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Source/Filter Model for Unsupervised Main Melody
Extraction From Polyphonic Audio Signals

Jean-Louis Durrieu, Gaël Richard, Bertrand David and Cédric Févotte

Abstract— Extracting the main melody from a polyphonic
music recording seems natural even to untrained human listeners.
To a certain extent it is related to the concept of source separation,
with the human ability of focusing on a specific source in order
to extract relevant information. In this article, we propose a new
approach for the estimation and extraction of the main melody
(and in particular the leading vocal part) from polyphonic audio
signals. To that aim, we propose a new signal model where
the leading vocal part is explicitly represented by a specific
source/filter model. The proposed representation is investigated
in the framework of two statistical models: a Gaussian Scaled
Mixture Model (GSMM) and an extended Instantaneous Mixture
Model (IMM). For both models, the estimation of the different
parameters is done within a maximum likelihood framework
adapted from single-channel source separation techniques. The
desired sequence of fundamental frequencies is then inferred
from the estimated parameters. The results obtained in a re-
cent evaluation campaign (MIREX08) show that the proposed
approaches are very promising and reach state-of-the-art perfor-
mances on all test sets.

Index Terms— Music, Source/Filter Model, Main Melody Ex-
traction, Blind Audio Source Separation, Spectral Analysis, Max-
imum Likelihood, Expectation-Maximization (EM) algorithm,
Gaussian Scaled Mixture Model (GSMM), Non-negative Matrix
Factorization (NMF)

I. INTRODUCTION

THE “main melody” of a polyphonic music excerpt com-
monly refers to the sequence of notes played by a

single monophonic instrument (including singing voice) over
a potentially polyphonic accompaniment. If humans have a
natural ability to identify and, to a certain extent, isolate
this main melody from a polyphonic music recording, its
automatic extraction and transcription by a machine remains a
very challenging task despite the recent efforts of the research
community.

The main melody sequence is a feature of great interest
since it carries a significant amount of semantically rich
information about a music piece and appears to be partic-
ularly useful for a number of Music Information Retrieval
(MIR) applications. For instance, it can be directly used in
systems such as Query-By-Humming or Query-By-Singing
systems [1]. It can also be exploited for music structuring [2],
music similarity search such as cover version detection [3],
and to a certain extent in copyright protection.
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Fig. 1. Proposed system outline: X is the short-time Fourier transform
(STFT) of the mixture signal, p(Ξ|X) the posterior probability of a given
melody sequence Ξ, and Ξ̂ the desired smooth melody sequence.

Several types of methods have been proposed to address the
problem, and most of them are parametric. The estimation then
relies on a signal model, e.g. a probabilistic modeling of the
spectrogram in [4] or using more classical signal processing
solutions as in [5] or [6]. These systems are not limited to
these categories, and often use several heuristics and statistical
methods to achieve their goal. Another possibility is the use of
classification schemes, such as [7]. The first kind of methods
usually introduce generative models for the signal, while the
latter method is related to perceptive aspects of the task.

The common underlying concept followed by these systems
is a two step process: first, the signal is mapped onto a feature
space, and then these features are post-processed to track the
melody line. The feature space can directly be a mapping
on the Fourier domain [7] but most of the approaches aim
at obtaining higher level features or objects, such as pitch
candidates as in [5] and [6]. As depicted in Figure 1, the
hereafter proposed system is a two-step melody tracker as well
and relies on a parameterization of the power spectrogram. The
parameters are first estimated and the posterior probabilities
of potential melody sequences are then computed. At last, the
melody smoothing block outputs the desired sequence Ξ̂.

Our approach includes several original contributions. First,
specific (and different) models are used for each component
(leading instrument vs accompaniment) of the music mixture
to take into account their specificities and/or their production
process. Indeed, since this study focuses on signals for which
the predominant instrument usually is a singer, there is a
particular interest to exploit the production characteristics of
the human voice compared to any other instrument as in [8].
It is then proposed to represent the leading voice by a specific
source/filter model that is sufficiently flexible to capture the
variability of the singing voice in terms of pitch range and
timbre (or more specifically the produced vowel). On the other
hand, the accompaniment includes instruments that exhibit
more stable pitch lines compared to a singer and/or a more
repetitive content (same notes or chords played by the same
instrument, drum events which may remains rather stable in
a given piece, etc.). To exploit this relative pitch stability
and temporal repetitive structure, the model for the accom-
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paniment is inspired by Non-negative Matrix Factorization
(NMF) with the Itakura-Saito divergence [9]. The proposed
systems discriminate between the leading instrument and the
accompaniment by assuming that the energy of the former is
most of the time higher than that of the latter.

Second, the leading voice is modeled in a statistical frame-
work in which two different generative models are proposed,
both of them including the previously mentioned source/filter
parameterization. The first model is a source/filter Gaussian
Scaled Mixture Model (GSMM) [10] while the second one
is a more general Instantaneous Mixture Model (IMM). Our
generative model is essentially inspired by single-channel
blind source separation approaches presented in [10] and [11].
We can therefore also proceed to the actual separation of
the estimated solo part and background part which can be
useful for other applications such as audio remixing, karaoke
or polyphonic music transcription. The proposed methods are
unsupervised, and thus differ from the supervised techniques
of [10] and [11].

Third, it is commonly accepted that most melody lines
exhibit a limited variation from one note to the next in terms of
relative energy and interval. To take into account this property,
it is then proposed to exploit a smoothing strategy based on an
adapted Viterbi algorithm to track, among the most probable
sequences of fundamental frequencies obtained in the first
step, the sequence that reaches the best trade-off between the
energy of the path and its regularity. This strategy relaxes
the assumption that, in each analysis frame, the fundamental
frequency is the most energetic one. The resulting melody
sequence is then physically more relevant.

The results obtained are very promising and the evalua-
tion conducted in the framework of the international Music
Information Retrieval Evaluation eXchange (MIREX) 2008
campaign on the audio melody extraction task1 has shown
that our algorithms achieve state-of-the-art performances on
various sets of music material.

This article is organized as follows: the different signal
models introduced are detailed in section II. The estimation of
the model parameters is discussed in section III. The smooth-
ing post-processing stage which allows to obtain the desired
melody sequence is described in section IV. The results of
audio main melody extraction are presented in section V,
where we also give some insights about two applications of our
approach, namely source separation and multipitch tracking.
Finally, some conclusions and future extensions are suggested
in section VI.

II. SIGNAL MODELS

A. Notations

The short-time Fourier transform (STFT) of a time-domain
signal y is denoted by the F × N matrix Y, F being the
Fourier transform size and N the number of analysis frames.
SY denotes the F ×N matrix whose columns are the power
spectrum densities (PSD) of consecutive frames of a signal y.

1http://www.music-ir.org/mirex/2008/

For a matrix A, we define the notation for the element at the
i-th row and j-th column aij = [A]ij , convenient for matrix
products. The j-th column of A is denoted as the vector aj .

