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The quantum phase-coherent behavior of superconducting weak links (WLs) is often quenched in the finite
voltage state, due to the heat dissipation and related thermal hysteresis. The latter can be reduced by improving
heat evacuation and/or by lowering the critical current so a phase-dynamic regime is obtained, albeit over a
narrow bias-current and temperature range. Here we demonstrate that an inductive shunt with well-chosen
parameters introduces unexpected nonlinear dynamics that destabilize an otherwise stable fixed point in the
dissipative branch. This leads to a nonhysteretic behavior with large voltage oscillations in intrinsically hysteretic
WL-based micron-size superconducting quantum interference devices. A dynamic thermal model quantitatively
describes our observations and further allows us to elaborate on the optimal shunting conditions.

DOI: 10.1103/PhysRevB.101.024501

I. INTRODUCTION

Superconducting weak links (WLs) [1] acting as Joseph-
son junctions are of great interest for a range of quantum
applications. A WL can be probed with a DC current bias in
the phase dynamic state [2] so a DC voltage is measured. In
particular, a WL-based micron-size superconducting quantum
interference device (μ-SQUID) features then a flux-sensitive
voltage [3]. A magnetic moment resolution better than 1 μB

can be reached [4], which makes it an ultimate probe for
quantum nanomagnetism [5–9]. The main limitation to μ-
SQUID’s operation resides in the (thermal) hysteresis of their
current-voltage characteristics (IVCs) at low temperatures,
due to large critical current and poor heat evacuation from
the WL to the bath [10–13]. A time-dependent Ginzburg-
Landau approach capturing nonequilibrium effects on the
order-parameter relaxation can model the hysteresis and the
phase-dynamic regime in WLs [14–16]. A simpler dynamic
thermal model (DTM) successfully describes the same behav-
ior by considering both the phase dynamics and the Joule heat
evacuation [3,17]. This gives scope for further optimization
so as to obtain a phase-dynamic regime as a monostable state
over a wide bias current and temperature range. In particular,
a resistive shunt [18–20] placed close to a WL can remove
thermal hysteresis down to a certain temperature. However,
for very low temperatures, the required small resistor makes
the μ-SQUID voltage modulation minuscule. Shunts with a
larger inductance lead to relaxation oscillations [21] due to the
induced delay in current switching. Shunts with intermediate
inductance provide a wider parameter space [22], which is not
yet investigated, for optimizing WL-based devices.

In this paper, we uncover the striking effect of fine-tuned
inductive shunting on the behavior of a WL-based μ-SQUID.
When we use a shunt made of a resistor with an adequate
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inductor in series, we observe reversible IVCs with a large
voltage modulation by the magnetic flux over an increased
temperature and bias current range. The dynamic retrapping
current increases with the inductance up to a limiting value
above which relaxation oscillations appear. The dynamic ther-
mal model incorporating the nonlinear dynamics of tempera-
ture and current quantitatively explains the observations.

II. EFFECT OF INDUCTIVE SHUNT ON PHASE
DYNAMICS: A MODEL

Across a WL in a nonzero voltage state, superconducting
phase-correlations can remain, so the bias current through
it is dynamically shared between a normal current and a
superconducting component. Due to dissipation from periodic
phase slips, the WL heats up above the bath temperature Tb.
Still it can remain at a temperature TWL below the WL critical
temperature Tc [17], provided the heat conduction to the
bath is efficient enough. In this case, the Josephson coupling
persists. The occurrence of this dissipative regime, called
dynamic regime, defines a current range between the dynamic
retrapping current Idyn

r and the static retrapping current Ih. For
I < Idyn

r , the dynamic state is not possible, leading the WL to
the superconducting, zero-voltage state. For I > Ih, the WL
temperature TWL exceeds Tc, leading to the loss of any phase
correlation across the WL.

In the DTM, the thermal heat loss from the WL to the
substrate is described by k(TWL − Tb). A dimensionless pa-
rameter [17],

β = I0
c

2(Tb)RN

k(Tc − Tb)
, (1)

then determines the accessibility of the dynamic regime at a
given bath temperature Tb. Here I0

c , RN, and k are the zero-field
critical current, normal resistance, and heat loss coefficient
of the WL, respectively. The two extreme values β → 0 and
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FIG. 1. Calculations for the case of β = 6 and r = 2. (a) The first
(dashed lines, unstable) and the second (continuous lines) fixed point
coordinates p∗, i∗sh as a function of the bias current i. Inset: Equivalent
circuit diagram of a WL shunted by a resistor RS and inductor L.
(b) Variation of the determinant � (black) and trace Tr at γ /α =
1.1 (green), 1.3 (red), and 1.5 (blue), with the bias current i for the
second fixed point. The inset shows the � and Tr variation for the
first fixed point.

