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Abstract: The runup of initial Gaussian narrow-banded and wide-banded wave fields and its statistical 

characteristics are investigated using direct numerical simulations, based on the nonlinear shallow 

water equations. The bathymetry consists of the section of a constant depth, which is matched with the 

beach of constant slope. To address different levels of nonlinearity, the time series with five different 

significant wave heights are considered. The selected wave parameters allow also seeing the effects of 

wave breaking on wave statistics. The total physical time of each simulated time-series is 1000 hours 

(~360000 wave periods). The statistics of calculated wave runup heights are discussed with respect to 

the wave nonlinearity, wave breaking and the bandwidth of the incoming wave field. The conditional 

Weibull distribution is suggested as a model for description of extreme runup heights and assessment 

of extreme inundations. 

Keywords: wave statistics; wave runup; numerical modelling; nonlinear shallow water theory; wave 

breaking; freak runups 

 

1. Introduction 

Estimating extreme runup events in coastal zones is an important task. Flood prediction received a 

lot of attention in recent decades, in order to reduce hazard risks in coastal zones [1-4]. The statistical 

distribution of wave runup characteristics is influenced by many factors, such as topography and 

coastline, nonlinearity and wave breaking [5-7]. 

Also, some individual waves at the coast may be unexpected, extreme and hazardous. This regards 

sneaker waves or freak wave runups [8-10]. Such extreme events at the coast often lead to human injuries 

and fatalities, when people are washed off to the sea from a gentle beach or from coastal rocks or sea 

walls, and damage of coastal structures. During the period of 2011-2018, there were cases when freak 

wave runups (unrelated to tsunami) washed cars and motorcycles into the sea and damaged houses and 

buildings in the coastal zone [10]. These events correspond to the very tails of the statistical runup height 

distribution and their analysis requires extremely large datasets. 

Previous studies have employed different methods to study the statistics of long wave runup, 

including numerical models, experiments, and field measurements.  

Theoretically, [11] studied the statistical characteristics of long waves on a beach of constant slope 

using an analytical solution of the nonlinear shallow water theory. The study revealed that the runup 

height was distributed according to the Rayleigh distribution, if the incident wave elevation was 

described as having a normal distribution and a narrow-band spectrum. In terms of the statistical 

moments of the moving shoreline on a beach of constant slope, this study asserts that the kurtosis is 

positive for weak amplitude waves and negative for strongly nonlinear waves, whereas the skewness is 

always positive. Later [12] showed that for the description of even non-breaking waves the Gaussian 
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distribution is inappropriate. Both theoretical studies had a number of assumptions, which were putting 

in question the applicability of these results.  

Experimentally, [13] tried to reproduce theoretical results of [11] in the wave flume at Warwick 

University. However, they could not generate “pure” Gaussian wave field. Moreover, the generated 

waves were affected by capillary effects. Thus, the only result [13] could reproduce regarded an increase 

in the mean sea-level elevation with an increase in wave nonlinearity attributed to the known 

phenomenon of wave set-up. They also found that the values of the statistical moments of wave runup 

(skewness and kurtosis) were similar to those of the incident wave field. [14] studied statistics of narrow-

band and wide-band wave runups in the Large Wave Flume of the University of Hannover, Germany. 

They found that wave fields with a narrow-band spectrum were associated with a higher loss of the wave 

energy compare to the waves with a wide-band spectrum. However, their experimental records were not 

long enough to discuss freak runups. 

In the field measurements, [15] studied runup heights, measured on a wide spectrum of sandy 

beaches in New South Wales; they found that runup was distributed according to the Rayleigh 

distribution. [16, 17] studied wave runup at Canadian and Australian coasts and demonstrated that wave 

runup deviates from the Gaussian distribution. Although some of these conclusions were similar to those 

of [11-13], it was not possible to put direct correspondence between these works due to a number of 

reasons. First, the field measurement studies lacked information about an incident wave field. Second, 

they had a different bathymetry and coastal topography, deviating from the ideal plane beach. Third, the 

data included an error associated with measurement techniques.  

