
HAL Id: hal-02652082
https://hal.science/hal-02652082v3

Submitted on 9 Jun 2020 (v3), last revised 19 Oct 2021 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A scalable causal broadcast that tolerates dynamics of
mobile networks

Daniel Wilhelm, Luciana Arantes, Pierre Sens

To cite this version:
Daniel Wilhelm, Luciana Arantes, Pierre Sens. A scalable causal broadcast that tolerates dynamics
of mobile networks. [Technical Report] Sorbonne University UPMC. 2020. �hal-02652082v3�

https://hal.science/hal-02652082v3
https://hal.archives-ouvertes.fr


A scalable causal broadcast that tolerates dynamics
of mobile networks

Daniel Wilhelm
Sorbonne University, CNRS

Inria, LIP6, Paris, France
daniel.wilhelm@lip6.fr

Luciana Arantes
Sorbonne University, CNRS

Inria, LIP6, Paris, France
luciana.arantes@lip6.fr

Pierre Sens
Sorbonne University, CNRS

Inria, LIP6, Paris, France
pierre.sens@lip6.fr

Abstract—Many distributed applications and protocols require
causal broadcast. Various existing algorithms ensure causal order
of broadcast messages, but they are either not scalable, or do not
take into account the characteristics of mobile networks, such
as nodes mobility, message losses, or limited capacity of nodes.
This paper proposes a causal broadcast algorithm suitable for
mobile networks since it copes with the dynamics, constraints,
and specifications of such networks. Control information included
in each message, and maintained on each node, is of small size and
the algorithm handles message losses. Performance evaluation of
experiments conducted on Omnet++ confirms the effectiveness of
our causal broadcast protocol.

I. INTRODUCTION

Causal Broadcast is a fundamental group communication
service used by many distributed applications, such as dis-
tributed databases, publisher/subscribe systems, collaborative
applications, or distributed social networks. It ensures that
messages are delivered to all nodes (processes) only once, pre-
serving causal relation of broadcast messages, i.e., the delivery
of broadcast messages must respect Lamport’s happened-
before relationship [9]: if the broadcast of a message m
precedes the broadcast of a message m′, then every process
that delivers these two messages must deliver m before m′.

In this paper, we are particularly interested in providing
a causal broadcast service for wireless mobile networks [8],
composed of mobile nodes and reliable support stations. The
dynamics of such networks where mobile nodes can move,
leave/join the system, and fail, poses new challenges for the
implementation of the group communication service. For in-
stance, if a mobile node joins an executing distributed applica-
tion where other nodes have already delivered and broadcasted
some messages, the new node should not be blocked, waiting
for these messages, if it will never receive them. Furthermore,
the protocol must deal with message losses, the low memory
capacity of mobile nodes, and, depending on the system, a
high number of mobile nodes.

Many approaches have been proposed in the literature that
guarantees and implements a message causal order. The two
most well-known ones are (1) the piggybacking of causal
per node information in each message, such as logical vector
clocks [6][10], and (2) flooding through FIFO links [7], where
messages are systematically forwarded at first reception. The
dissemination pattern through FIFO links ensures that there
exists no path between two nodes over which messages are
sent out of causal order. The first approach is not suitable for

tackling the dynamics and scalability issues of mobile net-
works, because the size of causal information depends on the
number of nodes of the system. Therefore, we have chosen the
second approach to implement our causal broadcast protocol.
However, the latter, which was proposed by Friedman et al.
[7], only offers causal order over static distributed systems
where network topology does not change.

The authors in [13] have extended Friedman et al.’s broad-
cast protocol to dynamic systems, using data structures that
do scale. On the other hand, their solution to cope with
system dynamics does not address the issue of free mobile
nodes movement since the network overlay must always be
connected through links previously initialized by a particular
handoff procedure. Therefore, a path of initialized links must
always exist between each pair of nodes. Moreover, links
are all supposed to be FIFO, reliable, and initialized in both
directions. These characteristics are not realistic for mobile
networks, which make [13] not suitable for such networks.

Our causal broadcast algorithm is designed for mobile
networks, taking into account their intrinsic characteristics and
constraints. Mobile nodes can join/leave the system, move,
and temporarily fail. They are connected to support stations
through a wireless network, which is neither reliable nor FIFO.
Our algorithm renders them FIFO and reliable by applying
message retransmission, sequence number assignment, and
message reception acknowledgment. On the other hand, since
support stations are connected by a wired network, existing
protocols, such as TCP, ensure reliable FIFO communication
among them. It is worth emphasizing that messages piggyback
few control information, and memory usage complexity is low
for mobile nodes, while, for support stations, it grows linearly
with the number of local connected mobile nodes. Hence,
our broadcast requires less control information than vector
clocks and does not make the constraining assumptions of the
flooding approach [7][13][12]. Performance evaluation results
of experiments conducted over the simulator OMNeT++/INET
[18] confirm the advantages of our solution.

