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Abstract

In this work, the problem of regulating blood glucose (glycemia) in type I diabetic
patients is studied by means of an impulsive zone model predictive control (iZMPC),
which bases its predictions on a novel long-term glucose-insulin model. Taking
advantage of the impulsive version of the model - which features real life properties
of diabetes patients that some other popular models do not - the given control guaran-
tees the stability under moderate-to-severe plant-model mismatch and disturbances.
Long-term scenarios - including meals and physiological parameter variations - are
simulated and the results are satisfactory as every hyperglycemic and hypoglycemic
episodes are suitably controlled.
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1 INTRODUCTION

Type 1 diabetes mellitus (T1DM) is an autoimmune disease, affecting approximately 18 million people in the world. It is char-
acterized by the destruction of the pancreatic �−cells, which avoids the natural endogenous secretion of insulin, thus resulting
in a dysfunctional glycemic regulation. T1DM was a fatal disease until the discovery of insulin in 1921. Nowadays, the current
treatment consists of a number of daily insulin injections, depending on the measurements of glycemia and carbohydrate intake.
The exogenous insulin injections may be provided by a pump that uses both, a permanent basal subcutaneous infusion and
preprandial boluses (CSII). In any case, the objective is to maintain glycemia in a safe zone, between 80 mg/dl and 140 mg/dl1,
the so-called euglycemia.

The germinal idea of an artificial pancreas (AP) for T1DM patients was firstly envisioned 50 years ago in2. Nowadays, the
main streams to control glycemia are PIDs andModel Predictive Control (MPC). This paper focuses on the latter approach. In the
last decade, MPC received an increasing attention as an advanced control strategy to be implemented in an AP device3,4,5,6,7,8,9.
In general, these formulations use discrete-time control actions and are based on a simplification of the model of T1DM patient
presented in10 and its linearizations11,12,13,14,8. The most popular MPC formulation in AP is the zone MPC7,14 which, by means
of a modified objective cost, considers an entire range of the controlled variable as the target. Recent improvements are the
consideration of asymmetric cost functions and explicit velocity-penalties in the MPC formulation8.
From a pure control point of view, three main open problems rise from the aforementioned formulations: (i) most of the

mathematical models available in the current literature are not consistent with the practical and popular Flexible Insulin Therapy
(FIT), and thus provide wrong predictions when the prediction horizon is too large (because of the simplified stable model)15,
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(ii) even when they show to be stable, most of the controllers does not guarantee closed-loop stability (because they do not use
any kind of stabilizing conditions, such as terminal costs and constraints, with the exception of3,5 that use an infinite predictions
horizon but neither input nor state constraints are considered in the optimization problem) and (iii) most of the controllers do
not properly exploit the stabilizable/controllable set of the closed-loop (i.e., the sets of states that can be stabilized) since they
use a basal insulin infusion rate which is not computed/updated by the controller. Besides, from a technological perspective,
the assumption of discrete (or continuous) control actions could not be realistic because insulin is administered by injections
or insulin pumps that manipulate the duration of asynchronous pulses (even for the permanent basal infusion). These three
drawbacks define three open problems which this paper is devoted to find a solution to. These three main contributions are
summarized herein.
The solution to the first open problem consists in choosing a new prediction model which is consistent with real life medical

practice as FIT. The first main message in this paper can be generalized to any model based control: it is expected that the
performance is improved when using a long-term prediction, rather than inaccurate ones. More specifically, the main drawback
of the classical prediction models is - as it was shown in1 - that they generate apparent equilibria during fasting periods, so
that each value of blood glucose (BG) can be maintained constant thanks to a different insulin infusion rate. This stands in
contradiction with real life and the well accepted Flexible Insulin Therapy, since patients display only one single insulin infusion
rate, defined as the basal rate, which stabilizes the glycemia at any value as long as no meal is taken16. Opposite to what is
done in the classical T1DM representations, the model developed in1 represents the patient realistically in a domain of validity,
which mainly means that it has a critically stable equilibrium manifold (instead of a stable one). These equilibria correspond
to an unique basal insulin injection level, and disturbances in BG (producing either hyper and hypoglycemia episodes) will
not be self-regulated, if no additional actions (i.e., insulin boluses the case of hyperglycemia or insulin suspension the case of
hypolycemia) are taken. In a similar vein as in1, this feature has been recently included in the model presented in17 as well.
The second main contribution in this paper provides a solution to the second open problem by presenting a new stable Impul-

sive Zone Model Predictive Control (iZMPC) for T1DM patients. As announced above, in a first stage, a modification of the
glucose-insulin model presented in1 is made to cope with medical practice and long-term predictions, while the good features
of the classical control-relevant models are maintained. Having such a good long-term prediction of the insulin and carbohy-
drates (CHO) effect is crucial for an MPC to anticipate not only the blood glucose behavior, but also the eventual constraint
activation18. In practical terms, the main benefit of this anticipatory behavior is to properly avoid hypoglycemic episodes and,
thus, the need of additionally safety procedures that open the loop in dangerous situations. Then, in a second stage, the iZMPC
is designed. By means of the use of artificial optimization variables, the controller guarantees recursive feasibility and stability
of the closed-loop and shows an enlarged domain of attraction (in contrast to standard zone MPCs, with guaranteed stabil-
ity)19,20,21. Furthermore, an impulsive scheme of the continuous-time original model is developed, which allows the controller
to stabilize the BG by only injecting periodic insulin boluses of short duration, even for the basal rate (this impulsive basal rate,
in addition, is automatically found by the controller according to the feedback). Though it seems to review some basic feature of
the medical practice, this feature copes with the practical need of re-evaluation of the basal rate at different periods of the day.
The control scheme adopted in this work is depicted in Figure 1 and includes an update of the basal rate, which embodies

a solution to the third open problem above. More precisely, the MPC controller computes the full insulin to be injected to the
patient, i.e., the basal rate and the postprandial boluses, provided that the meal is (partially) announced.
Finally, the new Impulsive Zone MPC strategy is tested on several T1DM virtual patients. Long-term scenarios - including

meals and patient parameter variations - are simulated. The results are satisfactory as smooth variable behaviours are obtained,
while hypoglycemia episodes are avoided and hyperglycemia episodes are significantly reduced.

The outline of this paper is as follows. To account for the first contribution of the paper, Section 2 presents the new glucose-
insulinmodel and its physiological and dynamical description. Thismodel is claimed to be instrumental to improve the prediction
capacity of any model based control, including MPC. Then, to account for the second contribution, Section 3 introduces the
impulsive Zone MPC. The way this controller, together with the proposed state observer, is implemented accounts for the third
contribution of the paper. The MPC controller is described in detail in Section 3.1 whereas the observer is displayed in Section
4. Section 5 shows the results of the in silico trials, while the concluding remarks are given in Section 6.
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FIGURE 1 Control Scheme. The control objective is to maintain the blood glucose (BG) in a safety range (BG target) by
manipulating the insulin (u) injected to the patient by means of a pump. The blood glucose is measured by means of a continuous
glucose monitoring (CGM) while the meals intake (r) is announced to the controller by means of r̂. An observer is used to
estimate the current model states x̂, based on the CGM blood glucose measurement ymed , the insulin u and the meal estimation r̂.