B. Modeling the spectra of the signals

We assume that the signals are wide-sense stationary (w.s.s.)
within each analysis frame. For frame n, the Fourier transform
yn of signal y is considered as a centered proper complex
Gaussian variable. We further assume that the covariance
matrix of yn is diagonal, with diagonal coefficients equal to
the PSD sY,n, as in [10]: this is equivalent to neglecting the
correlation between two frequency channels of the Fourier
transform, i.e. ignoring the spectral spread due to windowing.

A (scalar) complex variable is centered proper Gaussian
if both its real and imaginary parts are independent centered
Gaussian variables, with the same variance. The likelihood of
the STFT yfn = ρfn exp(iφfn) at frequency bin f and frame
n is therefore defined as:

p(yfn) = p(ρfn, φfn) =
ρfn

πsY,fn
exp

(
−

ρ2
fn

sY,fn

)
(1)

We denote a random variable following (1) with the following
convention: yfn ∼ Nc (0, sY,fn), and for the vector yn ∼
Nc (0, diag(sY,n)). Note that such a definition also implies that
the phase of the complex variable is uniformly distributed.

The models we propose essentially put spectral and tempo-
ral constraints on the PSD sY,n. As shown in [9], estimating
the PSD in this framework is equivalent to fitting the power
spectrogram |yn|2 with the (constrained) PSD sY,n, using the
Itakura-Saito divergence as cost function.

C. Mixture signal

The observed musical mixture signal x is the sum of two
contributions v, the leading instrument, and m, the musical
accompaniment. Therefore, their STFTs verify:

X = V + M

In this paper, we consider musical pieces or excerpts where
such a leading instrument is clearly identifiable and unique.
The latter assumption particularly implies that the melody line
is not harmonized with multiple voices. We assume that its
energy is mostly predominant over the other instruments of the
mixture. These can thus be assimilated to the accompaniment.
This implies that we are tracking an instrument with a rather
high average energy in the processed song and a continuous
fundamental frequency line. In this section and in section III,
the parameters mainly reflect the spectral shapes and the
amplitudes, in other words the energy. In Section IV, we focus
more on the melody tracking and therefore propose a model
for the continuity of the melodic line.

Figure 2 shows the general principle of the parameterization
of the mixture signal: a source/filter model is fitted to the main
instrument part (Section II-D), while the residual accompani-
ment is modeled in an NMF framework (Section II-E).
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Fig. 2. Principle for the decomposition of one frame of the mixture STFT into leading voice and accompaniment spectra. The parameters indicated here are
presented in Section II. The source spectral shapes are fixed as explained in Appendix I and the other parameters are estimated directly from the audio signal.

D. A source/filter model to fit the main instrument parts

Let v and V respectively denote the main voice time-domain
signal and its STFT. Unlike in previous works on speech/music
separation [10] and singer/music separation [11], the pitched
aspect of the spectral shapes used to identify the main part is
here fundamental. We are interested in transcribing the melody
itself, i.e. the fundamental frequencies that are sung or played,
which are closely related to the pitched components of the
signal. Therefore, in order to obtain pitch constrained spectra,
and inspired by speech processing modeling techniques, we
propose a conventional source/filter model of the principal
instrument signal [12] for which the source part is harmonic
(voiced source) and fixed.

Only the pitched segments of the main part are modeled,
unpitched or unvoiced segments are therefore rejected as
belonging to the accompaniment. In source/filter modeling, the
voiced speech signal is produced by an excitation, depending
on a fundamental frequency, which is then filtered by a vocal
tract shape, providing the pronounced vowel. At first, the
model presented in this paper was designed for singer signals
as a realistic production model. It can also be extended to some
music instruments, for which the filter part is then interpreted
as shaping the timbre of the sound, while the source part
mainly consists in a more generic harmonic signal driven by
the fundamental frequency.

Our strategies rely on a decomposition of the main voice
signal onto several hidden states or elementary components. In
practice, the decomposition of the STFT is done onto a limited
number of spectral components. In our source/filter model,
the filter is independent from the source and its fundamental
frequency, and the filter and source parts can therefore be
modeled independently. The range of the source spectra corre-
sponds to the range of notes the singer or instrument can play.
The discrete range of filters corresponds to a limited number
of possible timbres or vowels pronounced in the main voice.
Under certain assumptions, we could for example consider that
each of the estimated filters represents a specific vowel such
as [a], [e] and so on.

Let U be the number of possible fundamental frequencies

(notes) for the main part and K the number of “vocal tract”
filters. The elementary variance for a filter-source couple
(k, u) ∈ [1,K]× [1, U ] is the product wΦ

fkwF0
fu for f ∈ [1, F ]:

wF0
fu is the variance of the source for a fundamental frequency

number u and wΦ
fk is the squared magnitude of the frequency

response of filter k at frequency bin f . The F × U matrix
WF0 is the source spectra dictionary. Each source spectrum
is parameterized by a fundamental frequency f0 = F(u),
where the function F maps the number u of the spectrum
to a given frequency f0 in Hz. Some more details are given
in Appendix I. For the filters, we assume that they have real
frequency responses, since equation (1) shows that our model
discards the phase information from the likelihood p(X)2. WΦ

is the F ×K filter spectral shape matrix. WΦ is normalized
such that each of its columns sums to 1 and WF0 such that
the maximum value of each column is equal to 1.

From this general framework, we derive two different mod-
els. The first one is the GSMM framework [10] adapted to our
source/filter model; the second one relaxes the generative con-
dition on the number of sources per frame. This latter model
was motivated by the need of faster estimation schemes, as
well as a more flexible model, inspired by NMF methodology.
We investigate and compare these models in the following
sections.

1) Gaussian Scaled Mixture Model (GSMM): Follow-
ing [10], we define a GSMM for which the states are all
the couples (k, u) ∈ [1,K] × [1, U ]. Under the conditions
discussed in section II-B for signal v and its STFT V, the
likelihood of vn, for frame n, conditionally upon the state
pair Zn = (k, u), is:

vn|Zn ∼ Nc(0, bkundiag(wΦ
k •wF0

u )) (2)

where bkun is the amplitude coefficient for state pair (k, u)
at frame n and • denotes the Hadamard (entry-wise) product.

2For a given set of parameter θ, the likelihood should write p(X|θ).
However, for simplicity, and since there is no ambiguity in our context, the
likelihood is here denoted p(X). Note in particular that it is not the marginal
likelihood, defined as the integration of the likelihood over all the possible
parameter sets θ.
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Fig. 3. Schematic principle of the generative GSMM for the main instrument
part. Each source u is filtered by each filter k. For frame n, the signal is then
multiplied by a given amplitude and a “state selector” then chooses the active
state.