The rest of the paper is organized as follows. Section II gives
some background on causal broadcast. Section III presents the
system model. In Section IV, we describe our proposed causal
broadcast protocol. Section V presents evaluation of results
on OMNet++. Section VI discusses related work and, finally,
Section VII concludes the paper.



II. BACKGROUND

Mobile Networks are usually composed of a huge number of
nodes, which render not sustainable full system membership
knowledge by nodes. Instead, they have just a local partial
view of the system, which usually contains much fewer nodes
than the whole system, and only communicate with the nodes,
denoted neighbors, that belong to this partial view. Messages
are, therefore, disseminated transitively through an overlay
network built with the local view of nodes: nodes send
received messages to their respective neighbors, which, in their
turn, also forward them.

In this work, we are interested in providing a group commu-
nication service which, besides the primitives for joining and
leaving the system (Join() and Leave() respectively), offers to
the application the primitives CoBroadcast(m), that broadcasts
the message m to all nodes, and CoDeliver(m), that delivers
m to the application, respecting the causal order of messages.
Causal order ensures that sent messages are delivered while
respecting the causal relation between them, based on the
happened before relation [9] introduced by Leslie Lamport.
(see Definition 1 bellow). Therefore, the delivery of received
messages might be delayed until they respect causal order. We
thus distinguish the reception of a message from its delivery.
Note that due to re-transmissions a node might receive multiple
times the same message, but the latter is delivered only once.
Definition 1 (Happened before). The happened before
relation, denoted →, partially orders events in a distributed
system. Considering two events e1 and e2, e1 → e2 iff: (a) e1
and e2 occurs on the same process and e1 precedes e2 or (b)
for a message m e1=send(m) and e2=deliver(m) or (c) there
exists an event e3 such that e1 → e3 and e3 → e2 (transitivity).

Following (b) and (c) of Definition 1, causal order between
two messages is formally defined as: ∀m, send(m)→ send(m′)
⇒ deliver(m) → deliver(m′). By extending the above defi-
nition to broadcast and deliver of messages, we have: ∀m,
broadcast(m) → boradcast(m′) ⇒ deliver(m) → deliver(m′).

We consider a dynamic system in which nodes can
join/leave the system during execution. Furthermore,
messages delivered by all nodes are discarded, and nodes that
join the system will, therefore, never receive these messages.
For this reason, we apply the following definition of causal
broadcast in our work [11]:

Definition 2 (Causal Broadcast). ∀ messages m1, m2,
broadcast(m1)→broadcast(m2) ⇒ deliver(m2) 6→deliver(m1)

With such a definition, if broadcast(m1) → broadcast(m2)
and if m1 is not available anymore in the system, then m2
can still be delivered without blocking forever waiting for m1.
However, m1 is never delivered after m2.

For implementing causal order of broadcast messages, our
algorithm exploits the principle of message forwarding over
reliable FIFO links, as proposed in [7]. The scenario of
Figure 1 explains such an approach. It consists of three nodes
connected by reliable FIFO links. First, node A broadcasts m

A B

C

m

m

(a): A broadcast(m)

A B

C
m m

(b): B forwards m

A B

C

m’

m
m

m’

(c): B send(m’)

A B

C
m’ m’

m m

(d): C deliver(m)

Fig. 1: Causal broadcast by FIFO forwarding [7]

(a). Once B received m, B delivers and sends it to C (b). Then
B broadcasts m′ (c). Finally, C delivers m and sends it to A.
(d) shows that m′ cannot be received before m by any node.

III. MODEL

We consider a mobile network composed of Mobiles Hosts
(h nodes) and Mobile Support Stations (s nodes). Nodes
communicate exclusively through message passing. Group
communication primitives are called by applications running
on h nodes while s nodes deal with message loss and guarantee
that messages reach their destination. Every h and s node is
uniquely identified by an id.

All s nodes are reliable and static, i.e., they do not move,
join, or leave the system, neither fail. They are connected
by a high speed wired network, whose links are reliable
and FIFO, and over which we build a static logical — tree-
based — overlay network. They communicate with each other
exclusively through this overlay by using the TCP protocol.
Every s node antenna has the same fixed transmission range,
which defines its respective cell to which h nodes, close to
it, connect themselves. Furthermore, s nodes hold most of the
consistency and causal order information of the protocol since
they have much more memory and computing power than h
nodes, and no energy limitation.