However, the main issue, which complicates comparison of theoretical [11, 12] and experimental [13, 

14] results, is the insufficient length of the experimental time-series, which do not support analysis of 

extreme runup statistics. Potentially, this issue can be overcome nowadays with the use of IP high-

resolution cameras permanently installed on a beach and associated techniques [18-24]; however, we have 

not seen such works yet.  

In this paper we cover the existing gap in long-term experimental records by using digital data 

obtained with intensive numerical computations. This approach has clear advantages. It gives control on 

the initial wave field offshore and allows checking the applicability of the approximated analytical results 

by [11, 12] to a more realistic bathymetry: plane beach merged with the flat bottom.  

The paper is organized as follows. In section 2, the numerical model, based on nonlinear shallow 

water equations is described. The statistical moments and the distribution functions of random wave and 

runup fields, as well as distribution functions of wave and runup heights, are described in detail in 

Section 3. Then, the main results are summarized in Section 4.  

2. Numerical Model 

In this section, the 1D nonlinear shallow water model, which represents the mass and momentum 

conservation, is briefly described: 

( ) 0,t x
D Du+ =                                                                                                                 (1) 

( ) 2

2

g dh
Du D gD

t x dx
Du

   
+ + = 

   
.                                                                                    (2) 

Here D = h + η is the total water depth, η (x, t) is the water elevation, with respect to the still water level, 

x is the coordinate directed onshore, and t is time, h(x) is the unperturbed water depth, u(x, t) is the depth-

averaged water flow velocity, and g is the gravitational acceleration. The dimensionless formulation can 

be obtained by choosing a typical water depth h0 as the length scale (in this problem, the depth of the 

constant section can be taken as h0√𝑔ℎ0, 
0gh as the velocity scale and ℎ0/√𝑔ℎ0 0 0

/h gh  as the time 

scale. The dimensionless equations take the form of equations (1), (2) with h0 = 1 and g = 1. All 

computations reported in this study were performed in the dimensionless formulation. 

The modelling is performed in the framework of equations (1), (2), which are solved using a modern 

shock-capturing finite volume method. Although the shallow water model does not pursue the wave 

breaking and undular bore formation in a general sense (including the water surface overturning), it 

allows shock-wave formation and propagation with the speed given by Rankine-Hugoniot jump 
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conditions, which, to some extent, approximates wave breaking. The numerical scheme is second order 

accurate, thanks to the spatial reconstruction (UNO2). For details, see [25]. 

In this simulation, the corresponding bathymetry (Figure 1) set-up is used: the flat part of the flume 

matches the beach of constant slope: 

 
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where h0 is the constant water depth, kept at 3.5 m for all simulations, [a, c] are the left and right 

boundaries of the numerical flume, [b] is the point where the slope starts, and tan α = 1:6 is tangent of the 

bottom slope. For simplicity, the left boundary is taken (a = 0). The length of the section of constant depth 

is b = 251.5 m, and the right limit of the numerical flume is taken c = 291.5 m. The number of spatial grid 

points along the distance between [a] and [c] is fixed and equal to 1000 for all experiments. The time step 

is chosen to satisfy the Courant–Friedrichs–Lewy condition for all considered significant wave heights. 

The spatial grid step is, therefore, 25 cm, which corresponds to 4 cm vertical resolution for runup height. 

This was done in order to limit simulation time, when running 10 000 hrs of physical time of wave 

propagation. However, this also implies that we have a low resolution and not so reliable statistics 

especially for small amplitude waves Hs = 0.1 m. In a similar manner to the significant wave height, Hs, 

the significant runup height, Rs, is introduced as an average of one third of the largest runup heights in 

the time-series. The significant runup height for this small amplitude case is Rs = 0.23 m, so even in this 

case the resolution is low, but considerable.  

