ξ I of π * T N over |Ω| × N and we consider the

R[η 1 , • • • , η q ] 0 -valued vector field Ξ := I∈I q 2 ξ I η I .
Alternatively Ξ can be seen as a smooth family (Ξ x ) x∈|Ω| of smooth tangent vector fields on N with coefficients in R[η 1 , • • • , η q ] 0 . So each Ξ x defines a first order differential operator which acts on the algebra

C ∞ (N ) ⊗ R[η 1 , • • • , η q ] 0 , i.e. the set of smooth functions on N with values in R[η 1 , • • • , η q ] 0 , by the relation ∀f ∈ C ∞ (N ) ⊗ R[η 1 , • • • , η q ] 0 , Ξ x f = I∈I q 2 ((ξ I ) x f )η I .
We now define (letting Ξ 0 = 1)

e Ξ := ∞ n=0 Ξ n n! = [q/2] n=0 Ξ n n! ,
which can be considered again as a smooth family parametrized by x ∈ |Ω| of differential operators of order at most [q/2] acting on

C ∞ (N ) ⊗ R[η 1 , • • • , η q ] 0 . Now
we choose a smooth map ϕ : |Ω| -→ N and we consider the map

1 × ϕ : |Ω| -→ |Ω| × N x -→ (x, ϕ(x))
which parametrizes the graph of ϕ. Lastly we construct the following linear operator on

C ∞ (N ) ⊂ C ∞ (N ) ⊗ R[η 1 , • • • , η q ] 0 : C ∞ (N ) ∋ f -→ (1 × ϕ) * e Ξ f ∈ C ∞ (Ω), defined by ∀x ∈ |Ω|, (1 × ϕ) * e Ξ f (x) := e Ξx f (ϕ(x)) = [q/2] n=0 (Ξ) n x n! f (ϕ(x)).
We will often abusively write (1 × ϕ) * e Ξ f (x) ≃ ϕ * e Ξ f (x). We observe that actually, for any x ∈ |Ω|, we only need to define Ξ x on a neighbourhood of ϕ(x) in N , i.e. it suffices to define the section Ξ on a neighbourhood of the graph of ϕ in |Ω| × N (or even on their Taylor expansion in m at order [q/2] around ϕ(x)).

Theorem 3.1 [14] The map f -→ (1 × ϕ) * e Ξ f is a morphism from C ∞ (N ) to C ∞ (|Ω| × R 0|q
) 0 , i.e. satisfies assumptions ( 9) and [START_REF] Deligne | [END_REF].

Conversely for any morphism

Φ * : C ∞ (N ) to C ∞ (|Ω| × R 0|q ) 0 , there exists a map ϕ : |Ω| -→ N and a R[η 1 , • • • , η q ] 0 -valued vector field Ξ on N along ϕ (i.e. a section of π * (T N ⊗ N R[η 1 , • • • , η q ] 0 ) over a neighbourhood of the graph of ϕ in |Ω| × N ) such that Φ * : f -→ (1 × ϕ) * e Ξ f .
Furthermore one can assume that the vector fields ξ I used to build Ξ commute, i.e. that [ξ I , ξ J ] = 0, for all I, J. Moreover if we assume that the image of ϕ is contained in the domain V of a single coordinate chart y : V -→ R n , then it is possible to construct the vector fields ξ I in such a way that ξ I ξ J y = 0.

Maps with flesh between supermanifolds

Recall that, according to the definition given in §2.4 (following the point of view adopted in [START_REF] Deligne | [END_REF] and [START_REF] Freed | Five lectures on supersymmetry[END_REF]), a map with flesh Φ :

M m|k -→ N n|ℓ is defined through even morphisms Φ * : C ∞ (N n|ℓ ) -→ C ∞ (M m|k × R 0|L ) ≃ C ∞ (M m|k ) ⊗ R[η 1 , • • • , η L ].

Examples

The aim is here to illustrate the differences between a map with flesh and a skeletal one.

Even maps

Φ from R 0|1 × R 0|2 to N n|0 ≃ N
It corresponds to a map with flesh from R 0|1 to N (compare with example 3.2.2.) We look at even maps Φ from R 0|1 × R 0|2 to an ordinary manifold N , i.e. at even morphisms Φ * :

C ∞ (N ) -→ R[θ] ⊗ C ∞ (R 0|2 ) 0 , where C ∞ (R 0|2 ) = R[η 1 , η 2 ].
Setting Φ * f = A(f ) + θB(f ), where A(f ) is even and B(f ) is odd, we again find that (using that A(f ) and A(g) commute with all other terms):

A(f g) = A(f )A(g) and B(f g) = A(f )B(g) + B(f )A(g). ( 13 
)
We also know that

A(f ) = a(f ) + η 1 η 2 a 12 (f ) and B(f ) = η 1 b 1 (f ) + η 2 b 2 (f ).
The first relation in (13) gives thus

a(f g) = a(f )a(g) and a 12 (f g) = a(f )a 12 (g) + a 12 (f )a(g),
and hence there exists m ∈ N and ζ ∈ T m N such that a(f ) = f (m) and a 12 (f ) = df m (ζ). The second relation gives

η 1 [a(f )b 1 (g) + b 1 (f )a(g)] + η 2 [a(f )b 2 (g) + b 2 (f )a(g)] = η 1 b 1 (f g) + η 2 b 2 (f g). Hence ∃ξ 1 , ξ 2 ∈ T m N such that b 1 (f ) = df m (ξ 1 ) and b 2 (f ) = df m (ξ 2 ). So Φ * f = (f (m) + η 1 η 2 df m (ζ)) + θ (η 1 df m (ξ 1 ) + η 2 df m (ξ 2 )) = f (m) + η 1 η 2 df m (ζ) + θdf m (η 1 ξ 1 + η 2 ξ 2 ) = ((1 + η 1 η 2 ζ) (1 + θ(η 1 ξ 1 + η 2 ξ 2 )) f ) (m),
where 1 stands for the identity operator acting on C ∞ (N ) and we note, e.g., ζf := Lie ζ f . If we introduce the R 0|2 valued vector fields Ξ ∅ := η 1 η 2 ζ and Ξ 1 := η 1 ξ 1 +η 2 ξ 2 , we can write the preceding relation as:

Φ * f = ((1 + Ξ ∅ ) (1 + θΞ 1 ) f ) (m). ( 14 
)
We also write ( 14) symbolically9 as:

Φ = m (1 + Ξ ∅ ) (1 + θΞ 1 ) . (15) 
A variant consists in adding a time variable t ∈ R, i.e. to substitute R 1|1 to R 0|1 . Then we would obtain by a similar reasoning that a morphism

Φ * from C ∞ (N ) to (C ∞ (R)[θ, η 1 , η 2 ]) 0 has the form Φ * f = ϕ * ((1 + Ξ ∅ ) (1 + θΞ 1 ) f ) , (16) 
where ϕ ∈ C ∞ (R, N ) and Ξ ∅ and Ξ 1 have the same meaning as before. We write this symbolically as

Φ = ϕ (1 + Ξ ∅ ) (1 + θΞ 1 ) = (ϕ + ϕ Ξ ∅ ) + θ (ϕ Ξ 1 ) . (17) 
4.1.2 Even maps Φ from R 0|2 × R 0|2 to N n|0 ≃ N
It corresponds to a map with flesh from R 0|2 to N (compare with 3.2.3.) We look at even morphisms Φ * : 

C ∞ (N ) -→ (R[θ 1 , θ 2 ] ⊗ R[η 1 , η 2 ]) 0 . One finds that ∃m ∈ N , ∃ζ, χ, ξ αβ , π ∈ T m N (for 1 ≤ α, β ≤ 2) such that Φ * f = (f (m) + η 1 η 2 df m (ζ)) + θ 1 df m (η 1 ξ 11 + η 2 ξ 12 ) + θ 2 df m (η 1 ξ 21 + η 2 ξ 22 ) + θ 1 θ 2 (df m (χ) + η 1 η 2 (P f (m) + df m (π))) . ( 18 
′ such that P f (m) -P ′ f (m) = df m (V ), for some V ∈ T m M.
Hence changing the extensions is just equivalent to change π ∈ T m N . The right hand side of (18) can factorized as

Φ * f = (1 + Ξ ∅ ) 1 + θ 1 Ξ 1 1 + θ 1 Ξ 2 1 + θ 1 θ 2 Ξ 12 f (m), (19) 
where

Ξ ∅ := η 1 η 2 ζ, Ξ 1 := η 1 ξ 11 + η 2 ξ 12 , Ξ 2 := η 1 ξ 11 + η 2 ξ 12 and Ξ 12 := χ + η 1 η 2 π.
We can summarize this result by the symbolic relation: This requires adapted notations: we note A k (0) = {∅} and for any j

Φ = m (1 + Ξ ∅ ) 1 + θ 1 Ξ 1 1 + θ 1 Ξ 2 1 + θ 1 θ 2 Ξ 12 , (20) 
∈ N * , A k (j) := {(a 1 , • • • a j ) ∈ [[1, k]] j |a 1 < • • • < a j }. We denote by A = (a 1 , • • • a j ) an element of A k (j) and write θ A := θ a 1 • • • θ a j . We let A k := ∪ k j=0 A k (j), A k 0 := ∪ [k/2] j=0 A k (2j), A k 1 := ∪ [(k-1)/2] j=0 A k (2j + 1), A k 2 := ∪ [k/2] j=1 A k (2j) and A k + := A k 1 ∪ A k 2 .
Lastly we set AI := {AI|A ∈ A k , I ∈ I L } and, defining the length of AI to be the some of the lengthes of A and I, we define similarly AI(j), AI 0 , AI 1 and AI 2 . Hence any (even

) function f ∈ C ∞ (Ω × R 0|L ) (where Ω is an open subset of R p|k ) can be decomposed as f = AI∈AI 0 θ A η I f AI , where f AI ∈ C ∞ (|Ω|), ∀AI ∈ AI 0 .
Then Theorem 3.1 implies that for any morphism

Φ * from C ∞ (N ) to C ∞ (Ω × R 0|L ) 0 , there exists a smooth map ϕ ∈ C ∞ (|Ω|, N ) and a smooth family (ξ AI ) AI∈AI 2 of sections of π * T N defined on a neighbourhood of the graph of ϕ in |Ω| × N such that if Ξ := AI∈AI 2 ξ AI θ A η I then ∀f ∈ C ∞ (N ), φ * f = (1 × f ) * e Ξ f . We decompose Ξ as Ξ = A∈A k θ A Ξ A = Ξ ∅ + a∈A k (1) θ a Ξ a + (a 1 ,a 2 )∈A k (2) θ a 1 θ a 2 Ξ a 1 a 2 + • • • , where ∀A ∈ A k 1 , Ξ A = I∈I L 1 ξ AI η I and ∀A ∈ A k 0 , Ξ A = I∈I L 2 ξ AI η I . In particular Ξ ∅ = I∈I L 2
ξ ∅I η I and we see that Ξ A is odd if A is odd and is even if A is even. Recall that the vector fields (ξ AI ) AI∈AI 2 can be chosen in such a way that they commute pairwise. If so the relations [ξ AI , ξ A ′ I ′ ] = 0 imply that the vector fields Ξ A supercommute pairwise, i.e.

∀A ∈ A k (j), ∀A ′ ∈ A k (j ′ ), Ξ A Ξ A ′ -(-1) jj ′ Ξ A ′ Ξ A = 0. This is equivalent to the fact that ∀A, A ′ ∈ A k , [θ A Ξ A , θ A ′ Ξ A ′ ] = 0. This last commutation relation implies that e Ξ = e A∈A k θ A Ξ A = e Ξ ∅ A∈A k + e θ A Ξ A . Hence ∀f ∈ C ∞ (N ), φ * f = (1 × ϕ) *   e Ξ ∅ A∈A k + e θ A Ξ A f   . ( 21 
)
We thus obtain a generalization of ( 16) and [START_REF] Montonen | Magnetic monopoles as gauge particles ?[END_REF]. We could alternatively write [START_REF] Olive | Supersymmetry algebras that include topological charges[END_REF] by the symbolic relation

Φ = ϕ e Ξ ∅ A∈A k + e θ A Ξ A , (22) 
which generalizes ( 17) and (20).