β � 1 lead the DTM to the isothermal RSJ [2,23] and static
thermal models [11], respectively.

We consider a WL, with normal resistance RN, that is
resistively and inductively shunted with a resistance RS and an
inductance L in series, as shown in the Fig. 1(a) inset. The time
evolution of the shunt current Ish is described by the equation

L
dIsh

dt
+ IshRS = V = �0

2π

dϕ

dt
, (2)

with V and ϕ as the voltage and the phase difference across the
WL, respectively. Writing, in addition, an RSJ-type equation
and the heat balance in the WL, one obtains the full set of
dimensionless equations determining the dynamics of phase,
temperature, and shunt current [3,17]:

φ̇ = i − (1 − p) sin(2πγφ) − ish, (3)

ṗ = −γ

α
p + β

γ

α
φ̇2, (4)

˙ish = −ish + rφ̇. (5)

The relevant timescales are the thermal time τth = CWL/k,
the Josephson time τJ = �0/I0

c (Tb)RN, and the inductive time
τL = L/RS. Here, CWL is the WL heat capacity and I0

c (Tb) is
assumed to vary linearly with Tb. We introduce the parameters
r = RN/RS, γ = τL/τJ, and α = τth/τJ. The time unit is τ =

t/(γ τJ ) and we use the reduced phase φ = ϕ/(2πγ ) and
the reduced temperature p = (TWL − Tb)/(Tc − Tb). Currents
denoted by i with relevant sub/superscripts represent the same
in units of I0

c (Tb).
We focus our analysis on the large α, γ limit that is relevant

in most practical cases. In this limit, the time evolution of the
phase φ is much faster than that of the temperature p and the
shunt current ish. Therefore, the deviation in p and ish, over
the phase-slip time τps, from their time averages p and ish can
be neglected. Here, τps is the time over which the phase ϕ

changes by 2π . By integrating Eq. (3) over this τps, one gets

τps = 2π/

√
(i − ish )2 − (1 − p)2. (6)

The averages φ̇2 and φ̇ are obtained as φ̇2 = 2π (i − ish )/τps

and φ̇ = 2π/τps. Taking the time averages of Eqs. (4) and (5)
over τps, we thus obtain a two-dimensional dynamical system:

α

γ
ṗ = −p + β(i − ish )

√
(i − ish )2 − (1 − p)2, (7)

˙ish = −ish + r
√

(i − ish )2 − (1 − p)2. (8)

In this set of two nonlinear equations, the ratio γ /α deter-
mines the dynamics of the temperature p, and hence of the WL
critical current ic(p) = 1 − p. In contrast, the dynamics of the
shunt current ish is not (directly) dependent on γ /α. More-
over, Eqs. (7) and (8) do not correspond to any well-defined
(conservative) potential like the tilted washboard potential in
an isothermal RCSJ model [23] or the fictitious potential in
the DTM [17]. We are thus led to pursue an analysis involving
the fixed points of the system and their stability.

Removing the average symbol for the sake of simplicity,
one can write two relations between the fixed points’ coordi-
nates p∗ and i∗sh with the bias current i as a parameter:

p∗ = β(i − i∗sh )i∗sh/r, (9)

p∗ = 1 −
√

(i − i∗sh )2 − (i∗sh )2/r2. (10)

As elaborated in Appendix A, Eqs. (9) and (10) feature two
real and nonzero solutions (p∗, i∗sh) only when the bias current
i is above a threshold i0, where a saddle-node bifurcation
occurs [24]. This threshold, as well as the fixed points’ coordi-
nates, depend on β and r but not on α or γ . Figure 1(a) shows
the variation of the coordinates (p∗, i∗sh) with the bias current
i for β = 6 and r = 2. The considered β value is large as our
main interest is in intrinsically deeply hysteretic μ-SQUIDs
[3]. As elaborated further in the following, the first fixed point
with the lower (but nonzero) values of p∗ and i∗sh is found
to be always unstable, while the second one can be stable or
unstable.

