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Audio signal representations for indexing in the
transform domain

Emmanuel Ravelli, Gaél Richar&enior Member, IEEEand Laurent Daudetylember, |IEEE

Abstract—Indexing audio signals directly in the transform called Advanced Audio Coding (AAC), was first introduced in
domain can potentially save a significant amount of computadn  the MPEG-2 standard [2] in 1997 and included in the MPEG-
when working on a large database of signals stored in a 4 standard [3] in 1999. AAC is based on a pure MDCT

lossy compression format, without having to fully decode th . . . . .
signals. Here, we show that the representations used in stdard (without PQF filterbank), an improved encoding algorithm,

transform-based audio codecs (e.g. MDCT for AAC, or hybrid and several additional coding tools (e.g. Temporal Noise
PQF/MDCT for MP3) have a sufficient time resolution for Shaping, Perceptual Noise Substitution ...). Formal Histg
some rhythmic features, but a poor frequency resolution, with  tests [4] showed that AAC is able to encode stereo music at
prevents their use in tonality-related applications. Altenatively, 96 kbps with better quality than MP3 ae8 kbps, and with

a recently developed audio codec based on a sparse multi-,. .. . N
scale MDCT transform has a good resolution both for time- indistinguishable quality” (in the EBU sense) #28 kbps -

and frequency-domain features. We show that this new audio @S & comparison, the bitrate of a stereo PCM signal in CD
codec allows efficient transform-domain audio indexing for3 format is1411 kbps. MPEG-4 AAC is still considered as the
different applications, namely beat tracking, chord recogition  state-of-the-art standard for (near-)transparent audkiting.
and musical genre classification. We compare results obtagu More recently, the digital revolution gave birth to another
with this new audio codec and the two standard MP3 and AAC hd ! K dio indexi Audio indexi
codecs, in terms of performance and computation time. researc omain ) nown as au _'0 Indexing. Audio 'n. exing
allows to automatically extract high-level features froig-d
ital audio. Examples of audio indexing tasks include beat
tracking [5]-[8], chord recognition [9]-[12] and musicamye
classification [13]-[15]. Audio indexing is useful for masi
. INTRODUCTION information retrieval (MIR), a research domain that stedhe

- . . .. problem of efficiently finding a given information in the ever
Digital audio has progressively replaced analog audioesin . - ? o .
L . . Ihcreasing mass of digital music data. Most audio indexing
the 80s and music is now widely stored and diffused in

digital form. This revolution is mainly due to the sprea&yStemS are_based on a time-frequency represen_tati(_)n of an
of audio coding technologies, which allow to considerablInlout PCM signal. This time-frequency representation enth

reduce the amount of data necessary to represent a PCM ag&%d as an input to an indexing system that ex”"’?c.t the desire
; . . ) . : igh-level features (e.g. a sequence of beat positionsdat b
signal with no (or little) loss in the perceived quality ofeth

decoded signal. The basic principle of an audio coder is ttracklng, a sequence of chords for chord recognition, orage

use a time-frequency representation of an input PCM si ng?ass for musical genre classification).
d yrep P 9 Though research in audio coding and in audio indexing

which is then quantized with variable precision according tpas been conducted independently, the methods used in both

a psychoacoustic model such that the loss introduced by at]r%as share many similarities. In particular, they are bated

quantizatior? is minimally perceived. The first s_tandardizePn similar time-frequency representations. Then, one ef th
MPEG audio codecs_ (MPEG-1 [1]), developed in the cary rrent challenges in audio signal processing would be to
90s, employ a PQF filterbank (Polyphase Quadrature Fllte_qusnl sign a single time-frequency representation that coeld b

to decompose the sound in several subband signals. uSeful for both audio coding and indexing. It would open the

third layer of MPEG-1 (MP3) also uses a MDCT transforny ssibility of designing an audio indexing system that uses

(Modified Discrete Cosine Transform) which is applied o 0S3 . )
. : internal representation of an audio codec, a case known
each subband signal to get better frequency resolution. MP3,, . L o X
as “transform-domain audio indexing”. Given a coded file,

is able to reduce the size of a PCM audio sighal more than . o .
. . . ; a transform-domain audio indexing system does not decode

6 times while guaranteeing a near-transparent qualitys Th : . . .
) . o the PCM signal but directly uses the internal time-freqyenc

property made it very attractive to the music listeners and |

is now widely used. The most widespread successor of MF;gpresentation. The main interest of such a system is thus to
' retluce computational cost when processing coded files. This
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Fig. 1. Audio indexing on a very large database of coded filep: the traditional time-domain approach. Bottom: thesfarm-domain approach.

compute low-level features such as “signal energy”, “pausiee-art audio indexing systems and evaluate their perfocama
rate”, “band energy ratio”... These audio features wera thand computation times.

combined with video features and used in a machine learningThe remainder of the paper is as follows. In Section I,
system in order to classify video clips. Other studies [{Z4} we briefly describe the coding/decoding process of $he
follow a similar approach but propose different low-levetiio considered codecs and present the used transform represen-
features and consider different applications such as &peéations. In Section Ill, we propose simple and fast algongh
recognition [17], audio segmentation and classificatio8],[1 that compute mid-level representations based on the transf
[20], [23], beat tracking [21], [24] and music summarizatio representations. In Section 1V, we describe the statéefart

[22] (see also [25] for a review on MPEG-1 transform-domaiaudio indexing systems and give results for theonsidered
indexing). One should note that the work of Wang et al. [21§pplications. And finally, we conclude in Section V.