Then the observation likelihood verifies:

p(vn) =
∑
k,u

πkup(vn|Zn = (k, u))

⇔ vn ∼
∑
k,u

πkuNc(0, bkundiag(wΦ
k •wF0

u )) (3)

where the prior probability of state Z = (k, u) is denoted πku.
These probabilities verify

∑
k,u πku = 1. For convenience,

from now on, the conditional likelihoods p (.|Zn = (k, u)) are
abbreviated to p(.|k, u). We denote the variance for the main
instrument, given the state pair (k, u), at frequency f and
frame n as follows:

sV,fn|ku = bkunwΦ
fkwF0

fu (4)

Such a model is formally very similar to a Gaussian Mixture
Model (GMM), with an additional degree of freedom: at
each frame n, the non-negative amplitude coefficient bkun

corresponding to state (k, u) allows the scaling of the variance
to the actual energy of the frame (source and filter spectra are
normalized). As a generative model, if (k, u) differs from the
active state Zn, then bkun can take any value. In the Maximum
Likelihood (ML) estimation explained in section III, there is
however no ambiguity for these parameters. We compute bkun

as being the amplitude maximizing the likelihood (2), as if
(k, u) were, at frame n, the active state.

Figure 3 shows the diagram of the GSMM model for the
main voice part. Each source excitation u is filtered by each
filter k. The amplitudes for a frame n and for all the couples
(k, u) are then applied to each of the output signals. At last a
“state selector” sets the active state for the given frame n.

2) Instantaneous Mixture Model (IMM): Models like the
GSMM have a heavy computational load and the second model
we propose aims at reducing this load while staying close
to the original generative GSMM model. Here, the random
variable vn is obtained as a weighted sum of sub-spectra νkun,
each corresponding to the combination of the filter k with the
source u: vn =

∑
k,u

νkun. Each sub-spectrum is assumed to be

Gaussian such that:

νkun ∼ Nc

(
0, hΦ

knhF0
undiag(wΦ

k •wF0
u )
)

where HΦ and HF0 are the amplitudes matrices for the filters
and the sources such that hΦ

kn ≥ 0 (resp. hF0
un ≥ 0) is the

MIXTURE
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Source u
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Filter K
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vn

Filter 1

Fig. 4. Schematic principle of the generative IMM for the main instrument
part. At each frame, all the U sources, each filtered by the K filters, are
multiplied by amplitudes and added together to produce the leading voice
signal.

amplitude factor associated with the filter component k (resp.
source element u), for frame n. We normalize the columns of
HΦ such that they sum to 1. Since both matrices WΦ and
WF0 are also normalized, the energy for the main instrument
part is mostly represented by the amplitudes in HF0 .

The sub-spectra are mutually independent. Their sum vn is
therefore also Gaussian and verifies:

vn ∼ Nc(0,
∑
k,u

hΦ
knhF0

undiag(wΦ
k •wF0

u )) (5)

vn ∼ Nc

(
0, diag(

[
WΦhΦ

n

]
•
[
WF0hF0

n

]
)
)

(6)

Note how Eq. (5) differs from Eq. (3): in the GSMM, the
likelihood of the voice signal is a weighted sum of likelihoods,
while in the IMM, it is the variance that is a weighted sum
of variances. The variance of the likelihood of an individual
time-frequency bin of the vocal signal can be written with
matrix factors:

sV,fn =
[
(WΦHΦ) • (WF0HF0)

]
fn

(7)

This highlights the link between this parameterization and
NMF.

Furthermore, from a generative point of view, the IMM
diagram Fig. 4 clearly shows how the IMM differs from the
GSMM . Instead of selecting only one output in the end,
all the filtered outputs are added together to form vn. There
however exists an implicit link between these two models in
our framework which we discuss in the next section.

3) Bridging the models: The GSMM is closer to modeling
a monophonic voice, since by construction only one state, i.e.
one source and one filter, is active at each frame. The IMM,
under certain circumstances, can also fit a monophonic voice,
but does not inherently do so.

From a generative point of view, the second model can be
reduced to the first one by constraining the amplitudes in HΦ

and HF0 . For a frame n, to generate vn from the GSMM,
we need to draw the active state Zn = (γ, µ) from the prior
densities πku. In this case, we know exactly that p(vn) =
p(vn|γ, µ) and the variance, or equivalently the PSD, of vfn

is sV,fn = bγµnwΦ
fγwF0

fµ. Assuming the estimated filters WΦ

for the IMM are the same as for the GSMM, the same PSD
sV,n is obtained for the IMM if we constrain the amplitudes
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such that:

hΦ
knhF0

un =
{

bγµn, if k = γ and u = µ
0, otherwise (8)

where δa=b = 1 if a = b and 0 otherwise. The above equation,
with the normalization of the columns of HΦ yields to:{

hΦ
kn = δk=γ

hF0
un = bγµnδu=µ

However, during the estimation step, the IMM is not con-
strained, in order to be more flexible and allow the model to
better adapt to the signal.

E. Background music model
The accompaniment STFT M is the weighted instantaneous

mixture of R elementary sources STFT Mr, r ∈ [1, R].
Each of these signals is Gaussian, centered, with variance
at frequency bin f and frame n equal to wM

frh
M
rn. WM is

the F × R matrix of accompaniment spectral shapes. The
amplitudes form a R×N matrix HM . mn is also a centered
Gaussian, and the covariances add up such that:

mn ∼ Nc

(
0,

R∑
r=1

hM
rndiag(wM

r )

)
∼ Nc

(
0, diag(WMhM

n )
)

(9)

where the PSD of mn, sM,n can be identified with the diagonal
of the covariance matrix of the Gaussian:

sM,fn =
R∑

r=1

wM
frh

M
rn =

[
WMHM

]
fn

(10)

F. Statistics of the mixture signal
In our model, the temporal dimension is not taken into

account, and the frames are assumed to be independent re-
alizations. Therefore:

p(X) =
∏
n

p(xn) (11)

1) Statistics of the mixture signal with the GSMM for v:
The likelihood of xn is the weighted sum of the conditional
likelihoods, sum over the states of the vocal part:

p(xn) =
∑
k,u

πkup(xn|k, u) (12)

where p(xn|k, u) is the likelihood of the STFT X conditional
upon the state pair (k, u) of the mixture signal. We have
assumed that the Fourier transforms vn for the main voice
and mn for the accompaniment are centered Gaussians. We
also assume that, conditionally upon the state Zn for the
main instrument, vn and mn are independent. Therefore, their
sum is also Gaussian, centered, with the covariance matrix
equal to the sum of the corresponding diagonal covariances
diag(sV,n|ku) and diag(sM,n). The resulting matrix is therefore
diagonal, with on the diagonal the PSD sX,n|ku such that:

sX,n|ku = sV,n|ku + sM,n (13)

= bkunwΦ
k •wF0

u + WMhM
n

sX,fn|ku = bkunwΦ
fkwF0

fu +
[
WMHM

]
fn

(14)

where we have used equations (4) and (10). The conditional
likelihood at frame n follows:

p(xn|k, u) =
∏
f

|xfn|
πsX,fn|ku

exp
(
− |xfn|2

sX,fn|ku

)
(15)

We denote the K × U × N tensor of the amplitudes bkun

by B and Π = {πku; (k, u) ∈ [1,K] × [1, U ]} . We estimate
the set of parameters θGSMM = {Π,B,WΦ,HM ,WM} for
this GSMM formulation in a Maximum Likelihood framework
using an EM algorithm detailed in section III. WF0 is fixed
as explained in Appendix I and is therefore not estimated.