On the other hand, h nodes can move, join, or leave
the system, and are subject to temporary failures. The latter
happens when a node crashes and then re-joins the system,
recovering its last saved state. h nodes communicate with the
s nodes of their respective cells through a wireless network
where interferences can lead to message losses, but not mes-
sage corruption. A s node acts as a relay, forwarding the
broadcasted messages of the h nodes of its cell. Wireless
links are not supposed reliable, nor FIFO. Note that a h node
may be temporarily disconnected from the system if no cell
covers its position. Furthermore, an h node can be within the
transmission range of two s nodes simultaneously, but it is
connected to at most one s node at a given moment, which
is generally the closest one. Finally, unlike s nodes, h nodes
have computing and energy limitations, thus maintaining only
a small data structure.

2



s1 s2

s3 s4 s5

s6 s7a
m

si s node h node

Fig. 2: Network topology

s1 s2

s3 s4 s5

s6 s7a
m

si s h

Fig. 3: Tree topology

We should point out that cells must overlap in order to
ensure the covering of the whole area of the system, as shown
in Figure 2.

Figure 2 shows an example of a network topology. Cells
are represented by dashed circles. It is worth remarking that
node m is within no cell, and that node a is within both s6’s
and s7’s cells.

The same network of Figure 2 is represented in Figure 3 but
s and h nodes are logically organized in a tree-based overlay.
The wired and wireless networks are respectively represented
by solid and dashed lines. Some wired links from Figure 2
have been removed, and h nodes are connected to at most one
s node (e.g., a). h nodes are leaves of the tree since they only
communicate with their respective s node. The latter can also
be a leaf, provided that no h node is connected to it. Note that
m that is within no cell, is temporarily disconnected from the
tree.

IV. CAUSAL BROADCAST ALGORITHM

Our causal broadcast algorithm, presented in Algorithm 1
to 4, consists of three parts: the dissemination of application

messages, the handling of join/leave, and mobility operations
of h nodes.

Each line is preceded by a symbol (*,#, or +), corresponding
to the part of the algorithm to which the line is related.
Lines preceded by * are those related to the dissemination
of application messages, those preceded by # are those related
to the join and leave of h nodes, and those preceded by + are
those related to the mobility of h nodes.

Algorithm 1 presents the tasks executed by h nodes. Algo-
rithm 2 to 4 present the tasks executed by s nodes. Algorithm 2
handles the reception of messages sent by h nodes, Algorithm
3 the periodical sending of ack messages by s nodes, and
Algorithm 4 handles the reception of messages sent by s nodes.
An application running on a h node can call the following four
functions provided by the algorithm:
• Join(): whenever the h node wants to join the system.
• Leave(): whenever the h node wants to leave the system.
• CoBroadcast(m): for broadcasting the message m.
• CoDeliver(): delivering a message, if available.

A. Data structures and message types
Specific structures are kept by h and s nodes to guarantee

the causal delivery of application messages.
First, h nodes maintain variables to identify messages, to

manage application messages, and to manage the connection
with their cell’s s node.

A h node piggybacks its id, idh, on sent messages to identify
them. It also checks that received messages come from its cell
by comparing their attached id to its cell’s one, idC, since h
nodes may be in reach of several cells.

Moreover, a h node maintains some variables to manage
application messages: two sequence number counters, seqh
and seqC, the first to stamp new broadcasted application
messages, the latter to contain the sequence number of the
next application message to deliver. Additionally, two buffers,
SBuffer and RBuffer, the first stores unacknowledged sent
application messages, the second contains received application
messages until they are FIFO ordered.

Finally, a h node uses some variables to manage its con-
nection: Two session number counters are used to identify
connections, Ses and SesLC, the first contains the current
session number, the latter the session number of the latest
session in which the connection was established, i.e., where
the node received a reply from the s node to which it tried to
connect, confirming the reception of the connection request.
A variable state is also used to identify the node’s current
connection state. A node can be in four states: init, join, conn,
estab.

Secondly, s nodes also maintain variables to manage their
messages, as well as a structure for each connected h node hi.

A s node maintains its cell’s id, idC, a sequence number
counter for new broadcasted messages seqC, and a buffer
which stores unacknowledged broadcasted application mes-
sages, denoted SBuffer.

On the one hand, the structure associated with hi contains
some variables to manage the connection. The structure as-
sociated to hi is identified with hi’s id, idh. Two sequence

3



number counters are also used, seqh and seqACK, the first
contains sequence number of the next message of hi to re-
broadcast, the second the sequence number of the most recent
application message hi acknowledged. The session number of
the connection with hi is stored in Ses. A buffer, RBuffer,
contains received application messages of hi until they are
FIFO ordered.