Our focus here is on finding the values of the bias current
i for which a stable, nonzero fixed point exists. Here, these
values cover a continuous bias current range. We identify the
lower limit of this range as the dynamic retrapping current
idyn
r . In the absence of fluctuations, a WL in the finite voltage

state and with a decreasing bias current would retrap to the
superconducting state precisely at i = idyn

r .
The stability of the fixed point is dictated by the trace Tr

and determinant � of the Jacobian matrix associated with the
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dynamical system: A stable fixed point requires � > 0 and
Tr < 0 [24]. Using Eqs. (7) and (8), one obtains

Tr = r2 p∗

(i∗sh )2

[
γ

α
(1 − p∗) − r

β

]
− 1 − γ

α
, (11)

� = γ

α

[
1 + r3 p∗

β(i∗sh )2
+ r(1 − p∗)

{
β − r p∗

(i∗sh )2

}]
. (12)

Whereas the fixed point coordinates as well as the sign of �

are independent of γ /α, the sign of Tr, and hence the stability
of the fixed points, depends on γ /α.

Figure 1(b) shows the trace and the determinant for the
first fixed point (inset), and for the second one (main panel),
again for β = 6 and r = 2. Owing to a negative determinant
�, the first fixed point is always unstable, irrespective of i and
γ /α values. Regarding the second fixed point, the determinant
� is shown as a function of the bias current for γ /α = 1.3
while the trace Tr is shown for γ /α = 1.1, 1.3, and 1.5. The
trace becomes negative, i.e., the second fixed point becomes
stable, with increasing bias current. This crossover defines the
dynamic retrapping current idyn

r , which is found to be larger
than i0. Note that this crossover is actually a Hopf bifurcation
[24]. The dynamic retrapping current idyn

r is found to be very
close to i0 for γ /α values much less than one. With γ /α

increasing above one, it rises monotonically. This behavior
can be seen in Fig. 2(a) where idyn

r rises from a plateau at
i0. The inset shows the simulated IVCs obtained by taking
a time-average of the phase derivative dφ/dτ . In agreement
with the above discussion, one observes a reduction in the
current range of the bistable regime when γ /α is increased
from 0.5 to 2.5.

Therefore, when the inductive and thermal times (or γ and
α) are close to each other, a large portion of the dissipative,
phase-dynamic branch becomes unstable. A physical under-
standing for this could be as follows. Near the stable fixed
point (with nonzero voltage), the WL temperature dynamics
gets perturbed periodically by the inductive current dynamics
having a similar timescale. The matching of these timescales,
resembling a resonancelike condition, leads the system far
enough from its stable fixed point to eventually end up with
the other fixed point, i.e., the zero-voltage superconducting
state. On the other hand, when γ /α is well below 1, the
inductance has little influence on the shunt current dynamics
(as it is much faster than the temperature dynamics) and
consequently little contribution to the overall behavior. Thus
the dynamic retrapping current remains close to the prediction
of the zero-inductance DTM.

For the other limit of large γ /α, the current switching
from the WL to the shunt is slowed down by the large
inductance, leading to a sharp rise in WL temperature above
Tc when the bias current exceeds the WL critical current.
Once enough current is diverted away from the WL over a
time determined by inductance, the WL starts cooling and
at some time its temperature goes below Tc. This leads to
a larger current through the WL and cooling accelerates as
a part of the current flows as supercurrent. This trend gets
interrupted when the WL current exceeds again the critical
current, leading to repetition of the same cycle [21]. The WL
current iWL(= i − ish) and the WL temperature p then exhibit

FIG. 2. (a) Reduced dynamic retrapping current idyn
r variation

with γ /α for fixed β = 6 and r = 2, 3 and 4. Inset: IVCs for different
γ /α values in the dynamic regime without relaxation oscillations for
r = 2. The dotted line represents the Ohmic branch. (b) Time trace
of the reduced temperature p (continuous lines) and WL current iWL

(dashed line) for β = 6 and r = 2. The inset shows small oscillations
at γ /α = 0.5 (red lines, only p is shown). For γ /α = 3 (blue lines),
p and iWL exhibit relaxation oscillations.

relaxation oscillations with a dramatic time dependence, as
shown in Fig. 2(b).

