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ABSTRACT

This paper presents a new scheme to perform the canonical
polyadic decomposition (CPD) of a symmetric tensor. We
first formulate the CPD problem as a truncated moment prob-
lem, where a measure has to be recovered knowing some of its
moments. The support of the measure is discrete and encodes
the CPD. The support is then retrieved by solving a poly-
nomial system. Using algebraic results, our method resorts
only to classical linear algebra operations (eigenvalue method
and Schur reordered factorization). This new viewpoint offers
theoretical guarantees on the retrieved decomposition. Finally
experimental results show the validity of our method and a
better reconstruction accuracy compared to classic CPD algo-
rithms.

Index Terms— tensors, canonical polyadic decomposi-
tion, moment problem

1. INTRODUCTION

Tensors techniques have spread into many scientific fields
nowadays (see e.g. [1, 2]). However, due to their high dimen-
sionality, tensors remain difficult to visualize, to handle, and
to interpret. In this context, factorizing tensors has become
a crucial step. The goal is to decompose an intricate tensor
into simpler atoms that can be more easily interpreted and
can lead to faster computations. Famous tensor decomposi-
tions include canonical polyadic (CPD) and Tucker decom-
positions [3] as well as tensor-train [4] or block-term [5]
decompositions. We focus here on CPD. Popular algorithms
to perform CPD include unconstrained nonlinear optimiza-
tion [5] (OPT), alternating least square (ALS) [3], nonlinear
least square (NLS) [3], and generalized eigenvalue decompo-
sition [6] (GEVD). The objective of this paper is to present
an alternative approach based on moments.

The starting point of our method is the link between
CPD and the moment problem, which has been unveiled
recently [7]. In the latter work, a method to detect the sym-
metric rank of the tensor based on the rank of certain moment
matrices has been proposed. We here extend this work by
proposing a novel approach for the extraction of the gener-
ating vectors of the CPD. More precisely, our approach is
grounded on methods for solving polynomial systems based

on algebraic results, which allow us to solve a moment prob-
lem. Theoretical results guarantee that the retrieved CPD is
exact.

Links between CPD and moment problem have already
been mentioned [8–10] but used in different ways. In [10],
the authors reformulate the minimum rank CPD problem as
a generalized problem of moments. It is then relaxed into
a hierarchy of convex semi-definite programming problems,
the dual problem of which provides certificates for the cor-
rectness of the CPD. Experiments are restricted to small di-
mensional tensors, which, from our experience, is related to
the heavy computational load of this method. In contrast, our
proposed method scales well for medium to high dimensional
tensors. The algebraic methods in [8,9] provide a completely
different perspective based on a sum of given powers of linear
forms that requires a heavy theoretical background. Although
similar in spirit, the simplicity of our method may provide
further insight and accessibility.

Our paper is organized as follows: Section 2 introduces
the CPD for a symmetric tensor. Section 3 summarizes the
connection between CPD and moment problem as well as
some tools used in our method. Section 4 explains how to
solve the moment problem and retrieve the generating vectors
of the CPD. Section 5 shows simulation results and com-
parisons of our method with CPD algorithms from common
tensor toolboxes, and Section 6 concludes our work.

We use the following notation:
(
n
p

)
is the binomial co-

efficient “among n choose p”. Upper case calligraphic let-
ters denote tensors (T ) and fraktur letter (T) their values after
reindexing (see Section 3). Bold upper case letters (M) de-
note matrices, bold lower case letters (v) denote vectors, and
lower case letters (s) denote scalars. For a multi-index α̃ =
(α0, · · · , αn) of length n + 1, we define its absolute value
|α̃| = α0 + · · ·+αn and we denote by α = (α1, · · · , αn) its
sub-index of length n where the first index has been dropped.
We define the lexicographic ordering for two multi-indices α̃
and β̃ of same absolute value, as follows: α̃ comes before
β̃ if the leftmost non-zero entry of α̃ − β̃ is positive. Nnk is
the set of multi-indices of n elements whose absolute value is
smaller than or equal to k.