On the other hand, some variables of the structure are only
used during the handoff process. Hlock locks the structure if
a handoff is in progress, to ensure that handoffs concerning
hi are done sequentially. seqCo saves the state of SBuffer.
mnd contains messages discarded by the s node which hi
did not delivered at the previous s node to which it was
connected. CoRequest stores the most recent pending Req1
request message received during the current handoff.

Messages are divided into three groups: the first handles the
dissemination and acknowledgment of application messages,
the second the join/leave of h nodes, and the third the mobility
of h nodes.

The first group contains:

• Application messages from node type A to B:
<Apph_s,data,idh,seqh>, <Apps_s,data,idh,seqh> and
<Apps_h,data,seqC,idC,Md>

• Acknowledge messages of h nodes <ackh,idh,seqC,Ses>
and of s nodes <ackC,idC,vSeq>.

The second group contains:

• <join,idh,Ses> sent by h nodes to connect to the system.
• <initACK,idh,seqh,seqC,Ses>: sent by s nodes to conclude

the connection phase.
• <leave,idh,Ses> sent by h nodes to leave the system.
• <leaveACK,idh,Ses> acknowledge the reception of leave.
• <Delete,idh,Ses> sent to s nodes to delete the h node idh

if registered.

The third group contains:

• <init,idh,seqC,Ses,SesLC> sent by h nodes to change cell.
• Messages exchanged between s nodes during handoffs to

ensure causal order for moving h nodes:
<Req1,idh,seqC,SesLC,Ses>, <Rsp1,idh,seqC,mnd,Ses>,
<Req2,idh,msgreq,Ses>, <Rsp2,idh,msg,msgrcv,Ses>

• <AppCo,data,idC,seqC,idhdest ,Ses> application messages
sent during the connection phase to a specific h node.

We define several functions to make the algorithm more
easily readable. Messages are sent with the broadcast(type,...)
function, whose behavior and arguments change in function of
the message type.

h nodes use the broadcast function to sent messages
(Apph_s, ackh, join, leave, init) on the wireless network to
their cell’s s node.

When used by s nodes, the behaviour of the broadcast
function changes according to the message type:

• AppS_h, ackC, initACK, AppCo, leave and leaveACK
messages are sent on the wireless network.

• AppS_S messages are forwarded on the wireless network
and to the neighbor s nodes, except the one which sent
them.

• Req1, Rsp1, Req2, Rsp2 messages are forwarded if the s
node is not the destination of them. In this case, they are
forwarded to the neighbor s nodes, except the one which
sent them.

• Delete messages are forwarded to the neighbor s nodes,
except the one which sent them.

Moreover, we define some other functions. chooseC() re-
turns the position of the nearest s node, and minSeq() returns
the sequence number of the oldest message of SBuffer (or seqC
if SBuffer is empty).

B. Dissemination of application messages
Similarly to [7] and [13], the dissemination mechanism is

based on flooding over an overlay network. Nodes are logically
organized in a tree, like the one of Figure 3.

A h node calls CoBroadcast(m) (Algo1.11-13) in order to
broadcast an application message m. All h nodes of the system
should deliver m, respecting causal order of messages. On the
other hand, s nodes are responsible for the dissemination of
application messages (Algo2.44-47). A s node re-broadcasts
to the h nodes of its cell every application message it receives
from a h node of its cell (Algo2.2-8). It also sends the message
to its s node neighbors of the overlay through the wired
network. An application message received by a s node, sent
by a second s node, is forwarded in the same way, except that
it is not sent back to the sender (Algo4.54).

A h node includes in every application message it broadcasts
both its id, idh, and the id of the current cell to which it
is connected, idC. Since wireless links are neither FIFO nor
reliable, our protocol needs to detect out of order messages
as well as losses. To this end, a h node associates a sequence
number value seqh to every new message it broadcasts, by
keeping a local sequence number counter variable which is
incremented at every new broadcast. A s node also has its own
sequence number counter variable, seqC, used to timestamp
every new message it re-broadcasts. It increments the counter
at every re-broadcast of a different message and controls, for
each connected h node hi, which is the seqC of the last message
that hi has delivered.

Both h and s nodes maintain two types of local buffers: (1)
RBuffer, which stores received application messages until they
are FIFO ordered (2) SBuffer which keeps pending messages
sent over the wireless network, i.e., those messages that have
not been acknowledged yet by all the receiver(s) h nodes.

