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HELSON SETS, SPECTRAL SYNTHESIS AND

APPLICATIONS TO OPERATORS.

BRAHIM BOUYA AND MOHAMED ZARRABI

Abstract. In this paper we highlight the role played by Helson sets

and/or sets of spectral synthesis in some recent results in operator the-

ory. We consider in particular the results on the cyclicity in Lp spaces,

the Katznelson-Tzafriri type theorems and polynomially bounded oper-

ators.

1. Introduction

In this survey we discuss some recent results in operator theory involving

Helson sets and/or sets of spectral synthesis. Let G be a locally compact

abelian group and Γ its dual group. A closed subset E of Γ is called a

Helson set if every continuous function on E vanishing at infinity is the

restriction to E of the Fourier transform of a function in L1(G); E is said to

be of spectral synthesis if every function in L1(G) whose Fourier transform

vanishes on E, can be approximated in norm by functions in L1(G) whose

Fourier transforms vanish in a neighborhood of E.

Helson proved in [11] that a Helson set in the unit circle T does not support

any non-zero measure with Fourier coefficients tending to 0. A closed subset

E of T is called a set of multiplicity if E supports a non-zero distribution

with Fourier coefficients tending to zero. It was shown by Piatetski-Shapiro

that there exists a multiplicity set in T which does not support any non-zero

measure with Fourier coefficients tending to 0. This result was extended by

Körner who proved that there exists a Helson set which is also a multiplicity

set ([21]). Notice that such a set is not a set of spectral synthesis. The proof

of Körner is quite difficult and Kaufman presents a shorter one in [20].

Finally Lev and Olevskii obtain the following stronger result: for any real

q > 2, there exists a Helson set which supports a non-zero distribution S

such that the sequence of Fourier coefficients (Ŝ(n))n∈Z is in `q(Z). This

result allows them to refute the conjecture of Wiener about bicyclicity for

translation of a function in Lp(G) spaces. For G = Z and G = R, Wiener
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has characterized the functions which are bicyclic for translation in L1(G)

and in L2(G). This characterization is actually given in terms of the zero

set of the Fourier transform of the function in question(see [37]). However,

Lev and Olevskii proved that this is not possible in Lp(G) for G = Z or R
and 1 < p < 2 (see [24] and [23]).

We now turn to the quantitative version of Katznelson-Tzafriri type the-

orems. Let S be a suitable subsemigroup of G and let T be a representation

of G by contractions on a Banach space X. For f ∈ L1(S), we set

f̂(T ) : x 7−→
∫
S
f(t)T (t)x dmG(t), x ∈ X,

where mG is the Haar measure on G. The unitary spectrum of T with

respect to S is defined by

Spu(T, S) = {χ ∈ Γ; |f̂(χ)| ≤ ‖f̂(T )‖ for all f in L1(S)}.

We consider the following order on S: s 4 t ⇔ t − s ∈ S. It was

proved that if f ∈ L1(S) satisfies spectral synthesis for Spu(T, S), then

limt→∞ ‖T (t)f̂(T )‖ = 0. This result was first proved by Katznelson and

Tzafriri ([19]) in the case S = Z+ and then extended to S = R+ in [9] and

finally to the general case in [3] and [31]. Further results can be found in

[6], [8] and [22].

It is shown in [41] that if X is a Hilbert space and if S = Zk+ or S = R+

then

lim
t→∞
‖T (t)f̂(T )‖ = sup {|f(λ)|, λ ∈ Spu(T, S)} . (1.1)

This equality does not extend to representations by contractions defined on

arbitrary Banach space. The second author obtained in [41] that if E is a

closed subset of Γ, then the following are equivalent:

(i) Equality (1.1) holds for every representation T of S by contractions

such that Spu(T, S) = E.

(ii) E is of spectral synthesis and is a Helson set with α(E) = 1, where

α(E) is the Helson constant of E.