2) Instantaneous mixture model: For the IMM, the signals
vn and mn are also assumed independent. Hence, we obtain
a relation between the signal PSDs similar to (13), at frame
n:

sX,n = sV,n + sM,n

With the equations (7) and (10), for frequency f and frame n,
it leads to:

sX,fn =
[
(WΦHΦ) • (WF0HF0) + WMHM

]
fn

(16)

And the observation likelihood is then directly obtained
from (1):

p(xn) =
∏
f

|xfn|
πsX,fn

exp
(
−|xfn|2

sX,fn

)
(17)

The following section explicits how we estimate the different
parameters of the IMM,
θIMM = {WΦ,HΦ,HF0 ,WM ,HM}. WF0 is also fixed as
explained in Appendix I.

III. PARAMETER ESTIMATION BY MAXIMUM LIKELIHOOD

A. Maximum Likelihood principle

The proposed model for the mixture sound x is a proba-
bilistic model. We can therefore estimate the set of parameters
θ = θGSMM or θIMM by a ML method:

θ̂ = arg max
θ

pθ(X) (18)

B. Expectation-Maximization algorithm for the GSMM

The Expectation-Maximization (EM) algorithm is based on
the maximization of the expectation of the joint log-likelihood
for the observations and the hidden states, conditionally upon
the observations. In this section, we consider the GSMM
set of parameters θ = θGSMM. Let i ∈ [1, I] the iteration
number, θ(i) the set of parameters updated at iteration i,
Z = {Zn = (kn, un);n ∈ [1, N ]} the sequence of active
states for the whole observation sequence. A Lagrangian term
is added to the criterion, to express the condition over the prior
probabilities Π in equation (3).

For i > 0, we define the GSMM criterion:

CGSMM(θ, θ(i−1)) = Eθ(i−1) [log pθ(X, Z)|X]

− λ

∑
k,u

πku − 1

 (19)
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One can show that maximizing θ(i) such that:

θ(i) = arg max
θ

CGSMM(θ, θ(i−1)) (20)

is equivalent to a non-decreasing observation likelihood [13].
The EM algorithm at least allows us to obtain a local maxi-
mum of the target likelihood. Here, we have:

log p(X, Z) =
∑

n

log p(xn, Zn)

=
∑

n

log p(xn|kn, un) + log πkn,un

=
∑
n,k,u

[log p(xn|k, u) + log πku] δ{k=kn,u=un} (21)

The first equation comes from the mutual independence of the
observations over the frames, as expressed in equation (11).
The second equation is a classical result for conditional
probabilities, and where Zn was replaced by the corresponding
active states kn and un. At last, equation (21) is a false sum
over the states. This equation allows us to find a convenient
way of expressing the criterion (19):

CGSMM(θ, θ(i−1)) =
∑
n,k,u

[log pθ(xn|k, u) + log πku]

× Eθ(i−1)

[
δ{k=kn,u=un}|X

]
− λ

∑
k,u

πku − 1


Furthermore, by definition of the expectation,

Eθ(i−1)

[
δ{k=kn,u=un}|X

]
= pθ(i−1)(k, u|xn)

where we used the fact that the couple state (kn, un) only
depends on xn, and not on the whole sequence {xn, n ∈
[1, N ]}. The E step of the EM algorithm actually consists in
computing this quantity, thanks to the Bayes theorem:

pθ(i−1)(k, u|xn) ∝ pθ(i−1)(xn|k, u)π(i−1)
ku (22)

The conditional likelihood of the observations upon the states
is given by equations (14) and (15), using the parameters
in θ(i−1). The expression of the criterion is at last given in
equation (23), where sX,fn|ku is calculated from the model
parameters in θ, with equation (14). The term “CST” is a
constant independent from the parameter set θ.

The M step then consists in updating the parameter set
θ(i−1) to obtain θ(i) such that the criterion (23) is maximized.
In order to find the updating rules for a parameter θj ∈ θ, we
derivate the criterion with respect to θj and set θ

(i)
j such that

it is a zero of the partial derivative.
Here, we adopt multiplicative updating rules, inspired by

Non-negative Matrix Factorization (NMF) methodology [14].
The updated parameter is derived from the previous one by
the equation

θ
(i)
j = αθ

(i−1)
j

where α is the multiplicative updating factor. The partial
derivatives of the criterion have the following interesting form:

∂CGSMM(θ, θ(i−1))
∂θj

= P −Q

where P and Q are both positive quantities. An appropriate
direction of maximization is then found by setting α to P

Q as
in [15]. For each parameter in θ we derive the updating rules
which we report in algorithm 1.

Additionally, one can note that updating the tensor of
amplitudes B does not require the computation of the posterior
probabilities and can be computed before each E step. We
chose to update the other parameter matrices alternatively,
namely one matrix of parameters for one M step. We arbitrarily
adopted the following order: first WΦ, then HM , WM and
Π, then WΦ again and so forth. Intuitively, this allows the
parameters for the main instrument to adapt to the signal first,
hence avoiding to leave some of the signal of interest in the
accompaniment too early in the estimation.

C. Multiplicative gradient method for IMM

For the IMM, since there are no hidden states, the criterion
is directly chosen as the log-likelihood of the observations, for
the parameter set θ = θIMM:

CIMM(θ) = log pθ(X)

CIMM(θ) =
∑
f,n

log
|xfn|

πsX,fn
− |xfn|2

sX,fn
(24)

The expression of the variance sX,fn in equation (24) is given
by equation (16) and depends on θ. Here again, we use a
multiplicative gradient method. The obtained updating rules
are given in algorithm 2, where ‘/’ and the divisions between
matrices are meant element by element and ‘T ’ as a superscript
stands for matrix transposition. The power operations are
element-wise.

As for the GSMM, and for the same reasons, we chose to
update the parameters in the following order, for each iteration:
first HF0 , HΦ, HM , WΦ and WM .

IV. MAIN MELODY SEQUENCE ESTIMATION

With the proposed models, the time dependency is not
taken into account: each frame is independent from the other
ones. The desired main melody is however expected to be
rather smooth and regular, with respect to the energy of
the instrument playing it as well as its frequency range and
evolution. We also have to determine whether the main voice
is present or not for each frame. We focus on these issues in
this section.

A. Viterbi smoothing for the GSMM framework

In the probabilistic framework of the GSMM model, during
the EM algorithm, we estimate the posterior probabilities
p(k, u|xn) for each couple (k, u) and each frame n. In order to
retrieve the desired melody, we use the posterior probability of
the source state u for each frame: p(u|xn) =

∑
k p(k, u|xn).

A first strategy consists in taking the Maximum A Posteriori
(MAP) for each frame. This leads to fairly good but noisy
results. Instead, we propose an algorithm that smooths the
melody line.