A s node keeps one RBuffer per connected h node. It uses
the seqh value included in application messages sent by a given
h node, hi, to detect out of order message receptions: if a
message m with seqhm sent by hi is received by si but the latter
has not received yet all messages from hi whose seqh value
is smaller than seqhm , then m is inserted in the RBuffer that
si associates to hi (Algo2.7). Similarly, hi uses the sequence
number values (seqC) of the messages received from si to order
them, i.e., temporally keeping those which are out of order
messages in its RBuffer (Algo1.18). s nodes (resp. h nodes)

4



Algorithm 1: Tasks of hi
Join

1# seqhi=seqCi=Sesi=SesLCi=0
2# SBufferi=RBufferi=∅
3# idCi=chooseC()
4# statei=join
5# broadcast(<join,idhi ,Sesi>)

Upon changing cell
6+ idCi=chooseC()
7+ statei=(statei==join ? join : init)
8+ Sesi++
9+ stop(ackTimeout)

10+ broadcast(<statei,idhi ,seqCi ,Sesi,idCi ,SesLCi>)
Upon calling CoBroadcast(m)
11* msg=<Apph_S,m,idhi ,seqhi++>
12* broadcast(msg)
13* SBufferi.insert(msg)
Leave
14# broadcast(<leave,idhi ,Sesi>)
upon reception of m=<type,...> from a s node
15* switch (m)
16* case <AppS_h,data,seqC,idC,Md> :
17* if seqC>seqCi then
18* RBufferi.insert(m)
19* else if seqC==seqCi then
20* seqCi++
21+ if idhi /∈ Md then
22* deliver(data)
23* FIFOdeliver()
24+ case <AppCo,data,idC,seqC,idhdest ,Ses>:
25+ if idhdest==idhi∧Ses==Sesi then
26+ if statei==init then
27+ seqCi=0 ; SesLCi=Ses ; statei=connecting
28+ if seqC>seqCi then
29+ RBufferi.insert(m)
30+ else if seqC==seqCi then
31+ seqCi++
32+ deliver(data)
33+ FIFOdeliver()
34* case <ackC,vSeq>:
35* SBufferi\ = {∀m′ ∈SBufferi,m’seq<vSeq[idi]}
36* seqCi=vSeq[idi]
37# case <initACK,idh,seqh,seqC,Ses>:
38# if idhi==idh∧statei 6=estab∧Sesi==Ses then
39# if !ackTimeout then
40# StartAckTimeout()
41# if initTimeout then
42# stop initTimeout
43# seqCi=seqC ; SesLCi=Ses ; statei=estab
44+ clear(SBufferi,seqh)
45+ FIFODeliver()
46# case <leaveACK,idh>:
47# if idhi==idh then
48# leave()
upon expiration of M’s timeout
49* if M==ackh then
50* broadcast(<ackh,idhi ,seqCi ,Sesi>)
51* else
52* broadcast(<M>)
53* setTimer(M,calcTimeout())

Algorithm 2: upon reception of m=<type,...> from hi
at sj

1* switch (m)
2* case <Apph_S,data,idh,seqh>:
3* if seqhj,i == seqh then
4* Disseminate(data,idh,seqh)
5* seqhj,i++
6* FIFODisseminate()
7* else if seqhj,i < seqh then
8* RBufferj,i.insert(m)
9* case <ackh,idh,seqC,Ses>:

10# if h[idh]∧Ses==Sesj,i then
11* seqCj,i =seqC
12* clear(SBufferj,seqC)
13+ if seqC < minSeq() then
14+ clear(mndj,i )
15+ if mndj,i==∅ then
16+ seqCj,i=calcSeq(idh)
17+ broadcast(<initACK,idh,seqCj,i ,Ses>)
18# case <join,idh,Ses>∨<init,idh,seqC,Ses,SesLC> :
19# if idh registered then
20+ if !Hlockj,i then
21+ if Ses>Sesj,i then
22+ if SesLC==Sesj,i then
23+ clear(mndj,i ,seqC)
24+ seqCj,i=seqC
25# Sesj,i=Ses
26+ update(mndj,i ,Ses,seqC)
27+ if mndj,i == ∅ then
28+ seqCj,i=calcSeq(idh,seqC)
29+ if mndj,i == ∅ then
30# broadcast(<initACK,idh,seqCj,i ,Sesj,i>)
31# else
32# h={idh,0,minSeq(),Ses,∅,false,0,∅}
33# if type == join then
34# broadcast(<initACK,idh,minSeq(),Ses>)
35# broadcast(<Delete,idh,Ses>)
36# else
37+ Hlockj,i=true
38+ broadcast(<Req1,idh,seqC,SesLC,Ses>)
39# case <leave,idh,Ses>:
40# if h[idh] then
41# delete(h[idh])
42# broadcast(<Delete,idh,Ses>)
43# broadcast(<leaveACK,idh>)
Function: Disseminate(data,idh,seqh)
44* broadcast(<AppS_h,data,seqCj ,idCj ,∅>)
45* SBufferi.insert(<AppS_h,data,seqCj ,idCj ,∅,idh,seqh>)
46* broadcast(<AppS_S,data,idh,seqh>)
47* seqCj++