Even maps from

M m|k × R 0|L to a supermanifold N n|ℓ
First assume that M m|k = Ω is an open subset of R m|k . We also suppose that Ω is sufficiently small, so that its image by Φ is contained in some open subset U of N n|ℓ on which there exists a local chart Y : U -→ R n|ℓ . By this we assume that Y * : C ∞ (Y (U )) -→ C ∞ (U ) is an isomorphism of super algebras. Hence for any function f ∈ C ∞ (U ), there exists an unique function

F ∈ C ∞ (Y (U )) such that f = Y * F . Denote by (z, ζ) = (z 1 , • • • , z n , ζ 1 , • • • , ζ ℓ ) the canonical coordinates on R n|ℓ ⊃ Y (U ).
Using the decomposition F = J∈I ℓ F J ζ J and the fact that Y is a morphism we deduce that

f = Y * F = J∈I ℓ f J ψ J = J∈I ℓ f J ψ j 1 • • • ψ j k ,
where f J := Y * F J , ψ j := Y * ζ j and we recall that I ℓ is the set of multi-indices

J = (j 1 , • • • , j r ) ∈ [[1, ℓ]] r such that j 1 < • • • < j r , for 0 ≤ r ≤ ℓ. Observe that f J is a smooth real valued function defined on |U | of R n .
Then by the morphism property,

Φ * f = J∈I ℓ (Φ * f J )(Φ * ψ J ) = J∈I ℓ (Φ * f J )(Φ * ψ j 1 ) • • • (Φ * ψ jr ).
Hence we conclude that the morphism Φ * is completely determined as soon as we know all Φ * ψ j 's, for j ∈ [ [1, m]], and all pull-back images Φ * f J , for J ∈ I ℓ . However each χ j := Φ * ψ j is an odd function on Ω which can be choosed arbitrarily and, since each f J is a function on |U | ⊂ |N |, its pull-back by Φ is again described by Theorem 3.1.

The case of an even map Φ from M m|k × R 0|L to N n|ℓ , where M m|k is a supermanifold, can be treated similarly: by taking the restriction of Φ to an open subset of M m|k times R 0|L and using a local chart on it, we are left to the previous situation.

Application: how to read Φ = x + θψ ?

We have claimed in §4.1.1 that, when writing Φ = x + θψ for a map from R 1|1 × R 0|2 to an ordinary manifold N , one should read 'ϕ + ϕ η 1 η 2 ζ' instead of 'x' and 'ϕ (η 1 ξ 1 + η 2 ξ 2 )' instead of 'ψ'. By the results expounded in the previous section the generalization of this to a map Φ from

R 1|1 × R 0|L to N (where L is arbitrary) is (using (θ) 2 = 0) Φ = ϕ e Ξ ∅ e θΞ 1 = ϕ e Ξ ∅ (1 + θΞ 1 ) = ϕ e Ξ ∅ + θ ϕ e Ξ ∅ Ξ 1 ,
so that one should interpret that 'x' = ϕ e Ξ ∅ and 'ψ' = ϕ e Ξ ∅ Ξ 1 .

We can interpret similarly the decomposition of a supersymmetric σ-model

Φ = φ + θ 1 ψ 1 + θ 2 ψ 2 + θ 1 θ 2 F ( 23 
)
from R m|2 to an ordinary manifold N . Understanding this field as an even map Φ from R m|2 × R 0|L to N , we can write by Theorem 3.1

Φ = ϕ e Ξ ∅ 1 + θ 1 Ξ 1 1 + θ 2 Ξ 2 1 + θ 1 θ 2 Ξ 12 , (24) 
meaning that ∀f ∈ C ∞ (N ),

Φ * f = ϕ * e Ξ ∅ 1 + θ 1 Ξ 1 1 + θ 2 Ξ 2 1 + θ 1 θ 2 Ξ 12 f . (25) 
We can now understand the meaning of the usual expression [START_REF] Rogers | A global theory of supermanifolds[END_REF] as follows. Somehow in this relation one implicitely assumes that ϕ takes values in an open set V of N on which a coordinate chart y = (y 1 , • • • , y n ) : V -→ R n is defined. Then the right hand side of ( 23) is y * Φ. So let us use [START_REF] Rogers | Supermanifolds: theory and applications[END_REF] with f = y i (1 ≤ i ≤ n) and exploit the fact that, thanks to Theorem 3.1, we can chose all vector fields ξ I such that ξ I ξ J y = 0. Then, setting

ϕ i := y i • ϕ, Ξ i 1 := Ξ 1 ϕ i , Ξ i 2 := Ξ 2 ϕ i , Ξ i 12 := Ξ 12 ϕ i and φ i := ϕ i + Ξ ∅ ϕ i , (25) implies Φ i ≃ Φ * y i = (ϕ i + Ξ ∅ ϕ i ) + θ 1 (Ξ 1 ϕ i ) + θ 2 (Ξ 2 ϕ i ) + θ 1 θ 2 (Ξ 12 ϕ i ) = φ i + θ 1 Ξ i 1 + θ 2 Ξ i 2 + θ 1 θ 2 Ξ i 12 . (26) 
A comparison with [START_REF] Rogers | A global theory of supermanifolds[END_REF] gives us:

φ i = ϕ i + Ξ ∅ ϕ i , ψ i 1 = Ξ i 1 , ψ i 2 = Ξ i 2 and F i = Ξ i 12 .
One the other hand, for an arbitrary non linear function f ∈ C ∞ (N ), [START_REF] Rogers | Supermanifolds: theory and applications[END_REF] 

developps as f • Φ ≃ Φ * f = ϕ * e Ξ ∅ f + θ 1 Ξ 1 f + θ 2 Ξ 2 f + θ 1 θ 2 (Ξ 12 -Ξ 1 Ξ 2 )f .
We hence deduce the relation in local coordinates

f (φ + θ 1 ψ 1 + θ 2 ψ 2 + θ 1 θ 2 F ) = f (φ) + θ 1 n i=1 ∂f ∂y i (φ)ψ i 1 + θ 2 n i=1 ∂f ∂y i (φ)ψ i 2 + θ 1 θ 2 n i=1 ∂f ∂y i (φ)F i - n i,j=1 ∂ 2 f ∂y i ∂y j (φ)ψ i 1 ψ j 2 .

Vector fields on a supermanifold with flesh

Consider the superspace R m|k × R 0|L and denote by

x 1 , • • • , x m , θ 1 , • • • , θ k the coordi- nates on R m|k and by η 1 , • • • , η L the coordinates on R 0|L . For 1 ≤ i ≤ m, the action of ∂ ∂x i on C ∞ (R m ) can be extended in a straightforward way to C ∞ (R m|k × R 0|L ): for any function f ∈ C ∞ (R m|k × R 0|L ), decompose f = AI∈AI f AI θ A η I (see §4.2.1), where, ∀A ∈ A k , ∀I ∈ I L , f AI ∈ C ∞ (R m ) and just set ∂f ∂x i := AI∈AI ∂f AI ∂x i θ A η I . ( 27 
)
We define the odd derivative ∂ ∂θ a as the operator acting on

C ∞ (R m|k × R 0|L ) by the rule ∂f ∂θ j = AI∈AI (-1) gr(f AI ) f AI ∂θ A ∂θ a η I ,
where, if A does not contain a, ∂θ A ∂θ a = 0 and, if A contains a, say

A = (a 1 , • • • , a γ-1 , a, a γ+1 • • • , a k ), ∂θ A ∂θ a = (-1) γ-1 θ 1 • • • θ a γ-1 θ a γ+1 • • • θ a k . More generally, if Ω is an open subset of R m|k , we consider differential operators D : C ∞ (Ω × R 0|L ) -→ C ∞ (Ω × R 0|L ) of the form D = m i=1 a i ∂ ∂x i + k a=1 b a ∂ ∂θ a ,
where a i and b a belongs to C ∞ (Ω × R 0|L ). In the following we assume that the a i 's are even and the b a 's are odd so that D is a derivation, i.e. it satisfies the Leibniz rule

D(f g) = (Df )g + f (Dg), ∀f, g ∈ C ∞ (R m|k × R 0|L ). For example on R 1|1 × R 0|L
we consider in Section 6 the vector field ∂ ∂t and, letting η ∈ C ∞ (R 0|L ) 1 (η is odd), the (even) vector fields ηD = η ∂ ∂θηθ ∂ ∂t and ητ Q = η ∂ ∂θ + ηθ ∂ ∂t . For the following discussion it is useful to present an alternative description of the set of even maps C ∞ (Ω × R 0|L ) 0 , where Ω ⊂ R m|k . Let q := k + L and replace (θ

1 , • • • , θ k , η 1 , • • • , η L ) by (η 1 , • • • , η q ) to
simplify the notations. Let Λ 2 * + ≃ R 2 q-1 -1 be the vector subspace of even elements of positive degree of the exterior algebra Λ * R q , denote by s = s I I∈I q 2 the canonical coordinates on Λ 2 * + and define the 'canonical' R[η 1 , • • • , η q ]-valued vector field ϑ on Λ 2 * + by ϑ := I∈I q 2 η I ∂ ∂s I . Then, as shown in [START_REF] Hélein | A representation formula for maps on supermanifolds[END_REF], for any

f ∈ C ∞ (Ω × R 0|L ) 0 , there exists a map f ∈ C ∞ (|Ω| × Λ 2 * + ) such that ∀x ∈ |Ω|, f (x, η) = e ϑ f (x, 0), or, by using the canonical embedding ι : |Ω| -→ |Ω| × Λ 2 * + , x -→ (x, 0), f = ι * e ϑ f .
Note that f is not unique: two maps f and f ′ produces the same function f if and only if their difference ff ′ lies in the ideal I q (|Ω|) spanned over C ∞ (|Ω|) by the polynomials s

I 1 • • • s I j -ǫ I 1 •••I j I s I , for I 1 , • • • , I j ∈ I q 2
, where ǫ

I 1 •••I j I = 0 if there exists some index i ∈ [[1, q]
] which appears at least two times in the list (I 1 , • • • , I j ) and ǫ

I 1 •••I j I = ±1 in the other cases (then ǫ I 1 •••I j I
is the signature of the permutation (I 1 , • • • , I j ) -→ I), see [START_REF] Hélein | A representation formula for maps on supermanifolds[END_REF]. One hence deduces the algebra isomorphism

C ∞ (Ω × R 0|L ) 0 ≃ C ∞ (|Ω| × Λ 2 *
+ )/I q (|Ω|). Thanks to the isomorphism f -→ f mod I q (|Ω|), we can represent each vector field X acting on C ∞ (Ω × R 0|L ) 0 by a (non unique) vector field

X on |Ω| × Λ 2 * + , such that ∀f ∈ C ∞ (Ω × R 0|L ) 0 , Xf = ι * e ϑ Xf . (28) 
Below is a list of examples.

1. Any vector field X = m i=1 X i (x) ∂ ∂x i tangent to |Ω| has a straightforward extension to |Ω| × R 0|q , induced by [START_REF] Tulczyjew | The graded Lie algebra of multivector fields and the generalized Lie derivative of forms[END_REF], that we still denote by X. Similarly X can be extended to |Ω| × Λ 2 * + into an unique vector field, also denoted by X, such that Xs I = 0 and [X,

∂ ∂s I ] = 0. Then ∀f ∈ C ∞ (Ω × R 0|L ) 0 , Xf = ι * e ϑ Xf , i.e. we can choose X = X.
2. Let X be a vector field as in the previous example and consider

Y = η 1 η 2 X. Then ∀f ∈ C ∞ (|Ω| × R 0|q ) 0 , η 1 η 2 Xf = ι * e ϑ s 12 Xf ,
i.e. we can choose Y = s 12 X. This is a consequence of the following. Let I / 1/ 2q 2 be the subset of multi-indices in I q 2 , where the values 1 and 2 are forbidden for the indices. For I ∈ I / 1/ 2q 2 , let 12I ∈ I q 2 be the multi-index obtained by concatening 1, 2 and I. Then s 12 s I = s 12I mod I q (|Ω|).