[22], [24] and the work of [23] are in a way different from

other works as they use MDCT coefficients instead of the PQF [I. AUDIO CODECS

subband signals for the calculation of audio features.ddde \w\e consider in this paper three audio codecs: MPEG-
these appproaches are targeted for the MP3 codec [21], [22]audio Layer 3 [1], MPEG-4 AAC LC [3] and the new
[24], and the AAC codec [23], [24]; they are not intented t@yMDCT codec [26]. In this section, we briefly describe,
work on the first two layers of the MPEG-1 codecs. for each codec, the coding/decoding process and the time-
érr%guency representation used. It is important to note wreat
consider in this paper mono signals; we thus present in this
ggction the mono version of each codec only.

Despite the success of standard audio codecs for sev
transform-domain audio indexing applications, the inaérn
time-frequency representation used in MP3 and AAC h
limitations and in particular in terms of frequency resmat )
This limitation prevents the use of such codecs for tramsfor A- MPEG-1 Audio Layer 3
domain audio indexing applications that need good frequenc 1) Coding/decoding processthe MPEG-1 Audio Layer 3
resolution such as chord recognition. To overcome thistéimi [1] coding/decoding process is shown in Fig. 2. The input
tion, we propose the study of a new non-standard audio cod®M signal is first passed througta-band PQF filterbank.

[26] that uses a sparse overcomplete transform composedrbén, each subband signal is transformed with a time-vgryin
a union of8 MDCT bases with different scales, allowing dif-MDCT and the resulting coefficients are processed in order
ferent time-frequency tradeoffs. This new audio codecediotto reduce the aliasing introduced by the PQF. Finally, the
in this paper "8xMDCT", uses simultaneously both very smaMDCT coefficients are scaled using scalefactors, non-inea
and very large analysis windows allowing both good time argliantized and Huffman coded. The MP3 decoder first recovers
frequency resolution. We show in this paper that, contrary the MDCT coefficients with Huffman decoding, inverse quan-
the standard MP3 and AAC codecs, this new codec allowgation and scaling. Then, the coefficients are processed i
efficient transform-domain audio indexing for differentpdip order to revert the alias reduction performed in the codet, a
cations including beat tracking, chord recognition andicals inverse transformed using a time-varying IMDCT per subband
genre classification. For each application (beat trackthgrd Finally the subband signals are passed through a synthesis
recognition and musical genre classification) and each@od®QF, which produces the decoded PCM signal.

(MP3, AAC and 8xMDCT), we propose simple mid-level 2) Signal representation usedie use the MDCT repre-
representations (a mid-level representation is an intdiae sentation for the transform-domain audio indexing. We get
representation that emphasizes certain structures ufefal the MDCT coefficients produced by the decoder after inverse
given application) that are computed in the transform-damaquantization/scaling, and just before the inverse aliakice

We then integrate these mid-level representations in-sfate tion stage to avoid the aliasing introduced by the PQF (see
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Fig. 2. Main operations in MPEG-1 Audio Layer 3 coding/dengd Fig. 3. Main operations in MPEG-4 AAC LC coding/decoding.

Fig. 2). We have chosen this approach instead of the P@®@efficients are then processed using two optional tool-Te
subband signals (as in e.g. [20]) for two reasons. Firstéy tiporal Noise Shaping (TNS) and Perceptual Noise Substitutio
frequency resolution of the MDCT is higher and secondly tH&NS). TNS is based on the duality of time and frequency
computational cost is lower as the inverse MDCT operatig@omain; it uses a prediction approach in the frequency domai
is avoided. The time-varying MDCT used in the MPEG-1hat aims at shaping the quantization noise in the time domai
Audio Layer 3 codec is based on a sine analysis windolNS is useful for e.g. pitchy speech signals. PNS models the
and two window sizes, one long df6 samples (the long noisy-like components using a parametric approach; PNS is
window has3 possible shapes, one symmetric window and twaseful at low bitrates. It is important to note that most engs
asymmetric windows), and one short of samples. The two coders (e.g. Nero AAC [28] and iTunes AAC [29]) do not
long asymmetric windows are used for the transition betwesnpport the PNS tool. Finally, the MDCT coefficients in each
the symmetric long and short windows. The short windowsock are scaled using scalefactors, non-linear quantret
are always selected by groupsd€onsecutive short windows. Huffman coded. The AAC decoder first recovers the MDCT
One frame (also called granule) is then composed by eitlegrefficients with Huffman decoding, inverse quantization a
one long window o8 consecutive short windows. We assumecaling. Then the coefficients are processed with the ogltion
that the same window sequence is used in each subbandols TNS and PNS. Finally the decoded PCM signal is
The MDCT coefficients of a “long-window frame” are notedsynthesized using an inverse time-varying MDCT.
X 9(q) with k = k18 + k; (0 < k < K" = 576) is 2) Signal representation usediVe use the MDCT repre-
the frequency index((< k; < 32 is the subband index andsentation for the transform-domain audio indexing. We get
0 < ky < 18 is the frequency index in one subband), and the MDCT coefficients produced by the decoder after the
the frame index. The coefficients of a “short-window frameTNS stage and just before the inverse MDCT stage. The
are notedX;f‘,S”(q) with 0 < p < PShot = 3 is the window time-varying MDCT used in MPEG-4 AAC LC is similar
index andk = ks6 + ky (0 < k < KS"'=192, 0 < ks, < 32 to the one used in MP3 but with different window sizes.
and0 < ky < 6). The long window has a length ¢f048 samples and allows

better frequency resolution than the MP3 long wind@a.§

Hz for AAC, 38.3 Hz for MP3 at 44.1 kHz). The short
B. MPEG-4 AAC LC window has a length o256 samples and allows better time