5



Algorithm 3: upon expiration of M’s timeout at s
nodes

48* if M==ackc then
49* vSeq={seqi,∀ connected hi}
50* broadcast(<ackS, vSeq>)
51* setTimer(ackTimeout,calcAckTimeout())
52* else
53* broadcast(<M>)

disseminate (resp. deliver) them in ascending order (Algo2.6)
(resp. Algo1.23) in ascending order of seqh (resp. seqC).

We denote pending messages messages that have not been
acknowledged by all receiver(s). Regarding SBuffer, a message
broadcasted by a h node is considered pending by this h node
till it receives an acknowledge from its respective cell’s s node
(Algo1.34-36), while a message re-broadcasted by a s node
remains pending till it receives acknowledges (ack messages)
from all connected h nodes of the cell (Algo2.9-12). In both
cases, as soon as a message is not pending anymore, it is
removed from the SBuffer. On the other hand, every pending
message is periodically retransmitted within a time interval
whose duration, recalculated at each retransmission, depends
on the number of pending messages in the SBuffer (Algo1.49-
53 & Algo3).

A s (resp., h) node regularly sends an ack message (timeout
mechanism), confirming the reception (Algo3.48-51) (resp.,
delivery (Algo1.49-50) of those application messages whose
sequence number value is smaller or equal to the one included
in the ack message in question. Note that the ack messages
of s nodes contain a vector with an entry for each connected
h node of the s node’s cell. A final remark is that a h node
delivers a message it has broadcasted only after receiving this
same message from its cell’s s node (Algo1.17).

Figure 4 shows the broadcast of two messages: h1
broadcasts m1 and h2 broadcasts m2 after delivering m1
(broadcast(m1) → broadcast(m2)). The notation of the mes-
sages also includes their sequence number. Pending messages
in SBuffer (bold) and non FIFO ordered ones in Rbuffer (italic)
are also shown. h1 is connected to s1 and h2 to s2 while s1
and s2 are neighbors.

Upon reception of m1, s1 sends it to s2 and also broadcasts
it within its cell, which contains h1. When receiving m1, s2
broadcasts it in its cells. Note that s2 does not send m1 back
to s1. Node h2 receives and delivers m1. Then, h2 broadcasts
m2, which is disseminated like m1. Remark that h2 delivers
m2 only after receiving m2 from s2, confirming the reception
of m2. At expiration of a timeout, s2 (resp., h2) sends an
ack message to h2 (resp., s2) with seq=1 (resp., seq=2) to
acknowledge m2 (resp., m1 and m2). h2 and s2 then stop
sending m2 and clear their respective SBuffer.

Node s1 re-broadcasts m1 within its cell after receiving it,
but it is lost. Thus, at the next timeout expiration, h1 re-
broadcasts m1, because s1 did not acknowledged it. However,
s1 has received m1 and, therefore, ignores m1’s second re-
ception. Upon receiving m2 from s2, s1 broadcasts it within

Algorithm 4: upon reception of m from s nodes at sj

52* switch (m)
53* case <AppS_S,m,idh,seqh>:
54* Disseminate(m,idh,seqh)
55# case <Delete,idh,Ses>:
56# if h[idh] then
57# if Ses>Sesj,i then
58+ if CoRequestj,i then
59+ broadcast<CoRequestj,i>
60# delete(h[idh])
61# broadcast(<Delete,idh,Ses>)
62# default:
63+ Handoff(m)
Function: Handoff(m)
64+ if m.idh not registered then
65+ broadcast(m)
66+ if m==<Req1,idh,seqC,SesLC,Ses> then
67+ if Sesj,i<Ses∧Hlockj,i then
68+ if CoRequestj,i.Ses<Ses then
69+ CoRequestj,i=m
70+ else
71+ if Sesj,i>Ses then
72+ broadcast(<Delete,idh,Ses>)
73+ return
74+ if SesLC == Sesi then
75+ mnd={idmk ,∀mk∈SBuffer∪mndj,i∧