2. CANONICAL POLYADIC DECOMPOSITION

Let T denote a tensor of order d on Rn+1 with d ≥ 4 an
even integer. In this paper, we deal with symmetric tensors
only, i.e. tensors whose entries (Ti1,...,id)0≤i1,...,id≤n are un-
changed by any permutation of the indices. A tensor is said
to be symmetric rank-1 if it can be expressed as

v⊗d = v ⊗ · · · ⊗ v︸ ︷︷ ︸
d times

for a vector v = (vi)i∈J0,nK of Rn+1, that is
[
v⊗d

]
i1,...,id

=

vi1 . . . vid . The CPD problem that we consider consists in
finding a decomposition of T into a sum of rank-1 tensors,
T =

∑R
r=1 v(r)

⊗d, or equivalently

Ti1,...,id =

R∑
r=1

vi1(r) . . . vid(r) . (1)

The minimum value of R is called the (symmetric) rank and
is here assumed to be known. This is a common assumption
in CPD problems and many algorihms such as OPT, ALS and
NLS require the prior knowledge of the rank value, which can
be determined or estimated first [7, 11, 12]. Hence, we want
here to determine the vectors (v(r))r∈J1,RK.

Under the assumption that there is an index l in J0, nK
such that vl(r) 6= 0 for every r in J1, RK, Decomposition (1)
can be expressed in a dehomogenized form by normalizing
each v(r) with its lth coordinate

T =

R∑
r=1

λr

(
v(r)

vl(r)

)⊗d
=

R∑
r=1

λru(r)
⊗d
, (2)

where u(r) = (v1(r)/vl(r), . . . , vn(r)/vl(r)) and λr =

vl(r)
d is positive. With no loss of generality, we take l = 0

in the following. All the following results still hold for any
other index l after an adequate permutation of coordinates.

3. CP DECOMPOSITION AS A MOMENT PROBLEM

We recall the connection between the CPD and the moment
problem, which was introduced in [7] and gives our strong
theoretical guarantees on the CPD.

Due to the symmetry assumption, the order of the indices
in i = (i1, . . . , id) has no influence on the value of the ten-
sor element Ti1,...,id , which is uniquely defined by specifying
the number of times each index value appears in i. More pre-
cisely, to any d-tuple i = (i1, . . . , id), we associate an (n+1)-
tuple α̃(i) = (α0(i), . . . , αn(i)), where for each l in J0, nK,
αl(i) is the number of times the index value l appears in i.
We therefore define the tensor values Ti = Tα̃(i), where Tα̃

is indexed by (n+ 1)-tuples α̃ satisfying |α̃| = d.
Note that dehomogenization pairs each α̃ with a unique

α since α0 = d − |α|. Following the dehomogenization and

the above reindexing, Decomposition (1) can be reexpressed
as

Tα̃ =

R∑
r=1

λru1(r)
α1 . . . un(r)

αn

=

∫
xα1
1 . . . xαn

n µ(dx) =

∫
xαµ(dx) , (3)

where µ is the R-atomic positive measure defined on n vari-
ables and supported on the points (u(r))r∈J1,RK

µ =

R∑
r=1

λrδu(r) .

The right hand side of (3) is the moment of order α of
the measure µ and its degree is |α|. Finding the vectors
(u(r))r∈J1,RK and the coefficients (λr)r∈J1,RK in a CPD is
therefore equivalent to estimating an R-atomic measure µ
from its moments of degree up to 2k. The latter is a truncated
moment problem which is a well known problem encountered
in several scientific fields.

An important tool for solving our problem is the moment
matrix of order k = d

2 defined by(
∀(α̃, β̃) ∈

(
Nn+1

)2
, |α̃| =

∣∣∣β̃∣∣∣ = k
)

(Mk)(α̃,β̃) = Tα̃+β̃ ,

where the multi-indices α̃ and β̃ are arranged with respect to
the lexicographic order. The number of rows and columns in
the matrix Mk is N =

(
n+k
k

)
. Note that odd order tensors

can be handled by setting k = d−1
2 and defining the moment

matrix elements (Mk)(α̃,β̃) as Tα̃+β̃+(1,0,...,0).

4. EXTRACTING THE CPD VECTORS

This section deals with the recovery of the support of the
measure µ, or equivalently the vectors in the CPD, from Mk.
Since we assume the rank R of T is known, the existence
of an R-atomic measure µ and its corresponding decomposi-
tion (3) is guaranteed. Furthermore, results from [7] ensure
that Mk has rank R.

4.1. Link between vectors (u(r))r∈J1,RK and matrix Mk

The kernel of the moment matrix Mk is defined as

KerMk = {p ∈ RN |Mkp = 0} .

Moreover, the moment matrix Mk is indexed by the pair of
multi-indices (α̃, β̃) whose absolute values are equal to k.
Equivalently, we can use the pair of multi-indices (α,β),
each one belonging to Nnk . Since to each multi-index α corre-
sponds a monic monomial xα, we can associate to each vec-
tor p in the kernel of the moment matrix Mk a polynomial p
such that

(∀x ∈ Rn) p(x) =
∑
α∈Nn

k

pαx
α .