2 GLUCOSE-INSULIN MODEL

The glucose-insulin model is derived, based on the FIT paradigm, i.e. in the zone of interest one single constant basal rate has
to be derived as well as other FIT parameters. The result of this approach is that the mathematical model has to be essentially
linear with respect to insulin injection and to carbohydrates digestion. This linearity is, however, marginally distorted (when
blood glucose concentration is close to zero) to cope with the positivity of the system. The model features better long-term
predictions and is consistent with real life practice. It comprises three subsystems describing insulin absorption, meal absorption
and glucose dynamics. This leads to 5 differential equations with 6 parameters and two inputs (exogenous insulin and meal),
which represent the control and disturbance input, respectively.

2.1 Glucose Dynamics
The glucose-insulin dynamics is dependent on four major factors: exogenous glucose intake, endogenous glucose produc-
tion, exogenous insulin infusion and insulin-independent and insulin-dependent glucose utilization. This yields the following
differential equation which is taken from22, for a type 1 diabetic patient:

dG(t)
dt

= −f1(G(t)) − f2(G(t))f3(Qi(t)) + f4(Qi(t)) + f5(t), (1)

where G is the blood glucose concentration (glycemia [mg/dl]) and Qi is the insulin delivery rate in plasma [U/min]. Function
f1(⋅) accounts for insulin-independent glucose utilization by the brain, f2(⋅)f3(⋅), for insulin-dependent glucose utilization, f4(⋅)
for hepatic endogenous glucose production and f5(t) for the glycemia rise due to the digestion of carbohydrates (CHO). The
form of functions f1(⋅) to f4(⋅) were taken from22; Figure 2 , below, illustrates their graphs. In particular, the functions f1 and
f2 vanish when blood glucose concentration vanishes so that the model (1) fits to a so-called positive system.
It is desirable that the differential equation (1) copes with Flexible Insulin Therapy, at least from moderate hypoglycemia to

moderate hyperglycemia, which is a range where FIT is assumed to be effective. The consequence is that in that range, the model
(1) will be (almost) linear. Thus, define five glycemia zones as: severe hypoglycemia for G < Gs−ℎypo [mg/dl], hypoglycemia for
Gs−ℎypo ≤ G < Gℎypo, euglycemia for Gℎypo ≤ G < Gℎyper, hyperglycemia for Gℎyper ≤ G < Gs−ℎyper and severe hyperglycemia
for G ≥ Gs−ℎyper (see Figure 3 for a schematic plot). Some reasonable values for the BG limits are: Gs−ℎypo ≈ 40 [mg/dl],
Gℎypo ≈ 80 [mg/dl], Gℎyper ≈ 140 [mg/dl] and Gs−ℎyper ≈ 400 [mg/dl]. The range of interest for the linear model is the one
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FIGURE 2 Illustrative plot of functions f1 to f4

FIGURE 3 Linear fit validity glucose range

including hypo, eu and hyperglycemia, given that severe cases (both severe hypo and severe hyperglycemia) require specialized
treatments (hospitalization with glucose or glucagon injection in case of hypoglycemia for instance) which is out of the scope
of an automatic controller acting on insulin injection only.
According to the glycemia range of interest Gs−ℎypo ≤ G < Gs−ℎyper, a corresponding insulin delivery rate range - in units

per minute, [U/min] - can also be selected, Qis−ℎypo ≤ Qi < Qis−ℎyper . Taking into account these two ranges: (i) function f1(⋅) fits
a constant function of G, i.e., f1(G) ≈ kb, where kb represents the insulin-independent glucose utilization rate, specially by the
brain; (ii) functions f2(⋅) fits a constant function, i.e., f2(G) ≈ �2, where �2 represents the insulin sensitivity factor (ISF), (iii)
function f3(⋅) fits the identity function, i.e., f3(Qi) ≈ Qi, and (iv) f4(⋅) also fits a constant function, i.e., f4(Qi) ≈ k1, where
k1 represents the liver endogenous glucose production. The yellow zones in Figure 2 show the model validity ranges of each
linear function.
The so-obtained linear differential equation has, within the range of interest, the structure of the model in1, and reads as

follows:
dG(t)
dt

= −kb − �2Qi(t) + k1 + �4Qd(t), (2)

where �4 is a parameter such that �4∕�2 represents the insulin to carbohydrates ratio (ICR) and Qd(t) is the glucose delivery
rate from the duodenum [mg/min]. As it can be seen, this equation has not a term depending linearly on the glucose G, which
means that the derived model will be critically stable (integrating system). This kind of linear model properly represents the
physiological equilibria in the desired glucose and insulin range of interest and, furthermore, the flexible insulin therapy (FIT)
parameters are directly obtained from the model parameters, as it was established in1.
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Remark 1. Note that moderate-to-sever hyper and hypoglycemia scenarios are wrongly predicted by the linear approximation
(2). In fact, for severe hyperglycemia the glucose stabilizes in a high value, instead of keeping growing, while for severe hypo-
glycemia the glucose stabilizes in a small positive value, instead of keeping decreasing. This behaviors are properly described
by the general nonlinear equation (1) which features the expected properties of a so-called positive system.

2.2 Insulin and Digestion Dynamics
Following usual approaches in AP modeling (1,17,23) both, the insulin and digestion absorption subsystems, are assumed to
be represented by linear dynamics, derived from compartmental models. The insulin absorption subsystem consists of two
compartments: the subcutaneous and blood compartments. The resulting differential equations are given by1:

dQi(t)
dt

= − 1
�3
Qi(t) +

1
�3
Qisub ,

dQisub(t)
dt

= − 1
�3
Qisub(t) +

1
�3
u(t) (3)

where Qisub stands for the insulin delivery rate in the subcutaneous compartment [U/min], �3 is the time constant and u(t) is the
insulin infusion [U/min].
The digestion subsystem is also assumed to consist essentially of two compartments, which are in this case: the stomach and

the duodenum. The resulting differential equations are given by:

dQd(t)
dt

= − 1
�5
Qd(t) +

1
�5
Qdsto ,

dQdsto(t)
dt

= − 1
�5
Qdsto(t) +

1
�5
r(t) (4)

where Qdsto stands for the glucose delivery rate from the stomach [mg/min], �5 is the time constant and r(t) is the amount of
carbohydrate CHO in meals [mg/min].

2.3 Affine state space model
Based on (2), (3) and (4), the following affine, continuous-time, state space model can be obtained:

ẋ(t) = Ax(t) + Buu(t) + Brr(t) + E, x(0) = x0,
y(t) = Cx(t), (5)

where x(t) = [x1(t) x2(t) x3(t) x4(t) x5(t)]′, with x1 = G, x2 = Qi, x3 = Qisub , x4 = Qd and x5 = Qdsto . The output y(t) is
given by the state component x1, i.e., it represents the glycemia to be controlled. As before, u(t) is the insulin infusion [U/min]
and r(t) is the amount of carbohydrate CHO in meals [mg/min]. E is a constant term denoting the difference between the liver
endogenous glucose production (k1) and the glucose absorption rate by the brain (kb).
The model matrices are given by:

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 −�2 0 �4 0
0 − 1

�3

1
�3

0 0
0 0 − 1

�3
0 0

0 0 0 − 1
�5

1
�5

0 0 0 0 − 1
�5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Bu =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
0
1
�3
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, Br =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
0
0
0
1
�5

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, E =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

�1
0
0
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, C =
(

1 0 0 0 0
)

, (6)

where �1 = k1 − kb.
Constraints for both, states and inputs are considered, in such a way that u ∈  , x ∈  , where  and  are assumed to be

polyhedrons in the positive orthant (i.e., every quantity is positive). Furthermore, it is also assumed that the amount of CHO is
bounded by 0 ≤ r ≤ rmax, for a positive maximum rmax.
Model (5-6) has a fixed parametric structure, in which the parameters represents physiological quantities. So, the individualiza-

tion of the model according to each patient is performed by means of an identification (Gauss-Newton Identification Method24,
in this case), which computes the set of parameters that minimizes the difference between historical input-output data (coming
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from the registered input and CGM data). The fact that parameters are physiological may (and in fact does) help in the identifi-
cation process, given that it is easier to detect mistaken estimations. Although the model considered in this paper is essentially
different to the others in literature, many other MPC-based approaches for AP consider this kind of individualization25,5,26,23,27.