On the other hand, it follows from Corollary 4.3 of [35] that if T is a

representation of S by contractions on a Hilbert space and if Spu(T, S) is

contained in a Helson set E with α(E) = 1, then equality (1.1) holds for T

(see Theorem 4.1).

Similar results are obtained in [40] about polynomially bounded opera-

tors. Thanks to the von Neumann inequality, a contraction on a Hilbert

space is polynomially bounded. The situation is actually quite different for

contractions on Banach spaces. It is shown in [40] that if E is a closed subset

of T then the following are equivalent:
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(i) Every contraction on a Banach space whose spectrum is contained

in E is polynomially bounded.

(ii) E is a Helson set and of spectral synthesis.

In section 5, we extend this result to all representations of S by contrac-

tions on Banach spaces (see Theorem 5.1).

2. Definitions and classical results

Let G be a locally compact abelian group equipped with the Haar measure

mG and let Γ be its dual group. For f ∈ L1(G) and χ ∈ Γ, we set

f̂(χ) =

∫
G
f(t)χ(t)dmG(t).

If I is a closed ideal of L1(G), we set

h(I) = {χ ∈ Γ : f̂(χ) = 0, for all f ∈ I}.

Let E be a closed subset of Γ. We set

I(E) = {f ∈ L1(G), f̂ = 0 on E}

and

J(E) = clos {f ∈ L1(G), f̂ = 0 on a neighborhood of E}.
Clearly I(E) and J(E) are closed ideals of L1(G), J(E) ⊂ I(E) and we

have h(I(E)) = h(J(E)) = E (see [32], p. 161). The set E is said to be

of spectral synthesis if J(E) = I(E). Notice that E is of spectral synthesis

if there exists a unique closed ideal I such that h(I) = E. A function

f ∈ L1(G) (or f̂) is said to satisfy spectral synthesis for E if f ∈ J(E). Here

are some examples of sets of spectral synthesis :

(1) The compact countable sets ( [18], Corollary, p. 240).

(2) The Cantor set in R or the unit circle T = {z ∈ C; |z| = 1} ([13]).

(3) The sphere S1 in R2 ([15]).

(4) All closed sets if Γ is discrete ([4], p. 71).

Notice also that a function f on the unit circle T satisfy the spectral

synthesis for Z(f) = {z ∈ T; f(z) = 0} whenever it satifies the following

condition : for every z, z′ ∈ T, |f(z) − f(z′)| ≤ Cf |z − z′|1/2+ε for some

constant Cf and ε > 0 ([17], Corollaire I, p. 123).

On the other hand it was shown by L. Schwartz that for n ≥ 3 the sphere

Sn−1 ⊂ Rn is not of spectral synthesis ([36]). Later P. Malliavin proved that

any non discrete Γ contains a subset which is not of spectral synthesis (see

[25],[26],[27] and [10], pp. 70-71).

Let A(Γ) denote the Banach algebra of functions f̂ , f ∈ L1(G) endowed

with the norm ‖f̂‖A(Γ) = ‖f‖L1(G). Let A(E) = {f̂|E , f ∈ L1(G)} be the

Banach space equipped with the quotient norm of L1(G)/I(E). A closed
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subset E of Γ is called a Helson set if the canonical injection i : A(E) →
C0(E) is onto, where C0(E) is the space of continuous functions vanishing

at infinity, equipped with the supremum norm. This is equivalent to the

invertibility of i and in this case the norm of i−1 is called the Helson constant

of E and is denoted by α(E). By duality E is a Helson set if and only if there

exists a positive constant C such that for every µ ∈ M(E), ‖µ‖ ≤ C‖µ̂‖∞,

where M(E) is the set of Borel measures on Γ supported by E, ‖µ‖ is

the total variation of µ and ‖µ̂‖∞ = supx∈G |µ̂(x)|. The smallest constant

satisfying the last condition is equal to the Helson constant α(E).