To model the regularity of the melody, we define a transition
function which aims at penalizing transitions between notes
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CGSMM(θ, θ(i−1)) =
X

n,k,u

24X
f

 
log

|xfn|
πsX,fn|ku

−
|xfn|2

sX,fn|ku

!
+ log πku

35 pθ(i−1) (k, u|xn) − λ

0@X
k,u

πku − 1

1A+ CST (23)

Algorithm 1 EM algorithm for the GSMM: Estimating θGSMM = {Π,B,WΦ,HM ,WM}
for i ∈ [1, I] do

• ∀k, u, n, bkun ← bkun
PB

kun

QB
kun

, where


PB

kun =
∑
f

wΦ
fkwF0

fu|xfn|2

s2
X,fn|ku

QB
kun =

∑
f

wΦ
fkwF0

fu

sX,fn|ku

E step: thanks to (22), (15) and (14), compute γ
(i−1)
n (k, u) = pθ(i−1)(k, u|xn)

γ(i−1)
n (k, u) ∝ pθ(i−1)(xn|k, u)π(i−1)

ku

where pθ(i−1)(xn|k, u) is given by Eq. (14) and (15).

M step: update the parameters (one sub-set of parameters per M step):

• ∀f, k, wΦ
fk ← wΦ

fk

PΦ
fk

QΦ
fk

, where


PΦ

fk =
∑
u,n

γ
(i−1)
n (k, u)×

bkunwF0
fu|xfn|2

s2
X,fn|ku

QΦ
fk =

∑
u,n

γ
(i−1)
n (k, u)

bkunwF0
fu

sX,fn|ku(f)

• ∀r, n, hM
rn ← hM

rn

PH
rn

QH
rn

, where


PH

rn =
∑

k,u,f

γ
(i−1)
n (k, u)

wM
fr|xfn|2

s2
X,fn|ku

QH
rn =

∑
k,u,f

γ
(i−1)
n (k, u)

wM
fr

sX,fn|ku

• ∀f, r, wM
fr ← wM

fr

PW
fr

QW
fr

, where


PW

fr =
∑

k,u,n

γ
(i−1)
n (k, u)

hM
rn|xfn|2

s2
X,fn|ku

QW
fr =

∑
k,u,n

γ
(i−1)
n (k, u)

hM
rn

sX,fn|k,u

• ∀k, u, πku ←
1
N

∑
n

γ(i−1)
n (k, u)

end for

that are far apart. In the case of a singer, this is realistic, since
singers often use glissandi when changing notes, yielding to
almost continuous pitch changes in the melody. We chose a
parametric penalization function, from state u1 to u2:

q(u1, u2) ∝ exp(−βround(|n1 − n2|))

where ni is the MIDI code mapping3 for the fundamental
frequency number ui, i ∈ [1, 2]:

ni = 12 log2

(
F(ui)
440

)
+ 69

440Hz is the frequency for A4 and 69 its MIDI code number.
F(ui) is the frequency in Hz corresponding to the source state
ui, i.e. the fundamental frequency of state ui (see appendix
I). β is a parameter arbitrarily set: it controls the trade-
off between melody continuity (i.e. minimizing the distance

3This is a mapping and not a conversion, since the resulting ni are real
numbers, and not integers.

between consecutive notes in pitch) and the “local” probability
of the path (i.e. maximizing the posterior probabilities of the
states on the path). Thereafter, to derive the Viterbi smoothing
algorithm, we define a Hidden Markov Model (HMM) on the
data as follows:

1) The observed signal is the signal STFT X,
2) the sequence of hidden states is Ξ = {ξ(n) ∈ [1, U ];n ∈

[1, N ]} where the states are the possible notes u ∈
[1, U ],

3) the a priori distribution of those states is uniform, such
that:

p0(u) =
1
U

,∀u ∈ [1, U ]

4) the transition probabilities from state ξ(n − 1) = u1 to
ξ(n) = u2 are :

p(ξ(n) = u2|ξ(n− 1) = u1) = q(u1, u2) (25)
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Algorithm 2 Updating rules for the IMM:
Estimating θIMM = {WΦ,HΦ,HF0 ,WM ,HM}

for i ∈ [1, I] do
• Vocal source parameters:

HF0 ← HF0 • (WF0)T PF0

(WF0)T QF0

where
{

PF0 = |X|2 • (WΦHΦ)/S2
X

QF0 = (WΦHΦ)/SX

• Vocal filter parameters:

HΦ ← HΦ • (WΦ)T PΦ

(WΦ)T QΦ

WΦ ←WΦ • PΦ(HΦ)T

QΦ(HΦ)T

where
{

PΦ = |X|2 • (WF0HF0)/S2
X

QΦ = (WF0HF0)/SX

• Background music parameters:

HM ← HM • (WM )T (|X|2/S2
X)

(WM )T (1/SX)

WM ←WM • (|X|2/S2
X)(HM )T

(1/SX)(HM )T

end for

The desired sequence Ξ̂ is such that the posterior probability
of the whole sequence given the signal is the highest:

Ξ̂ = arg max
Ξ

p(Ξ|X)

For the GMM, the EM algorithm directly outputs the
p(k, u|xn), from which we compute the p(u|xn). These prob-
abilities along with the penalization function q are the only
inputs necessary for the Viterbi smoothing.

B. Viterbi smoothing in the IMM case

The previous Viterbi algorithm can be adapted to the IMM
model, for which we however do not have the probabilities
p(u|xn). As we stated in section II, there is a link between the
two models and the coefficients associated to the frequency u
in the IMM, hF0

un, are ideally equal to zero if u is not active at
frame n and proportional to the energy of the signal otherwise.

In practice, the amplitudes of these coefficients on one frame
reflect whether the corresponding basis are present or not.
They can therefore be considered as proportional to the poste-
rior probability of the corresponding GMM: hF0

un ∝ p(u|xn).
We compute a posterior “pseudo” distribution pIMM(u|xn) by
normalizing the amplitudes hF0

un over each frame n so that they
sum to 1. The Viterbi algorithm is applied on this distribution
matrix, with the same penalization function q as the GSMM,
to obtain the desired regular melody line.

C. Silence Modeling

In the GSMM framework, it is possible to model silences
in the main voice with a new state Zn = “silence” for which
the spectrum is considered as null. The posterior probability

of having a silent vocal part at frame n is denoted γn(0) =
p(“silence”|xn). The E step of algorithm 1 is modified to
take into account this new state, for which the PSD of the
vocal part, sV,n|“silence” is fixed to 0. Both the estimation and
the Viterbi algorithm can be done as explained in section III
and IV.

For the IMM, after the Viterbi smoothing, the energy of
the estimated leading voice for each frame is first computed,
based on the parameters corresponding to the estimated main
melody path. The frames are then classified into “leading
voice” and non-“leading voice” segments with a threshold on
their energies. The threshold is empirically chosen such that
the remaining frames represent more than 99.95% of the total
leading instrument energy. Fundamental frequencies of frames
for which the energy is under the threshold are set to 0 after
smoothing.