2.4 Equilibrium and controllability characterization of the model
An equilibrium couple of model (5) corresponding to fasting (i.e., couples (us, xs), such that 0 = Axs + Buus + E, considering
rs = 0) is given by x2,s = �1∕�2, x3,s = �1∕�2, x4,s = 0, x5 = 0 and any value of x1,s, with xs

Δ
= [x1,s x2,s x3,s x4,s x5,s]′.

Furthermore, the corresponding equilibrium input us is a fixed insulin value (denoted as basal insulin rate, ub), given by us =
�1∕�2 = ub. Note that the equilibrium glycemia level ys = x1,s does not depend on us. Obviously, whatever its value is, the
glycemia does depend on the past values of the insulin infusion u(t) and meal intake r(t).
These characteristics, that make the model essentially different from other models used in the literature (mainly the Bergman

model10 and its simplified versions), permit to obtain long term predictions. This way, it is argued that every undesirable episode
can be better anticipated and corrected. Regarding the controllability of model (5), it should be noted that only the first three
states - accounting for the insulin-glycemia dynamics - are controllable, while the last two states from the digestion subsystem
have their own dynamics, and they are obviously not affected by the insulin.

2.5 Impulsive inputs control scheme
The main objective of this work - in contrast to other existing strategies - is to develop a MPC control strategy able to control
the glycemia of a diabetic patient (described by model (5)) by only using impulses (boluses) of insulin, without any continuous
basal rate1.
Under this framework - that we call impulsive input control scheme - we assume that the insulin infusion u is injected into

system (5) only by boluses applied at certain time instants denoted as kT , where T is a fixed period, and k ∈ ℕ. This way, the
system can be described by the following two equations:

ẋ(t) = Ax(t) + Brr(t) + E, x(0) = x0, t ≠ kT , (7)
x(kT +) = x(kT ) + Buu(kT ), k ∈ ℕ, (8)

where x(kT +) denotes the limit of x(t) when t approaches kT from the right. This way, we have solutions containing disconti-
nuities of first order (described by equation (8)) and free responses affected only by the term associated to the meals (Brr(t)),
between the discontinuities (described by equation (7)).
System (7)-(8) is a continuous-time system, but to implement the proposed MPC a discrete-time version (a sampled version,

in fact) is needed. Based on the results presented in21, it is possible to have a sampled version of (7)-(8) that simultaneously
accounts for both, the discontinuities and the free responses. The details and derivations of such a model are presented, for
the sake of clarity, in the Appendix 8. What we need at this point to proceed with the MPC formulation is the discrete-time
subsystem representing system (7)-(8) at the sampling times kT , which is given by:

x(k+1)=A∙x(k)+B∙uu(k)+B
∙
rr(k)+E, x(0) = x, (9)

y(k)=Cx(k), (10)

where index k represents the time kT , for k ∈ ℕ. The symbol (⋅)∙ denotes that the discrete-time system (9) describes the
impulsive system (exactly) at the instants when the impulses occur 2. Given that system (7) has no formal equilibria (see Remark
3, in Appendix 8.1), a non-trivial extended equilibrium region must be defined for system (9). The state and input equilibrium
sets are denoted by  ∙

s and 
∙
s , respectively, and the details of their definition are given in Appendix 8.3.

1Given that from a technological point of view, it could be desirable to have a minimal continuous flow to avoid catheter obstruction, a continuous small insulin flow
can be considered.

2On the other hand, the symbol (⋅)◦ is used (in the Appendix) to describe the impulsive system just an instant after the instant of the impulses.
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3 IMPULSIVE ZONE MPC

The proposed MPC formulation has two distinctive mathematical characteristics: it is based on the impulsive input scheme
- presented in subsection 2.5 and Appendix 8 - of the long-term affine model (5) and it makes use of artificial optimization
variables to improve the feasibility properties (19,20) and ensure stability.
The general MPC control objective is to keep the system in an equilibrium that maintains the glycemia y(t) in a target zone

inside the euglycemic range, by only manipulating the (positive and impulsive) insulin injection u(t), while keeping the states
x1(t), x2(t) and x3(t) fulfilling the constraints. The target zone is defined as T ar Δ

= {y ∈ ℝ ∶ Gmin ≤ y ≤ Gmax}, with
Gmin ≥ Gℎypo and Gmax ≤ Gℎyper. As part of the control objectives, it should be noted that hypoglycemic episodes (when G is
below the euglycemia zone) are much more dangerous, in the short term, than hyperglycemic episodes (when G is above the
euglycemia zone). Furthermore, the system under control is assumed to be perturbed by the effect of the CHO in meals, r(t) -
which is estimated only at the time it occurs - and by any other unknown disturbance producing a variation of BG (subject stress
and exercise, dawn phenomenon, etc.).

3.1 Controller Formulation
Let us define the impulsive state target set,  ∙T ar

s ⊆  ∙
s , such that C

∙T ar
s = T ar, and the impulsive input target set as ∙T ar

s =
{u∙b}, with {u

∙
b} being the impulsive basal rate of model (9) (see Appendix 8.3). Following the ideas presented in19,20,21, the cost

of the optimization problem that the proposed MPC solves on-line reads

VN (x̂, r̂, ∙T ar
s , ∙T ar

s ;u, ua, xa)
Δ
= Vdyn(x̂, r̂;u, ua, xa) + Vsta( ∙T ar

s , ∙T ar
s ; ua, xa),

where

Vdyn(x̂, r̂;u, ua, xa)
Δ
=

N−1
∑

j=0

‖

‖

x(j) − xa‖‖
2
Q + ‖

‖

u(j) − ua‖‖
2
R ,

with Q > 0 and R > 0, is a term devoted to drive the system to the artificial equilibrium variable given by the artificial pair
(ua, xa) ∈  ∙

s ×  ∙
s , and

Vsta( ∙T ar
s , T ar

s ; ua, xa)
Δ
= p

(

distC ∙T ar
s
(Cxa) + dist ∙T ar

s
(ua)

)

with p > 0 and dist(a) representing the distance from the point a to the set , is a terminal cost devoted to drive Cxa to the
sets C ∙T ar

s and ua to  ∙T ar
s , respectively. x̂ and r̂ represent the current estimation of the state and meal, respectively.