The problem of whether a Helson set is of spectral synthesis was solved

by Körner in [21] (see also [20]). More precisely, he proved that there exists

a muliplicity set E which is a Helson set with α(E) = 1 and this set is not

of spectral synthesis. For further discussion on sets from harmonic analysis,

see the books [4], [10], [12], [16], [17], [32].

We now give some examples of Helson sets which are of spectral synthesis.

Let E be a closed subset of Γ; E is called independent if for every χ1, . . . , χk
in E and every set of integers {n1, . . . , nk},

χn1
1 . . . χnk

1 = 1⇒ χn1
1 = . . . = χnk

k = 1.

A compact subset E of Γ is called a Kronecker set if the following property

holds: for every continuous function h on E with |h| = 1 and for every ε > 0

there exists t ∈ G such that supχ∈E |h(χ) − χ(t)| < ε. Every Kronecker

set E is of spectral synthesis and is a Helson set with α(E) = 1 (see [33],

[39] and [32], Theorem 5.5.2, p. 113). Notice that every Kronecker set is

independent. If E is a finite independent set and if every element of E is of

infinite order, then E is a Kronecker set (see [32], p. 98).

Finally we note that any countable, compact, independent set is a Helson

set and of spectral synthesis (see [32], Theorem 5.6.7, p. 117 and p.161).

3. On cyclicity in Lp spaces.

Let G be a locally compact abelian group, Γ its dual group and p ≥ 1. For

a function f on G and y ∈ G, we set τyf(x) = f(x− y), x ∈ G. A subspace

V of Lp(G) is called invariant by translation if for every f ∈ V and y ∈ G,

τyf ∈ V . A function f ∈ Lp(G) is called bicyclic in Lp(G) if the subspace

span{τyf, y ∈ G} is dense in Lp(G). The Wiener theorem characterize the

bicyclic function for translation in L1(G) and L2(G) ([37]).

Theorem 3.1. ([Wiener])

(1) A function f is bicyclic in L1(G) if and only if for every χ ∈ Γ,

f̂(χ) 6= 0.

(2) A function f is bicyclic in L2(G) if and only if f̂(χ) 6= 0 for almost

all χ ∈ Γ.
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The space L1(G) is a Banach algebra for the convolution product and

Γ can be identified with the space of maximal ideals by using the map

χ→ Iχ = {f ∈ L1(G), f̂(χ) = 0}. Moreover the closed translation invariant

subspaces of L1(G) are just the closed ideals of L1(G) (see [32], Theorem

7.1.2, p. 158). For f ∈ L1(G) the closure of span{τyf, y ∈ G} is invariant by

translation and therefore is a closed ideal. It follows that span{τyf, y ∈ G}
is dense in L1(G) if and only if it is not contained in any maximal ideal,

that is f̂(χ) 6= 0 for every χ ∈ Γ. This proves part (1) of Theorem 3.1. Part

(2) of Theorem 3.1 follows from the more general Wiener theorem on closed

translation invariant subspaces:

A closed subspace V of L2(G) is invariant by translation if and only if

there exists a measurable subset E of Γ such that

V = {f ∈ L2(G), f̂(χ) = 0 for almost all χ ∈ E}.

This result and Theorem 3.1 were proved by Wiener in the case G = Z
and G = R ([37]). For any group G, the proof of part (2) of Theorem 3.1 is

given in ([12], Theorem (31.39)).

It follows from Theorem 3.1 that the bicyclicity of a function f in L1(G)

for p = 1 and p = 2, is characterized in term the zero set of f̂ , that is

Z
f̂

= {χ ∈ Γ, f̂ = 0}. Wiener conjectured that for 1 < p < 2, a simi-

lar characterization holds. In [24], N. Lev and A. Olevskii disproved this

conjecture (see also [23]).

Theorem 3.2. ([Lev-Olevskii]) Let G = Z or G = R. If 1 < p < 2, then

there exist two functions f and g in L1(G)∩Lp(G) such that Z
f̂

= Zĝ, f is

cyclic in Lp(G) while g is not.