1) Coding/decoding processthe MPEG-4 AAC LC cod- resolution than the MP3 short Windovtz_.()o ms for_ AAC,
ing/decoding process is shown in Fig. 3. Instead of the Iulyb|_4-35 ms for MP3 at44._1 kHz). Another_ difference Wlt_h MP3_
approach used in MP3, AAC uses a pure time-varying MDC'$ the use of the Kaiser-Bessel Derived (KBD) window in

that is applied directly to the input PCM signal. The MDCTRddition to the sine window, the window can be different for
each frame (this choice is made by the coder). A frame is

1we assume that the mixed block feature is not used, whichdiseit the C‘?mposed t_)y _e'ther one long WindOW S’mqnsecu“ve short
case in most coders such as LAME [27] windows. Similarly to the notation used in the MP3 case,



the coefficients of a “long-window frame” are noted®"9(q) 8xMDCT 8xMDCT

where0 < k < K'° = 1024 and the coefficients of a “short- Coder Decoder
window frame” are n0ted(§f}?"(Q), where0 <p< Pshort: 8 Input PCM Signal 8xMDCT Bitstream
and0 < k < Kshot— 128, ¢ ¢
Note that any audio codec based on a pure MDCT transfo _ ) : .
Matching Pursuit 8xMDCT Bitplane Decoding

could have been considered in this work. The algorithn
proposed in the following for AAC would have been exactly v v
the same. The only difference is the type and length

Grouping and Interleaving Inverse Interleaving
the windows used, which could have a consequence on
resulting performance of the transform-domain audio inagx ¢
system. One example of another pure-MDCT-based codeg Bitplane Coding 8x Inverse MDCT
Dolby AC-3 [30], which is based on a KBD window of
length512 samples. We have not considered AC3 in this paper ¢ ¢
but we could say that the small length of its window could  8xMDCT Bitstream Decoded MDCT
have bad consequences on the performance of audio indexing PCM Signal  coefficients

applications that require high frequency resolution.
Fig. 4. Main operations in MP8 coding/decoding.

C. New 8xMDCT codec

The 8xMDCT codec was first proposed in previous work 2) Signal representation usedMe use the MDCT repre-
[26]. The goal was to investigate the use of sparse oveentation for the transform-domain audio indexing. We bet t
complete decompositions for audio coding. We propos®DCT coefficients produced by the decoder after the inverse
a new signal representation method based on a redundatdrleaving stage and just before the inverse MDCT stage. T
union of MDCT, which produces sparser decomposition thanDCT coefficients are noted,, , , with m is the MDCT
a pure MDCT and allows better coding efficiency at lovinasis index { < m < 8), p is the window index of then-th
bitrates. Morevoer, the proposed approach is able to peoviIDCT (0 < p < P,, = 128 x 27™) and k is the frequency
transparency at high bitrates, contrary to state-of-thdesv index O < k < K,,, = 128 x 2m~1),
bitrate coders, which are based on pure parametric or hybrid
representations. Objective measurements and listenistg te I1l. M ID-LEVEL REPRESENTATIONS
given in [26] showed that the results are signal-dependant
with better results obtained for monophonic signals that f9n

polyphonic signals. coefficients of the three codecs presented in the previous

3) C/?jding(/j(jecoding . prhocess_: F.Th: d dSXMPbc;L section. We are interested here in three types of mid-level
coding/decoding Process Is Snown in Fig. 4 and describet wy presentations: onset detection function (for beat tragk
more details in [26]. The input signal is first approximate

h for chord ition), and MFCC-based fea-
using the Matching Pursuit (MP) algorithm over a unionsof romagram (for chord recognition), an ased fea

MDCT bases with the following window sizd8, 256, 512, tures (for musical genre classification).

1024, 2048, 4096, 8192, 16384. These analysis windows allow . )

corresponding time resolution.45, 2.90, 5.81, 11.6, 23.2, A. Onset detection function

46.4, 92.9, 186 ms and corresponding frequency resolution Onset detection functions are mid-level representatibas t
344, 172, 86.1, 43.1, 21.5, 10.8, 5.38, 2.69 Hz. The MP aim at localizing transients in an audio signal. These anege
algorithm is stopped when a target SNR is reached, generallly subsampled, and ideally have peaks located at tratissien
high (above50dB) to reach near-perfect reconstruction. [These functions are obviously useful for onset detection,
is important to note that the signal approximation is hetbe onsets are simply detected by peak-picking the detectio
performed globally on the whole signal, it is fundamentallfunction (see [11] for a review on onset detection algorghm
different from the frame-by-frame analysis used in the MPBhey are also useful for beat tracking (see e.g. [5]-[8]¢, th
and AAC coders. Once the signal has been approximatedsic principle is to look for periodically related peaks in
the coefficients are grouped in frames; then in each franike onset detection function, these particular onsets aledc
the coefficients are interleaved and coded using bitplatfzeats”.

encoding. The 8XMDCT decoder first recovers the interleavedin the following, we propose several onset detection func-
coefficients in each frame using bitplane decoding. Then thiens that are computed in the transform-domain and based
coefficients are de-interleaved and finally the decoded PG the MP3, AAC and 8xMDCT codecs. The reference time-
signal is synthesized usinginverse MDCT. It is important domain onset detection function that we will use as compari-
to note that, contrary to the MP3 and AAC codec, 8xMDCon is the complex spectral difference onset detectiontiiumc

is a scalable codec; it means that given a sound file codédt proposed in [31] and used in the beat tracking system
at high bitrate, the decoder can decode the file at any bitratie[8]. The reference onset detection function used in our
from very low to high bitrate just by truncating the bitstnea experiments is based on a Hanning analysis window with
of each frame. length 2048 samples and a hop size ©§24 samples, which

We propose in this section several mid-level represemtstio
at are computed in the transform domain using the MDCT



gives a time resolution 023.2 ms at44.1 kHz; the function Signal
is then interpolated by a factor of two in order to have on
sample everyl1.6 ms at44.1 kHz.