Note that in the latter cost, the current estimated state x̂, the current estimated disturbance r̂, and the target sets  ∙T ar
s and

 ∙T ar
s are optimization parameters, while u = {u(0), u(1),⋯ , u(N − 1)}, ua and xa are the optimization variables (N being the

control horizon).

Remark 2. The latter cost is a zone-symmetric quadratic cost, that penalizes the distance to the desired target set (zone), in a
symmetric form.Many alternatives can be analyzed to improve this cost, in order to harder penalize the hypoglycemia episodes28,
according to a particular metric.

The optimization problem to be solved at time k by the MPC is given by

PMPC (x̂, r̂, ∙T ar
s , ∙T ar

s ):

min
u,ua,xa

VN (x̂, r̂, ∙T ar
s , ∙T ar

s ;u, ua, xa)

s.t.
x(0) = x̂, r(0) = r̂
x(j + 1) = A∙x(j) + B∙uu(j) + B

∙
rr(j) + E

∙, j ∈ I0∶N−1,
r(j) = 0, j ∈ I1∶N−1,
C̃x(j) ∈ C̃ , u(j) ∈  , j ∈ I0∶N−1,
C̃x(N) = C̃xa,
C̃xa = C̃(A∙xa + B∙uua + E

∙).
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Given that only the current meal is estimated (i.e., no future information is considered), r is only used for the first prediction
step, if available. Furthermore, given that only the first three states are controllable, and constraints satisfaction for states x4 and
x5 cannot be required, matrix C̃ = [I3 03×2] is defined to extract the states x1, x2 and x3 from the complete vector state x.
Constraint C̃x(N) = C̃xa is the terminal constraint that forces the terminal controllable state - at the end of control horizon

N - to reach the artificial equilibrium state C̃xa. Furthermore, the last constraint forces the artificial variable pair (ua, xa) to be
in  ∙

s ×
∙
s . These two constraints force the state at the end of the horizon to be any feasible equilibrium state (and not a specific

one in the target set), corresponding to the fasting scenario (r ≡ 0). This flexible constraints, which gives to the problem extra
degrees of freedom, are necessary to ensure the closed-loop stability, as it is shown in21.
Once the Problem PMPC (x, r, ∙T ar

s , ∙T ar
s ) is solved, the (optimal) solution is denoted as (u0, u0a, x

0
a), while the optimal cost

function is given by V 0
N (x, r,

∙T ar
s , ∙T ar

s )
Δ
= VN (x, r, ∙T ar

s , ∙T ar
s ;u0, u0a, x

0
a). The control law, derived from the application of

a receding horizon control policy (RHC), is given by �MPC (x) = �MPC (x; r, ∙T ar
s , T ar

s ) = u0(0; x), where u0(0; x) is the first
element of the solution sequence u0(x). The domain of attraction of the closed loop,  ∙

N , is given by the controllable set in N
steps to the entire equilibrium set  ∙

s (in contrast to classical stable MPC formulations, for which the domain of attraction is
given by the controllable set inN steps to the equilibrium objective zone).
As it was done with the model parameters, the MPC tuning parameters should be individualized for each patient. Unfortu-

nately, as it is known from the MPC literature, there is no a formal general procedure to do that. In the simulation section 5,
some general tuning steps related to the difference between the insulin and CHO subsystem gains and the corresponding time
constants, will be presented.
The next property formalizes the closed-loop stability of the MPC.

Property 1. The equilibrium set  ∙T ar
s is asymptotically stable under the closed-loop system x(k + 1) = A∙x(k) +

B∙u�MPC (x(k)) + E∙. Furthermore, given x(k) ∈  ∙
N , the optimization problem PMPC (⋅) is feasible for x(k + 1), and so, for

every future state of the closed-loop.

Proof: The proof of stability and recursive feasibility follows the same steps of the proof of Theorem 3, in21.

3.2 Closed-loop benefits
The new MPC formulation herein enjoys several properties that are to be mentioned.
(i) Due to the proper use of artificial variables, the MPC not only has an enlarged domain of attraction, but also ensures con-

straint satisfaction and stability21,29,30, for moderate-to-large disturbances and model-plant mismatches. Furthermore, the latter
properties are achieved by only solving a sequence of quadratic programming problems (QP), whichmeans that no computational
complexity is added.
(ii) The use of a long-term model for predictions permits to better exploit the anticipative benefits of the strategy. The early

prediction of possible hypoglycemic episodes that the insulin will not be able to correct by means of feasible actions (because
of its positivity) is the key point to properly avoid them.
(iii) The use of impulses for both, basal and bolus infusions, improves the general controllability of the closed loop. (i.e., the

general ability to reach any desired state). It also contributes to better avoid hypoglycemic episodes, since no permanent insulin
infusion is used. The use of impulses also improves the pharmacokinetics (due to a potentially higher insulin absorption from
the subcutaneous infusion site), the performance of insulin pumps and, furthermore, injections could also be used to implement
the control.
(iv) The MPC computes by itself the impulsive insulin basal rate (there is no need of an off-line computation), which permits

to easily cope with the frequent variations of its value. From the MPC point of view, even when there is model-plant mismatch,
the basal rate is just the equilibrium of the closed loop.
(v) The effect of the so-called insulin on board (Iob) is automatically accounted, in the predictions, by the long-term model.

This means that its value does not need, in principle, to be computed from some external identification algorithm.
(vi) Under a meal-announcement scenario, the postprandial insulin boluses are computed (optimally) by the MPC, according

to the BG predictions. This means that not only the postprandial insulin bolus is optimal (according to the long-term model,
which includes a meal subsystem), but also that all possible (moderate) variations of the system are taken into account, by means
of the state feedback.
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4 STATE ESTIMATION

The state estimation is crucial to account for a realistic closed-loop performance in the artificial pancreas problem. In this work,
a Kalman filter based on the following extended model is used31:

[

x(k)
d(k)

]

=
[

A∙ Me
0 1

]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Aext

[

x(k − 1)
d(k − 1)

]

+
[

[B∙u B
∙
r E

∙]
0

]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Bext

⎡

⎢

⎢

⎣

u(k − 1)
r(k − 1)
1

⎤

⎥

⎥

⎦

+ Gww(k − 1)

y(k) = [C 0]
[

x(k)
d(k)

]

+ v(k)

where Me = [1 0 0 1 1]T , Gw = [0 0 0 0 0 1]T , w(k) ∈ ℝ is assumed to be a zero-mean Gaussian process noise, with
varianceQext, and v(k) ∈ ℝ is assumed to be a zero-mean Gaussian output noise with varianceRext. The value ofR is computed
according to variance of the Continuous Glucose Monitor (CGM) (for instance, Dexcom G5 Mobile CGM,32), while the value
of Q is used as a tuning parameter for the performance of the estimation. Roughly speaking, a large Qext∕Rext ratio is selected
when the measurement is confident, while a smallQext∕Rext ratio is selected when the measurement noise is high, and the model
is accurate.
The Kalman filter is derived from the following recursion:

Prediction:

x̂−(j) = Aextx̂(j − 1) + Bext
⎡

⎢

⎢

⎣

u(j)
r̂(j)
1

⎤

⎥

⎥

⎦

,

P −j = AextPj−1A
extT + GwQextGT

w

Update:

Kj = P −j C
T (CP −j C

T + Rext)−1

x̂(j) = x̂−(j) +Kj(ymed(j) − Cx̂−(j))
Pj = (Inx −KjC)P −j

where P0 = I6, ymed is the measured glycemia and x̂ and r̂ are the estimated state and disturbance (meal), respectively.
As described in Sections 2.1 to 2.4, the parameters and states of the prediction model are directly related to physiological

variables. The states x2 and x3 describe the insulin pharmacokinetics, and an acceptable estimation of such states permits to
know (approximately) the insulin that is still in the body (known as insulin on board Iob). In principle, and from the theoretic
contributions above, this estimation minimizes the need of additional safety procedures to limit the Iob, and consequently the risk
of hypoglycemia. Nevertheless, when it comes to clinical trials, then any control algorithm requires a universal safety supervisor
layer to guarantee the safety of patients. Furthermore, in scenarios of unannounced or partially announced meals, the estimation
of states x4 and x5 (representing the dynamic/absorption of the CHO after a meal), becomes crucial. A further benefit of model
(5), coming form the fact that the parameter and states are physiological quantities, is that both, the identification and estimation
procedure can be assessed, if some measurement of these quantities are available.