idmk /∈Mmk∧seqmk>seqC}
76+ else
77+ mnd={idmk ,∀mk∈SBuffer∪mndj,i∧idmk /∈Mmk}
78+ broadcast(<Rsp1,idh,seqhj,i ,mnd,Ses>)
79+ seqCoj,i=seqCj
80+ else if m.Ses6=Sesj,i then
81+ broadcast(m)
82+ else
83+ if m==<Rsp1,idh,seqh,mnd,Ses> then
84+ seqhj,i=seqh
85+ seqCoj,i=seqC
86+ mndj,i=mnd
87+ msgreq={m∈mnd,m /∈SBufferj}
88+ broadcast(<Req2,idh,msgreq,Ses>)
89+ else if m==<Req2,idh,msgreq,Ses> then
90+ msg={m’∈mnd∪SBufferj,m’∈msgreq}
91+ mrcv={m’∈SBufferj,m’seq>seqCoj,i}
92+ delete(h[idh])
93+ clear(SBufferj)
94+ broadcast(<Rsp2,idh,msg,mrcv,Ses>)
95+ else if m==<Rsp2,idh,msg,msgrcv,Ses> then
96+ ∀m’∈SBufferj\{msgrcv∪mndj,i}, m’seq<seqCoj,i ,

m’Md∪={idh}
97+ BroadcastCo(msg)
98+ Hlockj,i=false
99+ if CoRequestj,i then
100+ Receive(CoRequestj,i)
101+ else if msg==∅ then
102+ seqCj,i=calcSeq(idh)
103+ broadcast(<initACK,idh,seqCj,i ,Sesj,i>)

6



h1

s1

s2

h2

m1

m1

m
1 ,1 x

m
1
,1

m1

m1

m
1 ,1

m1

m
1

d(m1)

m
1 ,1

m2

m1m2

m
2
,1

d(m2)

m
2 ,2

m1m2

m
2

m1m2

m
2
,2

m1m2

d(m1)
d(m2)

m
1
,1

∅∅∅

ack=2

∅∅∅

∅∅∅

ac
k=

1

m1m2

∅∅∅

ack=1

∅∅∅

ac
k=

2

mx:SBuffer
my:RBuffer

Fig. 4: Broadcast of m1 and m2

its cell. On the other hand, for h1, m2 does not respect
FIFO order, because it awaits a message with seqC1

= 1 and
m2 has seqC1

= 2. Hence, h1 stores m2 in its RBuffer. At
expiration of the timeout related to m1, s1 broadcasts it again,
and, upon reception, h1 delivers the two messages in FIFO
order and remove them from its Rbuffer. Finally, h1 and s1
send ack messages at their next timeout expiration, which are
both received. Hence, they remove both messages from their
respecting SBuffer. Note that all copies of m1 and m2 have
been deleted from all node buffers.

C. Join/leave the system

An extra control is necessary to identify the connection in
which h nodes are, because each s node has its own local se-
quence number (seqC) (a same message may receive a different
seqC from one s node than from another s node), messages
may be lost on the wireless network (nodes cannot determine
if the other node has received the connection messages), and
h nodes can move and change cells (several connections of
the same h node might be processed simultaneously).

To solve those problems, we have introduced the concept
of session sequence numbers that uniquely identify a wireless
network connection between a h node and a cell’s s node. For
this purpose, every h node keeps the following variables whose
values are also included in some messages of the protocol,
whenever necessary:
• Ses identifies hi’s current connection. It is incremented

when hi changes its current cell.
• SesLC identifies the last established connection, i.e. the

last session in which the h node received a message
from its cell’s s node acknowledging the reception of its
connection request.

The Join() primitive (Algo1.1-5), called by hi, chooses a
cell cj and sends to it a join message which includes the id
and Ses of hi. In its turn, if hi is not already connected to it
(Algo2.32-36), node sj associates a structure to hi to control
the connection. Otherwise (Algo2.30), hi’s session number is
updated (Algo2.25) in order to take into account that hi might
have tried to connect to another s node without succeeding.

In both cases, sj sends an initACK message to hi, in order to
finish the handoff by giving to hi the sequence number of the
oldest stored message in its SBuffer (determined by minSeq()).
Moreover, a Delete message, including the session number
piggybacked by the join message, is disseminated to the other s
nodes (Algo4.55-61), so that they delete the structure they have
associated with hi, if they store one whose associated session
number is lower than the one of the Delete message, i.e., if
Delete concerns a more recent session/connection. We should
emphasize that a h node can join the system at any moment,
but it will not deliver those messages which were discarded
by the s node to which it connects before its connection.

hi can leave the system at any time by calling the Leave()
primitive (Algo1.14) which will re-broadcasts a leave message
until it is received by some s node. The latter forwards the
leave message to the other s nodes (Algo2.39-43). hi leaves
the system once it received an acknowledge to its Leave
request (Algo1.46-48). This message exchange is necessary
since s nodes store messages until all h nodes of their cell
have acknowledged them. Hence, the s node(s) where hi is
registered would never discard messages if hi would leave
without sending a leave message.