The proof of this theorem is deduced from the following result.

Theorem 3.3. ([Lev–Olevskii]) Let q > 2. Then there exists a Helson set

E ⊂ T which supports a non-zero distribution S such that the sequence of

the Fourier coefficients (Ŝ(n))n∈Z is in `q(Z).

We now make some observations on how Theorem 3.3 implies Theorem

3.2 (see [24] and [23]). Let q > 2 and let p be its conjugate number, that

is 1
p + 1

q = 1. Let E be a closed subset of T which support a non-zero

distribution S such that Ŝ = (Ŝ(n))n∈Z ∈ `q(Z). We take an infinitely

differentiable function h on the circle which vanishes exactly on E. We set

f = (ĥ(n))n∈Z. Then f ∈ `1(Z), Z
f̂

= E and, for every k ∈ Z,

(Ŝ|(f(n− k))n∈Z)`q ,`p :=
∑
n∈Z

Ŝ(−n)f(n− k) = (S|eik(.)h(.))D′(T),D(T).
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where (.|.)X′,X denote the duality between a topological space X and its dual

X ′. Since eik(.)h(.) is a smooth function, it satisfies the spectral synthesis

for E ([17], Corollaire I, p. 123). Therefore (S|eik(.)h(.))D′(T),D(T) = 0. It

follows that, for every k, (Ŝ|(f(n− k))n∈Z)`q ,`p = 0, which implies that f is

not bicyclic in `p(Z).

On the other hand Lev and Olevskii showed by using Baire’s theorem that

for every Helson set E in T, there exists g ∈ `1(Z) which is bicyclic in `p(Z)

for every p > 1 and such that Zĝ = E (see [24], Lemma 9). Thus, we see

that if E is the set constructed in Theorem 3.3 then there exists f, g ∈ `1(Z)

as in Theorem 3.2 and such that Z
f̂

= Zĝ = E.

We finish this section by recalling some known results on the bicyclicity

problem. In [5], Beurling showed that if f ∈ `1(Z) and if the Hausdorff

dimension of Z
f̂

is less or equal to 2(p−1)
p with 1 < p < 2, then f is bicyclic

in `p(Z). Salem showed in [34] that this result is sharp. On the other hand

Newman construct in [28] a set E of Hausdorff dimension 1 such that, if

f ∈ `1(Z) and Z
f̂

= E then f is bicyclic in `p(Z), for every p > 1.

4. Katznelson-Tzafriri type theorems

Let G be a locally compact abelian group and S be a measurable semi-

group of G with non empty interior in G and such that G = S − S. Denote

by S∗ the set of all the non-zero, continuous, bounded, homomorphisms of

S into the multiplicative semigroup C. Let

S∗u = {χ ∈ S∗; |χ(s)| = 1 for all s in S}.

We shall identify S∗u with the dual group Γ of G, in the natural way. For

f ∈ L1(S) and χ ∈ S∗, we set

f̂(χ) =

∫
S
f(t)χ(t)dt.

Finally we shall assume that {f̂ , f ∈ L1(S)} separates the points of S∗ from

each other and from zero and that the interior S◦ is dense in S.

Let X be a Banach space, L(X) the Banach algebra of all bounded linear

operators on X. Let T be a representation of S by contractions on X, that

is a strongly continuous homomorphism from S into L(X) such that T (s)

is a contraction whenever s ∈ S. For f ∈ L1(S), let f̂(T ) : X 7−→ X be the

bounded operator defined by

f̂(T ) : x 7−→
∫
S
f(t)T (t)xdmG(t).

The spectrum of T with respect to S is defined by

Sp(T, S) = {χ ∈ S∗; |f̂(χ)| ≤ ‖f̂(T )‖ for all f in L1(S)}.
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The unitary spectrum of T is defined by

Spu(T, S) = Sp(T, S) ∩ S∗u = Sp(T, S) ∩ Γ.