Of course, the number of extreme runups in this resolution is also somehow underrepresented, 

however all qualitative and comparative conclusions of this study still hold on.  

2.1. Boundary Condition  

On the left extremity x = a of the computational domain, the Dirichlet boundary condition on the 

total water depth component D(a, t) = h0 + η0(t) of the solution (D, Du) is imposed. Namely, the free surface 

elevation function, η0, is drawn from a narrow- or wide-band Gaussian signal depending on the 

experiment. This data turns out to be enough to obtain a well-posed initial boundary-value problem 

provided that the flow is subcritical at the point x = a, i.e. ( ) ( ), ,u a t gD a t ,, which is always the case 

for Riemann waves (see [26] for the rigorous mathematical justification of this fact in case of transparent 

boundary conditions). The boundary conditions are implemented in the finite volume scheme according 

to the method described in [27], see also [28] for more details on the application to the nonlinear shallow 

water equations).  

 

Figure 1. Bathymetry sketch of numerical experiment. 

The considered boundary condition (wave field offshore) is distributed by the Gaussian distribution: 

2
1

21
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2
f e

 


 
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 = ,                                                                                                (4) 

where, σ is a standard deviation, and μ is a mean value of the distribution. To ensure this, all individual 

time-series have been verified by the Kolmogorov–Smirnov test [29].  
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The spectrum of the generated waves is 
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where f is the wave frequency, Δf is the frequency band, f0 = 0.1 Hz is the central frequency, and S0 is the 

constant, which is calculated in order to achieve the desired Hs. 

In this work, the case with Δf/f0 = 0.1 is referred to narrow-band spectrum, while the case with Δf/f0 

= 0.4 is attributed to the wide-band spectrum. In order to study the influence of wave nonlinearity during 

wave propagation to the coast, waves of different significant wave heights, which is calculated as 

averaged of one third of the largest wave heights in the time-series (Hs = 0.1 m, 0.2 m, 0.3 m, 0.4 m, and 

0.5 m) are considered. The calculated time-series for each Hs is 1000 hours (360 000 wave periods). Parallel 

computations have facilitated the calculation of the statistics of wave runup characteristics for 5000 hours, 

for each bandwidth, and 10000 hours in total. The numerical computations have been carried out in 

MATLAB and run on a cluster containing 28 cores.  

Parameter of the nonlinearity for generated waves is estimated as Hs/h0 and is changing from 0.03 to 

0.14. The characteristic parameter kh0 = 0.38 is at the border of validity of the shallow water theory taking 

into account the horizontal extent of the wave tank. The phase velocity relative error committed by non-

dispersive theory for kh0 = 0.38 is only 2.3%. Thus, at the end of the numerical wave tank the difference 

between wave crest positions (between dispersive and non-dispersive models) is less than 10%. Since the 

focus of this paper is on wave runup, the choice of the theory is justifiable. The choice of wave parameters 

allows us to see the effects of wave breaking on statistics of their runups. The type of wave breaking is 

defined by the Iribarren number [5]:  

/
Ir

H L


= ,                                                                                                                   (6) 

where H is the wave height, and L is the characteristic wavelength offshore. It is surging or collapsing for 

Ir ≥ 3.3, plunging for 0.5 ≤ Ir ≤ 3.3, and spilling for Ir ≤ 0.5. In our dataset, only the first two types of wave 

breaking, surging or collapsing and plunging, are observed. For Hs/h0 = 0.03, less than 1% of waves 

experience plunging breaking, while most of waves are surging. With an increase in Hs/h0 the percentage 

of plunging waves increases. For Hs/h0 = 0.06, 32-35% of wave are plunging, for Hs/h0 = 0.09, 61-65% of 

wave are plunging, for Hs/h0 = 0.11, 71-76% of waves are plunging, and for the most nonlinear case 

Hs/h0 = 0.14, 85-88% of waves are plunging.  