1) MP3/AAC transform-domain onset detection functions
We propose a detection function similar to the spectral fiL
(i.e. spectral difference [31]). The proposed onset digtect

Amplitude

N A . X 0 0.5 1 15 2 ) 25 3 35 4 45 5
function is the same for the MP3 and AAC codecs, it is define Time (seconds) , ,
as x 107 Complex spectral difference onset detection function
Klong 6F b
1/2 8
I(q) = 1Sk(q) — Sk(q — 1| @ i ]
Q
k=1 £,
where Si(¢q) is a “pseudo-spectrogram” at framgeand fre- o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
quencyk. It is defined for a “long-window frame” as 0 % 0 1500 200 002850 300850 400
| x 107 MP3 transform-domain onset detection function
_ ong 2 8 T T T T T
Sk(q) = X (q)] )
[}
For a “short-window frame”, it is defined as the interleave 2
coefficients of thePs"° short windows in one frame &

_ sho 2 0 . . . . | | .
Sk(q) = |Xa,b rt(‘])| 3) 0 50 100 150 200 250 300 350
Frame index
X107 AAC transform—-domain onset detection function

wherea and b are respectively the rest and the quotient ¢ 6 ; ; : ; : ;
the Euclidean division of: by P (k = Pshoy 4 ). The
time resolution is here determined by the frame length ai
is thus equal to576 samples for MP3 13ms at44.1 kHz)
and 1024 samples for AAC £3.2ms at44.1 kHz). To get the
same sample rate as the reference approach, the AAC detec o 50 100 15 200 250 %00 30 400
function is interpolated by a factor of two, resulting in on BMDCT transform—oeme M98 tetection function
sample everyi1.6 ms at44.1 kHz. 0.015 ‘ ‘ ‘ ‘ ‘

2) 8XMDCT transform-domain onset detection function:
The signal representation used in the 8XxMDCT codec is basZ
on a union of 8 MDCT bases with analysis window sizes fror £ o.o0s
128 to 16384 samples. We have remarked that high amplitL \ ‘
components with small window sizes (128 and 256) are oft ° s 100 150
located around attacks; consequently, we can build a very
simple onset detection function by sorting the decompasitiFig. 5. A 5 seconds signal of rock music; the complex spectral difize
such that we keep 0n|y small window sizes components, affiget detection function; _the MP3 transf_orm—dom_ain_ onséation function;

. .. _the AAC transform-domain onset detection function; the B&NI transform-
then sum the absolute value of the corresponding coeffie§imain onset detection function.
in temporal bins to construct a downsampled signal with peak
located at attacks. The length of one bin is defined suchttleat t
corresponding time resolution is the same as in the referenc
detection function which is 11.6 ms and it is equivalent t§- Chromagram

512 samples at 44.1 kHz sampling rate. The funcitg) at A chromagram or Pitch Class Profile (PCP) [9] traditionally

Amplitude
N
T

ude

0.01

| I I
200 250 300 350 400

Frame index

frame ¢ is then defined as consists of a 12-dimensional vector, with each dimension
T(q) = Z X | @) corresponding to the intensity of a semitone class (chroma)
= . mapok The procedure collapses pure tones of the same pitch class,
m,p,

independent of octave, on the same chromagram bin; for
where we sum only the atoms satisfying the following twoomplex tones, the harmonics also fall into particulartegla
conditions: the window size 528 or 256 samples; the center bins. Though the simplest way is to use a 12-bin chromagram,
of the analysis window is in the temporal support of thth  better modeling is obtained by using more bins (24 or 36), in
bin. order to obtain better resolution and compensate for plessib
Fig. 5 shows the four onset detection functions obtainguis-tuning. These features find obvious interests in ttyali
with a 5-second signal of rock music. The reference functigalated applications, such as key estimation [32], [33] and
is computed on the original PCM signal; and the transfornghord recognition [9]-[12].
domain functions are computed on coded versions of thisThe reference chromagram that we will use as comparison
signal with a bitrate of64 kbps. In this example, the onsetis based on a constant-Q transform applied on a downsam-
detection functions have peaks that correspond to the drphed signal (see [11] for complete reference). The refexenc
strokes. chromagram used in our experiments downsamples the input



signal at11.025 kHz and applies a constant-Q transform witl | Signal

a lowest frequency resolution df3 Hz and a hop size of
2048 samples; the resulting chromagram t8gsbins and a ¢
time resolution ofl85.8 ms. 2
The proposed algorithm for the calculation of a transforn ™
domain chromagram is the same for the three codecs Mi . e e e s s & s
AAC and 8xMDCT. The first step is to keep only MDCT Time (seconds)
components with best frequency resolution, these comgsne . Constant-Q transform 3§-bin Chromagram ]
correspond to the analysis windows with largest si2e: . %L ! TR L g
sample windows for the MP3 codec (frequency resolutio Dgoéf T (T N e
38.3 Hz); 2048 sample windows for the AAC codec (frequency %;é: f y ' 1
resolution: 21.5 Hz); 8192 and 16384 sample windows for = af #esisem el Tk ¥ Bl iy [ T
the MP8 codec (frequency resolutioh4 and 2.7 Hz). The BE 50 T 0 200 w0
second step is to keep only MDCT components with lo M3 transform—domme neex Chromagram
center frequency and to map the center frequency of the cr ‘ ‘ ‘ ‘ g
components to chroma-related bin. Given a component w ¢ 25,: .
center frequency (in Hz), it is mapped to the chroma bin & FF = , S A
such that §G§: iy T 1
A#E 1 . ]
mod (round(B |092( / )) aB) =b 5) o 50 N 100 150 200 0
fmin Frame index
and . ‘ AAC transfo‘rm—domain 36‘—bin Chromagram
fmin < f < fmaw (6) 5 g’%z : E
2 Ep e 0 = - [ Vi mi
with B the number of bins per octav¢,,;, the minimum §F§f TR J 1
frequency, andf,,.. the maximum frequency. The final steg £ i/g - - 1
is to sum the absolute value of the corresponding MDC Bt o o - - e