5 SIMULATION RESULTS

The developed impulsive ZMPC controller is tested to regulate glycemia to a target zone (defined by T ar), based on the
T1DM patient model described above, and subject to the corresponding constraints. The general control scheme adopted for the
simulation is the one shown in Figure 1 . Two general cases are considered: (i) model-plant mismatch, with fixed parameter and
temporary disturbances. In this case, the plant is the continuous-time virtual patient but with parameters significantly modified
using a fixed percentage, while the original model is used to generate the prediction. Furthermore, the dawn phenomenon,
physical exercise of the patient and a catheter change are simulated as the temporary disturbances. The second case (ii) uses
the UVA/Padova simulator as the plant, and several scenarios are selected to show how the controller is able to achieve a good
performance even when the plant has a different nature from the virtual patient prediction model.
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For the two cases, the simulation time is settled to 48 h. This duration of the simulation is longer than the one in other
works7,6,33, since the linear model which is used is able to reproduce accurately the behavior for long-time intervals. The state
and input constraints are given by  = {x ∶ [0 0 0 none none]T ⪯ x ⪯ [500 10 10 none none]T }, where none denotes that there
is no constraint on the non-controllable states, and  = {u ∶ 0 ≤ u ≤ 30}, respectively. The time period was selected to be
T = 15 (min) to stress the fact that sporadic insulin injections are able to produce a good BG performances. Furthermore, many
clinical trials work with this period. In general, this period should be selected according to the speed of the insulin and food
effects. This must be done because the controller can inject insulin only at times kT , k ∈ ℕ. If a disturbance affects the system
at time t = kT + ΔT , for instance, with ΔT << T , then the controller action is delayed for almost T minutes before beginning
to compensate it.
The gain (G) and settling time (ST ) of the BG response of each patient to the insulin injection (u) and food intake (r) can be

defined as Gu = �2, STu ≈ 6�3, Gr = �4 and STr ≈ 6�5, respectively. Clearly, for patients with larger values of Gu and STu in
comparison with Gr and STr, the meal intake disturbances can be quickly compensated by the insulin injection, reducing the
potential time exceeding the safety upper limit Gmax, and in consequence, reducing potential hyperglycemic episodes. However,
in this case (specially for large values ofGu), it is also easy to cause hypoglycemic episodes. In a similar way, for larger values of
Gr and STr in comparison withGu and STu, hypoglycemic episodes are quite easy to be avoided, while hyperglycemic episodes
will be slowly compensated3.
An important fact of the artificial pancreas problem is that the most dangerous short-term closed-loop hypoglycemic episodes

are exclusively produced by (a wrong action of) the controller, since a Type 1 diabetic patient does not experience this kind of
episodes naturally. This is a quite different paradigm for an MPC controller, since it implies that in each time that an insulin
injection is decided, it should be carefully computed to avoid, after the meal effect rejection, an undesirable drop of the blood
glucose. More precisely, the insulin long-term effect must be carefully considered to prevent a future input constraint activation
at zero.
Based on the latter analysis, the tuning MPC parameters can be selected to have a more conservative controller in the case of

high insulin sensitivity and vice-versa. In this paper, the parameters of the MPC that will be selected according to the patient
parameters are the control/prediction horizon N , the penalties Q and R, and the limits of the output zone, Gmin and Gmax,
which constitute the output target T ar = {y ∈ ℝ ∶ Gmin ≤ y ≤ Gmax}. N is selected to be large enough to account for the
entire insulin effect, given that overdoses are hard to compensate, because of the positiveness of the control action. The selected
formula isN ≈ STu×60

T
, which must be understood just as a practical rule. Note that the use of larger horizonsN causes a higher

computational effort. The target limits are selected such that 80 ≤ Gmin ≤ 100 and 100 ≤ Gmax ≤ 140. Note that the proposed
control strategy makes no distinction between BG values inside the target zone, and so, it will maintain basal rate delivery as
soon as the BG enters T ar, even if it is placed at the boundary of this set.

5.1 Case 1: Model-plant mismatch, with fixed parameters
According to1, eight virtual patients are considered (labeled as PV1, PV2, PV3, PV5, PV6, PV10, PV11 and PV15), whose
model parameters were obtained and validated from real patient data provided by the Nantes University Hospital and Rennes
University Hospital in France, through an ad hoc anonymized collection. The main model parameters and the patient-dependent
MPC parameters are shown in Table 1 . The meal scenario is selected to simulate three meals in a day (breakfast, lunch and
dinner), with the following amounts of CHO: 50 g at 7:00, 80 g at 12:00 and 60 g at 21:00. The relationship between the
model and the plant parameters was selected in such a way that hypoglycemic episodes are more likely to occur (insulin effects
are underestimated while CHO effects are overestimated), and they are shown in Table 2 . Additionally, to further stress the
controller, both the dawn phenomenon and the patient physical exercises are considered. The dawn phenomenon is produced
by a hormone release that stimulates the liver endogenous glucose production, but also diminishes the insulin sensitivity. So,
to simulate this phenomenon, parameter �2,real (ISF) is reduced to 60% of its actual value, between 4:00 and 8:00 hs. To cope
with the physical exercises, parameter �2,real is increased to 130% of its actual value, between 16:00 and 20:00. To represent the
effect of a catheter change, parameter �3,real is reduced to 90% of its actual value in the second day of the simulation. Finally,
given that both, the controller and the observer use a synchronous announcement of the meal to predict the glycemia or estimate
the states, a mismatch is also included in this value. For breakfast and dinner, the CHO in meals that the controller and observer
use is 85% of the actual value, while for the lunch it is 115%.