3. Data analysis and results 

Figure 2 shows probability density functions (PDF) of narrow-band and wide-band wave fields for 

different nonlinearities, Hs/h0. The data of the narrow-band spectra, Δf/f0 = 0.1 are shown by triangles 

(different colors correspond to different nonlinearities), while the corresponding Gaussian distribution 

(𝜇 = 0,  𝜎 = 0.25) is shown by the black solid line. The data of the wide-band spectra, Δf/f0 = 0.4 are shown 

by pluses, and the corresponding Gaussian distribution (𝜇 = 0,  𝜎 = 0.27) is shown by the red solid line. It 

can be seen that the generated waves are well described by the Gaussian distribution, which has zero 

mean, skewness and kurtosis for all nonlinearities, Hs/h0.  

To describe the wave statistics in Figure 2, the Rayleigh distribution, which is well used for this type 

of problem [5], is applied: 

2 2/ (2 )
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0, 0

e
f

 
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
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,                                                                                                (7) 

where ξ is a data vector, 𝜆 is the scale parameter. For a better fit, a two-parameter Weibull distribution is 

also considered: 
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where 𝜆 is the scale parameter, and k is the shape parameter. 

The wave height distributions of both narrow-band and wide-band wave fields are shown in Figure 

5. As expected, the narrow-band data are well described by a Rayleigh distribution (𝜆 = 0.5), although a 

Weibull distribution gives a slightly better fit (𝜆 = 0.74, k = 2.27). The data of wide-band spectra tend to be 

distributed according to a Weibull distribution (𝜆 = 0.71, k = 2.06).  

The waves which are twice higher than the significant wave height (H/Hs ≥ 2) are the so-called freak 

waves. It can be seen from Figure 3 that the probability of the freak wave occurrence in the initial wave 

field is higher for narrow-band signals than for wide-band ones. 

The calculated significant runup heights Rs for narrow-band and wide-band signals are shown in 

Figure 4. Interesting to see that Rs for wide-banded waves is always higher than for narrow-banded 

waves, which can be explained by higher variability in wave periods for wide-banded waves. Also, figure 

4 indirectly shows us how many of our waves are breaking. The wave runup height, at which the first 

wave breaking occurs in the wave trough can be estimated as Rcr /h0 = g(αT/(2π))2/h0 = 0.2, see for details 

[30]. This means that our case of “small” nonlinearity Hs/h0 = 0.03 is very little affected by wave breaking 

(< 1% according to Iribarren criterion). The case of Hs/h0 = 0.06 is affected by wave breaking only for 

extreme runups (32-35% according to Iribarren criterion). In the case of Hs/h0 = 0.09, more than a half of 

waves are breaking (61-65% % according to Iribarren criterion). However, in the cases of Hs/h0 = 0.11 and 

Hs/h0 = 0.14 the majority of waves are breaking.  

Figure 5 shows the probability distribution functions of runup oscillations, r/Rs for initial Gaussian 

narrow-banded and wide-banded wave signals. It can be seen from Figure 5a, that runup oscillations of 

narrow-banded waves are no longer distributed by a normal distribution, and are slightly shifted to the 

right towards larger positive values with an increase in nonlinearity. Partially this effect was observed 

both theoretically for an infinite plane beach [11, 12] and experimentally [13, 14]. What is interesting and 

peculiar is a strong deformation of the distribution itself. In addition, the tails of these distributions are 

much thinner than of Gauss, and reflect a relatively weak probability of extreme floods for narrow-

banded waves.  

The distributions of runup oscillations of initial wide-band signal are also shifted to the right towards 

higher runups with an increase in nonlinearity, but this shift is much larger compared to the one of the 

narrow-band signal. Moreover, the tails of these distributions are much thicker than those for narrow-

band data, and are rather close to the normal distribution, which corresponds to a relatively large 

probability of extreme floods for wide-banded waves.  