coefficients in time/chroma bins. The time bins have equa si Frame index
of 185.8 ms allowing same time resolution as the referenc BXMDCT transform=domain 36-bin Chromagram
chromagram. A given MDCT coefficient is mapped to th
time bin whose temporal support includes the center of tl
corresponding analysis window, and to the chroma bin giv
by the previous formula.

It is clear that MP3 and AAC have limited frequency 0 100 R 200 250
resolution as compared to the reference approach. This li... Frame index
itation prevents the CaICUIathn of an eﬁlc.lent_ Chromagramg. 6. A 50 seconds signal of rock music; the reference chromagram;
because the frequency analysis cannot distinguish nef@ttpo the MP3 transform-domain chromagram; the AAC transformeim chro-
notes, and this is particularly true at low frequencies. Vil wmagram; the 8xMDCT transform-domain chromagram.
see later that this limitation prevents a good performance i
practical applications such as chord recognition.

_Fig. 6 shows the chromagrams obtained with a 50-secofié time-domain, then we propose simple algorithms for the
signal of rock music. The reference chromagram is computggmputation of transform-domain MFCC based on the three
on the original PCM signal; and the transform-domain chr@pnsidered audio codecs.

magrams are computed on coded versions of this signal with]) Reference time-domain MFCCEhe computation of a

ofo

(0] w)
FTMHE
L N

Frequency bin
'I'I

m§>n0

i
8 ST, SIS, SETw). - BN

a bitrate of64 kbps. set of C MFCC coefficients is described as follows. A small
framez(n),n = 0,.., N—1is first extracted from the signal. In
C. Mel-Frequency Cepstral Coefficients our implementation, the frames are non-overlapping an@ hav

a length 0f23.2 ms i.e.N = 1024 samples at4.1 kHz. Then,

: MeI-Frequency Cepstral Co_eff|C|ents (MFCC) aims at pr%F magnitude of the Discrete Fourier Transform is computed
viding a compact representation of the spectral envelope o

an audio signal. These features were originally developed f N-l ,

speech recognition [34], as they model the vocal tract feans X(k) =1 z(n)w(n)e*"/N| )
function. They are now widely used in musical applications, n=0

as they appear to be a good description of the timbre. Thejth £ = 0,..,N/2 — 1, and w(n),n = 0,..,N — 1 the
find useful applications in e.g. musical genre classificatianalysis window. In our implementation, it is a Hamming
[13] and music similarity [35]. More recently, MFCC arewindow. Then, the resulting spectrui(k) is mapped onto
used in baseline systems for evaluating audio classifitatithe Mel scale usingd. triangular overlapping windows that are
systems (e.g. [15], [36]). We first detail the implementatioequally spaced on the Mel scale. In our implementation, we
we have chosen for the reference MFCC that are computeduseL = 40 triangular windows whose frequency bounds range



from 20 Hz to 16000 Hz, and we use the following formula Signal
for the Mel-scale:

m = 1127.01048log(1 + f/700) (8)

Amplitude

wherem is the frequency in mel andl is the frequency in Hz.
The mapped spectrui(l),! =0,..,L — 1 is then defined as - ‘ ‘

I
[¢] 5 10 15 20 25 30

Time (seconds)
N/2-1 Reference time—-domain MFCC
Y()= ) X(hWik) ©® m—
k=0 ——aa
10

with [ =0,.., L —1, andW;(k),k =0,..., N/2— 1 is thel-th
triangular window. Finally, the mapped spectrum is loglsda
and transformed with a Discrete Cosine Transform. The fin

MFCC coefficients are defined as Vector index
MP3 transform—-domain MFCC

Feature index
=
ol
T

NN

[

I
L

L—-1
MF(c) = loglQY () + epsdcty(c,l)  (10) 5
=0

Feature index

with Ae) ) "
& ™
dety(c,l) = —= cos <— (l + —) c) 11 : ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
( ) L/2 L 2 ( ) ® 1 2 3 4 5 6 7 8 9 10
Vector index
andc = 0,...,C — 1. Alc) = v2/2if ¢ = 0 andA(c) = 1 AAC transform~domain MFCC
otherwise. The constant epsle — 16 avoids log of zero. In 5_

our implementation, we keef = 13 coefficients.
2) MP3/AAC transform-domain MFCCWe propose here S st —_— .

a simple algorithm for the computation of a set of MFC( 20——-—+—-—

in the transform-domain of MP3/AAC audio files. The basi 25t . ‘ . ‘ ‘ ‘ L

10F &

Feature index

principle is to use the absolute value of the MDCT coeffigen Vector index
8xMDCT transform—domain MFCC

instead of the magnitude of the DFT in the MFCC computatic
described previously. The rest of the algorithm is exadily t
same. It is important to note that the MFCC are computed
long and symmetric windows only. We do this for two reason
firstly the frequency resolution of small-window blocks @t
low, secondly we want to have comparable feature vectors
order to estimate long-term statistics. Vector index
3) 8xMDCT transform-domain MFCQOMNe propose here an _ _ ) , )

. . Fig. 7. A 30-second signal of rock music; the reference time-donta@MP3
algorithm to compute MFCC-like features from the transformyanstorm-domain MFCC; the AAC transform-domain MFCC; 8xMDCT
domain representation of the 8xXMDCT codec. These featutessform-domain MFCC (mean and variance for each texturedaw).
are computed on a frame-by-frame basis, where a vector
of features is computed for each frame &f92 samples.