To summarize this theoretical description, an inductive
shunt brings in a new dynamical variable, i.e., the shunt
current. The single parameter γ /α can destabilize the other-
wise stable fixed point of the 2D nonlinear dynamical system
constituted by the dissipative WL coupled to the thermal
bath. Thus an appropriate inductive shunt can enhance the re-
versibility of a WL-based μ-SQUID and enable large voltage
modulations in the SQUID response.

III. EXPERIMENTAL DETAILS

We fabricated μ-SQUIDs on a silicon substrate using lift-
off of an Al mask and Nb etch following a recipe discussed
elsewhere [3]. The length and width of the μ-SQUID WLs
are 160 nm and 40 nm, respectively. Four-probe transport
measurements were performed using the setup as in Ref. [3]
down to 1.3 K. The onset of superconductivity is seen at 8.6 K.

For a shunt resistance, a Nichrome wire was connected
in parallel to the device’s voltage leads and at a distance
from the μ-SQUID of about 1 cm. An estimate of the shunt
loop inductance L gives a few nH, already much larger than
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FIG. 3. Schematic of a μ-SQUID shunted by a resistor RS and
an inductor L. The zoomed-in portion shows large- and small-scale
SEM images of the device.

the total (geometric and kinetic) μ-SQUID inductance LSQ,
which is of pH order [18]. The screening parameter [23]
βL = LSQI0

c /�0 for our devices is less than 0.1. We used two
different shunt resistance values RS1 = 4� and RS2 = 2�. In
that case, the inductive time τL is of the order of few ns, the
Josephson time τJ is about 100 ps, while τth is of the order of a
μs (see below) so γ /α � 10−3. In that regime, the inductance
has little effect on the dynamic behavior.

Inductive shunts in the μH range, resulting in τL of order
μs and γ /α � 1, were realized by a superconducting wire
coil. The related magnetic flux coupled to the SQUID loop
is estimated to be negligible compared to �0. The schematic
of a μ-SQUID, shunted by a resistor RS and an inductor L is
shown in Fig. 3 along with a large-scale SEM image and the
SQUID loop.

In the following, we discuss results from a single device
but with different shunting conditions. Similar results from
another device can be found elsewhere [25]. Figure 4(a) shows
the IVCs at 1.3 K and zero external magnetic flux. With no
shunt, a strong hysteresis is seen with a critical current I0

c ≈
137 μA and a retrapping current Idyn

r ≈ 42 μA. A thermal
instability [13] in the SQUID leads occurs above Ir1 ≈ 60 μA.
The differential resistance dV/dI above Idyn

r is found to be 7
�. The low dV/dI compared to the WL normal-state resis-
tance and the modulation of Idyn

r with the magnetic flux �

in Fig. 4(b) confirm that the supercurrent is not completely
destroyed in the dissipative state just above Idyn

r .
With a resistive shunt, the dynamic retrapping current Idyn

r

increases significantly while the critical current Ic remains the
same. Still, the increased value of Idyn

r remains well below the
I0
c value, even with the lowest shunt resistor RS2. In the zero-

inductance limit of relevance here, β is the single parameter
to describe the characteristics. Using the DTM [3] and as
elaborated in Appendix B, we obtain β (unshunted) = 9.3,
β(RS1) = 4.2, and β(RS2) = 1.8 at 1.3 K. A practical SQUID
operation in the dynamic regime, defined as β < 2 [3], is
thus obtained over a wider temperature range if the device

FIG. 4. Experimental results at 1.3 K. (a) Hysteretic IVCs at zero
magnetic flux for three shunt cases. Solid gray lines are fits to the
DTM (without inductance). (b) Modulations in Ic and Idyn

r with the
flux �. Color codes are same as panel (a). (c) V (�) modulation for
the shunt RS2, displayed over the range I = 108−112 μA.

is resistively shunted. The shunted samples’ IVC slopes at
large current lead to estimates of the shunt resistance of about
3.85 � and 1.67 �, close to the measured values at room
temperature.

The V (�) oscillations are observed down to 2.2 K for
the unshunted device, and till 1.8 and 1.3 K (the lowest
temperature investigated here) for the RS1 and RS2 shunted
devices respectively, see Fig. 4(c). Nevertheless, resistive
shunting neither improves modulation amplitude nor sensitiv-
ity in a significant way. The best flux noise density

√
S� =

30 μ�0/
√

Hz with the RS2 shunt is obtained at 2.2 K when
the IVCs are nonhysteretic. Further detailed results on pure
resistive shunting are presented in Appendix B.