It can also be seen that for both narrow-banded and wide-banded waves, the probability of large 

waves decreases with an increase in wave nonlinearity, which can be explained by wave breaking. 
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Figure 2. Probability density functions of normalized narrow-band and wide-band wave fields offshore 

for different nonlinearities, Hs/h0 in linear (left) and logarithmic (right) scales. Solid lines correspond to 

Gaussian distributions fitted to the corresponding datasets, shown with a red color for wide-band data 

and with black color for narrow band data. . 

 

 

Figure 3. Probability density functions of normalized trough-to-crest wave heights of the initial narrow-

band (a) and (c), and wide-band (b) and (d) wave fields for different nonlinearities, Hs/h0 in linear (top) 

and logarithmic (bottom) scales. Red solid line corresponds to the Rayleigh distribution; black solid line 

corresponds to the Weibull distribution fitted to the corresponding dataset. 
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Figure 4. Significant runup height, Rs for wide-band (red circles) and narrow-band (black crosses) signals 

for different nonlinearities. 

 

 

Figure 5. Probability density functions of runup oscillations, normalized by a significant runup height, Rs, 

for different nonlinearities for narrow-banded (a) and (c), and wide-banded (b) and (d) waves in linear 

(top) and logarithmic (bottom) scales. Solid lines correspond to Gaussian distributions, fitted to the 

corresponding datasets, using the matching colors. 

These effects can also be seen in Figure 6, which shows the statistical moments of narrow-banded 

and wide-banded waves offshore, normalized by Hs, and the corresponding runup oscillations on a 

beach, normalized by Rs. The statistical moments, mean, variance, skewness, and (normalized) kurtosis 

are calculated as: 
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where ξ is a data vector, and n is its length.  

Noteworthy, the mean, skewness and kurtosis of both narrow-banded and wide-banded wave fields 

are zero, which provide the desired Gaussian statistics. Regarding runup oscillations, one can see that for 

both narrow- and wide-banded waves the mean of runup oscillations rises with the nonlinearity, which 

reflects the known effect of wave set-up on a beach. For small-amplitude waves, the set-up for narrow-

banded waves is larger than for wide-banded ones, while for large amplitude waves, affected by wave 

breaking, it is the opposite. For wide-banded waves, the variance decreases with an increase in 

nonlinearity, while for narrow-banded waves it changes non-monotonically. The higher moments, 

skewness and kurtosis of runup oscillations for waves with narrow-band spectrum are negative, while 

for waves with wide-band spectrum they are sign-variable. Also for the narrow-banded waves, the 

skewness decreases with an increase in wave nonlinearity, while kurtosis changes non-monotonically 

with an increase in wave nonlinearity. Moreover, for wide-banded waves, both skewness and kurtosis 

change non-monotonically with an increase in nonlinearity. This somehow only partially corresponds to 

the theoretical findings in [11], where the kurtosis was positive for weak amplitude waves and negative 

for strongly nonlinear waves, while the skewness was always positive. However, in the experimental 

study of [13], the skewness was both positive and negative. It is also important to say that for all four 

moments one can see different dynamics for small-amplitude non-breaking or almost non-breaking 

waves and large-amplitude waves, strongly affected by wave breaking. 

 

Figure 6. Statistical moments of runup oscillations (normalized by Rs) of narrow-banded (red circles) and 

wide-banded (black circles) waves on a beach, r, versus nonlinearity, Hs/h0. Statistical moments of narrow-

band and wide-band wave fields offshore (normalized by Hs) are shown by red crosses and black squares 

respectively. 

Runup oscillations deviate from the Gaussian distribution even for weak-amplitude waves (see 

Figure 6). With an increase in nonlinearity, all statistical moments of runup oscillations change. It can be 

seen that statistical moments of narrow-banded irregular waves (except kurtosis) change with Hs 

monotonically, while for the wide-banded waves, they vary non-monotonically (except mean values). 