For

Z = η 1 ∂ ∂η 2 , we have, setting * s 1 * ∂ ∂s 2 * := I∈I / 1/ 2q 2 s 1I ∂ ∂s 2I , ∀f ∈ C ∞ (|Ω| × R 0|q ) 0 , η 1 ∂f ∂η 2 = ι * e ϑ * s 1 * ∂f ∂s 2 * ,
i.e. we can choose Z = * s 1 * ∂ ∂s 2 * . We can now make sense of odd derivatives of even maps into an ordinary manifold N in the sense of §4.2.1 as follows. We first present a consequence of Theorem 3.1 derived in [START_REF] Hélein | A representation formula for maps on supermanifolds[END_REF]. Recall that, by Theorem 3.1, any morphism Φ * :

C ∞ (N ) -→ C ∞ (|Ω| × R 0|q ) 0 has the form Φ * f = (1 × ϕ) * e Ξ f ,
where, in the decomposition Ξ = I∈I q 2 ξ I η I , we can assume that all vector fields ξ I 's commute. Hence we can integrate simultaneously these vector fields and we obtain a smooth (ordinary) map F : |Ω| × Λ 2 * + -→ N such that:

F(x, 0) = ϕ(x) and ∂F ∂s I (x, s) = ξ I (F(x, s)) . (29) 
Conversely one can recover Φ * (and hence Φ) from F through the formula

∀f ∈ C ∞ (N ), Φ * f = ι * e ϑ (f • F) . ( 30 
)
Now if X is a tangent vector on |Ω| × R 0|q , we would like to define XΦ = Φ * X as a section of Φ * T N or alternatively (in order to avoid the definition of the fiber bundle Φ * T N over |Ω| × R 0|q ) through the map (Φ, XΦ) from |Ω| × R 0|q to T N . We do it indirectly by defining α Φ (XΦ), for any section α of T * N on N . We first consider the case where α is exact, i.e. α = df , for some f ∈ C ∞ (N ). We then have, by using ( 30) and ( 28)

df Φ (XΦ) = X(f •Φ) = X(Φ * f ) = Xι * e ϑ (f • F) = ι * e ϑ X(f • F) = ι * e ϑ df F (XF) .
(Note that e ϑ and X commute). We deduce from this identity a similar formula for a 1-form gdf , where f, g ∈ C ∞ (N ) by writing

(g • Φ)(df Φ (XΦ)) = ι * e ϑ (g • F) ι * e ϑ df F (XF) = ι * e ϑ (g • F)df F (XF) .
And since any 1-form on T N can be written as a finite sum of forms of the type gdf , we obtain: α Φ (XΦ) = ι * e ϑ α F (XF) .

Hence XΦ can be represented by the section XF of F * T N or, equivalentely (Φ, XΦ) is a map from Ω to T N which can be represented by the map (F, XF) from |Ω| × Λ 2 * + to T N .

5 An alternative theory

Another consequence of the morphism property

In this paragraph we still use the same point of view as before but, as a motivation for the following, we expound another consequence of the morphism properties ( 9) and [START_REF] Deligne | [END_REF]. Assume that M m|k is a (skeletal, for simplicity) supermanifold of dimension m|k and let U ⊂ M m|k an open subset and X : U -→ Ω be a chart, where Ω is an open subset of

R m|k . Let (z, ζ) = (z 1 , • • • , z m , ζ 1 , • • • , ζ k ) be the canonical coordinates on R m|k ⊃ Ω. As in §4.2.2, for any function f ∈ C ∞ (U ) there exists an unique function F ∈ C ∞ (Ω), such that f = X * F and, if we decompose F = I∈I k F I ζ I , for some functions F I ∈ C ∞ (|Ω|)
, and if we set θ i := X * ζ i , we obtain f = X * F = I∈I k (X * F I )θ I . Moreover X * F I can be estimated by the following: since F I ∈ C ∞ (|Ω|), we can deduce from a Taylor expansion (with integral rest) that, for any z, z 0 ∈ |Ω|,

F I (z) = |r|≤k ∂ r F I (∂z) r (z 0 ) (z -z 0 ) r r! + |r|=k+1 G I,r (z)(z -z 0 ) r ,
for some smooth functions G I,r . Using ( 9) and ( 10) and setting x i := X * z i and x i 0 := X * z i 0 , this implies

X * F I = |r|≤k ∂ r F I (∂z) r (z 0 ) (x -x 0 ) r r! + |r|=k+1 G I,r (y)(x -x 0 ) r .
Now in the case where zz 0 (i.e. xx 0 ) is nilpotent, the last term in the right hand side vanishes and, setting f I := X * F I and X * ∂ ∂x i = ∂ ∂z i , we are left with

f I (x) = |r|≤k ∂ r f I (∂x) r (x 0 ) (x -x 0 ) r r! if x -x 0 is nilpotent. ( 31 
)

The theory of DeWitt and Rogers

Another theory of supermanifolds was developped by B. DeWitt and A. Rogers [START_REF] Rogers | A global theory of supermanifolds[END_REF].

The model space here is R m|k

L ′ := Λ 0 L ′ m × Λ 1 L ′ k , (32) 
where Λ L ′ is a superalgebra isomorphic to C ∞ (R 0|L ′ ) ≃ Λ * R L ′ and L ′ ∈ N. (We may choose L ′ = ∞, but in the following we assume that L ′ is finite for simplicity.) We define the body map β : Λ L ′ -→ R which, to each z ∈ Λ L ′ , associates the only real number β(z) such that zβ(z) is nilpotent (we also call σ(z) := zβ(z) the soul map). We extend β to a map β : R

m|k L ′ -→ R m which, to each (z 1 , • • • , z m , ζ 1 , • • • , ζ k ) ∈ R m|k L ′ , associates (β(z 1 ), • • • , β(z m ), β(ζ 1 ), • • • , β(ζ k )) ≃ (β(z 1 ), • • • , β(z m )).
Of course, as a set, the right hand side in the definition (32) looks too large. Its too large dimension is compensated by • a choice of restrictions on the class of functions on R m|k L ′ we are working with. We are going to present classes of functions on R m|k L ′ which depend only on what is happening in a formal neighbourhood of R m inside R m|k L ′ . These classes of functions will be built starting from the coordinate functions

• the choice of a (non Hausdorff) topology on it: open subsets of R m|k L ′ are of the form |Ω| × (Λ * 0 L ′ ) m × (Λ 1 L ′ ) k ,
x i : R m|k L ′ -→ Λ L ′ (z 1 , • • • , z m , ζ 1 , • • • , ζ k ) -→ z i and θ i : R m|k L ′ -→ Λ L ′ (z 1 , • • • , z m , ζ 1 , • • • , ζ k ) -→ ζ i .
We observe that we should at least suppose that L ′ ≥ k in order to ensure that

θ 1 • • • θ k = 0. The class H ∞ -For any open subset Ω ⊂ R m|k L ′ , a function F : Ω -→ Λ L ′ belongs to H ∞ (Ω) if F = I∈I k θ I f I (x), (33) 
where

θ I := θ i 1 • • • θ i j , for I = (i 1 , • • • , i j )
and, for each I ∈ I k , there exists a (real valued !) function f I : β(Ω) -→ R such that, for any z ∈ Ω,

f I (z) := r=(r 1 ,•••,rm) ∂ r f I (β(z)) (∂β(z)) r (z -β(z)) r r! . ( 34 
)
Note that the right hand side is a finite sum, since the components of zβ(z) are nilpotent. One can motivate conditions ( 33) and ( 34) by Relation (31) obtained in §5.1.

However the theory of H ∞ -functions is limited and its use for physical models leads to the same type of inconsistencies as the theory of skeletal algebro-geometric supermanifold.

The class G ∞ -Functions f ∈ G ∞ (Ω) can be defined in exactly the same way as functions in H ∞ (Ω) with the exception that, in [START_REF] Witten | [END_REF], the function f I takes values in Λ L ′ instead of R. Hence the set G ∞ (Ω) is much larger than H ∞ (Ω) and allows to perform many computations on physical models that are forbidden within H ∞ (Ω).

The class GH ∞ -Since however G ∞ (Ω) may be too big, one can use as a variant the set GH ∞ (Ω) of maps where one assumes that the functions f J in [START_REF] Witten | [END_REF] takes values in Λ L , for L < L ′ : it can be shown that, for many purposes is is enough to choose the integers L and L ′ such that 2k < L ′ ≤ 2L (see [START_REF] Rogers | Supermanifolds: theory and applications[END_REF]). The resulting theory is similar to the algebro-geometric theory of supermanifolds with flesh. [START_REF] Rogers | Supermanifolds: theory and applications[END_REF]. Again most of the 'physical' applications requires the use of G ∞ -or GH ∞ -supermanifolds. One can compare the various theories as follows:

Comparisons -Each of these notions of superfunctions leads to a particular different notion of supermanifolds, by gluing open subsets of

R m|k L ′ though H ∞ -, G ∞ -or GH ∞ -diffeomorphisms, see
1. any H ∞ -supermanifold is a G ∞ -or a GH ∞ -supermanifold, a consequence of the trivial facts that any H ∞ -function is a GH ∞ -function, and any GH ∞function is a G ∞ -function;

2. conversely any G ∞ -supermanifold can be endowed with a (non unique) H ∞superstructure, a consequence of 3. and 4. below;

3. any G ∞ -supermanifold has a split structure (i.e. is of the form S(|M|, E), where E is a vector bundle over |M|) [START_REF] Batchelor | The structure of supermanifolds[END_REF];

4. any split manifold S(|M|, E) has a H ∞ -structure;

5. any H ∞ -supermanifold is a (skeletal) algebro-geometric supermanifold [START_REF] Rogers | Supermanifolds: theory and applications[END_REF];

6. conversely any (skeletal) algebro-geometric supermanifold is a H ∞ -supermanifold [START_REF] Batchelor | Two approaches to supermanifolds[END_REF].

See [START_REF] Rogers | Supermanifolds: theory and applications[END_REF] (and [3] about 5 and 6) for a complete overview.

The superparticle: second version

We now present the superparticle model using the superfield Φ = x + θψ, a map from R 1|1 to an ordinary Riemannian manifold N . We need for that purpose to know how to integrate a function a supermanifold.

The Berezin integral

The theory for integrating a function on a supermanifold is due to Berezin. In the following we just explain how to define such an integral on an open subset of R m|k . We do not expound the complete theory, which rests on a delicate change of variable formula. We refer to [START_REF] Manin | Gauge field theory and complex geometry[END_REF][START_REF] Deligne | [END_REF][START_REF] Rogers | Supermanifolds: theory and applications[END_REF] for a complete exposition.

Let Ω be an open subset of R m|k and f ∈ C ∞ (Ω) be a smooth function on the closure of Ω. Let us write f

= I∈I k θ I f I , where f I ∈ C ∞ (|Ω|) ⊗ C ∞ (R 0|L ), ∀I ∈ I k ,
for some L ∈ N. Then we define the Berezin integral of f over Ω by

Ω dx 1 • • • dx m dθ 1 • • • dθ k f := |Ω| dx 1 • • • dx m f 1•••k .
So we have selected the highest degree coefficient f 1•••k in the decomposition of f and we just integrate it over |Ω|. Note that this integral takes values in C ∞ (R 0|L ). It also enjoys the following property

Ω dx 1 • • • dx m dθ 1 • • • dθ k f (x, η + ζ) = Ω dx 1 • • • dx m dθ 1 • • • dθ k f (x, η), (35) 
which reflects the invariance by translation in the odd variables of the Berezin integral. Indeed (35) just follows by expanding (η

1 + ζ 1 ) • • • (η k + ζ k
) and using the definition of the Berezin integral. The 'infinitesimal' version of ( 35) is:

∀j ∈ [[1, k]], Ω dx 1 • • • dx m dθ 1 • • • dθ k ∂f ∂θ j = 0. ( 36 
)
This can be shown by observing that the action of ∂ ∂θ j decreases by one the degree of all monomials θ I . For instance

∂ ∂θ j (θ 1 • • • θ k ) = (-1) j-1 θ 1 • • • θ j-1 θ j+1 • • • θ k , so that Ω dx 1 • • • dx m dθ 1 • • • dθ k ∂ ∂θ j (θ 1 • • • θ k ) = 0.