3All these observations are true as long as the model properly matches the virtual patient.
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TABLE 1 Model and MPC parameters

Pat. Gu STu(ℎ) Gr STr(ℎ) N (Q,R, p) [Gmim−Gmax]

PV1 69.68 6.51 4.10 2.40 31 (0.1; 1e3, 1e5) [110 − 135]
PV2 14.94 13.62 2.88 16.98 64 (0.1; 1e3, 1e5) [120 − 140]
PV3 18.30 8.90 2.07 4.37 42 (1.5; 1e3, 1e5) [110 − 130]
PV5 48.45 6.24 6.75 4.32 30 (0.1; 1e3, 1e5) [110 − 130]
PV6 16.08 14.98 2.07 3.82 70 (0.5; 1e3, 1e5) [110 − 130]
PV10 10.94 6.27 2.76 3.39 30 (1.75; 1e3, 1e5) [110 − 130]
PV11 27.30 5.89 4.61 6.74 28 (1; 1e3, 1e5) [110 − 135]
PV15 7.83 12.85 1.24 1.75 60 (15; 1e3, 1e5) [110 − 130]

TABLE 2 Model-plant mismatch for Case 1

�2,model = �2,real∕1.3 the insulin effect is underestimated
�3,model = �3,real∕1.3 the insulin on board is underestimated
�4,model = �4,real∕0.7 the CHO-in-meals effect is overestimated
�1,model = �1,real∕0.7 the basal rate is overestimated

The states are estimated by means of a Kalman filter, based on an extended model considering an output disturbance. It is
assumed that the BG measurement and the insulin infusion are available (known), while the current CHO in meals is only
partially known, depending on the simulated scenario.
The BG and CHO in meals time evolutions are shown in Figure 4 , for the eight simulated patients. The display includes the

BG mean, the BG mean ± a standard deviation and the envelope for all curves. As it can be seen, even with the large dispersion
of the model parameters, the controller is able to avoid hyperglycemic episodes, in the long term, and hypoglycemic episodes, in
the short term. Furthermore, it must be noted that this performance is achieved by only injecting insulin by impulses, in periods
of 15 minutes.
On one hand, Figure 5 shows the BG and CHO evolution for a particular patient, PV15. The evolution of the auxiliary state

variable xa,1 is shown in red and corresponds to the BG. As expected, this auxiliary variable remains most of time inside the
target zone T ar = {G ∶ 110 ≤ G ≤ 130}, because of a high terminal penalty p, so that the BG evolution is strongly penalized
when it is outside the target region. Furthermore, when a strong disturbance affects the system, this auxiliary variable leaves the
zone if necessary, to allow the controller to reject the disturbance (see the xa,1 evolution at times 13 and 37). Figure 6 , on the
other hand, shows the evolution of the input injections. This Figure also includes the artificial input variable ua, displayed in red,
which plays a similar role than xa and the evolution of the third state of the virtual patient, which denotes the insulin in plasma.

5.2 Case 2: UVA/Padova simulations
The UVA/Padova type 1 diabetic patient simulator34 is commercially available and the only one which was approved by the US
Food and Drug Administration for pre-clinical trials.
In this subsection, some of the benefits of the control structure in Section 3 are demonstrated on the Academic version v3.2,

2013, of the UVA/Padova simulator. To stress the controller, a period of T = 15 minutes is selected.
In contrast to what was made in the previous subsection, pulse inputs of one minute of duration are used here instead of

impulsive inputs for a proper simulation in the UVA/Padova virtual patient4. To properly represent model (5) under the pulse
scheme, some modifications should be made on the underlying discrete-time subsystems, as it is detailed in Subsection 8.4 of
the Appendix.
The pattern of the simulated scenario is the same as the one in the previous subsection including breakfast, lunch and dinner,

over two days. However, some modifications were made in both the amount and the schedule of each meal. Furthermore, a snack

4The UVA/Padova virtual patients are treated by insulin injections of at least one per minute. Remark that one minute remains a very short time in comparison with T .
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is included between lunch and dinner. The meals time and amount are: 50 g at 7 ∶ 00, 80 g at 13 ∶ 00, 25 g at 17 ∶ 00, 60 g at
20 ∶ 00 for the first day, and 55 g at 6 ∶ 00, 80 g at 14 ∶ 00, 30 g at 18 ∶ 00, 55 g at 21 ∶ 00 for the second day. The selected
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BG sensor is the CGM described in32, while the pump is selected as a generic one. For the first 5 hours, the basal pulse insulin
value is injected to the virtual patient, to stabilize it at a given point.
Three sets of 10 patients each one - labeled as Adolescent 1 to Adolescent 10, Adult 1 to Adult 10 and Child 1 to Child 10,

respectively, were simulated 5 times (a total of 50 simulations per set of patients). To increase the controllability of the system
under control (i.e., to increase the controllable set to the safety blood glucose zone), a minimal basal value of 0.025 (U∕ℎ) (or
4.2e−4 (U∕min)) was selected, which is the minimal value of many commercial pumps to avoid catheter obstruction. This way,
given that the controller can select a range of insulin bolus values going from 0 to 25 − 30 (U∕min), the total insulin injected to
the virtual patient goes from 4.2e−4 to approximately 25 − 30 (U∕min), allowing almost null insulin injection to quickly avoid
potential hypoglycemic episodes. Note that when a permanent non-negligible insulin basal value is used, the possibilities to
compensate predicted hypoglycemic episodes are drastically reduced.
The drawback of the selected scheme is that during the fasting periods non-zero boluses are needed to keep the BG in the

safe range. A benefit, on the other hand, is that no patient-dependent basal level needs to be computed, since it is the controller
itself who finds the correct value that maintains the BG in a given value during the fasting periods. This characteristic is useful
for time varying basal level scenarios, which is what happens in real life, within each day.
Figures 7 and 8 show the BG time evolution and the control-variability grid analysis (CVGA5) plot corresponding to the

Adolescents, while Figure 9 , on the other hand, shows the insulin pulses for a particular patient (Adolescent 5). In a similar
vain, Figures 10 and 11 show the BG time evolution and CVGA plot corresponding to the adults, while Figure 12 shows
the insulin pulse for a particular patient (Adult 1). Finally, Figures 13 and 14 show the BG time evolution and CVGA plot
corresponding to the children, while Figure 15 , on the other hand, shows the insulin pulse for a particular patient (Child 1). As it
can be seen, the controller was tunedwith themain objective of avoiding hypoglycemic episodes, but accounting for the sufficient
aggressiveness to avoid also, as long as possible, hyperglycemia. As a result, some excursions of the BG to moderate/high values
can be observed after meals. However, the BG is steered back to the euglycemia zone in a relatively short time. It should be
noted that the hypoglycemia is avoided without the use of any additional ‘safety’ methodology, such as the use of asymmetric
cost functions, mechanisms of switching-off or bypassing the controller, or even the use of safety supervisory strategies. These
benefits come, presumably, from the long-term accurate predictions. This can be corroborated with the results in Table 3 , where
no hypoglycemia and only six hyperglycemia episodes are reported, for all patients.

5CVGA are plots that easily allows one to evaluate a population test, by considering a grid in the space of upper and lower 95% confidence bounds of the BG.
Red-colored region means dangerous behaviors with both hyper and hypoglycemic events. Green regions means safety behaviors.
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Table 3 shows the typical indexes used to evaluate an AP proposal. The outcome indices are reported as mean ± standard
deviation (SD) for normally distributed data and as median (interquartile range) otherwise. SD is the standard deviation, while
CV is the coefficient of variation.