In the sequel of the paper we will use the following notation: If E is a

closed subset of Γ, we denote by C0(E) the space of all continuous functions

on E vanishing at infinity. For a continuous bounded function h on E we

set ‖h‖C(E) = sup {|f(χ)|, χ ∈ E}.
Examples. (1) Let G = R and S = R+. The set S∗ will be identified

with C− = {z ∈ C : Im(z) < 0} and S∗u with R. For f ∈ L1(R+) and

z ∈ C−, we have

f̂(z) =

∫
R+

f(t)e−itzdt.

A C0-semigroup T = (Tt)t≥0 of contractions on X is a representation of R+.

In this case we have Spu(T,R+) = iσ(A)∩R, where A is the generator of T

and σ(A) is the spectrum of A.

(2) Let k ≥ 1 be an integer, G = Zk and S = Zk+, where Z+ is the set of

all nonnegative integers; S∗ will be identified with Dk and S∗u with Tk. For

f ∈ L1(Zk+) and z = (z1, . . . , zk)→ χz ∈ Dk, we have

f̂(z) =
∑
n∈Zk

+

f(n)zn1
1 . . . znk

k ,

where n = (n1, . . . , nk). Let T1, . . . , Tk be a finite many commuting con-

tractions on X. Then T = (Tn1
1 . . . Tnk

k )n∈Zk
+

is a representation of Zk+ by

contractions on X. For f = (f(n))n∈Zk
+

in `1(Zk+), we have

f̂(T ) =
∑
n∈Zk

+

f(n)Tn1
1 . . . Tnk

k .

Let A be a commutative Banach algebra that contains T1, . . . , Tk and I the

identity map. We define the joint spectrum σA(T1, . . . , Tk), relative to A,

to be the set of all k-tuples of complex numbers λ = (λ1, . . . , λk) such that

the ideal (and/or the closed ideal) of A generated by λ1− T1, . . . , λk − Tk is

a proper subset of A.

We deduce from the above observations that Spu(T,Zk+) = σA(T1, . . . Tk)∩
Tn. We see that σA(T1, . . . , Tk)∩Tn is the same for any commutative Banach

algebra that contain T1, . . . , Tk and I. We note that for k = 1, we have

Spu(T,Z+) = σ(T1) ∩ T.

It is shown in [41] that if G = R and S = R+ or if G = Zk and S = Zk+
then

lim
t→∞
‖T (t)f̂(T )‖ = ‖f̂‖C(Spu(T,S)), (4.1)
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whenever f ∈ L1(S) and T is a representation by contractions on a Hilbert

space. For any group G and a semigoup S, Seifert get the following result.

Theorem 4.1. ([35]). Let T be a representation of S by contractions on a

Hilbert space and f ∈ L1(S). If E = Spu(T, S) is a Helson set then

lim
t→∞
‖T (t)f̂(T )‖ ≤ α(E)‖f̂‖C(E).

In particular if α(E) = 1, then limt→∞ ‖T (t)f̂(T )‖ = ‖f̂‖C(E).

These results are not true for representations by contractions acting on

a Banach space. As it is shown in the following theorem it depends on the

thinness of Spu(T, S).

Theorem 4.2. ([41]). Let c ≥ 1 and E a closed subset of Γ. Then the

following are equivalent.

(i) E is of spectral synthesis and is a Helson set with α(E) ≤ c.
(ii) For every representation T of S by contractions on a Banach space

X such that Spu(T, S) = E, we have

lim
t→∞
‖T (t)f̂(T )‖ ≤ c‖f̂‖C(E), f ∈ L1(S).

Notice that the inequality ‖f̂‖C(E) ≤ limt→∞ ‖T (t)f̂(T )‖ always holds for

E = Spu(T, S). From this observation and the above theorem we get (see

[40]).

Corollary 4.3. ([41]). Let E be a closed subset of Γ. The following are

equivalent.

(i) E is of spectral synthesis and is a Helson set with α(E) = 1.