V. EVALUATION AND RESULTS

A. Evaluation metrics and corpora

The proposed algorithms were evaluated with other systems
at the MIREX 2008 Audio Melody Extraction task. The
metrics that were used are the same as for the MIREX
2005 edition of the task, described in [16]. These metrics
are framewise (as opposed to note-wise) measures: in this
setting, the onsets and offsets of the different notes are not
considered, only the fundamental frequency for a given frame
is considered. An estimated pitch that falls within a quarter
tone from the ground-truth on a given frame and a frame
correctly identified as unvoiced are true positives (TP). The
main metrics are then:

• Raw Pitch Accuracy (Acc.): the accuracy only on the
voiced frames:

Raw Pitch Acc. =
#{Voiced TP}

#{Voiced Frames}

• Overall Accuracy: accuracy over all the frames, taking
into account the silence (unvoiced) frames:

Overall Acc. =
#{TP}

#{Frames}

The ISMIR04 database is composed of 20 songs and the
MIREX05 dataset of 25 songs, both databases are described
in [16]. For MIREX 2008, a new dataset (MIREX08) was
also proposed, with 8 vocal Indian classical music excerpts4.
The provided ground-truth for all the datasets is the framewise
melody line of the predominant instrument, i.e. one funda-
mental frequency per frame. The hopsize between two frames
is 10ms. The original songs are sampled at 44100Hz. Before
processing, they are down-sampled to 11025Hz in our studies.
Also note that preliminary results for the IMM were published
in [17].

4This subset is similar to the examples from
http://www.ee.iitb.ac.in/daplab/MelodyExtraction/.
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B. Algorithm behaviours: convergence and model

1) Practical choices for the model parameters: In our
model, some parameters such as the number of spectral
shapes for the filter or for the accompaniment, among others,
need to be set beforehand. Different parameter combinations
were tested with the IMM algorithm in order to choose a
combination that leads to fairly good results in most cases.

First, several values of the number of filters K and the
number of accompaniment components R were tested. The
obtained accuracies roughly range from 73% to 77%. Lower
values of K and higher values for R tend to give better results.
It is interesting to note that even for K = 1, i.e. with only one
filter, the spectral combs of the leading voice source part are
well adapted to the signal. In the proposed model, the filter part
is not constrained to be smooth. This may explain why even
a single estimated filter for the whole signal was sometimes
enough to provide good results. For melody transcription, it
is not harmful to use such unconstrained filters. However,
for applications where these filters are directly used for their
semantic meaning, such as lyrics recognition, smoothing the
filters may become necessary. For our further experiments, we
chose K = 4 and R = 32. These values ideally correspond to
4 filters, representing 4 different vowels, and to 32 components
for the accompaniment, i.e. 32 different spectral shapes, one
for each note or percussive sound. This choice also leads to
good results while allowing good generalization capabilities.

We also tested a simpler model for the source spectral
combs, replacing the amplitudes of the glottal model for
each harmonic (see Appendix I) by ch = 1. Theoretically,
using such combs should be identical to the glottal model.
However, according to our results, it is still better to use the
glottal model. This model is indeed closer to actual natural
sounds, with exponentially decreasing spectral envelopes. With
spectral combs whose envelopes are uniform, the filter spectral
shapes have more to compensate to fit the signals. The
chosen iterative algorithms, especially the EM algorithm, are
however very sensitive to the initialization. Since the filters
are randomly initialized, the general initial set of values is
probably closer to the desired solution with the glottal source
model, hence leading to better results.

At last, since our GSMM implementation is much slower
than our IMM implementation, we have assumed that the
chosen parameter tuning was correct for both algorithms.

2) Convergence: In spite of the lack of formal convergence
proof for the proposed iterative methods, according to our
simulations and tests, the chosen criteria CGSMM(θ, θ’) and
CIMM(θ) and, equivalently, the log-likelihood of the observa-
tion log pθ(X) increase over the iterations, as can be seen on
the evolution of the observation log-likelihood for an excerpt
of the MIREX development database on Fig. 5, for each
model. The model parameters are therefore well estimated, or
at least converge to a local maximum. However, concerning
the melody estimation results, we noticed that running the
algorithms with many more iterations paradoxically resulted
in worse melody estimations. This may be due to a tuning
problem of the fixed source spectra for the main voice WF0 .
If a note in the main voice is detuned compared to the given
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IMM log−likelihood

Fig. 5. Evolution of the log-likelihood of the observations for the GSMM
and IMM algorithms.

dictionary, it will very likely be estimated as belonging to the
accompaniment, especially if there are enough iterations for
the accompaniment dictionary to fit such a signal.

3) Comparison between the proposed models: The IMM
and GSMM algorithms lead to parameters that are really
different. Theoretically, the main disadvantage of the IMM is
the fact that several notes are allowed at the same time, even
if they are constrained to share the same timbral envelope.
In practice this timbre “constraint” is quite loose and the
estimated amplitudes in HF0 reflect the polyphonic content
of the music, including the accompaniment, which leads to
the need for a melody tracker introduced in section IV.

However, it turns out, in certain circumstances, to be an ad-
vantage over the GSMM. Figure 6 shows some results obtained
with our models: the estimated (approximated) spectrum for
the main instrument is displayed over the original spectrum for
each model. This frame is part of the file “opera fem4.wav”
from the ISMIR 2004 main melody extraction database5,
at t = 9.665s. On the original spectrum, one can see the
main “note”, at around f0 = 680Hz, among several other
accompaniment notes. This frame actually corresponds to a
“chirp”, transition between two notes, by the singer, during
a vibrato: the higher the frequency, the wider the lobes of
the main “harmonic comb”. The estimations of the main note
for the GSMM and IMM are both correct according to the
ground-truth, and the peaks of the resulting combs fit to the
ones of the original one. However, these figures show that
the GSMM result does not fit the real data as closely as the
IMM estimation does. This illustrates that the IMM can be a
better model for vocal parts, especially on frequency transition
frames (vibrato): on these segments, the GSMM assumption
of having one stable fundamental frequency per frame does
not hold.

The IMM could also be used for a polyphonic instrument,
but its design as shown on the diagram figure 4 does not allow
different sources to have different timbres (filters): for a given
filter k, at frame n, all the source excitations share the same
amplitude hΦ

kn. A more sensible model for polyphonic music
analysis would be to directly replace the state selector in the
GMM diagram figure 3 by an instantaneous mixture. However,
such a model leads to many more parameters to be estimated,
hence to numerical problems and indeterminacies.

5http://www.music-ir.org/mirex/2008/
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Fig. 6. “opera fem4.wav”: spectrum of a frame with a frequency chirp around f0 = 690Hz of the main melody, and the corresponding estimated spectra
by the GSMM and IMM algorithms (derived in section III).

C. Main Melody Estimation Results

Table I provides the main results for the MIREX 2008 evalu-
ation. The results for each of the different databases (ISMIR04,
MIREX05 and MIREX08) are separately given. The “Total”
column gives the average of these results, weighted by the
number of files in the corresponding database.

The bold percentage show the best result for each column.
We also provide the results of two other systems that were
presented on the previous MIREX campaign in 2006. The
proposed GSMM based system is denoted “drd1” and the
IMM “drd2”. The other systems “clly”, “pc”, “rk”, “vr” are
respectively described in [18], [19], [6] and [20].