IV. EFFECT OF INDUCTIVE SHUNT ON μ-SQUID

We now discuss experiments on the same device but with
an inductive shunt, which is the main focus of this paper. For
the results discussed here, the shunt is made of the resistance
RS2 and an inductance L whose value was varied by changing
the winding. For L below 1 μH, no change in the IVCs is
observed down to 1.3 K. This is anticipated from the model
discussed earlier. As L is increased to about 1.4 μH, large
V (�) oscillations are obtained over a wide range of bias
current, see Figs. 5(a) and 5(c). IVCs at 1.3 K and different
flux values, shown in Fig. 5(b), display complete reversibility
and smooth transitions in contrast to irreversible and sharp
switches observed without inductive shunt in Fig. 4(a). The
dynamic retrapping current Idyn

r matches the critical current
I0
c . The latter does not change, as expected.

The dashed line in Fig. 5(b) shows the best fit of the
zero-field IVC at 1.3 K to the DTM, showing two transitions
at I0

c and Idyn
r . The fit is good, given that the model does

not include the effect of fluctuations arising from thermal
and other extrinsic effects, which lead to rounding in IVCs
when Idyn

r and I0
c are close [3,18,23]. We take β(1.3 K) =

9.3 from Fig. 4(a) IVC fitting and the given r = 4.2. The
single fit parameter γ /α is found to be about 1.01, which
gives τth ≈ 0.8 μs. Using k = 4.3 nW/K (see Appendix B),
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FIG. 5. (a), (c) V (�) modulations with an inductive shunt made
of RS2 and L = 1.4 μH at 1.3 and 1.6 K, respectively. The bias current
ranges are, respectively, 110−150 μA and 80−112 μA. (b), (d) IVCs
at three different flux values at the respective temperatures. The gray
dashed line in (b) represents the zero-field IVC calculated using the
model with γ /α = 1.01, β = 9.3, and r = 4.2.

the effective heat capacity CWL is then estimated to be 3.4 ×
10−15 J/K. Based on the tabulated [26] specific heat of 25.7 ×
10−3 J/cc.K of Nb just below Tc, we obtain a volume of
13 × 10−2 μm3, i.e., a film surface of 6.5 μm2. Therefore, the
heat generation in the dissipative state of each WL happens
over an effective area of 3.25 μm2, which is well above the
mere WL area of 64 × 10−4 μm2. Earlier experiments [27,28]
on WLs show that the Joule heat is indeed generated over a
length scale determined by the inelastic quasiparticle diffusion
length. The obtained thermal time τth agrees well with the
typical quasiparticle recombination time in Nb [29,30]. Thus
the real bottleneck in healing back the superconductivity in the
WL is not the heat evacuation from the phonons. It is rather the
slow recombination of quasiparticles, which ensure the energy
transfer to phonons [31,32].

At a bath temperature Tb = 1.3 K and at the opti-
mal bias, the flux-to-voltage transduction function V�=
| ∂V/∂�(�) |max is found to be 680 μV/�0. Thus we obtain
a flux noise density

√
S� � 6 μ�0/

√
Hz. Here we use the

FIG. 6. (a) IVCs in the relaxation regime for the device with a
shunt L = 6 μH at 1.3 K. (b) Voltage signal with time at a bias
current of 140 μA. Inset: One zoomed peak showing relaxation
oscillation in voltage. Red line is the fit to an exponential decay
function.

FIG. 7. Domains in r − γ /α space for three β values showing
the most suitable shunt parameters. Upper and lower border of a
domain correspond to idyn

r = 1 and 0.95, respectively.

estimated voltage white noise (above 100 Hz) in our ampli-
fier as 4 nV/

√
Hz. The corresponding white-noise limited

spin sensitivity, defined by
√

Sn = √
S�/�μ, is estimated

to be 103 μB/
√

Hz. The coupling factor writes [6] �μ =
2
√

2μ0μB/πL with L the side length of the SQUID loop.
At a higher bath temperature Tb = 1.6 K, the voltage modu-
lation amplitudes are smaller but the transduction function V�

increases significantly to 2.45 mV/�0, see Fig. 5(c). In this
case, a very low flux noise density

√
S� ∼ 1.6 μ�0/

√
Hz,

corresponding to a spin sensitivity
√

Sn ∼ 300 μB/
√

Hz, is
achieved. This figure could be further improved by using a
low temperature amplifier with lower voltage noise.