(ii) For every representation T of S by contractions on a Banach space

such that Spu(T, S) = E, we have

lim
t→∞
‖T (t)f̂(T )‖ = ‖f̂‖C(E), f ∈ L1(S).

5. Polynomially bounded operators

Let T1, T2, . . . , Tk be finitely many commuting contractions on a Hilbert

space. We say that the multidimensional von Neumann inequality holds for

(T1, T2, . . . , Tk) if

‖P (T1, T2, . . . , Tk)‖ ≤ sup
(z1...,zk)∈Dk

|P (z1 . . . , zk)|,

for every polynomial P ∈ C[z1 . . . , zk]. By the classical von Neumann in-

equality and [1], the multidimensional von Neumann inequality holds for



HELSON SETS AND SPECTRAL SYNTHESIS 9

k = 1 and k = 2, while it fails in general for k ≥ 3. On the other hand, for

k ≥ 3, it is not known if there exists a finite constant C such that

‖P (T1, T2, . . . , Tk)‖ ≤ C sup
(z1...,zk)∈Dk

|P (z1 . . . , zk)|, (5.1)

for every P ∈ C[z1 . . . , zk] ([7], [2]). Notice that Tk is the Shilov boundary of

the Banach algebra of holomorphic functions in Dn which are continuous up

to the boundary and equipped with the supremum norm. Then inequality

(5.1) is equivalent to

‖P (T1, T2, . . . , Tk)‖ ≤ C sup
(z1...,zk)∈Tk

|P (z1 . . . , zk)|.

We will now be interested in the last inequality for representations of semi-

groups. Let G, Γ and S be as in section 4. In [40], Theorem 4.1, sharp

conditions are given on the thinness of the spectrum so that a contraction

on a Banach space is polynomially bounded. This result is extended to

representations in the following theorem.

Theorem 5.1. Let E be a closed subset of Γ. Then the following are equiv-

alent.

(i) For any representation T of S by invertible isometries on a Banach

space with Spu(T, S) ⊂ E, there exists a constant C such that ‖f̂(T )‖ ≤
C supχ∈Γ |f̂(χ)|, for every f ∈ L1(S).

(ii) E is a Helson set and of spectral synthesis.

Proof. If T is a representation of S by invertible isometries then, for every

t ∈ S, ‖f̂(T )‖ = ‖T (t)f̂(T )‖. Thus the implication (ii) ⇒ (i) follows from

Theorem 4.2.

Now we prove the implication (i) ⇒ (ii). Let I be a closed ideal of

L1(G) with h(I) = E. Let π : L1(G) → L1(G)/I denote the canonical

surjection and, for t ∈ G, τt the translation operator defined on L1(G)

by: τtf(x) = f(x − t), x ∈ G. We set T (t)(π(f)) = π(τtf), f ∈ L1(G);

T is a representation of G by invertible isometries satisfying the following

properties (see the proof of Theorem 5.4 in [41]):

(1) For f ∈ L1(G), f̂(T ) is the operator defined by: π(g)→ π(f ∗ g).

(2) For f ∈ L1(G), f̂(T ) = 0 holds if and only if f ∈ I.

(3) For f ∈ L1(G), ‖π(f)‖ = ‖f̂(T )‖.
(4) Spu(T, S) = Sp(T,G) = E.

So by assumption (i) and property (4), there exists a constant C > 0 such

that for every f ∈ L1(S), ‖f̂(T )‖ ≤ C supχ∈Γ |f̂(χ)|. It follows then from

Lemma 2.2 in [41], that for every f ∈ L1(S) and for every y ∈ L1(G)/I ,

‖f̂(T )y‖ ≤ C‖f̂‖C(Spu(T,S))‖y‖. Then we deduce from property (3) that

‖π(f)‖ ≤ C‖f̂‖C(E), f ∈ L1(S). (5.2)
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Now we want to extend this inequality to all functions in L1(G). Let f ∈
L1(G) and s ∈ S, we set

fs(t) =

{
f(t− s) if t ∈ S

0 otherwise.