In each frame, a scale-frequency representation is computgith

where the frequency axis is on the same Mel-scale as in the dct2, (4, 4,1, m) = dety, (4, 1)dcty (5, m) (14)
reference MFCC computation, and the scale axis corresponds ,

to the window size. This representation can be seen as sc#d¢ = 0,..C; =1, j = 0,...J — L. Th(?]j?tal number
dependant MFCC. This scale-frequency representatiomis sPf MFCC coefficients is then equal 0 =3 .—, Cj. In our
ply a weighted histogram where the amplitude of the atonf§Plementation, we choosg = 4, andCy = 7 coefficients on
are summed in scale-frequency bins. The scale-frequerie first scale axis(, = 3 on the second scale axi§y = 2

Feature index

representatioly’ (I, m) is defined as on.the third ;cale axis an@; = 1 on th(_a fourth scale axis.
This results in a total number of coefficiends= 13.
Y(l,m) =" [emps|Wimni(k) (12)  4) Texture window:MFCC are computed on segments of
p.k length 23.2 ms for the reference implementatior8.0 ms for

Withi=0,..,L—1,m=0,.,M—1, andW,, (k) is thel- MP3,23.2ms for AAC, and185.8 ms for 8xMDCT coding.

th window of the scalen. This scale-frequency representatiof*S Proposed in [13]-[15], the MFCC are grouped in longer

is then log-scaled and transformed with a 2D-DCT. The finf@mes, also called texture windows. In our implementation
MECC coefficients are defined as we take the mean and the variance of the MFCC on non-

1M1 overlapping texture windows of lengthseconds. This results
MF(i, j) = loglQ(Y (I, m) + epsdct2, n (i, j,1,m) N & vector of26 features for eacf_s seconds of an audio
(i.9) ; mZ:O 9LAY (L, m) +ep9detz,. u (i, ) signal. Fig. 7 shows a 30-second signal of rock music and the
(13) different MFCC implementations.



IV. EVALUATION current frame by passing the detection function into a tuned

In this section, we evaluate the proposed transform-domé&pntext-dependant comb filterbank. It is worth noting th t
mid-level representations which are integrated in stéte SyStem obtained thend place at the MIREX 2006 audio beat

art audio indexing systems. We first describe the experiaterff@cking contest. B o

setup: implementation of the coding/decoding, a brief de- The reference chord recognition system [11] first circylarl
scription of the audio indexing systems, and the evaluati§hifts the 36-bin chromagram according to the estimated
databases and metrics. Then, we give results and discusstyfdng of the piece, low-pass filter it, and map it to a 12-

performance and computation times of the final systems. bin chromagram by simply summing within semitones. Then,
the Expectation Maximization (EM) algorithm is used to

train the initial states probabilities and the transitioatrix

of an Hidden Markov Model (HMM). Finally, the sequence

- _ X _ of chords is estimated using the Viterbi algorithm with the

and conflgurgt|0n of the coding/decoding process. Most ef t'&hromagram and the trained HMM. The system recognizes

source code is open-source and freely avaifable 24 chords only (C major, C minor, C# major, C# minor...).
We use the following encoders: LAME [27], a well-knowny s \yorth noting that a slightly updated version of this

open-source and high-quality MPEG-1 Layer 3 encoder; Netgiem obtained thist place at the MIREX 2008 audio chord
AAC Codec, a freely available and high-quality MPEG-4jotaction contest.

AAC LC encoder [28]; the 8xMDCT coder described i the reference musical genre classification system is a

[26], it is open source and freely available. Coders arepsetyim e system based on SVM. MFCC are first computed on
with default parameters, constant bitrate (i.e. equal bitget temporal segments, then the mean and the variance of the

per frame) and no downsampling at low bitrate (input anthefficients are computed on longer frames called texture
output signals are sampled &t.1 kHz). The 8xMDCT coder yingows (see previous section). The length of the texture
uses the standard Matching Pursuit algorithm (without presnqow is 3 seconds. and the number of MECCIi%. There

echo control) with a target SNR df0 dB, and the simple . thenog features for eacls seconds of audio signal. As
bitplane enco_dln_g algorithm (m_nthout psychoacoustic npde example, for 80-second signal, there art) vector of
Each sound file is encoded abitrates for the MP3 and AAC o6 teqtyres. A SVM classifier is used to classify each vector

coders (32kbps, 64kbps, and 128kbps). For the MP8 cod@r,; genre class. We use libSVM, a high-performance and

each sound file is encoded at a unique bitrate of 128kbRg,qy 1o use open source library. Finally, each vector votes
lower bitrates are simply obtained by truncating the be@tn ¢, o genre class, and the class with the maximum number

of each frame. of votes is attributed to the whole song. This system obtains

We use the following decoders: ibMAD [37], an open;eg g competitive with those obtained in most recent work

source library for MPEG-1 audio decoding; FAAD [38], any, musical genre classification [15].
open-source library for MPEG-2/4 AAC decoding; the MP8 3y £y a1ation databases and metricghe audio indexing