Based on the model, the relaxation oscillation regime in
IVCs is expected to start above γ /α = 1.15, i.e., L ≈ 1.84 μH
at 1.3 K. At a somewhat higher value of L = 6 μH, i.e.,
γ /α = 3.75, clear relaxation oscillations in voltage are ob-
served for a fixed current bias, as seen in Fig. 6(b). Depend-
ing on time averaging and sampling rate, the IVCs in this
regime carry excess noise, as seen in Fig. 6(a). The fit of
the decay part of the voltage peak to an exponential gives
a time constant of 3.53 μs, which matches well with the
calculated τL = L/RS2 = 3.6 μs. The relaxation oscillations
in Josephson junctions have been extensively studied with an
understanding based on either static thermal models or the
RCSJ model [33–35].

The shunt inductance is thus found to be an important
parameter that directly controls the current, phase, and tem-
perature dynamics in the WLs of a shunted μ-SQUID. It is the
relative magnitude of τth and τL that determines the physics of
the WL. To get a reversible nonhysteretic regime where the
dynamic retrapping current Idyn

r is close to the critical current
I0
c , the inductance value needs to be adjusted so that τL is of

the same order as τth. Figure 7 shows the region in r − γ /α

space in which a μ-SQUID would be practically reversible
and useful for flux-to-voltage transducer at low temperature
(higher β). The regions above and below this region give
relaxation oscillations and hysteretic IVCs, respectively.

V. CONCLUSION

In conclusion, we have discovered that shunting a super-
conducting WL with a fine-tuned inductance can eliminate
thermal hysteresis and provide a large voltage modulation
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by the magnetic flux in a μ-SQUID well below the critical
temperature. This result is opposed to the usual belief that
an inductive shunt gives rise to relaxation oscillations. Such
inductive shunts could be realized with disordered supercon-
ductors featuring a high-kinetic inductance [36]. While the
consistent fabrication of fully nonhysteretic μ-SQUIDs at all
temperatures is still a challenge, this study demonstrates a
practical procedure for getting a reliable voltage read-out of
the flux using usual hysteretic μ-SQUIDs, which opens up an
easy way for using such devices for nanoscale magnetism, in
particular at very low temperatures.
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APPENDIX A: ADDITIONAL RESULTS ON THE MODEL

Using Eqs. (9) and (10) for the fixed point coordinates,
p∗ and i∗sh, one can eliminate p∗ to obtain a quartic equation
in i∗sh:

a i∗sh
4 + b i∗sh

3 + c i∗sh
2 + d i∗sh + e = 0. (A1)

Here, a = β2, b = −2β2i, c = 1 − r2 + 2βr + β2i2, d =
2ir2 − 2βir, and e = (1 − i2)r2. However, the formula with
such coefficients is unwieldy to get an analytical expression
for i∗sh in terms of the parameters β, i, and r. A more insightful
approach is to plot p∗ and i∗sh as per Eqs. (9) and (10) as
shown in Figs. 8(a)–8(c) for β = 6 and r = 2 at different i
values. The intersection points of the two curves give possible
fixed-point coordinates (p∗, i∗sh). These have been numerically
computed as a function of i and plotted in Fig. 1(a).

At the bifurcation point i = i0, the two functions are tan-
gent at the only coinciding point, see Fig. 8(a). The value of
i0 for a given β and r is computed from the condition of two
equal roots of the Eq. (A1). Below i0, there is no intersection
and hence no dynamic steady state is possible. Above i = i0,
there are two intersections: one at relatively small values of

FIG. 8. Plots of Eq. (9) (black) and Eq. (10) (red) for different i
values with β = 6 and r = 2 at (a) i = i0 ≈ 0.83, i.e., the bifurcation
point, (b) at i = 0.9 and (c) at upper limit of i, i.e., i = ih ≈ 1.22 [see
Fig. 2(a) inset], for the dynamic regime.