According to [13, Theorem 5.29], the vectors (u(r))r∈J1,RK
forming the support of the sought measure µ are the common
zeros of the polynomials with coefficients in KerMk, that is

(u(r))r∈J1,RK = {x ∈ Rn | (∀p ∈ KerMk) p(x) = 0} .

Finding the generating vectors of the CPD is therefore equiv-
alent to solving a multivariate polynomial system.

4.2. Eigenvalue method to solve polynomial system

The eigenvalue method transforms the original polynomial
system into a linear algebra problem. Despite being described
in a few places [14], this method seems to be widely ignored
by the signal processing community. We briefly describe here
the different steps in our context. A more general and theo-
retical explanation of the method can be found in [15].

The first step consists in computing through Gaussian
elimination the reduced row echelon form of Mk, which
is an upper triangular N × N matrix whose last N − R
rows are composed solely of 0. Dropping the last N − R
rows of zeros, we note U the obtained R × N matrix and
(uα)α∈Nn

k
its N column vectors. We then read from U the

column multi-indices of the pivot elements. We get R pivots
whose indices are denoted by (βr)r∈J1,RK. We have then the
following result:

Proposition 1 For every i in J1, nK, the i-th coordinates of
the R points (u(r))r∈J1,RK are the R eigenvalues of the ma-
trices Ni extracted from U such that

Ni = [uβ1+ei
. . .uβR+ei

] .

where ei is a multi-index of Nn whose all elements are equal
to zero except its i-th element which is 1.

This result is a direct application of Stickelberger eigen-
value theorem [15, Theorem 4.5]. The matrices (Ni)i∈J1,nK
are called the multiplication matrices. The origin of this name
can be found in [15].

Example Let T be a tensor of order d = 4 in R3 with rank
R = 3. The associated moment matrix M2 is a 6 × 6 matrix
that can be seen indexed by the following ordered set

N2
2 = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)} .

We then obtain its reduced row echelon form, e.g.

U =

1 0 0 u1 u4 u7
0 1 0 u2 u5 u8
0 0 1 u3 u6 u9

 .
We read out the indices of the pivots

β1 = (0, 0) , β2 = (1, 0) , β3 = (0, 1) ,

whence the corresponding multiplication matrices

N1 =

0 u1 u4
1 u2 u5
0 u3 u6

 , N2 =

0 u4 u7
0 u5 u8
1 u6 u9

 .
Note, for instance, that the second column of N1 is u(2,0).

4.3. Computation of the eigenvalues of (Ni)i∈J1,nK

Since multiplication matrices all commute pairwise, they pre-
serve the eigenspaces of each others. A numerically stable
way to compute their eigenvalues based on Schur factoriza-
tion [16] is then available and summarized below.

First, build a random linear combination Nh of the matri-
ces (Ni)i∈J1,nK

Nh =

n∑
i=1

aiNi , (4)

where (ai)i∈J1,nK are randomly chosen real numbers sum-
ming up to one. Now, a key point is that the left eigenspaces
of Nh need all to be one-dimensional in order to avoid to
miss any points in the support of µ. Since the rank of the ma-
trix Mk is R, this holds almost surely [15] for any choice of
the (ai)i∈J1,nK. Following [16], the left eigenspaces of Nh

are then found by computing an ordered Schur decomposi-
tion QTQ> of Nh where Q is an orthogonal matrix and T is
upper triangular. The coordinates of the points (u(r))r∈J1,RK
are thus given by

(∀i ∈ J1, nK)(∀r ∈ J1, RK) ui(r) = q>r Niqr ,

where qr is the r-th column of matrix Q.
Finally the weighting coefficients (λr)r∈J1,RK of (2) are

retrieved by solving a linear system. The sketch of the extrac-
tion method is provided in Algorithm 1.