The supertime R 1|1

The simplest non trivial example of a superspace is the 'supertime' R 1|1 . We denote by t (the time) the even coordinate and by θ the odd coordinate on it. We will consider three vector fields on R 1|1 : the time derivative ∂ ∂t acting on even functions on R 1|1 × R 0|L which is the extension of the usual operator as described in §4.4 and:

D := ∂ ∂θ -θ ∂ ∂t and τ Q := ∂ ∂θ + θ ∂ ∂t .
Clearly D and τ Q are odd operators, i.e. they change the parity of the maps on which they act. So in particular, if Φ : R 1|1 × R 0|L -→ N is an even map, DΦ and τ Q Φ are not even. There are then two ways to deal with these derived maps: either we introduce the supermanifold ΠT N and we can make sense of these derivatives directly. Or we allow only to consider ηDΦ and ητ Q Φ, where η is odd, and we are then in the setting expounded in §4.4 (i.e. we implicitely assume that we are working with maps on R 1|1 × R 0|L ). Note that D (resp. τ Q ) can be considered as a left (resp. right) invariant odd vector field on R 1|1 (we shall see why in Section 8). Operators ∂ ∂t , D and τ Q satisfy the following relations:

D 2 = - ∂ ∂t , τ 2 Q = ∂ ∂t , Dτ Q + τ Q D = 0, D ∂ ∂t - ∂ ∂t D = τ Q ∂ ∂t - ∂ ∂t τ Q = 0.
For example We thus have

D 2 (f (t) + θg(t)) = Dd g(t) -θ ḟ (t) = -ḟ (t) -θ ġ(t).
[D, D] = -2 ∂ ∂t , [τ Q , τ Q ] = 2 ∂ ∂t , [D, τ Q ] = D, ∂ ∂t = τ Q , ∂ ∂t = 0.
We see that the space m 1|1 'spanned' by ∂ ∂t , D and τ Q is a Lie super algebra, the super Lie algebra of supertranslations of R 1|1 . Note that, as pointed out in §1.2.2, Lie super brackets can be replaced by ordinary Lie brackets, which are easier to handle with, by tensoring

m 1|1 with C ∞ (R 0|L ) = R[η 1 • • • η L ]. One then manipulates only linear combinations of ∂ ∂t , D and τ Q with coefficients in R[η 1 • • • η L ]
which are even. For instance η 1 D and η 2 τ Q are even and their commutator is:

η 1 D, η 2 τ Q = η 1 D η 2 τ Q -η 2 τ Q η 1 D = -η 1 η 2 (Dτ Q + τ Q D) = -2η 1 η 2 [D, τ Q ] ,
which is equal to 0 because the anticommutator [D, τ Q ] vanishes.

Note also that if we consider m 1|1 ⊗ R[θ], the space spanned by ∂ ∂t , D and τ Q over R[θ], then these three generators are not linearly independant, because of the relation τ Q -D = 2θ ∂ ∂t .

The superfield formulation of the superparticle model

Now we come back to the superparticle: instead of working on fields (x, ψ) we consider even maps Φ = x + θψ from R 1|1 × R 0|L to N , with the meaning discussed in §4.3 (i.e. Φ = x(1 + θψ)). Recall that the vector field Q = -ητ Q was defined by

Q(x, ψ) = (-ηψ, η ẋ).
It is straightforward to check that this coincides with the action of -ητ Q on Φ since:

ητ Q (Φ) = η ∂ ∂θ + θ ∂ ∂t (x + θψ) = η ψ + θ ∂x ∂t = ηψ -θ η ∂x ∂t .
Furthermore the action L[x, ψ] can be written in terms of the field Φ as follows.

Consider the following action, given by a Berezin integral (see §6.1):

L[Φ] := - 1 2 R 1|1
dt dθ DΦ, ∂Φ ∂t .

Through the substitution Φ = x + θψ one finds

- 1 2 DΦ, ∂Φ ∂t = - 1 2 ψ -θ ẋ, ẋ + θ∇ ẋψ = - 1 2 ψ, ẋ + θ 2 | ẋ| 2 + ψ, ∇ ẋψ . ( 37 
)
Thus we recover

L[Φ] = 1 2 R dt | ẋ| 2 + ψ, ∇ ẋψ = L[x, ψ],
The superfield formulation allows an alternative proof of the invariance of L[Φ] under the action of Q. For that purpose we need to compute L[Φητ Q Φ]. First we have (using the fact that η anticommutes with D):

D(Φ -ητ Q Φ), ∂ ∂t (Φ -ητ Q Φ) = DΦ, ∂Φ ∂t +η D ∇ τ Q Φ, ∂Φ ∂t +η DΦ, ∂ ∇ ∂t τ Q Φ ,
where D ∇ and ∂ ∇ ∂t denote the covariant derivatives for the pull-back of the Levi-Civita connection on N by Φ (or by F, see §4.4). Now we use the anticommutation relation [D, τ Q ] = 0, the commutation relation ∂ ∂t , τ Q = 0 and the fact that ∇ is torsion free to get:

D(Φ -ητ Q Φ), ∂ ∂t (Φ -ητ Q Φ) = DΦ, ∂Φ ∂t + η -τ ∇ Q DΦ, ∂Φ ∂t + η DΦ, τ ∇ Q ∂ ∂t Φ = DΦ, ∂Φ ∂t -ητ Q DΦ, ∂Φ ∂t .
We hence deduce an expression for L[Φητ Q Φ]. By a comparison with the relation

L[Φ -ητ Q Φ] = L[Φ] -ητ Q δL[Φ], we deduce ητ Q δL[Φ] = - 1 2 R 1|1 dt dθ ητ Q DΦ, ∂Φ ∂t .
At this point we can conclude that -ητ Q induces a symmetry since ητ Q δL[Φ] reduces to a boundary integral and because of (36). However it is interesting to compute explicitely this term in view of obtaining the Noether charge of this symmetry. We observe that if we note DΦ, ∂Φ ∂t = f + θg, then using the fact that f is odd (see (37)),

R 1|1 dt dθ ητ Q (f + θg) = R 1|1 dt dθ ηg -θη ∂f ∂t = - R dt η ∂f ∂t .
Hence, in view of (37),

ητ Q δL[Φ] = 1 2 η R dt ∂ ∂t ψ, ẋ , (38) 
and we obtain the same result as in Section 2. We now recover Noether's theorem. It relies on redoing the preceding calculation but ητ Q is now replaced by a smooth compactly supported 'modulation' of it, i.e. we compute

χητ Q δL[Φ], where χ ∈ C ∞ c (R). It gives us: L[Φ -χητ Q Φ] = L[Φ] -δ (0) χητ Q [Φ] -δ (1) χητ Q [Φ],
where we have splitted

χητ Q δL[Φ] into the sum of δ (0) χητ Q [Φ]
, which is a linear expression in χ, and of δ

(1) χητ Q [Φ]
, which is a linear expression in dχ dt . However δ

(0) χητ Q [Φ]
is simply obtained by inserting χ in the right hand side of (38), i.e.

δ (0) χητ Q [Φ] = 1 2 η R dtχ ∂ ∂t ψ, ẋ .
On the other hand

δ (1) χητ Q [Φ] = 1 2 R dt dθ Dχ ητ Q Φ, ∂Φ ∂t + dχ dt DΦ, ητ Q Φ .
We compute then Dχ ητ Q Φ, ∂Φ ∂t = -θη dχ dt ψ, ẋ and DΦ, ητ

Q Φ = -2θη ψ, ẋ , so that δ (1) χητ Q [Φ] = 3 2 R dt η dχ dt ψ, ẋ .
By integrating by part the last expression we then conclude that χητ Q δL[Φ] = -η R dtχ ∂ ∂t ψ, ẋ , as in Section 2.

7 Superfields on R 3|2

7.1 The super Minkowski space

M (1,2)|2 ≃ R 3|2
Another example of superspace is R 3|2 , a supersymmetric extension of the Minkowski space of dimension 1 + 2. We denote the even coordinates by t, x and y and the odd coordinates by θ 1 and θ 2 . Beside the translation vector fields ∂/∂t, ∂/∂x and ∂/∂y, we define the (right invariant) supertranslation generators

τ 1 := ∂ ∂θ 1 + θ 1 ∂ ∂t + ∂ ∂x + θ 2 ∂ ∂y , τ 2 := ∂ ∂θ 2 + θ 1 ∂ ∂y + θ 2 ∂ ∂t - ∂ ∂x , (39) 
which satisfy the supercommutation relations

[τ 1 , τ 1 ] = 2 ∂ ∂t + ∂ ∂x , [τ 1 , τ 2 ] = 2 ∂ ∂y , [τ 2 , τ 2 ] = 2 ∂ ∂t - ∂ ∂x . ( 40 
)
It may be convenient to embedd the Minkowski space R 3 in the space M (2, R) of 2 × 2 real matrices with the coordinates v 11 , v 12 , v 21 and v 22 though the map

R 3 -→ M (2, R) (t, x, y) -→ v = v 11 v 12 v 21 v 22 = (t + x)/2 y/2 y/2 (t -x)/2 ,
i.e. to view R 3 as the hyperplane v 12v 21 = 0 or the space h 2 (R) of symmetric 2 × 2 real matrices. We then recover the Minkowski norm by the relation t 2x 2y 2 = 4 det v. Functions on R 3 can then be identified with functions on M (2, R) annihilated by ∂ ∂v 12 -∂ ∂v 21 and we have

∂ ∂t = 1 2 ∂ ∂v 11 + ∂ ∂v 22 , ∂ ∂x = 1 2 ∂ ∂v 11 - ∂ ∂v 22 , ∂ ∂y = 1 2 ∂ ∂v 12 + ∂ ∂v 21 .
Then, setting ∂ a := ∂ ∂θ a and ∂ ab := ∂ ∂v ab , (39) can be written

τ a := ∂ a + θ b ∂ ab , for a, b = 1, 2. Similarly (40) becomes [τ a , τ b ] = 2∂ ab .
We define also the (left invariant) odd vector fields

D a := ∂ a -θ b ∂ ab , for a, b = 1, 2. ( 41 
)
which satisfy the supercommutation relations [D a , τ b ] = 0 and

[D a , D b ] = -2∂ ab . (42) 

An example of supersymmetric model

As an elementary example of a supersymmetric model we consider 'scalar' fields Φ on R 3|2 which are critical points of the functional

A[Φ] := R 3|2 d 3 xd 2 θ 1 4 ǫ ab D a ΦD b Φ + Φ * h , where d 3 x := dtdxdy, d 2 θ := dθ 1 dθ 2 and h ∈ C ∞ (R, R). We note Φ = φ + θ α ψ α + 1 2 ǫ αβ θ α θ β F = φ + θ 1 ψ 1 + θ 2 ψ 2 + θ 1 θ 2 F . Then, by setting (Dψ) 1 = ∂ 12 ψ 1 -∂ 11 ψ 2 and (Dψ) 2 = ∂ 22 ψ 1 -∂ 12 ψ 2 ,
we have

D 1 Φ = ψ 1 -θ 1 ∂ 11 φ + θ 2 (F -∂ 21 φ) + θ 1 θ 2 (Dψ) 1 , D 2 Φ = ψ 2 -θ 1 (F + ∂ 12 φ) -θ 2 ∂ 22 φ + θ 1 θ 2 (Dψ) 2 .
We hence find that, denoting ψDψ := ǫ ab ψ a (Dψ

) b = ψ 1 (Dψ) 2 -ψ 2 (Dψ) 1 , d 2 θ 1 4 ǫ ab D a Φ • D b Φ = 1 2 ∂φ ∂y 11 ∂φ ∂y 22 - 1 2 ∂φ ∂y 12 2 + 1 2 ψDψ + 1 2 F 2 = 1 2 ∂φ ∂t 2 - 1 2 ∂φ ∂x 2 - 1 2 ∂φ ∂y 2 + 1 2 ψDψ + 1 2 F 2 .
The computation of Φ * h can be done as in §4.3: it is better to understand the decomposition of Φ as Φ = φ(1

+ θ 1 ψ 1 )(1 + θ 2 ψ 2 )(1 + θ 1 θ 2 F
), where ψ 1 , ψ 2 and F are derivation operators. This gives us

Φ * h = h • φ + (h ′ • φ) θ 1 ψ 1 + θ 2 ψ 2 + θ 1 θ 2 F -(h ′′ • φ)θ 1 θ 2 ψ 1 ψ 2 , so that dθ 1 dθ 2 Φ * h = (h ′ • φ)F -(h ′′ • φ)ψ 1 ψ 2 .
Hence we conclude that

A[Φ] = R 3 d 3 x 1 2 ∂φ ∂t 2 - 1 2 |∇φ| 2 + 1 2 ψDψ -h ′′ (φ)ψ 1 ψ 2 + 1 2 F 2 + h ′ (φ)F ,
where

|∇φ| 2 := ∂φ ∂x 2 + ∂φ ∂y 2
. Another way to write this action is

A[Φ] = 1 2 R 3 d 3 x ∂φ ∂t 2 -|∇φ| 2 + ψDψ -2h ′′ (φ)ψ 1 ψ 2 -(h ′ (φ)) 2 + Q[Φ],
where

Q[Φ] := 1 2 R 3 d 3 x(F +h ′ (φ)) 2
. This makes clear how to eliminate the auxiliary field F . The Euler-Lagrange system of equations is

   φ + h ′′ (φ)h ′ (φ) + h ′′′ (φ)ψ 1 ψ 2 = 0 Dψ -(h ′′ • φ)ψ = 0 F + h ′ (φ) = 0, (43) where : 
= ∂ 2 (∂t) 2 -∂ 2 (∂x) 2 -∂ 2 (∂y) 2 .
We see that the equation on F is not coupled with the other equations (F has no influence on φ et ψ).