FIG. 9. Small-scale zoom-in of the p [actually 300(p −
0.4413)], ish [actually 300(ish − 0.2568)] and φ̇ time traces at i =
0.83 for γ /α = 0.5.

p∗ and i∗sh and the other at larger values, see Fig. 8(b). The
Jacobian matrix (J) associated with the dynamical system
given by Eqs. (7) and (8), at the fixed point (p∗, i∗sh), works
out as

J =
( ∂〈ṗ〉

∂ p
∂〈ṗ〉
∂ish

∂〈 ˙ish〉
∂ p

∂〈 ˙ish〉
∂ish

)
(p∗,i∗sh )

=
⎛
⎝− γ

α
+ βrγ

α

(i−i∗sh )(1−p∗ )
i∗sh

− βrγ
α

2(i−i∗sh )2−(1−p∗ )2

i∗sh

r2 1−p∗
i∗sh

−1 − r2 i−i∗sh
i∗sh

⎞
⎠. (A2)

The stability of the fixed points is obtained from the trace
(Tr) and determinant (�) of J given in Eqs. (11) and (12).
The evolution of the nature of the fixed point can be better
illustrated using a vector flow diagram [25].

The small steady oscillations in temperature p and ish

around their average values (p∗, i∗sh) are shown along with
φ̇ oscillation in Fig. 9. The dynamic steady state exists till
a certain bias current, called static retrapping current ih, at
which p∗ reaches 1 [3]. Putting p∗ = 1 in Eqs. (9) and (10),
the formula for ih expectedly comes out to be (1 + r)/

√
β.

Note that ih is independent of γ /α unlike idyn
r .

APPENDIX B: ADDITIONAL RESULTS ON PURE
RESISTIVE SHUNTING

The bath-temperature Tb dependence of I0
c and Idyn

r is
shown in Fig. 10(a) when the shunt inductance is negligible.
The crossover between the reversible (Idyn

r ≈ I0
c ) and hys-

teretic (Idyn
r < I0

c ) regimes occurs at a temperature Th that de-
creases slightly by incorporating a shunt. This, together with
the slightly larger I0

c above Th in shunted devices is attributed
to the distribution of current fluctuations between the shunt
and the WLs, leading to a decrease in the WL heating and
thus an increase in I0

c value [19]. For zero-inductance limit,
in the hysteretic regime, we obtain the β parameter value as a
function of Tb from the measurement of the Idyn

r value and
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FIG. 10. (a) Dependence of I0
c and Idyn

r on the bath temperature Tb

for a resistively shunted device (no inductance). (b) β variation with
Tb(<Th ) calculated from the ratio Idyn

r /I0
c and using Idyn

r expression
[3]. Solid line is the fit to the DTM for unshunted device. The shaded
area in panel (b) depicts the parameter range β � 2 where V (�)
oscillations are significant.

using Idyn
r expression [3,17], see Fig. 10(b). Similar to our

earlier analysis on unshunted μ-SQUIDs, the fit of β variation
to the DTM gives k = 4.3 nW/K.

The voltage modulation by the flux for the three shunt
cases is displayed in Figs. 11(a), 11(c) and 11(e) for a bath
temperature Tb = 2.2 K. The periodicity in magnetic field is
consistent with a flux �0 over an effective SQUID loop area
of 1.8 μm2. In the unshunted device with higher β, voltage

FIG. 11. V (�) modulations and IVCs at different flux values
(0, �0/2 and �0/4) at 2.2 K for no shunt, a RS1 shunt and a RS2 shunt.
Bias current ranges for V-� modulations are 40−42 μA, 48−80 μA,
and 52−100 μA for RS = ∞, RS1, and RS2, respectively.

oscillations are expectedly seen only over a short bias current
range just above Idyn

r . The shunted devices display voltage
oscillations over a larger bias current range. The IVCs show
a consistent behavior with the V (�) data, see Figs. 11(b),
11(d) and 11(f), the RS2-shunted device being nonhysteretic.
At further lower temperature, the parameter β0 being higher,
no voltage modulation could be observed in the unshunted
case. However, oscillations are seen for the RS1 shunt till
1.8 K. The dynamic regime becomes wider for RS2-shunted
device, although the IVCs remain hysteretic [25].

The flux-to-voltage transduction function V�=
| ∂V/∂�(�) |max is found to be 40 μV/�0 for the unshunted
device at 2.2 K just above Idyn

r , which leads to a flux noise
density

√
S� = 100 μ�0/

√
Hz for the voltage white noise of

4 nV/
√

Hz. The IVCs being nonhysteretic for RS2 shunt at
2.2 K, V� increases to 132 μV/�0. Thus, we get a reduced√

S� = 30 μ�0/
√

Hz with the RS2 shunt.
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