Algorithm 1: Extraction of CPD vectors
Inputs : Moment matrix Mk and rank R of T
Output: Vectors (u(r))r∈J1,RK generating T

1 Compute the reduced row echelon form of Mk and
extract U ;

2 Find the column indices of the pivots in U ;
3 Read multiplication matrices (Ni)i∈J1,nK from U ;
4 Find the common eigenvalues of the

multiplication matrices:
5 Compute a random combination Nh of the

multiplication matrices as in (4) ;
6 Compute the ordered Schur decomposition

QTQ> of Nh ;
7 Read the i-th coordinate of the points

(u(r))r∈J1,RK by computing Q>NiQ ;



5. NUMERICAL EXPERIMENTS

5.1. Performance of the proposed method

We generate each symmetric rank-R tensor T randomly by
drawing the coefficients of its vectors (v(r))r∈J1,RK from a
uniform distribution on [−1, 1]. We then apply our method
to retrieve the CPD of T and denote by T̂ the tensor recon-
structed from the computed CPD. We assume that the rank
R is known (any existing rank detection method can be used)
and we focus only on the retrieval of the generating vectors in
the CPD.

For each test case, we run 100 simulations and show only
the average results. To assess the quality of the reconstruction,
we use the relative error between tensors T and T̂ defined as
‖T −T̂ ‖

F

‖T ‖F
, where ‖.‖F is the Frobenius norm. Moreover, we

also compute a score inspired by [17] to evaluate the recon-
struction quality. The score measures the similarity between
the original generating vectors (v(r))r∈J1,RK of a symmetric
rank-R tensor and the vectors (v̂(r))r∈J1,RK obtained after
computing its CPD. It is computed as the product of the cor-
relation between the vectors (v(r))r∈J1,RK and (v̂(r))r∈J1,RK,
namely

score =

R∏
r=1

〈v(r) | v̂(r)〉
‖v(r)‖ . ‖v̂(r)‖

.

Thereby, when the score is close to 1, the vectors (v̂(r))r∈J1,RK
are strongly correlated to (v(r))r∈J1,RK and the CPD is ac-
curate. However, if the score is close to 0, the CPD yields a
poor quality decomposition.

Table 1 shows that our method can accurately reconstruct
the CPD of a symmetric tensor for various combinations of
dimension, order and rank. The running time is still fair and
scales well with the order or the rank of the tensor.

Table 1. Quality and reconstruction time of our method

n+ 1 d R Relative error Time (s)

10 4 10 4.10e-12 0.02
30 4 10 7.62e-12 7.11
50 4 10 4.51e-12 178.3
100 4 10 9.95e-12 13818

30 4 5 7.83e-13 3.97
30 4 30 1.20e-11 20.27

30 5 10 7.16e-13 7.27
30 6 10 9.06e-13 7.30

Figure 1 shows several cases where the data in the ten-
sor are corrupted with an additive i.i.d. zero-mean Gaussian
noise. We first perform a truncated SVD of Mk at rank R be-
fore applying Algorithm 1. For a low noise level, the score is
very high, close to 1; the CPD is exactly retrieved. Indeed, in
the noiseless case, the decomposition returned by our method

is guaranteed to be exact in contrast to some methods such as
ALS. However, as the variance increases, the score reduces,
the CPD is not accurate anymore and we lose any guarantee.
Furthermore, for given dimension and order, we observe that
the lower the rank, the lower the sensitivity to the noise.
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Fig. 1. Reconstruction score for noisy tensor (n = 29, d = 4)

5.2. Comparison with other methods

We now compare our method to state-of-the-art CPD algo-
rithms, especially the implementation of ALS, NLS, OPT and
GEVD from Tensorlab 3.0 [18]. Table 2 shows a comparison
of the relative error for the different algorithms and several
different types of symmetric tensors. Results for GEVD have
not been reported as they are similar to results for our method.
Generally speaking, algebraic methods retrieve faithful CPD
but, as shown in Figure 1 for our method, are sensitive to
noise. On the other hand, Table 2 shows that methods based
on optimization strategies are much less accurate than our
method for exact decomposition.

Table 2. Comparison with standard CPD methods
Tensor features Relative error
n+ 1 d R ALS OPT NLS Our method

10 4 10 9e−3 2e−2 1e−3 4e−10
30 4 10 1e−2 2e−2 5e−4 8e−12
50 4 10 1e−2 2e−2 1e−4 5e−12

100 4 10 1e−2 7e−3 8e−5 1e−13
30 4 5 7e−3 2e−1 1e−3 8e−13
30 4 20 4e−3 5e−2 3e−4 1e−11
30 4 30 4e−3 5e−2 4e−4 1e−11

6. CONCLUSION

By interpreting the problem of the CPD as a moment prob-
lem, we propose an algebraic method that guarantees to re-
cover the unique measure solving the problem and allow us
to deduce the vectors of the CPD. Finally our simulations
show the validity of this method. For CPD in a noiseless con-
text, the method appears to be quite competitive with existing
ones.
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