On average over the 3 databases, the IMM (drd2) obtained
the first best accuracy on the voiced frames, and the second
overall accuracy. On the 2004 and 2005 sets, it also performed
first for the voiced frames, second for the overall accuracy. On
the 2008 dataset, it obtained over 80% on the voiced frames
and 75% of overall accuracy. These results show that the IMM
algorithm is robust to the variations of the database.

The GSMM, in average, did not perform so well, especially
on the 2004 and 2005 datasets. On the other hand, on the
2008 set, it obtained the best overall accuracy. The GSMM
algorithm seems to perform quite well in certain favorable
cases, such as the 2008 database. For this set, the polyphony
is rather weak: the main voice - a singer - is prominent
over a background music consisting of a soft harmonic pedal
played by a traditional string instrument plus some Indian
percussions. The 2005 database seems to be closer to the
average Western world commercial music production, and is
therefore quite diverse, with “stronger” polyphonies. In the
GSMM framework, any melody line played in a song can lead
to a local maximum of the criterion CGSMM. If the initialization
of the EM algorithm is too far from the desired solution,
the parameters might converge towards one of those maxima,
and miss the main voice. It happens for instance when the
main instrument is not a singer, or if other instruments have a
relatively strong energy in the song. Note that this also affects
the results with the IMM, but up to a lesser scale than with
the GSMM.

Globally, it is interesting to note that, on the provided
development set (the 20 songs from ISMIR04 and 13 songs
from the MIREX05 set), the percentage of voiced frames is
about 85% for ISMIR04 and 63% for MIREX05. Successfully

transcribing the main melody, with respect to the chosen eval-
uation criteria, therefore requires a good segmentation scheme
into voiced/unvoiced frames for the main voice. Additionally,
the system has to identify the main instrument and discriminate
between its occurrences and other instruments that may also
appear as “predominant” when the desired main voice is silent.
This latter case happens more often with lower voiced frame
percentages. Indeed, all the participating systems experienced
a relative drop in performance on the MIREX05 set, which
proves the need for better schemes to detect voiced frames.
The approach of the system in [21], which participated to the
MIREX 2005 and 2006 audio melody extraction tasks, seems
to overcome this problem and appears quite robust even in
comparison with this year’s campaign results.

At last, for both the GSMM and the IMM, it also seems
that for some poorly transcribed songs, the Viterbi process
misled the sequence to fit an erroneous “path”, e.g. following
a sequence one octave higher than the desired sequence.
When the parameters of the models are poorly estimated or
correspond to another instrument on one frame, the Viterbi
algorithm propagates the errors to the neighbouring frames.
The transcribed melody may therefore be, on some segments,
the one played by an instrument other than the desired main
instrument.

D. Other applications of the Proposed Framework

1) Source Separation (De-Soloing) Performances: As
in [22] or [23], where the transcription system in [6] is
used as pre-processing for de-soloing of music signals, our
framework is well designed for audio source separation. We
adapted the IMM model in order to better fit the task at hand
and also included a second parameter estimation step, which
takes advantage of the estimated melody. The details of the
implementation are given in [24]. On a database described on
http://perso.telecom-paristech.fr/grichard/icassp09/, we obtain
results comparable to [22] in terms of SDR [25]: 8.8dB
of SDR gain for the separated main voice and 2.6dB of
SDR gain for the accompaniment (see details in [24]). We
encourage the interested reader to listen to the audio examples
available on our website. Early results for the ISMIR 2004
and MIREX 2005 are also available on http://perso.telecom-
paristech.fr/durrieu/en/results.html.
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ISMIR04 MIREX05 MIREX08 TOTAL
System Raw Pitch Acc. Overall Acc. Raw Pitch Acc. Overall Acc. Raw Pitch Acc. Overall Acc. Raw Pitch Acc. Overall Acc.

clly1 75.3% 50.2% 68.9% 48.9% 54.7% 51.4% 69.2% 49.8%
clly2 75.3% 68.0% 68.9% 61.4% 54.7% 49.7% 69.2% 62.1%

drd1 (GMM) 65.9% 59.6% 57.4% 52.2% 85.8% 76.0% 64.9% 58.6%
drd2 (IMM) 85.7% 81.5% 72.4% 66.0% 81.8% 75.0% 78.9% 73.2%

pc 85.1% 85.1% 71.0% 69.8% 83.9% 73.3% 78.3% 76.1%
rk 82.4% 78.8% 69.7% 64.9% 83.5% 75.3% 77.3% 71.1%
vr 77.1% 70.1% 71.2% 63.5% 88.2% 66.7% 75.3% 67.1%

Average 78.1% 70.5% 68.5% 61.0% 76.1% 66.8% 73.3% 65.4%
Dressler 82.9% 82.5% 77.7% 73.2%
Poliner 73.2% 71.9% 66.2% 63.0%

TABLE I
RESULTS OF THE PROPOSED ALGORITHMS COMPARED TO THE OTHER SYSTEMS SUBMITTED TO MIREX 2008 AUDIO MELODY EXTRACTION TASK. WE

ALSO ADDED THE RESULTS BY 2 PARTICIPANTS FROM THE MIREX 2006 EDITION OF THE TASK.

2) Multipitch Tracking: Multipitch tracking is a related
task for which one desires to transcribe all the fundamental
frequencies within each analysis frame of a polyphonic music
signal. We combined the source separation abilities of our
IMM model with its melody transcription to provide an
iterative scheme for multipitch estimation.

Let J be the number of different sources or “streams”
in the polyphonic signal. Let x0 be the original mixture.
For j = 1 . . . J − 1, we estimate the main melody Ξ(j) on
the residual signal xj−1 and generate xj by removing the
main voice thanks to the above source separation scheme.
At j = J , we estimate one last time the melody, adapting
the parameter estimation to bass note estimation, which needs
better resolutions in the low frequency bins of the STFT.

Such a system was submitted to the MIREX 2008 Multiple
Fundamental Frequency Estimation & Tracking task6. The
results, with 49.5% of accuracy, are promising, achieving the
7th score out of the 15 participating system scores. This shows
the potential of systems using source separation in order to
reduce the complexity of a task and breaking it into several
“easier” tasks, i.e. here transforming a polyphonic music
transcription problem into several monophonic transcription
ones.

VI. CONCLUSION AND FUTURE WORKS

We have proposed a system that transcribes the main melody
from a polyphonic music piece. The method is based on source
separation techniques and is closely related to Non-Negative
Matrix Factorization (NMF). The main voice is characterized
through a source/filter model. The melody sequence is con-
strained such that it achieves a trade-off between energetic
predominance and smoothness, thanks to a Viterbi algorithm.
The whole system is completely unsupervised.

The results in terms of accuracy for the framewise detection
of the fundamental frequencies of the main melody show that
our systems achieve performances at the state of the art. The
proposed IMM model proved to be particularly robust to the
diversity of the database. The GSMM model achieved top
results on the 2008 dataset, which proves the validity of the

6http://www.music-ir.org/mirex/2008/index.php/...
...Multiple Fundamental Frequency Estimation & Tracking

model under certain circumstances, even if it does not seem
robust enough against a strong polyphonic accompaniment.