Bogomolny'i-Prasad-Sommerfeld solutions

It is interesting to look at fields

Φ = φ + θ α ψ α + 1 2 ǫ αβ θ α θ β F which satisfies the condition    (cos ατ 1 + sin ατ 2 ) • Φ = 0 ψ = 0 F + h ′ (φ) = 0, (44) 
where α ∈ R. 

Y φ = h ′ (φ). (46) 
Then on the one hand equation (45

) implies ∂ 2 (∂t) 2 -X 2 φ = ∂ ∂t -X ∂ ∂t + X φ = 0, or equivalentely ∂ 2 φ (∂t) 2 -cos 2 2α ∂ 2 φ (∂x) 2 -2 cos 2α sin 2α ∂ 2 φ ∂x∂y -sin 2 2α ∂ 2 φ (∂y) 2 = 0. ( 47 
)
On the other hand equation ( 46) gives

Y 2 φ = Y (h ′ •φ) = (h ′′ •φ)Y φ = (h ′′ •φ)(h ′ •φ), or equivalentely sin 2 2α ∂ 2 φ (∂x)2 -2 cos 2α sin 2α ∂ 2 φ ∂x∂y + cos 2 2α ∂ 2 φ (∂y)2 = h ′′ (φ)h ′ (φ). (48) 
By substracting (47) and ( 48) we find that

φ + h ′′ (φ)h ′ (φ) = 0.
Particularly interesting cases are: (a) if α = π/4, then we find ∂φ ∂t + ∂φ ∂y = 0 and

∂φ ∂x = -h ′ (φ); (b) if α = -π/4
, then we find ∂φ ∂t -∂φ ∂y = 0 and ∂φ ∂x = h ′ (φ). If we further impose the condition ∂φ ∂t = ∂φ ∂y = 0 we then find the so-called Bogomolny'i solutions: they are stationary solutions which minimizes the energy

E[φ] := 1 2 R dx ∂φ ∂t 2 + ∂φ ∂x 2 + (h ′ • φ) 2
among stationary fields with the same asymptotic data at infinity, a consequence of the identity

E[φ] = 1 2 R dx ∂φ ∂t 2 + ∂φ ∂x ∓ h ′ (φ) 2 ± 2 ∂ ∂x (h • φ) .
Moreover the energy is equal to the 'topological charge'

±[h(φ(∞)) -h(φ(-∞))].
The interest of these solutions is also that, by imposing a invariance condition on Φ, we necessarily obtain a dynamical solution. However the condition of being invariant by a supersymmetry translation is stable by quantization, i.e. it makes sense to speak of quantum states which are invariant by such a supertranslation. Such states are called BPS states, after Bogomolny'i, Prasad and Sommerfeld.

We present here the super Minkowski spaces (with minimal supersymmetry) and the associated super Poincaré groups for the dimensions 1 + 2, 1 + 3, 1 + 5 and 1 + 9: they admit particularly beautiful representations since each of these dimensions is associated with respectively: R, C, the quaternions H and the octonions (or Cayley numbers) O. They are the only normed division algebras and have increasing dimensions and complexity: R and C are commutative fields, H is a non commutative field and O is not associative nor commutative. A good presentation of octonions can be found in [START_REF] Baez | The octonions[END_REF] (see also §8.5). In the following we set K = R, C, H or O and k := dim K.

8.1 The Lorentz group in dimensions 3, 4, 6 and 10

We first observe that the Minkowski space R 1,1+k can be identified with R 1,1 × K which, itself, can be identified with the space h 2 (K) of Hermitian 2 × 2 matrices over

K by h : R 1,1 × K -→ h 2 (K) (t, x, z) -→ 1 2 t + x z z t -x . (49) 
The Minkowski scalar product on R 1+1 × K has a simple expression by using h, since

t 2 -x 2 -|z| 2 = 4 det h(t, x, z).
This leads to the identification Spin(1, 1 + k) = SL(2, K). For k = 1 or 2 (i.e. respectively K = R or K = C), this is easy to see. Indeed, if K = R or C, it is straightforward to check that, for any g ∈ SL(2, K),

R h 2 (K) g : h 2 (K) -→ h 2 (K) m -→ gmg † , (50) 
where g † := g t , makes sense and is a linear transformation which preserves the Minkowski norm det m. Moreover the map g -→ R

h 2 (K) g
is a 2:1 group morphism which is the Spin covering of SO 0 (1, 1+k). The advantage of this construction is that it comes naturally with the spinor representation: the natural action of SL(2, K) on K 2 .

The cases where K = H or O are similar but require some care, since there are no direct definitions of SL(2, H) and SL(2, O). Let us consider first the situation at the level of Lie algebras. We denote by tf(2, K) the vector space of trace free 2 × 2 matrices over K. We naively expect that sl(2, K), the Lie algebra of SL(2, K), coincides with tf(2, K) and it is so for K = R or C but not for K = H and O. Moreover10 dim R tf(2, H) = 12 < 15 = dim Spin(1, 5) = dimso [START_REF] Alvarez | Lectures on quantum mechanics and the index theorem[END_REF][START_REF] Batchelor | Two approaches to supermanifolds[END_REF] and, similarly11 dim R tf(2, O) = 24 < 45 = dim Spin(1, 9) = dimso [START_REF] Alvarez | Lectures on quantum mechanics and the index theorem[END_REF][START_REF] Deligne | Quantum fields and strings: a course for mathematicians[END_REF]. Actually, for K = H or O we need to define sl(2, K), the Lie algebra of SL(2, K), as the Lie algebra of endomorphisms over R of K 2 spanned by the action of tf(2, K) or, equivalentely, to define sl(2, K) as the Lie algebra of real endomorphisms of h 2 (K) spanned by linear maps ρ

h 2 (K) σ : h 2 (K) -→ h 2 (K) m -→ 1 2 (σm + mσ t ) , for all values of σ ∈ tf(2, K). (Note that σ -→ ρ h 2 (K) σ is ( 1 2 times) the linearization of g -→ R h 2 (K) g at g = 1.) So let ρ h 2 (K) tf(2,K) := {ρ h 2 (K) σ | σ ∈ tf(2, K)} ⊂ End R (h 2 (K))
and let us define sl(2, K) to be the Lie subalgebra of (End R (h

2 (K)), [•, •]) spanned by ρ h 2 (K)
tf(2,K) . Then we claim that sl(2, K) coincides with so(1, 1 + k). This can be checked as follows. Let (u 2 , • • • , u k ) be an orthonormal basis of Im K. Then a basis of the Minkowski space

h 2 (K) is (e -1 , • • • , e k )
, where

e -1 := 1 0 0 1 , e 0 := 1 0 0 -1 , e 1 := 0 1 1 0 , e j := 0 u j -u j 0
and where 2 ≤ j ≤ k. Note that (in conflict with the usual convention) e -1 is time-like, whereas the other vectors are space-like. Then, for 0 ≤ j ≤ k, we define the infinitesimal boost B j to be the endomorphism of h 2 (K) such that (e -1 , e j ) -→ (e j , e -1 ) (all the other vectors are maps to 0) and, for 0 ≤ i < j ≤ k, the infinitesimal rotation A ij to be defined by (e i , e j ) -→ (e j , -e i ) (idem). Recall that ((B j ) 0≤j≤k , (A ij ) 0≤i<j≤k ) forms a basis of so(1, 1 + k). We now claim that ρ

h 2 (K)
tf(2,K) is the vector space spanned by all elements of this basis, excepted the infinitesimal rotations 12 A ij such that 2 ≤ i < j ≤ k. Indeed the following table gives, for C ∈ ((B j ) 0≤j≤k , (A 0j ) 1≤j≤k , (A 1j ) 2≤j≤k ), the matrix σ ∈ tf(2, K) such that ρ

h 2 (K) σ = C. C j = 0 j = 1 2 ≤ j B j 1 0 0 -1 0 1 1 0 0 u j -u j 0 A 0j 0 -1 1 0 0 -u j -u j 0 A 1j u j 0 0 -u j
However the missing rotations can be obtained as commutators of elements of ρ

h 2 (K) tf(2,K) , thanks to the relation A ij = -[B i , B j ]. Hence we deduce that sl(2, K) = so(1, 1 + k).
The (real) Lie groups SL(2, H) and SL(2, O), their respective spinor representations on H 2 and O 2 and their respective vector representations on h 2 (H) and h 2 (O) can then be defined by exponentiating these Lie algebras (see [START_REF] Tachibana | Octonions, superstrings and ten-dimensional spinors[END_REF][START_REF] Manogue | Finite Lorentz transformations, automorphisms, and division algebras[END_REF][START_REF] Baez | The octonions[END_REF][START_REF] Deligne | Notes on spinors[END_REF]). In the following we use the notation (50) to represent the action of SL(2, K) on h 2 (K) (even in the cases where gmg † does make sense as a matrix product).

The super translation Lie algebras and Lie groups

We will now see that the spinor and the vector representations of so(1, 1 + k) can be glued together to obtain the Lie super algebra m (1,1+k)|2k ≃ h 2 (K) × ΠK 2 (Π is the parity inversion functor) of super translations of the super Minkowski space M (1,1+k)|2k . First we construct ΠK 2 as follows: consider the Clifford algebra C(L) = {a + bǫ| a, b, ∈ R} defined in §1.2.2, where ǫ is an odd variable such that ǫ 2 = -1, and let ΠK 2 := K 2 ⊗ R C(L) 1 (recall that C(L) 1 is the subspace of odd elements of C(L)). Second we embedd h 2 (K) × ΠK 2 as a subspace of M (5, K) ⊗ R C(L), where M (5, K) is the space of 5 × 5 matrices over K, by the mapping

1 2 t + x z z t -x , ǫλ 1 , ǫλ 2 -→       0 0 ǫλ 1 1 2 (t + x) 1 2 z 0 0 ǫλ 2 1 2 z 1 2 (t -x) 0 0 0 ǫλ 1 ǫλ 2 0 0 0 0 0 0 0 0 0 0       .
It is convenient to define, for λ 1 , λ 2 ∈ K, the odd matrices

Q λ 1 1 := ǫ       0 0 λ 1 0 0 0 0 0 0 0 0 0 0 λ 1 0 0 0 0 0 0 0 0 0 0 0       , Q λ 2 2 := ǫ       0 0 0 0 0 0 0 λ 2 0 0 0 0 0 0 λ 2 0 0 0 0 0 0 0 0 0 0       . ( 51 
)
Moreover we introduce the notation

v 11 v 12 v 21 v 22 :=       0 0 0 v 11 v 12 0 0 0 v 21 v 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0      
and define X 11 := 1 0 0 0 , X 12 := 0 1 0 0 , X 21 := 0 0 1 0 , X 22 := 0 0 0 1 .