The large (extreme) wave runup heights, Rextrm = R/Rs ≥ s, where s is some threshold value, somehow 

behave similar to a conditional Weibull law whose density is given by Eq. (11): 
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A conditional Weibull law is characterized by three parameters: the shape k, the scale λ and the 

threshold s. Given the data (Ri extrm) = 1...n, s is fixed and k and λ are computed by maximum likelihood 

estimator. The scale parameter, λ can be obtained from Eq. (12): 
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where n is a number of extreme wave runups. In order to obtain the shape parameter, k, one should solve 

Eq. (13): 
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Similarly to freak waves, the waves on a beach, whose runup height is twice larger than the 

significant runup height (R/Rs ≥ 2), we call freak runups. On gentle beaches, such freak runups are 

manifested as sudden floods and may result in human injuries and fatalities [8-10].  

Figure 7 shows probability distribution functions of large runup heights (R ≥ 0.7 Rs), for narrow-

band and wide-band spectra, for different nonlinearities. It can be seen in Figure 7, the tails of 

distributions for runup heights corresponding to freak events for narrow-banded waves decay much 

faster than those for wave heights offshore (except waves of weak amplitude with Hs/h0 = 0.03), which 

means that for narrow-banded waves the probability of freak runup occurrence on a beach is less than 

the probability of freak wave occurrence in the sea coastal zone and a gentle beach works as some kind 

of “filter” for narrow-banded freak events. This is also manifested in the numbers of actual freak events, 

given in Table 1. It can be seen that for non-breaking waves of the smallest amplitude Hs/h0 = 0.03, the 

number of freak events on a beach was reduced twice compared to the original number of freak waves 

offshore, while for waves of larger amplitude, which were affected by the wave breaking, there were no 

freak runups at all.  

In contrast, for wide-banded waves the probability of freak events on a beach is more or less the 

same as in the sea coastal zone and may even be higher (Figure 7). The number of freak runups for small 

non-breaking wide-banded waves increased twice as compared to the original number of freak waves 

offshore (see Table 1). With an increase in wave amplitude (and consequently, wave breaking), the 

number of freak runups on a beach decreases, however for waves of moderate amplitude, the number of 

freak runups is still larger than the number of freak waves offshore, while for waves strongly affected by 

the wave breaking (Hs/h0 = 0.11 and 0.14), the number of freak runups on a beach suddenly drops down 

(see Table 1). 
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Table 1. The number of freak events in the sea coastal zone and on a beach for different wave regimes. 

 Δf/f0 = 0.1 Δf/f0 = 0.4 

Hs/h0 
Number of 

waves 

Freak waves 

offshore 

Freak 

runups 

Number of 

waves 

Freak waves 

offshore 

Freak 

runups 

0.03 362255 125 61 389232 51 118 

0.06 362380 117 0 389385 45 76 

0.09 362096 89 0 389444 49 62 

0.11 362319 88 0 389263 53 2 

0.14 362302 102 0 389728 34 1 

Probability of extreme wave runups on a beach is noticeably higher for waves with wide-band 

spectrum, than for waves with narrow-band spectrum (see Figure 7), although the probability of extremes 

wave heights in the wave field offshore is significantly higher for narrow-banded waves than for wide-

banded ones (see Figure 3, Table 1). 

The probability of extreme runup formation changes with the wave nonlinearity. It is decreasing 

with an increase in wave nonlinearity for wide-banded waves and changes non-monotonically with 

nonlinearity for narrow-banded waves. It is also interesting to see that the tails of distributions in Figure 9 

are somehow gathered into clusters and can be separated in two groups for “relatively large Hs“ and 

“relatively small Hs”, where the “small Hs” group is always higher than the “large Hs” group. The latter 

holds for both narrow-banded and wide-banded waves and can be explained by the wave breaking.  

The corresponding data of wave runup heights are also approximated by a conditional Weibull 

distribution [Eq. (11)], which gives reasonable results and can be used to evaluate the probability of freak 

runups. Here the threshold s is selected as 0.7 and the calculated parameters k and λ are given in Table 2. 