Detailed analysis of the results for melody transcription as
well as source separation results show that the chosen models
do not seem able to separate one specific main source. The
main part actually is the concatenation of all the sources that
at given instants and during a long enough period have a
predominant energy in the signal mixture. These mistaken
segments are the consequence of the Viterbi algorithm, which
sometimes misleads the system, as well as a lack of discrim-
ination between the different instruments. On the other hand,
the flexibility of the algorithm has the advantage of enabling
separation and estimation of melodies played by a large range
of instruments, such as the saxophone or the flute, as the results
obtained on the MIREX databases show.

The proposed models can also be adapted to perform source
separation, and more specifically main voice de-soloing. The
results are promising, even if the main instrument model
would need to be further improved to take into account
other components of the signal such as unvoiced parts. Using
the source separation ability, we could also design a multi-
pitch extraction algorithm that obtained encouraging results
and validated the approach consisting in dividing a complex
problem into several other “easier” problems.

Future works are essentially related to source separation
aspects and aim at modeling the main voice unvoiced parts,
and extending the method in order to deal with reverberated
signals, e.g. taking into accounts echoes in the main voice
and removing it from the mixture during the de-soloing. The
techniques introduced in this paper could also be extended
to binaural signals, thus improving the results by taking
advantage of inter-channel information. At last, a quantization
step, both in time and in frequency, giving a more musi-
cal representation of the melody sequence should lead to a
readable musical score. Such a representation may enable
applications such as search by melodic similarities or cover
version detection.

APPENDIX I
PARAMETRIC MODELING OF THE SOURCE SPECTRA

DICTIONARY WF0

We initiate each column wF0
u of the matrix WF0 such that

it corresponds to a specific fundamental frequency F(u) (in
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Hz). In our study, we consider the frequency range [100, 800]
Hz. We discretize this frequency axis such that there are 48
elements of the dictionary per octave:

F(u) = 100 ∗ 2
u−1
48

With these values, we obtain U = 145 available fundamental
frequencies.

The source spectra are generated following a glottal source
model: KLGLOTT88 [26]. We first generate the corresponding
derivative of the glottal flow waveform eu(t), and then perform
its Fourier transform Eu(f) with the same parameters as the
STFT of the observation signal: same window length, Fourier
transform size and weighting window.

The original formula [26] is a continuous time function.
To avoid aliasing when sampling that formula, we use the
complex amplitude for all the harmonics of the signal up to
the Nyquist frequency (about 5kHz in our application). Let ch

be the amplitude of the h − th harmonic, h ∈ [1, hmax], we
have [27]:

ch = F(u)
27
4

(
exp(−i2πhOq) + 2

1 + 2 exp(−i2πhOq)
i2πhOq

−6
1− exp(−i2πhOq)

(i2πhOq)2

)
where Oq is the “open quotient” parameter , which we fixed
at Oq = 0.5. eu(t) is then the sum of the harmonics with the
above amplitudes:

eu(t) =
∑

h

ch exp(i2πhF(u)tTs)

where Ts is the sampling period and t ∈ N+. We then compute
Eu(f). The variance wF0

fu is then the squared magnitude of this
Fourier transform: wF0

fu = |Eu(f)|2, ∀f ∈ [1, F ].

ACKNOWLEDGMENT

The authors would like to thank the audio group of
TELECOM ParisTech, especially R. Badeau, for the inspiring
environment it provided during the elaboration of this work.
The authors would also like to thank A. Ehmann for his
help with evaluating our algorithms on the MIREX databases,
and the team at IMIRSEL for their effort in preparing the
MIREX evaluation campaigns, running all the submissions and
gathering all the data to provide the high quality results that
were partially presented in this paper. The authors are grateful
to the anonymous reviewers whose comments greatly helped
to improve the original manuscript.

REFERENCES

[1] M. Ryynänen and A. Klapuri, “Query by humming of midi and audio
using locality sensitive hashing,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing, Las Vegas, Nevada, USA,
Apr. 2008, pp. 2249–2252.

[2] G. Peeters, “Sequence representation of music structure using higher-
order similarity matrix and maximum-likelihood approach,” in Interna-
tional Conference on Music Information Retrieval, 2007.

[3] J. Serra, E. Gomez, P. Herrera, and X. Serra, “Chroma Binary Similarity
and Local Alignment Applied to Cover Song Identification,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 16, no. 6,
pp. 1138–1151, 2008.

[4] M. Goto, “Robust predominant-F 0 estimation method for real-time
detection of melody and bass lines in CD recordings,” ICASSP IEEE
International Conference on Acoustics, Speech, and Signal Processing,
vol. 2, pp. 757–760, 2000.

[5] R. Paiva, “Melody detection in polyphonic audio,” Ph.D. dissertation,
University of Coimbra, 2007.

[6] M. P. Ryynänen and A. P. Klapuri, “Transcription of the singing melody
in polyphonic music,” International Conference on Music Information
Retrieval, 2006.

[7] G. Poliner and D. Ellis, “A classification approach to melody tran-
scription,” International Conference on Music Information Retrieval, pp.
161–166, 2005.

[8] C. Sutton, E. Vincent, M. Plumbley, and J. Bello, “Transcription of
vocal melodies using voice characteristics and algorithm fusion,” Music
Information Retrieval Evaluation eXchange, 2006.

[9] C. Févotte, N. Bertin, and J.-L. Durrieu, “Nonnegative matrix factor-
ization with the itakura-saito divergence: With application to music
analysis,” Neural Computation, vol. 21, no. 3, pp. 793 – 830, March
2009.

[10] L. Benaroya, F. Bimbot, and R. Gribonval, “Audio source separation with
a single sensor,” IEEE Transactions on Audio, Speech and Language
Processing, vol. 14, pp. 191–199, 2006.

[11] A. Ozerov, P. Philippe, F. Bimbot, and R. Gribonval, “Adaptation of
Bayesian Models for Single-Channel Source Separation and its Appli-
cation to Voice/Music Separation in Popular Songs,” IEEE Transactions
on Audio, Speech and Language Processing, vol. 15, no. 5, pp. 1564–
1578, 2007.

[12] G. Fant, Acoustic Theory of Speech Production. Mouton De Gruyter,
1970.

[13] A. Dempster, N. Laird, and D. Rubin, “Maximum Likelihood from
Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical
Society. Series B (Methodological), vol. 39, pp. 1–38, 1977.

[14] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in NIPS, 2000, pp. 556–562.

[15] T. Virtanen, “Monaural Sound Source Separation by Nonnegative Matrix
Factorization With Temporal Continuity and Sparseness Criteria,” IEEE
Transactions on Audio, Speech and Language Processing, vol. 15, no. 3,
pp. 1066–1074, 2007.

[16] G. Poliner, D. Ellis, A. Ehmann, E. Gómez, S. Streich, and B. Ong,
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