We then have the following anti-commutation relations: ∀λ, µ ∈ K, ∀a, b, = 1, 2,

[Q λ a , Q µ b ] := Q λ a Q µ b + Q µ b Q λ a = -λµ X ab -µλ X ba . (52) 
In this computation we have assumed that λ and µ are even variables (in particular they commute with ǫ, although λ and µ may not commute together if K is not commutative). Alternatively if, for any ζ ∈ K, we write

ℜ (ab) (ζ) := (Reζ)(X ab + X ba )/2 = (ζ + ζ)(X ab + X ba )/4
and

ℑ [ab] (ζ) := (Imζ)(X ab -X ba )/2 = (ζ -ζ)(X ab -X ba )/4 (note that ℜ (ab) (ζ) = ℜ (ba) (ζ) and ℑ [ab] (ζ) + ℑ [ba] (ζ) = 0), we have [Q λ a , Q µ b ] = -2 ℜ (ab) (λµ) + ℑ [ab] (λµ) . (53) 
Now let (u α ) 1≤α≤k be an orthonormal basis of K over R such that u 1 = 1 (hence u 2 , • • • , u k are imaginary) and denote:

• ℜ (ab) := ℜ (ab) [START_REF] Alvarez | Lectures on quantum mechanics and the index theorem[END_REF], for (a, b) = (1, 1), (1, 2) or (2, 2) ;

• ℑ α := ℑ [12] (u α ) = 1 2 0 u α -u α 0 for α = 2, • • • , k; • Q α a := Q uα a ;
• Γ [αβ]γ such that (u α u βu β u α )/2 = Γ [αβ]γ u γ and ǫ 11 = ǫ 22 = 0, ǫ 12 = -ǫ 21 = 1.

Then (53) can also be written as

[Q α a , Q β b ] = -2 δ αβ ℜ (ab) + Γ [αβ]γ ǫ ab ℑ γ . (54) 
Note that all matrices ℜ (ab) and ℑ α commute together and with the Q α a 's. All that can be summarized by saying that the vector space m (1,1+k)|2k spanned by ℜ (ab) , ℑ α and Q α a is a super Lie algebra, the super Lie algebra of super translations on the super Minkowski space of dimension (1, 1 + k)|2k. The even part has the basis ℜ [START_REF] Freed | Five lectures on supersymmetry[END_REF] , ℜ [START_REF] Freund | Introduction to supersymmetry[END_REF] , ℜ [START_REF] Osborn | Topological charges for N = 4 supersymmetric gauge theories and monopoles of spin 1[END_REF] , ℑ 2 , • • • , ℑ k and coincides with the trivial Lie algebra of translations. A basis of the odd part is

(Q α 1 , Q α 2 ) α=1,•••,k .
The super Minkowski space itself can be identified with the super Lie group M (1,1+k)|2k obtained by exponentiating m (1,1+k)|2k . This requires some extra flesh on m (1,1+k)|2k : we introduce other odd variables η 1 , • • • , η q (some of these variables may be labelled θ a α later on) such that Λ q := R[η 1 , • • • , η q ] is a free super commutative super algebra (i.e. in particular η i η j + η j η i = 0), which all anticommute with ǫ.

For that purpose, it suffices to construct R[ǫ, η 1 , • • • , η q ] ≃ R[ǫ] ⊗ Λ q as the Clifford algebra C(L ⊕ E q ) over the vector space L ⊕ E q with basis (ǫ 0 , ǫ 1 • • • , ǫ q ) and the bilinear map B such that B(ǫ 0 , ǫ 0 ) = 1 and B(ǫ a , ǫ b ) = 0 if (a, b) = (0, 0). Then m (1,1+k)|2k ⊗ Λ q 0 is a Lie algebra and can be exponentiated as follows. Consider any v (ab) ℜ (ab) + v α ℑ α + θ a α Q α a ∈ m (1,1+k)|2k ⊗ Λ q 0 , where v (ab) , v α ∈ Λ 0 q and θ a α ∈ Λ 1 q . In the following we use repeatedly that, as matrices, X ab

X cd = X ab Q γ c = Q γ c X ab = Q α a Q β b Q γ c = 0. This implies e v (ab) ℜ (ab) +v α ℑα+θ a α Q α a = 1 + v (ab) ℜ (ab) + v α ℑ α + θ a α Q α a + 1 2 (θ a α Q α a ) θ b β Q β b .
or, if we set for shortness

V := v (ab) ℜ (ab) + v α ℑ α and Θ := θ a α Q α a , e V +Θ = 1 + V + Θ + 1 2 Θ 2 .
We can thus evaluate the product of two elements of M (1,1+k)|2k in the coordinates given by the exponential chart. Let W + Ψ := w (ab) ℜ (ab) + w α ℑ α + ψ a α Q α a be another element of m (1,1+k)|2k ⊗ Λ q 0 , then

e V +Θ e W +Ψ = 1 + V + Θ + 1 2 Θ 2 1 + W + Ψ + 1 2 Ψ 2 = 1 + (V + W ) + (Θ + Ψ) + 1 2 Θ 2 + ΘΨ + 1 2 Ψ 2 .
However the quadratic terms can be written

1 2 Θ 2 + 2ΘΨ + Ψ 2 = 1 2 (Θ + Ψ) 2 + 1 2 [Θ, Ψ] .
We hence deduce

exp (V + Θ) exp (W + Ψ) = exp (V + W ) + (Θ + Ψ) + 1 2 [Θ, Ψ] , (55) 
where, by using (54),

[Θ, Ψ] = θ a α Q α a , ψ b β Q β b = -θ a α ψ b β Q α a , Q β b = 2θ a α ψ b β δ αβ ℜ (ab) + Γ [αβ]γ ǫ ab ℑ γ .
A particular case of ( 55) is for W = 0: we can then write

e V +Θ e Ψ = e V +Θ+D Ψ (V +Θ) ,
where

D Ψ (V + Θ) = Ψ + 1 2 [Θ, Ψ] = ψ b β Q β b -θ a α δ αβ ℜ (ab) + Γ [αβ]γ ǫ ab ℑ γ .
We remark that

D Ψ (V + Θ) = ψ b β ∂ ∂θ b β -θ a α δ αβ ∂ ∂v (ab) + Γ [αβ]γ ǫ ab ∂ ∂v γ (V + Θ),
so that D Ψ can be identified with a differential operator. Letting 

D α a = ∂ α a -θ b β (δ αβ ∂ (ab) + ǫ ab ∂ [αβ] ), or D α 1 = ∂ α 1 -(θ 1 α ∂ (11) + θ 2 α ∂ (12) + θ 2 β ∂ [αβ] ) and D α 2 = ∂ α 2 -(θ 1 α ∂ (12) + θ 2 α ∂ (22) -θ 1 β ∂ [αβ] ). Similarly, for Φ := φ b β Q β b , we have e Φ e V +Θ = e V +Θ+τ Φ (V +Θ) , where τ Φ (V + Θ) = Φ + 1 2 [Φ, Θ].
Thus we can write τ Φ = φ a α τ α a , where

τ α a = ∂ α a + θ b β (δ αβ ∂ (ab) + ǫ ab ∂ [αβ] ).
Operators D α a and τ α a are respectively the left invariant and the right invariant vector fields on M (1,1+k) and

D α a , D β b = -2 δ αβ ∂ (ab) + ǫ ab ∂ [αβ] . Remark 8.1 Let us set Q (λ 1 ,λ 2 ) := Q λ 1 1 + Q λ 2 2 .
Then Relation (52) is equivalent to the fact that, for any (λ 1 , λ 2 ) ∈ K 2 ,

Q (λ 1 ,λ 2 ) , Q (λ 1 ,λ 2 ) = -2X (λ 1 ,λ 2 ) , where X (λ 1 ,λ 2 ) := |λ 1 | 2 λ 1 λ 2 λ 2 λ 1 |λ 2 | 2 .
We observe that X (λ 1 ,λ 2 ) is a null vector (a vector in the light cone

C := {m ∈ h 2 (K)| det m = 0}) with a nonnegative time coordinate t = |λ 1 | 2 + |λ 1 | 2 ≥ 0.
These two properties are important since they are the reason for the fact that supersymmetric Yang-Mills theories exists only in dimensions (1, 1 + k) (see e.g. [START_REF] Freed | Five lectures on supersymmetry[END_REF], §5). Moreover this construction provides us with an orientation of the time, an important property of supersymmetric theories. Also the set C/R of real lines contained in C, with its canonical conformal structure, can be identified with the sphere S k (the heavenly sphere at infinity) or, equivalentely with the projective line KP . Indeed the map ϕ : C \ {0} -→ S k ⊂ R × K defined by (t, x, z) -→ (x/t, z/t) induces a conformal diffeomorphism between C/R and S k . Note also that the image of

X (λ 1 ,λ 2 ) by ϕ is |λ 1 | 2 -|λ 1 | 2 |λ 1 | 2 +|λ 1 | 2 , λ 1 λ 2 |λ 1 | 2 +|λ 1 | 2 , i.e.
is nothing but the image by the Hopf fibration of (λ 1 , λ 2 ).

These observations are related to the R-symmetries: these are automorphisms of the super Lie algebra of supertranslations which leaves all space-time translations h 2 (K) invariant (i.e. they act only on ΠK 2 ). It is clear from the previous discussion that these symmetries can be identified with the automorphisms of K 2 which maps each fiber of the Hopf fibration onto itself. Hence

• if K = R, the R-symmetry group is {±1} ((λ 1 , λ 2 ) -→ ±(λ 1 , λ 2 )); • if K = C, the R-symmetry group is U (1) ((λ 1 , λ 2 ) -→ (e iθ λ 1 , e iθ λ 2 ), for θ ∈ R); • if K = H, the R-symmetry group is Spin 3 ≃ SU (2) ((λ 1 , λ 2 ) -→ (λ 1 α, λ 2 α), for α ∈ H such that |u| = 1); • if K = O, the R-symmetry group is {±1} ((λ 1 , λ 2 ) -→ ±(λ 1 , λ 2 )) 13 .

The super Poincaré group

Lastly we can extend the super Lie group M (1,1+k)|2k (respectively its super Lie algebra m (1,1+k)|2k ) by gluing it with the spin cover of the Lorentz group Spin(1, 1 + k) ≃ SL(2, K) (respectively with so(1, 1 + k) ≃ sl(2, K)). We obtain the super 13 Indeed assume that there exists some real endomorphism (ϕ

1 , ϕ 2 ) : O 2 -→ O 2 such that ∀λ 1 , λ 2 ∈ O, (i) |ϕ 1 (λ 1 , λ 2 )| 2 = |λ 1 | 2 , (ii) ϕ 1 (λ 1 , λ 2 )ϕ 2 (λ 1 , λ 2 ) = λ 1 λ 2 and (iii) |ϕ 2 (λ 1 , λ 2 )| 2 = |λ 2 | 2 .
Then: (a) we remark that (i) implies in particular that ϕ 1 (0, λ 2 ) = 0 and, since ϕ 1 is linear, this forces that ϕ 1 (λ 1 , λ 2 ) = ϕ 1 (λ 1 ); (b) similarly (iii) implies that ϕ 2 (λ 1 , λ 2 ) = ϕ 2 (λ 2 ); (c) furthermore (i) and (iii) implies that ϕ 1 and ϕ 2 are real isometries of O; (d) by testing (ii) with λ 2 = 1, we deduce that we must have ϕ 1 (λ) = λα 1 , where α = ϕ 2 (1); (e) similarly by testing (ii) with λ 1 = 1 we deduce that ϕ 2 (λ) = λα 2 , where α = ϕ 1 (1); (f) by testing (ii) with λ 1 = λ 2 = 1 we obtain that α 1 = α 2 = α; (g) we can set w.l.g. α = cos θ +u 2 sin θ and choose λ 1 = u 3 and λ 2 = u 5 , where (u 2 , u 3 , u 5 ) forms an orthonormal family of imaginary octonions such that u 2 u 3 ⊥ u 5 , then one checks that the relation (u 3 α)(u 5 α) = u 3 u 5 is possible only if α = ±1.