TABLE 3 Performance of the strategy

Adult patients Child patients Adolescent
patients

All patients

Mean BG (mg/dl) 119.33 (7.89) 149.09 (18.50) 135.23 (12.93) 132.89 (22.62)
SD BG (mg/dl) 19.65 ± 2.94 38.88 (11.83) 29.30 (21.32) 27.37 (19.77)
CV BG (%) 16.26 ± 2.39 24.15 (8.18) 21.55 (13.28) 20.94 (10.76)

Time percentage of BG in each zone (%)
< 54mg/dl 0 ± 0 0 ± 0 0 ± 0 0 ± 0
< 60mg/dl 0 ± 0 0 ± 0 0 ± 0 0 ± 0
< 70mg/dl 0 ± 0 0 ± 0 0 ± 0 0 ± 0

70 − 140mg/dl 83.65 (8.71) 52.33 (26.41) 67.25 (16.17) 67.42 (24.75)
70 − 180mg/dl 99.20 (2.46) 76.93 ± 7.52 87.30 (19.16) 89.81 (21.59)
> 180mg/dl 0.80 (2.46) 23.07 ± 7.52 12.70 (19.16) 10.19 (21.59)
> 250mg/dl 0 ± 0 3.26 (3.89) 0 (2.33) 0 (3.09)
> 300mg/dl 0 ± 0 0 (0) 0 ± 0 0 (0)

Number of events in each zone (-)
< 54mg/dl 0 ± 0 0 ± 0 0 ± 0 0 ± 0
< 60mg/dl 0 ± 0 0 ± 0 0 ± 0 0 ± 0
< 70mg/dl 0 ± 0 0 ± 0 0 ± 0 0 ± 0
> 180mg/dl 1 (2) 6 (2) 6 (4) 6 (4)
> 250mg/dl 0 ± 0 2 (2) 0 (2) 0 (2)
> 300mg/dl 0 ± 0 0 (0) 0 ± 0 0 (0)

Total daily insulin (U)
Day 1 43.5 ± 17 19.67 ± 6 31.16 ± 15.83 32.67 ± 21.5
Day 2 44.67 ± 19.67 19.67 ± 7 33.17 ± 16 33 ± 22

6 CONCLUSIONS

A new Impulsive Zone MPC controller was designed based on a new impulsive affine model that accurately describes the Type
I diabetic patient. In contrast with other popular models, the main features of the model considered herein that make it suitable
for the proposed MPC are: i) it displays an unstable equilibrium region as the dynamics includes an integrating behavior. This
equilibrium region is uniquely characterized by a set of glucose levels and one single value of insulin injection, the so-called
basal rate. This permits to get a reliable description of the true T1DM patient consistent with medical practice, mainly from the
point of view of the anticipative characteristics of MPC controllers. In fact, anticipating a possible unstable behavior allows
the controller to take preventive actions faster. ii) It is a long-term model, and so the well-known anticipative benefits of
predictive strategies is much better exploited. This way, predictable future hyper- and hypo-glycemia episodes can be avoided
faster by means of a smooth insulin delivery. iii) It is an affine model, and so, no approximation is needed for the impulsive
representation. Opposite to other MPC strategies, which need a permanent insulin injection (zero-order hold), here the insulin
is delivered by boluses, which can prevent insulin overdoses.
The main features of the new MPC controller are: i) The use of artificial optimization variables produces a large domain of
attraction. This means that disturbances that push the system away from the desired equilibrium target remain under control. ii)
It works by zones in such a way that no control penalization is made when the glucose is inside the desired zone. This is not a
trivial achievement, since every time the glucose is in the zone, no matter at which point it is, no unnecessary control action
(insulin delivery) will be taken. iii) The selection of the main impulsive ZMPC parameters allows a variety of closed-loop
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FIGURE 7 Adolescents. BG time evolution for the 50 simulations of the UVA/Padova virtual patients.
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FIGURE 8 Adolescents. CVGA for the 50 simulations of the UVA/Padova virtual patients. The adolescent population presents
a sparse type of subjects, with large differences in the insulin sensitivity and time constants for both, the insulin and the CHO.
The controller, by a means of a personalized tuning, is able to keep any subject BG in the safety zones. No subject BG goes
above 300 [mg∕dl], while no one is below 80 [mg∕dl]. Some of them are even in the zone between 180 and 90 [mg∕dl].

behaviors, and several further studies can be done to find a method to tune the controller according to the significant patient
model parameters.
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FIGURE 10 Adults. BG time evolution for the 50 simulations of the UVA/Padova virtual patients.

The testing of the proposal in more realistic scenarios is a matter of future work. The first step is to make a comparison
with other available models (i.e., Bergman linearized model,10, Hovorka stable model,17, etc.) under MPC schemes. This way,
conclusions can be drawn about the performance obtained with both approaches and how it is impacted by the choice of the
model.
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FIGURE 11 Adults. CVGA for the 50 simulations of the UVA/Padova virtual patients. The adult population is easier one to
control. Accordingly, the controller is able to keep most of the subject BG in the zone between 180 and 90 [mg∕dl]. Furthermore,
no subject BG goes below 85 [mg∕dl].
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FIGURE 12 Input pulses for patient Adult1
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FIGURE 13 Children. BG time evolution for the 50 simulations of the UVA/Padova virtual patients.
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FIGURE 14 Children. CVGA for the 50 simulations of the UVA/Padova virtual patients. The children population is clearly the
more challenging one. The controller is able, however, to keep all the subject BG below the upper bound of 300 [mg∕dl], while
no one is below 83 [mg∕dl].
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FIGURE 15 Input pulses for patient Child1

8 APPENDIX:

8.1 Impulsive inputs schemes
Consider the following affine continuous-time system

ẋ(t) = Ax(t) + Buu(t) + Brr(t) + E, x(0) = x0,
y(t) = Cx(t). (11)

If we assume that the insulin infusion u is injected to the system only at certain time instants given by kT , where T is the fixed
period, and k ∈ ℕ, then it is possible to work under the impulsive system framework recently developed in21 (see Figure 16
for a schematic plot). Formally, assume that the input is given by

u(t) = u(kT )�(t − kT ), t ∈ [kT , (k + 1)T ], k ∈ ℕ,

where �(t) is the generalized function, or distribution, Dirac impulse6, that fulfills �(0) = ∞, �(t) = 0 for any t ≠ 0, and
∞

∫
−∞

g(� )�(� )d� = g(0),

for any continuous, compactly supported, function g.
The solution of (11) at each period kT can be split into two parts, the first one, describing the system in the interval [kT , kT +

ΔT ], and the second one describing the system in the interval (kT + ΔT , (k + 1)T ), for a positive and arbitrary small ΔT ,

6TheDirac impulse is only an abstraction to formulate the impulsive problem. The idea behind this concept is that quick insulin injections can be properly approximated
by impulses, with respect to T .
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FIGURE 16 Impulsive scheme

0 < Δ << 1:

'(t; x(kT ), u, r) = eA(t−kT )x(kT ) +

t

∫
kT

eA(t−� )Buu(� )�(� − kT )d�

+

t

∫
kT

eA(t−� )Brr(� )d� +

t

∫
kT

eA(t−�)d�E,

for t ∈ [kT , kT + Δ], and

'(t; x(kT + ΔT ), u, r) = eA(t−kT )x(kT + ΔT ) +

t

∫
kT+ΔT

eA(t−� )Brr(� )d�

+

t

∫
kT+ΔT

eA(t−� )d�E,

for t ∈ (kT + Δ, (k + 1)T ).
Now, if we consider the limits of this solution for ΔT → 0, it follows that

x(kT +)
Δ
= lim
ΔT→0

'(t; x(kT ), u, r) = x(kT ) + Buu(kT ), (12)

where x(kT +)
Δ
= lim
ΔT→0

x(kT + ΔT ), and

x(t)
Δ
= '(t; x(kT +), u, r) = eA(t−kT )x(kT +) +

t

∫
kT

eA(t−� )Brr(� )d�

+

t

∫
kT

eA(t−� )d�E,
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for t ∈ (kT , (k + 1)T ). This latter solution is the trajectory of the continuous time system

ẋ(t) = Ax(t) + Brr(t) + E, x(0) = x0, (13)

for the aforementioned period of time.
This way, merging (12) and (13) into a single model, the following impulsive system can be obtained:

⎧

⎪

⎨

⎪

⎩

ẋ(t) = Ax(t) + Brr(t) + E, x(0) = x0, t ≠ kT ,

x(kT +) = x(kT ) + Buu(kT ), k ∈ ℕ, (14)

where x(kT +) denotes the limits of x(t) when t approaches kT from higher values. In (14), the second equation describes the
discontinuities that the impulsive input causes into the system, while the first describes the free response (only affected by the
disturbances r) between the discontinuities.