Table 2. Parameters of conditional Weibull distribution fitted to the corresponding datasets in Figure 7. 

 Δf/f0 = 0.1 Δf/f0 = 0.4 

Hs/h0 k λ k λ 

0.03 2.747 0.886  0.76 0.116 

0.06 3.6 0.92  1.43 0.48 

0.09 4.06 0.89 2.58 0.86 

0.11 3.08 0.777  2.6 0.772 

0.14 3.08 0.72  2.718 0.762 

  

Figure 7. Probability density functions of large runup heights (R ≥ 0.7Rs) for (a) narrow-banded (triangles) 

and (b) wide-banded (pluses) waves. Lines correspond to conditional Weibull distributions [Eq. (11)], 

fitted to the narrow-band (solid lines) and wide-band (dashed lines) datasets, using the matching colors. 
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4. Conclusions 

In this paper, irregular waves runup on a plane beach is studied by means of direct numerical 

simulations. The numerical model is based on the nonlinear shallow water equations and is of the second 

order of accuracy. The corresponding bathymetry consists of the section of constant depth, which is 

matched with the beach of a constant slope. The irregular waves are represented by the Gaussian wave 

field with spectra of two different bandwidths, which are referred to as narrow-banded and wide-banded 

waves. To address different levels of wave nonlinearity, time-series with five different significant wave 

heights are considered. The selected wave regimes represent (i) non-breaking waves, (ii) waves slightly 

affected by wave breaking, (iii) moderate wave breaking and (iv) significant wave breaking, when the 

majority of waves are breaking. Each of these time-series has a duration of 1000 hours (360 000 wave 

periods). 

The heights of narrow-banded waves are well described by Rayleigh distribution, while heights of 

wide-banded waves are described by Weibull distribution irrespective of the wave nonlinearity. 

However, for wide-banded waves the very tails of these distributions show larger variability than for 

narrow-banded ones. 

As expected, the runup oscillations are not Gaussian, which confirms results of many previous 

studies, both theoretical [11, 12] and experimental [13, 16, 17]. For both narrow-band and wide-band 

cases, one can observe the effect of wave set-up (increase in the mean value of runup oscillations), which 

increases with an increase in wave nonlinearity. However, for wide-banded waves this increase is 

significantly stronger than for narrow-banded ones. 

What regards extreme, so-called “freak events”, their statistics in the initial narrow-banded wave 

signal offshore is more representative, than on the beach (“freak runups”) even for non-breaking waves. 

Therefore, for narrow-banded waves, gentle beaches reduce the number of freak events as compared to 

the sea coastal zone, and work as a ‘low-pass filter’ for extreme wave heights. This may explain why freak 

events on a beach are so unexpected [8-10]. However, for wide-banded waves, such an effect has not been 

observed and the probability of freak events on a beach was similar to or even larger than the one in the 

sea coastal zone. 

The number of freak events in wide-band and narrow-band cases varies, so that increase in the 

bandwidth leads to a substantial increase in the number of freak events. This can be explained by higher 

variability in wave periods for wide-banded waves, and wave runup height is rather sensitive to these 

variations. In addition, the number of freak waves decreases with an increase in wave amplitude and 

consequently, wave breaking. The largest number of freak waves was observed for non-breaking wide-

banded waves, which almost doubled the number of freak waves in the boundary condition wave record. 

Finally, to describe statistics of extreme wave runup heights on a gentle beach, a conditional Weibull 

distribution is suggested. It gives reasonable results and may be used for assessment of extreme 

inundations on a beach (freak runups). In addition, in future applications the statistical analysis hereby 

provided might also be useful in the study of the wave run-up phenomenon in other applications, e.g. in 

structures placed in shallow water conditions [31, 32]. 

The limitation imposed by the resolution of the numerical simulations should also be taken into 

account. Although the number of freak waves on the beach may be somehow reduced by a coarse model 

resolution, the qualitative and comparative conclusion of this study should not be affected. This point 

will be improved in our future studies. 
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