Poincaré group P (1, 1+k|2k). A matricial representation of an element g

∈ P (1, 1+ k|2k) is g =       S 0 0 θ 1 ǫ θ 2 ǫ 1 (t + x)/2 z/2 z/2 (t -x)/2 θ 1 ǫ θ 2 ǫ 0 0 0 0 0 0 (S † ) -1       ,
where S ∈ SL(2, K) ⊗ Λ 0 q and S † = S t , θ 1 , θ 2 ∈ K ⊗ Λ 1 q , t, x ∈ Λ 0 q and z ∈ K ⊗ Λ 0 q . Note that the conjugate θ a of θ a involves the real structure of K, i.e., if θ a = u ⊗ η, for u ∈ K and η ∈ Λ 1 q , then θ a = u ⊗ η. In particular we recover the action of an element S ∈ SL(2, K) on M (1,1+k)|2k by e m -→ ge m g -1 , where

g =   S 0 0 0 1 0 0 0 (S † ) -1   and m =       0 0 0 θ 1 ǫ θ 2 ǫ 0 (t + x)/2 z/2 z/2 (t -x)/2 θ 1 ǫ θ 2 ǫ 0 0 0 0 0 0 0       .
8.4 Specializations It corresponds to the case k = 2, i.e. K = C. We then obtain M (1,3)|4 , the simplest non trivial supersymmetric extension of the standard Minkowsi space M 1,3 . In order to connect our presentation of the super Lie algebra m (1,3)|4 with the standard one, it is useful to embedd it in its complexification C √ -1 ⊗ R m (1,3)|4 . Here C √ -1 denotes a copy of C where the square root of -1 is denoted by

√ -1 instead of u 2 = i 14 . For any A = B + √ -1C ∈ C √ -1 ⊗ R m (1,3)|4 , where B, C ∈ m (1,3)|4 , we note A √ -1 := B - √ -1C. Then we set, for a = 1, 2, Q a := Q 1 a - √ -1Q i a / √ 2 and Q ȧ := Q 1 a + √ -1Q i a / √ 2 = Q a √ -1 .
We then have the relations . We denote by x a ḃ, θ a and θ ȧ (for a = 1, 2) the coordinates on m (1,3)|4 in the basis X a ḃ, Q a , Q ȧ . We write ∂ a ḃ := ∂/∂x a ḃ, ∂ a := ∂/∂θ a and ∂ ȧ := ∂/∂θ ȧ the partial derivatives with respect to these coordinates. 14 One may set √ -1 = i = u 2 without trouble here, however the next cases, where K = H or O require more care. 15 Again we may set √ -1 = i: we would then have X a ḃ = X ab .

[Q a , Q b ] = Q ȧ, Q ḃ = 0 and Q a , Q ḃ = -2X a ḃ, where 15 X a ḃ = X ab +X ba 2 - √ -1 iX ab -iX ba
The coordinates16 (x a ḃ) are connected to the coordinates (t, x, z

1 + iz 2 ) ∈ R × R × C by x 1 1 x 1 2 x 2 1 x 2 2 = 1 2 t + x z 1 + iz 2 z 1 -iz 2 t -x .
This implies that

∂ 1 1 = ∂ t + ∂ x ∂ 1 2 = ∂ z 1 -i∂ z 2 ∂ 2 1 = ∂ z 1 + i∂ z 2 ∂ 2 2 = ∂ t -∂ x .
Lastly the left and right translations in these coordinates read respectively D Ψ = ψ a D a + ψ ȧD ȧ and τ Φ = ψ a τ a + ψ ȧτ ȧ with:

D a = ∂ a -θ ḃ∂ a ḃ, D ȧ = ∂ ȧ -θ b ∂ b ȧ, and τ a = ∂ a + θ ḃ∂ a ḃ, τ ȧ = ∂ ȧ + θ b ∂ b ȧ.
Very often physicists consider chiral fields, i.e. fields Φ satisfying the constraints D 1Φ = D 2Φ = 0. Furthermore we can embedd the Minkowski space M 1,5 as the subspace M 1,5 of Λ 2 C 4 defined by the reality conditions y 12 = y 34 , y 14 = y 23 and y 13 , y 24 ∈ R. Alternatively M 1,5 is the image of M 1,5 ≃ h 2 (H) by the linear map P : 

1 2 t + x z z t -x -→ 1≤a<b≤4 y ab e a ∧
   = 1 2     0 z 3 + iz 4 t + x z 1 + iz 2 -z 3 -iz 4 0 z 1 -iz 2 t -x -t -x -z 1 + iz 2 0 z 3 -iz 4 -z 1 -iz 2 -t + x -z 3 -iz 4 0     .
The partial derivatives ∂ ab := ∂/∂y ab are then related with the partial derivatives with respect to t, x and z = z 1 + iz 2 + jz 3 + kz 4 by:

∂ 12 = ∂ z 3 -i∂ z 4 ; ∂ 13 = ∂ t + ∂ x ; ∂ 14 = ∂ z 1 -i∂ z 2 ∂ 23 = ∂ z 1 + i∂ z 2 ; ∂ 24 = ∂ t -∂ x ∂ 34 = ∂ z 3 + i∂ z 4 .
One also observes that the restriction of B to M 1,5 has the signature (5, 1) and, more precisely, 4B(P (t, x, z), P (t, x, z)) = -(t 2x 2 -|z| 2 ). Hence the subgroup of SL(4, C) which preserves M 1,5 when acting on Λ 2 C 4 can be identified with Spin [START_REF] Alvarez | Lectures on quantum mechanics and the index theorem[END_REF][START_REF] Batchelor | Two approaches to supermanifolds[END_REF]. Indeed SL(2, H) can be identified with a real form of SL(4, C). More precisely we can identify17 C 4 with H 2 through the map T : (u 1 , u 2 , u 3 , u 4 ) -→ (u 1 +ju 3 , u 2 +ju 4 ) and define SL(2, H) as the set of transformations g ∈ SL(4, C) which maps each quaternionic line into a quaternionic line, i.e. such that, for any (λ

1 , λ 2 ) ∈ H 2 \ {0}, T • g • T -1 maps the line {(λ 1 α, λ 2 α)| α ∈ H} to another line {(µ 1 α, µ 2 α)| α ∈ H}.
It is easy to see that a complex plane in C 4 which contains a vector U = (u 1 , u 2 , u 3 , u 4 ) = 0 is the inverse image of a quaternionic line by T if and only if it contains σ(U ) := T -1 (T (U )j) = T -1 ((u 1 + ju 3 )j, (u 2 + ju 4 )j) = (-u 3 , -u 4 , u 1 , u 2 ). So SL(2, H) is the set of transformations ∈ SL(4, C) which maps any complex plane spanned by (U, σ(U )) to a complex plane of the same type. Lastly we remark that, for any U ∈ C 4 \ {0}, U ∧ σ(U ) belongs to M 1,5 and the action of SL(2, H) on the pair (U, σ(U )) is mapped to the action of SO(1, 5) on M 1,5 . More precisely one can compute that, if U = (u 1 , u 2 , u 3 , u is commutative. Note that, by polarization, (56) implies P [Q (λ 1 ,λ 2 ) , Q (µ 1 ,µ 2 ) ] = -U ∧ σ(V ) -V ∧ σ(U ), where T (V ) = (µ 1 , µ 2 ). Lastly the identification m (1,5)|8 ≃ M 1,5 × ΠC 4 is related to an alternative simple representation of the supercommutator on m (1,5)|8 : we again complexify m (1,5)|8 by embedding it in C √ -1 ⊗ R m (1,5)|8 and set

q 11 := Q 1 1 - √ -1Q i 1 / √ 2, q 12 := -Q j 1 - √ -1Q k 1 / √ 2, q 21 := Q 1 2 - √ -1Q i 2 / √ 2, q 22 := -Q j 2 - √ -1Q k 2 / √ 2, q 31 := Q j 1 + √ -1Q k 1 / √ 2, q 32 := Q 1 1 + √ -1Q i 1 / √ 2, q 41 := Q j 2 + √ -1Q k 2 / √ 2, q 42 := Q 1 2 + √ -1Q i 2 / √ 2.
We denote by θ aA 1≤a≤4;A=1,2 the coordinates associated with these vectors and we write ∂ aA := ∂/∂θ aA . Then one can deduce from (54) that [q aA , q bB ] = -2ǫ AB e a ∧ e b , ∀A, B = 1, 2, ∀a, b = 1, 2, 3, 4, where ǫ 12 = -ǫ 21 = 1 and ǫ 11 = ǫ 22 = 0. As a consequence D aA = ∂ aAǫ AB θ bB ∂ ab and τ aA = ∂ aA + ǫ AB θ bB ∂ ab .

Dimensional reductions

We have presented only particular examples of super Minkowski spaces, however one can construct new examples from this list by dimensional reduction, i.e. by considering fields which are invariant under some space-time direction. For instance one can construct super extensions of the usual Minkowski space M 1,3 with more than 4 odd dimensions: M (1,3)|8 (related to N = 2 supersymmetric theories), which can be obtained by reduction of M (1,5)|8 and M (1,3)|16 (related to N = 4 supersymmetric theories), which can be obtained by reduction of M (1,9)|16 . Our first example M (1,3)|4 corresponds to N = 1 supersymmetric theories. Similar reductions leads to various super space-times with 2 even dimensions, which are important for the theory of superstrings (see e.g. [START_REF] Freed | Five lectures on supersymmetry[END_REF]). In the following we present alternative representations of m (1,5)|8 and m (1,9)|16 which shows how one can produce N = 2 and = 4 supersymmetry groups over M 1,3 with central extensions.

From m (1,5)|8 to a central extension of m (1,3)|8 We embedd m (1,5)|8 in its complexification C √ -1 ⊗ R m (1,5)|8 and set, for a = 1, 2:

Q a1 := (Q 1 a - √ -1Q i a )/ √ 2; Q ȧ1 := (Q 1 a + √ -1Q i a )/ √ 2; Q a2 := (Q j a - √ -1Q k a )/ √ 2; Q ȧ2 := (Q j a + √ -1Q k a )/ √ 2.
Then one deduce from (53) that, for a, b = 1, 2 and A, B = 1, 2,

Q aA , Q ḃB = -2δ AB R (ab) - √ -1I [ab] (i) ; [Q aA , Q bB ] = 2ǫ ab ǫ AB I [12] (j) - √ -1I [12] (k) , and [Q ȧA , Q ḃB ] = [Q aA , Q bB ] √ -1 and [Q ȧA , Q bB ] = [Q aA , Q ḃB ] √ -1
, where ǫ 11 = ǫ 22 = 0 and ǫ 12 = -ǫ 21 = 1. However using the notation X a ḃ introduced in §8. 

Q aA , Q ḃB = -2X a ḃδ AB [Q ȧA , Q bB ] = -2X b ȧδ AB [Q aA , Q bB ] = -2ǫ ab Z AB Q ȧA , Q ḃB = -2ǫ ȧḃ Z AB . (57) 
Upon reduction to M 1,3 the relations on the first line are the only nontrivial anticommutation relations of m (1,3)|8 (since then we set [Q aA , Q bB ] = Q ȧA , Q ḃB = 0). However D. Olive and E. Witten [START_REF] Olive | Supersymmetry algebras that include topological charges[END_REF] discovered that, for the N = 2 supersymmetric Yang-Mills on M 1,3 , the super Lie algebra of Noether charges of the Lagrangian (which is of course symmetric under the action of m (1,3)|8 ) is a central extension of m (1,3)|8 , obtained by adding two central charges which correspond the the real and imaginary parts of Z AB . The amazing point is that these charges have a topological interpretation in way similar to the example seen in §7.3 and are related the possibility of having an electro-magnetic duality for supersymmetric non Abelian gauge theories conjectured in [START_REF] Montonen | Magnetic monopoles as gauge particles ?[END_REF].