We have

‖f‖ ≤ ‖fs‖+

∫
G\(S−s)

|f(t)|dmG(t), (5.3)

and

‖f̂s‖C(E) ≤ ‖f̂‖C(E) +

∫
G\(S−s)

|f(t)|dmG(t). (5.4)

Let ε > 0. There exists s ∈ S such that
∫
G\(S−s) |f(t)|dmG(t) < ε. Since I is

invariant under translation (([32], Theorem 7.1.2, p. 157), for every g ∈ I,

we have τ−sg ∈ I and

‖π(f)‖ ≤ ‖f − τ−sg‖ = ‖τs(f − τ−sg)‖ = ‖τsf − g‖

≤ ‖fs − g‖+

∫
G\(S−s)

|f(t)|dmG(t)

≤ ‖fs − g‖+ ε.

Taking now the infimum over g ∈ I, we get ‖π(f)‖ ≤ ‖π(fs)‖ + ε. Now

applying (5.2) to fs, we obtain

‖π(f)‖ ≤ ‖π(fs)‖+ ε ≤ C‖f̂s‖C(E) + ε

By (5.4), we have ‖π(f)‖ ≤ C(‖f̂‖C(E) + ε) + ε. Letting ε→ 0, we get

‖π(f)‖ ≤ C‖f̂‖C(E), f ∈ L1(G). (5.5)

Let I = J(E). It follows from (5.5) that if f ∈ L1(G) with f̂ = 0 on

E, then π(f) = 0 and thus f ∈ J(E). This shows that E is of spectral

synthesis.

Let now I = I(E). Let i : A(E) → C0(E) be the canonical injection.

Inequality (5.5) shows that the range of i is closed. On the other hand,

since A(Γ) is dense in C0(Γ) ([32], Theorem 1.2.4, p. 9), the range of i is

also dense in C0(E). So i is surjective, which implies that E is a Helson set

with α(E) = ‖i−1‖ ≤ C.

�

Let G = Z, S = Z+ and E a closed subset of T. For T = (Tn1 )n∈Z+ where

T1 is a bounded operator on a Banach space, Theorem 5.1 can be formulated

in the following way: The two conditions below are equivalent:

(i)′ Any invertible operator T1 on a Banach space such that supn∈Z ‖Tn1 ‖ <
+∞ and σ(T1) ⊂ E, is polynomially bounded.
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(ii) E is a Helson set and of spectral synthesis.

See ([40], Theorem 4.1 and Remark 5.5). The condition supn∈Z ‖Tn1 ‖ < +∞
is sharp in property (i)′. Indeed, we have the following result from ([40],

Theorem 5.4):

Let (βn)n≥1 be a sequence of real numbers such that limn→+∞ βn = +∞
and βn > 1 for every n ≥ 1. Then there exists a contraction such that

‖T−n1 ‖ ≤ βn, n ≥ 1, Sp(T1) is a Helson set and of spectral synthesis, and

T1 is not polynomially bounded.
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and 231–239.
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raumes, Math. Nachr. 4 (1951), 258–281.

[39] N. Varopoulos, Sur les ensembles parfaits et les séries trigonométriques, C. R. Acad.

Sci. Paris (A) 260 (1965), 3831–3834.

[40] M. Zarrabi, On polynomially bounded operators acting on a Banach space, J. Funct.

Anal. 225 (2005), no. 1, 147–166.

[41] M. Zarrabi, Some results of Katznelson-Tzafriri type, J. Math. Anal. Appl. 397

(2013), no. 1, 109118.

B. BOUYA, Laboratory of Analysis and Applications, Faculty of Sciences,

Mohammed V University of Rabat, 4 Av. Ibn Battouta, B.P. 1014, Morocco.

E-mail address: brahimbouya@fsr.ac.ma



HELSON SETS AND SPECTRAL SYNTHESIS 13
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