decoder described in [26], it is open source and freely ava%égstems are evaluated with same databases and metricglas use
able. For each decoder, we have implemented Matlab MEX .o .ant work. We detail them in the following.
functior)s in the C/C++ language that are able to: decode therpg peqy tracking database is the same as used in [8], which
PCM signal; depode_ the MDCT coeff|C|.ents; compute Jihhe was originally provided by S. Hainsworth [39]. There are 222
trans_form-dor_nam mid-level representations describethin files of several music genres. The files are mono, sampled at
previous schon._We have also |mplemented_the referente Mi4 1 kHz and have a length of approximatélyseconds. The
level representations in the C++ language in order t0 havgyaanase was annotated by a trained musician, by recordings
fair comparison of the computations times. taps in time to the audio recordings. The annotations were
2) AUd'O _m_dexmg systems:.The  proposed transform-then corrected and refined using synthesized beat sounds ove
domain audlo_ln(_jexmg systems are based on _reference SN track (see [39] for details). Evaluating beat tracking
of-the-art audio indexing systems; only the mid-level epr o\ gtems s not a straightforward problem. Several evainati
sentations are different, the rest of the systems are gxa‘fﬁ(etrics have been proposed and discussed in [7] and used
the same. We briefly describe tBereference systems in the, o in [8]. We have chosen the metric “accept d/h” which

following. was proposed in [7] as the best single metric for evaluating

hThe refzrence_ be?t tra_cklng_system (58] f!rst post_-process[%iat tracking systems. This metric is defined as the length of
the onset detection function using an a aptw_e moving &eergy, o longest continuous segment of well recognized beath (wi
thresholq. Then the onset detect!on function is partitibinéo | acceptance window df7.5% the beat period) normalized
Ok:/ erlapbpmg érames to "’IIHO,W vfanab_le terfnpho. In eacg framﬁy the total number of beats (the metric is expressed in %).
the unbiased autocorrelation function of the onset deBCtl\;q qqyer this metrics allows cases where tapping occurs at
function is calculated. The autocorrelation function igrth twice or half the annotated rate: the metric is calculatad fo
passed Into a _shlft-lnvarlant context-dependant comblj:_iuek the three annotations (annotated beats, twice and halfjrend
in order to estimate the tempo of the current frame. FmaJIy,higher result is chosen
beat train at the estimated tempo is built and aligned wieh th 1o hord recognition database is the same as used in [11].
2Download source code at the following address: http:/vesmmanuel- It consists of 2 albums of the Beatles: Plea}se_Please Me (14
ravelli.com/downloads songs) and Beatles for Sale (14 songs). Audio signals ar@mon

A. Experimental setup
1) Coding/decoding:We detail here the implementation
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Fig. 8. Mean of the beat tracking accuracy. Left: perforneantthe3 time-domain and transform-domain systems based on MP3, A#C8xMDCT for
3 bitrates 32, 64 and 128 kbps. Right: performance of the tlomain and transform-domain systems based on 8xMDCT fordenwiange of bitrates. The
dashed line corresponds to the performance of the refergystem on the original PCM signal.
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Fig. 9. Computation times df time-domain and transform-domain beat tracking systemsedan MP3, AAC and 8xMDCT.

and sampled at4.1 kHz. The database has been annotat&l Results and discussion
by C. Harte et al [40]. As some chords in the database dol) Performance:Figures 8, 10 and 12 show performance

not belong to the set af4 recognized chords, these complexy regnectively the beat tracking, chord recognition and mu
chords are mapped to their root triad as explained in [11]. We.5| genre classification systems. For each codec and each

use a simple evaluation metric as proposed in [11], it is t%plication, we give results for both time-domain (decod-

percentage of well recognized frames. ing+reference system) and transform-domain systems, see al
The musical genre classification database is one of thazempare these systems with the reference system on original
used in several recent publications including [15]. It is RCM audio.
database originally provided by G. Tzanetakis [13]. It is The results of the beat tracking systems (Fig. 8) show that
composed by1000 tracks classified in10 genres (blues, all transform-domain systems obtain very good performance
classical, country, disco, hiphop, jazz, metal, pop, reggat 32, 64 and 128 kbps, transform-domain systems obtain
rock), where each genre class contaif8 tracks. The tracks performance close to the corresponding time-domain system
are mono,30-second length and sampled 22.05 kHz. As For the standard audio codecs MP3 and AAC, these results
the coders need input signals sampled4dtl kHz , the confirm that efficient transform-domain beat tracking isgpos
tracks have been resampled 4t.1 kHz. To evaluate the ble [24]. For the new 8xMDCT audio codec, these results show
systems, a common 80/20-fold bootstrapping proceduretigt efficient transform-domain beat tracking is possible. t
used. The dataset is first randomly partitioned ifitequal- Moreover, the performance of the 8XMDCT system decreases
size subsets. Then, subsets are chosen to train the SVMlowly with the bitrate, it is thus quite robust against the
model, and the remaining subset is evaluated using the trhitrate.
model. The classification accuracy is then the percentage ofThe results of the chord recognition systems (Fig. 10) show
good classifications. To avoid biased results due to theorandthat, contrary to the beat tracking case, only the 8xMDCT
partitioning, the procedure is repeats@ times and the final transform-domain system obtains good performance. The
result is the mean of th&00 classification accuracies. transform-domain systems based on MP3 and AAC obtain
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Fig. 10. Mean of the chord recognition accuracy. Left: perfance of the3 time-domain and transform-domain systems based on MP3, &#C8xMDCT
for 3 bitrates 32, 64 and 128 kbps. Right: performance of the tioreain and transform-domain systems based on 8xMDCT fordemiange of bitrates.
The dashed line corresponds to the performance of the nefergystem on the original PCM signal.
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Fig. 11. Computation times of the time-domain and transfdomain chord recognition systems based on 8xMDCT.