Remark 3. An interesting point here is that the affine impulsive system (14) has no formal equilibrium points. In fact, there is
no triplet (xis, u

i
s, r

i
s) fulfilling the condition:

Axis + Brr
i
s + E = 0, (15)

xis = xis + Buu
i
s, (no discontinuity), (16)

because the first equation has no solution neither for ris = 0 (fasting condition), nor r
i
s ≠ 0.

Consider the hypothetical case ris = rb, with rb a constant value. The only equilibrium in this case is (xb 0 0 rb rb; 0; rb), with
xb any value of glycemia and rb = −�1∕�4, but negative values are not realistic. For the case rb = 0 (fasting condition), there
is no solution. An interpretation of the latter situation is that it is not possible to maintain the system at a given point by only
applying impulsive inputs, even when this input is zero. However, as it will be shown in the next section, it is possible to maintain
the system (switching) inside a given region. The condition for that is: (i) to find states before and after the discontinuity that,
although different, remain constant and (ii) to ensure that the transient state trajectories between these states remain inside a
given set.

8.2 Underlying discrete-time subsystem
A natural way to obtain a discretization (or a discrete-time system) of the continuous-time impulsive system (14) is by sampling
it with a sampling time given by the period T of the impulses. According to the results presented in29,21, the idea is to characterize
two discrete-time subsystems describing the evolution of the states x(kT ) and x(kT +); i.e., the evolution of the states before
and after the discontinuities. The subsystems are as follows:

x∙(k + 1) = A∙x∙(k)+B∙uu
∙(k)+B∙rr

∙(k)+E∙, x∙(0) = x(0) = x0, (17)

x◦(k+1)=A◦x◦(k)+B◦uu
◦(k)+B◦r r

◦(k)+E◦, x◦(0)=x(0+)=x0 + Buu(0), (18)

where x∙(k)
Δ
= x(kT ), x◦(k)

Δ
= x(kT +), A∙ = A◦ = eAT , B∙u = eATBu and B◦u = Bu. Furthermore, the input and disturbance

of each subsystem are such that u◦(k + 1) = u∙(k) = u(kT ), r◦(k) = r∙(k) = r(kT ), and E∙ = E◦ Δ
= ∫ T

0 eA�d�E, B∙r = B◦r
Δ
=

∫ T
0 eA�d�Br.
These two subsystems are not only useful to describe the evolution of the impulsive system (14) at the sampling times kT and

kT + - which is necessary to implement a MPC - but also to characterize the equilibrium regions of (14) accounting for both,
the discontinuities and the free responses between them.
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8.3 Extended equilibrium of the impulsive system
The idea now is to find an equilibrium set for (14), based on the underlying discrete-time subsystems (17) and (18). To do that,
we first define the equilibrium pairs of (17) and (18) - (x∙s, u

∙
s) and (x

◦
s , u

◦
s ), respectively - as the ones fulfilling the conditions

7:

x∙s = A
∙x∙s + B

∙
uu
∙
s + E

∙, (19)
x◦s = A

◦x◦s + B
◦
uu
◦
s + E

◦.

Given that u◦(k+1) = u∙(k) by definition (andE◦ = E∙), we have that at steady state u∙s = u
◦
s . This means that one equilibrium

input (defined as u∙s(k) for simplicity) has to fulfill both equilibrium conditions, i.e., the last equation can be written as

x◦s = A
◦x◦s + B

◦
uu
∙
s + E

∙. (20)

This way, given that (17) and (18) are subsystems describing one single impulsive system, we need to find triplets (x∙s, x
◦
s , u

∙
s) ∈

 × × fulfilling both (19) and (20). Furthermore, a final condition that the equilibrium triplet (x∙s, x
◦
s , u

∙
s) has to fulfill to be

a feasible extended equilibrium, is that the free responses corresponding to them (orbits) must be feasible:

os(x∙s, u
∙
s) ∈  ,

where

os(x∙s, u
∙
s)

Δ
=
{

'(t; x∙s, u
∙
s, 0), t ∈ (kT , (k + 1)T ], k ∈ ℕ

}

,

and '(t; x∙s, u
∙
s, 0) = eAt(xs + Buu∙s) + ∫ t

kT e
A(t−� )d�E, i.e., '(⋅) it is the solution of the system (13), for an impulsive input of

value u∙s.
Summarizing, the extended equilibrium set  ∙

s is characterized as
8:

 ∙
s
Δ
=
{

x∙s ∈  ∶ ∃u∙s ∈  such that A∙x∙s+B
∙
uu
∙
s+E

∙ = x∙s, os(x
∙
s, u

∙
s) ∈ 

}

(21)

Furthermore, it can be shown that the set of equilibrium inputs9,  ∙
s , is given by a singleton in the diabetes system case, i.e.,

 ∙
s
Δ
=
{

u∙s
}

=
{

u∙b
}

, where u∙b represents the basal insulin rate of the subsystem (17). Note that this latter impulsive equilibrium
is different from the input equilibrium defined in Subsection 2.4 as the basal rate, i.e.,

{

u∙b
}

≠
{

ub
}

. For details in the procedure
to compute such equilibrium sets  ∙

s and 
∙
s , in a general context, please refer to

21.

8.4 Pulse input scheme
Here, a pulse input scheme (i.e., when the inputs are pulses of a given duration, instead of impulses) is introduced to be consistent
with the UVA/Padova simulator, in which impulsive inputs are not allowed. To properly represent model (5) under the pulse
scheme, some modifications need to be made on the underlying subsystems in Subsection 8.2. Basically, matrix B∙u has to be
redefined as

B∙u
Δ
= eA(T−ΔT )

ΔT

∫
0

eA(ΔT−� )d�Bu,

where ΔT represents now the duration of the input pulse. Furthermore, to characterize the extended equilibrium, matrix B◦u
takes the form

B◦u
Δ
=

ΔT

∫
0

eA(ΔT−� )d�Bu.

This way, the extended equilibrium sets,  ∙
s and 

∙
s are different from the ones obtained in the impulsive case.

7Given that it has no sense to consider a permanent disturbance (meal), it is assumed that r∙ = r◦ = 0 in the steady state.
8Note that condition (20) is implicitly taken into account in definition (21).
9The set of inputs for which exists an equilibrium state.
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