From m (1,9)|16 to a central extension of m (1,3)|16 A similar construction starting from m (1,9)|16 leads to a central extension of the Lie super algebra of the N = 4 supersymmetric extension of m (1,4)|4 . We embedd m (1,9)|16 in C √ -1 ⊗ R m (1,9)|16 and set, for a = 1, 2:

Q a1 := (Q 1 a - √ -1Q 2 a )/ √ 2; Q ȧ1 := (Q 1 a + √ -1Q 2 a )/ √ 2; Q a2 := (Q 3 a - √ -1Q 4 a )/ √ 2; Q ȧ2 := (Q 3 a + √ -1Q 4 a )/ √ 2; Q a3 := (Q 6 a - √ -1Q 7 a )/ √ 2; Q ȧ3 := (Q 6 a + √ -1Q 7 a )/ √ 2; Q a4 := (Q 8 a - √ -1Q 5 a )/ √ 2; Q ȧ3 := (Q 8 a + √ -1Q 5 a )/ √ 2,
where, for α = 1, • • • , 8 and a = 1, 2, Q α a = Q uα a and we recall that (u 1 , • • • , u 8 ) denotes an orthonormal basis of O such that u 1 = 1. It is also important to precise the multiplication rule which is adopted here (since several conventions can be found in the litterature). We recall it in the following diagram: we should think the 6 

Q aA , Q ḃB = -2X a ḃδ AB [Q ȧA , Q bB ] = -2X b ȧδ AB [Q aA , Q bB ] = -2ǫ ab Z AB Q ȧA , Q ḃB = -2ǫ ȧḃ Z AB , (58) 
where the generators Z AB and Z AB are given by the relations Z AB + Z BA = 0, Z AB = Z AB √ -1 and (setting I := I [START_REF] Freund | Introduction to supersymmetry[END_REF] for shortness): As shown by H. Osborn [START_REF] Osborn | Topological charges for N = 4 supersymmetric gauge theories and monopoles of spin 1[END_REF] a reduction of the N = 1 supersymmetric Yang-Mills theory on M (1,9) to M (1,3) produces an N = 4 supersymmmetric Yang-Mills theory. The Lie algebra of Noether charges of this theory is a central extension of the pure N = 4 supersymmetry Lie algebra and is isomorphic to m (1,9)|16 , the 6 central charges corresponding to the real and imaginary parts of the Z AB 's. These central charges can again be interpretated as topological charges [START_REF] Osborn | Topological charges for N = 4 supersymmetric gauge theories and monopoles of spin 1[END_REF].

Conclusion

We have essentially not presented the most important thing, namely the applications of the idea of supersymmetry:

• On the the physical side, its possible role in the quantum field theories for improving the renormalisation and solving the hierarchy problem (i.e. ensuring that all fundamental forces of Nature unify at very high energy, see e.g. [START_REF] Weinberg | The quantum theory of fields[END_REF] III), a possible solution to the Montonen-Olive conjecture about electromagnetic duality for gauge theories by E. Witten and N. Seiberg, the theory of supergravity (see e.g. [START_REF] Freund | Introduction to supersymmetry[END_REF] and the text by M. Eigeleh in this volume), the role of anticommuting variables in the BRST (Bechi-Rouet-Stora-Tyutin) theory of quantization of gauge theories (see e.g. [START_REF] Weinberg | The quantum theory of fields[END_REF] II and [START_REF] Kostant | Symplectic reduction, BRS cohomology, and infinite dimensional Clifford algebras[END_REF][START_REF] Rogers | Supermanifolds: theory and applications[END_REF]), etc., without mentioning the theories of superstrings and branes...

• On the mathematical side, its application by E. Witten to Morse theory (see e.g. [START_REF] Rogers | Supermanifolds: theory and applications[END_REF]), the index theorem for Dirac operators (see e.g. [START_REF] Witten | Index of Dirac operators[END_REF][START_REF] Alvarez | Lectures on quantum mechanics and the index theorem[END_REF][START_REF] Rogers | Supermanifolds: theory and applications[END_REF]), the topology of 4-dimensional manifold (the Seiberg-Witten theory), the mirror symmetry for Calabi-Aubin-Yau manifolds [START_REF]Mirror symmetry[END_REF][START_REF] Voisin | Symétrie miroir, Panoramas et synthèses no. 1[END_REF], etc.

  dimension m endowed with a sheaf of super algebras O M (the sheaf of functions) over |M| such that, for any open subset |U | of |M| with a chart |U | -→ |Ω| ⊂ R m , the superalgebra Γ(|U |, O |U | ) of sections of O M over |U | is isomorphic to some

2 ); 3 .

 23 a last question, not yet discussed: can we figure out what is a point in a supermanifold ?

  ) Here P is the second order differential operator P := ζχξ 11 ξ 22 + ξ 12 ξ 21 , where we have used arbitrary extensions of the vectors ζ, χ, ξ αβ , π ∈ T m N to vectors fields defined on a neighbourhood of m (for example we could choose the extensions in such a way that [ζ, χ] = [ξ 11 , ξ 22 ] = [ξ 12 , ξ 21 ] = 0). Clearly the operator P depends on the way we have extended the vectors fields. However two different choices of extensions lead to two operators P and P

4. 2

 2 The general description of maps with flesh 4.2.1 Even maps Φ from Ω × R 0|L to an ordinary manifold NHere Ω is an open subset of R m|k . This case is a straightforward application of Theorem 3.1. Indeed we have Ω ≃ |Ω| × R 0|k , where |Ω| is an open subset of R n and thus Ω × R 0|L ≃ |Ω| × R 0|q , with q := k + L. Hence we just need to label by (θ 1 , • • • , θ k , η 1 , • • • , η L ) the odd coordinates on R 0|k+L and to apply Theorem 3.1.

  where |Ω| is an open subset of R m and Λ * 0 L ′ is the subset of nilpotent elements of Λ 0 L ′ . Alternatively open subsets of R m|k L ′ are inverse images of open subsets of R m by β.

  These relations can be summarized together by introducing the supercommutator [•, •] of two homogeneous operators A and B: if A has parity gr(A) (= 0 if A is even, = 1 if A is odd) and B has parity gr(B), then [A, B] := A • B -(-1) gr(A)gr(B) B • A.

  Denote X := cos 2α ∂ ∂x + sin 2α ∂ ∂y and Y :=sin 2α ∂ ∂x + cos 2α ∂ ∂y . By multiplying the first equation by cos α and the second one by sin α, we obtain ∂φ ∂t + Xφ = 0. (45) By multiplying the first equation bysin α and the second one by cos α, we obtain Y φ = -F which, taking into account the relation F + h ′ (φ) = 0, gives us

  β δ αβ ∂ ∂v(ab) + Γ[αβ]γ ǫ ab ∂ ∂v γ , we have D Ψ = ψ b β D β b .We can also introduce the notations:∂ [αβ] = -∂ [βα] := k γ=2 Γ [αβ]γ ∂ ∂v γ for 1 ≤ α, β ≤ k, ∂(ab) = ∂ (ba) := ∂ ∂v (ab) for 1 ≤ a, b ≤ 2 and ∂ α a := ∂ ∂θ a α for 1 ≤ a ≤ 2 and 1 ≤ α ≤ k and set

  |2k . By writing e Φ e V +Θ e Ψ = e Φ e V +Θ e Ψ , we deduce that [τ α a , D β b ] = 0, for all a, b = 1, 2 and α, β = 1, • • • , k. We moreover have τ α a , τ β b = 2 δ αβ ∂ (ab) + ǫ ab ∂ [αβ]

8. 4 . 1

 41 The super Minkowski spaceM (1,2)|2 ≃ R 3|2It corresponds to the simplest case, when K = R (see §7.1).8.4.2The super Minkowski space M (1,3)|4 ≃ R 4|4

2

 2 

8. 4 . 3

 43 The super Minkowski space M(1,5)|8 ≃ R 6|8 It corresponds to the case k = 4, i.e. K = H. Here there is an alternative system of coordinates based on the exceptional isomorphism SL(4, C) ≃ Spin(6) C . This comes from the identificaton Λ 2 C 4 ≃ C 6 : the natural action of SL(4, C) on C 4 induces an action of SL(4, C) on Λ 2 C 4 which can be identified with the action of Spin(6) C on C 6 . Let (e 1 , e 2 , e 3 , e 4 ) be the canonical basis of C 4 and (e a ∧ e b ) 1≤a<b≤4 the induced basis of Λ 2 C 4 . We denote by y ab 1≤a<b≤4 (and set y ba = -y ab ) the complex coordinates on Λ 2 C 4 in this basis. We note that there is a canonical symmetric bilinear formB : Λ 2 C 4 ×Λ 2 C 4 -→ C characterizedby the relation Y ∧Y = B(Y, Y )e 1 ∧e 2 ∧e 3 ∧e 4 , ∀Y ∈ Λ 2 C 4 . This bilinear form is nondegenerate and it is easy to see that the canonical action of SL(4, C) on C 4 induces an action on Λ 2 C 4 which preserves B, hence the identification SL(4, C) ≃ Spin(6) C .

24 = |λ 1 | 2 λ 1 λ 2 λ 2 λ 1 |λ 2 | 2 , where λ 1 := u 1 +

 241211 4 ) ∈ C 4 , then U ∧ σ(U ) = 1≤a<b≤4 y ab e a ∧ e b , wherey 12 = u 2 u 3u 1 u 4 ; y 13 = |u 1 | 2 + |u 3 | 2 ; y 14 = u 1 u 2 + u 4 u 3 ; y 23 = u 2 u 1 + u 3 u 4 ; y 24 = |u 2 | 2 + |u 4 | 2 ; y 34 = u 3 u 2u 4 u 1 ,and we obtain that P -1 (U ∧ σ(U )) = y 13 y 14 + y 12 j y23 jy34 y ju 3 and λ 2 := u 2 + ju 4 , i.e. (λ 1 , λ 2 ) = T (U ). Hence we conclude that (recall the notationQ (λ 1 ,λ 2 ) := Q λ 1 1 + Q λ 2 2 ): ∀U ∈ C 4 , if (λ 1 , λ 2 ) = T (U ), P [Q (λ 1 ,λ 2 ) , Q (λ 1 ,λ 2 ) ] = -2U ∧ σ(U ).(56)In other words the diagram: ΠC 4 ǫU -→-2U ∧σ(U )

4 . 2

 42 and lettingZ AB := -ǫ AB I [12] j -√ -1k and Z AB := -ǫ AB I [12] j + √ -1k ,we can write the anticommutation relations as

Figure 3 :

 3 Figure 3: The product of two imaginary octonions.

Z 12 :-1u 4 .

 124 = I -u 3 + √ -1u 4 Z 13 := I -u 6 + √ -1u 7 Z 14 := I -u 8 + √ -1u 5 Z 23 := I -u 8 -√ -1u 5 Z 24 := I u 6 + √ -1u 7 Z 34 := I -u 3 -√ We remark that, if we set * 12 := 34, * 13 := 42 and * 14 := 23, then Z * AB = Z AB = Z AB √ -1 .

  Proposition 7.1 Any super field Φ which satisfies (44) is a solution of the Euler-Lagrange system (43).

	Proof -The first condition in (44) gives us (by taking into account the fact that
	ψ = 0)							
	θ 1 cos α	∂φ ∂t	+	∂φ ∂x	+ sin α	∂φ ∂y	-F
	+θ 2 sin α		∂φ ∂t	-	∂φ ∂x	+ cos α	∂φ ∂y	+ F	= 0.
	So that Φ satisfies:							
	    	cos α sin α	∂φ ∂t ∂φ ∂t	+ cos α -sin α ∂φ ∂φ ∂x ∂x	+ sin α + cos α	∂φ ∂y ∂φ ∂y	= sin αF = -cos αF.

  e b , where

	   	y 31 y 32 0 y 34 y 21 0 y 23 y 24 0 y 12 y 13 y 14	
		y 41 y 42 y 43 0	

This can be rephrased by saying that C ∞ (R m|k ) is a module over C ∞ (R m ).

One can alternatively view the multiplication law as a linear map from A ⊗ A to A.

Moreover (2) garantees that it is the free super commutative super algebra spanned byθ 1 , • • • , θ k .

The question whether this infinitesimal transformation can be exponentiated is however more delicate and should be done in terms of a map defined on R 1|1 , see[START_REF] Rogers | Supermanifolds: theory and applications[END_REF] 

in a way similar to the fact that the time translation symmetry t -→ t + ε induces the fields transformation (x, ψ) -→ (xε ẋ, ψ -ε∇ ẋψ) which is related, through Noether's theorem, to the conservation of the energy[START_REF] Alvarez | Lectures on quantum mechanics and the index theorem[END_REF] 2 | ẋ| 2 + 1 2 ψ, ∇ ẋψ .

This includes the important case of superstrings, where M is a supermanifold of even dimension 2.

These notations are actually inspired by a system of notations proposed by M. Kawski and H. Sussmann[START_REF] Kawski | Noncommutative power series and formal Liealgebraic techniques in nonlinear control theory[END_REF].

The difference between the dimensions is 3 = dimso(3) = dimso(Im H), see below.

The difference between the dimensions is 21 = dimso(7) = dimso(Im O), see below.

This system of notations is similar to the notations introduced by R. Penrose for the twistor theory, see the text by P. Baird in this volume.

Most Authors use the more pleasant identification (u 1 , u 2 , u 3 , u 4 ) -→ (u 1 + u 3 j, u 2 + u 4 j); however this convention is not that convenient in our context.