bad performance, the reason is that the MDCT representat®xMDCT codec, the performance of the transform-domain
has too low frequency resolution (as explained in the previosystem is even higher than the corresponding time-domain
section), this limitation prevents the calculation of aficgnt system. The transform-domain system based on 8xMDCT is
chromagram, and thus prevent good performance in chdrdhly robust against the bitrate with an accuracy above 50%
recognition. The transform-domain system based on 8xMDGIt 1kbps (it is interesting to note that the listening quality of
obtains performance close to the corresponding time-domé#ie decoded sound at this very low bitrate is extremely bad).
system. Moreover, its performance is robust against thatbit Moreover, at high bitrate (abovie8kbps), the performance is

it decreases with the bitrate less slowly than the beat iimgck even higher than the reference system on the original PCM
system. This could be explained by the fact that the Matchitagidio. This results shows that the proposed scale-dependan
Pursuit algorithm extracts first components with highesrgp MFCC-like features are better features than the standard
which are in most cases components with long windows|FCC features for musical genre classification.

at low bitrates, only components with highest energy are 2) Computation timesFigures 9, 11 and 13 show computa-
encoded; and consequently, at low bitrates, there are @t gron times of respectively the beat tracking, chord rectigni
majority long-window components which are useful for chorgng musical genre classification systems. For each codec and
recognition but not for beat tracking. each application, we give computations times for both time-

The results of the musical genre classification systems (Fpmain (decoding+reference system) and transform-domain
12) show that all transform-domain systems obtain very gosiistems. Computation times were evaluated on a Laptop with
performance (with the only exception of the systems based @rCcore2duc.0Ghz processor2GB of memory, a Linux64
MP3 at 32kbps, which is the lowest possible bitrate of thiits system and Matlab.6. Computation times are calculated
codec and the quality of the decoded sound is very bad in t§#8 @ whole database, then normalized by the total duration of
case). The performance of the transform-domain systendba#ee tracks.
on the standard coders MP3 and AAC obtain performanceThese results first show that the transform-domain systems
close to the corresponding time-domain systems. For the nave always faster than the corresponding time-domainrmsgste
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Fig. 13. Computation times df time-domain and transform-domain musical genre classiicasystems based on MP3, AAC and 8xMDCT.

This is due to two reasons: firstly, the transform-domain symachine learning stage is very fast and thus it does notyreall
tems avoid the computation of the signal synthesis; segpndhfluence the total times. However, in the case of the chord
the calculation of the mid-level representation is fastr frecognition systems, the machine learning stage is cdstly,
the transform-domain case than for the time-domain casepresents a large proportion of the total time, and thus the
The computation time of the transform-domain systems thaemputation time ratios between the transform- and time-
depends mainly on the two other operations, which are gxaalomain systems is lower than for the two other applications.
in both cases: the decoding of the MDCT coefficients, and theFinally, it is worth noting that the calculation of the mid-
machine learning stage. level representations in the transform-domain are very, fas

In the case of the MP3 and AAC codecs, the decodi ith the only exception of the MFCC-like features of the

stage is very fast, much faster than the decoding stage of th(r:].T QOZGC' Itn ttr;:s case, thelcolm t[_)utatl_on t||med|s(,jre!dylvteh
8xMDCT codec. Consequently, the systems based on M igh, this IS due 1o the many caiculations involved during

and AAC are faster than the corresponding systems based' %ngular-ﬂltermg stage. However, the total computatitne

the 8XMDCT codec. However, it is interesting to note thad the transform-domain system still remains lower than the

the 8XMDCT codec is scalable, and thus the complexity &orrgspondlng time-domain system;_moreover, we _have seen
the decoding stage is also scalable. As an example, decodf viously that the tra_nsform-do_mam system obtains bette
at 2kbps is more than twice faster than decodingstbps. performance than the time-domain system.

This property allows user to balance complexity and perfor- V. CONCLUSION

mance of the 8xMDCT-based systems: decreasing the bitrat
decrease the complexity but also decrease the performa
while increasing the bitrate increases the performancalsot
increases complexity.

%he main purpose of this paper was to investigate altermativ

Yiftio signal representations for transform-domain audiex-

ing. Most existing work on transform-domain audio indexing

deals with standard audio codecs such as MP3 and AAC.
The computations times depend not only on the decodiftpwever, the internal audio signal representations used in

stage, but also on the machine learning stage. In the caseahafse codecs have limitations such as limited frequenojues

the beat tracking and musical genre classification systdras, tion, which prevent efficient transform-domain audio inickex
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for tonality-related applications such as chord recogniti [13] G. Tzanetakis and P. Cook, “Musical genre classificatif audio
We have thus investigated a new audio codec that is based Signals’ IEEE Trans. Acoust., Speech, Sig. Proml. 10, no. 5, pp.

on a sparse signal representation which does not have thege

limitations. We have shown that this new audio codec is able
to give very good performance for several different transfo
domain audio indexing applications, including beat tragki
chord recognition and musical genre classification. We have
also shown that this new audio signal representation altbes [16]
calculation of MFCC-like features that give better perfame
than the standard MFCC features for musical genre classi-
fication. Finally, due to its scalability, the 8xMDCT codec

has the advantage to allow a user to choose how to ba|aI[ll(§é

[15]

[17]

performance and complexity. Given a sound file encoded at
high bitrate, the audio indexing system can decode anyqorti 9
of the bitstream : decoding only the first few bits is very fa& ]

but decreases the performance, decoding more bits is slower

but increases the performance.
This study opens new ways for designing audio signal
representations. To be useful for both audio coding anm)
audio indexing, an audio signal representation must peovid
not only a compact representation, but also must deliver Legl
explicit information on the sound content. Future researith
consider other techniques of audio signal representatsucs
as representations based on complex transforms (e.g. MCLT)
or object-based audio signal representations (e.g. Sialso
modeling or so-called "molecular” representations).
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