Lineage hierarchies and stochasticity ensure the long-term maintenance of adult neural stem cells - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Science Advances Année : 2020

Lineage hierarchies and stochasticity ensure the long-term maintenance of adult neural stem cells

Résumé

The cellular basis and extent of neural stem cell (NSC) self-renewal in adult vertebrates, and their heterogeneity, remain controversial. To explore the functional behavior and dynamics of individual NSCs, we combined genetic lineage tracing, quantitative clonal analysis, intravital imaging, and global population assessments in the adult zebrafish telencephalon. Our results are compatible with a model where adult neurogenesis is organized in a hierarchy in which a subpopulation of deeply quiescent reservoir NSCs with long-term self-renewal potential generate, through asymmetric divisions, a pool of operational NSCs activating more frequently and taking stochastic fates biased toward neuronal differentiation. Our data further suggest the existence of an additional, upstream, progenitor population that supports the continuous generation of new reservoir NSCs, thus contributing to their overall expansion. Hence, we propose that the dynamics of vertebrate neurogenesis relies on a hierarchical organization where growth, self-renewal, and neurogenic functions are segregated between different NSC types.
Fichier principal
Vignette du fichier
ThanTrong_ScAd_2020_eaaz5424.full.pdf (2.56 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02653028 , version 1 (29-05-2020)

Licence

Paternité

Identifiants

Citer

Emmanuel Than-Trong, Bahareh Kiani, Nicolas Dray, Sara Ortica, Benjamin Simons, et al.. Lineage hierarchies and stochasticity ensure the long-term maintenance of adult neural stem cells. Science Advances , 2020, 6 (18), pp.5424 - 5453. ⟨10.1126/sciadv.aaz5424⟩. ⟨hal-02653028⟩
52 Consultations
43 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More