D. Handoff procedure

The handoff procedure ensures the causal order delivery of
application messages when h nodes move between cells after
having joined the system. We denote sp and sn the previous and
the new cell s node of hi respectively. Basically, the handoff
procedure consists of a set of messages exchanged between
the moving node hi and sn, as well as between the latter and
sp, as shown in Figure 5. The handoff procedure must cope
with the two following constraints.

a) Single delivery: s nodes do not necessarily assign
sequence numbers in the same order to those application
messages which are not causally related, i.e., which have been
concurrently broadcasted. For example, let’s suppose that sp
receives m then m’ while sn receives m’ then m and that
hi delivers m when connected to sp, moves, connects to sn,
and then delivers m’. Without any extra control, hi would
deliver m again, since sn has ordered m after m’. In order
to avoid these multiple deliveries, a s node assigns a small
set, denoted Md, to every application message it broadcasts.
The Md of a message contains the ids of all h nodes of the
cell that have already delivered the message at another cell.
By exchanging messages with sp, sn acquires knowledge about
which are the pending messages of its SBuffer which hi have
already delivered, including then hi’s id to the Md of each of
those messages (Algo4.88). hi will not deliver those messages
whose Md set contains its id (Algo1.22). For every one of
those messages, it just updates the related sequence number
(seqCj,i ). Note that the size of Md is quite small as, at a given
moment, few h nodes are changing cells.

On the other hand, a s node discards a message m, i.e.,
removes it from its SBuffer, once all connected h nodes
have acknowledged m (Algo2.13-14). This message deletion
procedure renders more difficult the comparison of the SBuffer
of sn and sp to find which messages hi has not delivered, since

7



the SBuffer of one s node may contain messages removed from
the other one, and messages received by one may not have
been received yet by the other. Such a conflict is handled by
message exchanges over the wired network connecting the s
nodes (Handoff function of Algorithm 4).

b) Session consistency: Messages may be lost on the
wireless network. In this case, nodes cannot determine if
their handoff messages are received nor to which connection
received messages belong. This uncertainty is handled by
including the h node’s session number Ses in every handoff
message, identifying, therefore, the connection in which it is
sent. Moreover, a h node is unable to know which s node
holds its latest connection information, because its connection
requests may be lost. In order to tackle this problem, handoff
messages are propagated over the wired network to all s
nodes. A third remark is that due to its movement, a h node
may try to connect to different s nodes in a short time interval,
starting, therefore, several handoff procedures simultaneously.
It happens, for instance, if hi tries to connect to a second s
node just before connecting to sn. Hence, during the handoff
procedure with hi, sn may receive old connection requests
from hi. The s nodes manage concurrent requests sequentially
in increasing order of Ses (Algo4.56).

Handoff principle: hi starts the handoff procedure (Algo1.6-
10) when it moves to sn’s cell, by sending to sn an init message
containing the sequence number (seqCi ) of the latest message it
delivered, as well as the connection’s session number Sesi and
the session number of the last established connection SesLCi .
Note that hi stops the sending of ack messages until its new s
node gave him a new sequence number seqC, since its actual
seqC is associated to hi’s previous s node sp’s cell.

sn processes hi’s init message (Algo2.18-38) differently
following if it has already registered hi.

If hi is already registered (Algo4.19), then the request is
processed if sn is not currently in a handoff procedure for hi
(Algo4.20), to ensure that the handoffs are done sequentially.
If the request’s session number Ses is greater than the stored
session number Sesj,i, then it is the first time sn receives a
connection message for this session, and the structure is thus
updated. The session number associated to hi is updated, so
that messages related to hi’s previous connection attempts
to other s nodes, i.e., those with lower Ses values, will be
discarded. Moreover, if the last established connection of hi
was with sn itself (Algo4.22), it considers the seqC value of
the init message as an acknowledge (ack message) because,
in this case, hi may have received and delivered messages
during that SesLC connection without acknowledging them.
mndj,i is updated in order to remove the messages hi might have
acknowledged, as well as to update the remaining messages in
mndj,i , so that their associated sequence number order begins
with 0, because hi will await ascending ordered application
messages with a sequence number beginning with 0. The
sequence number of hi is also updated if mndj,i is empty, to take
into account the messages init might acknowledged. Finally,
if mndj,i is empty, then the handoff is finished and sn sends to
hi an initACK message.

On the other hand, if hi is not already connected to sn
(Algo4.31-38), then the latter associates a structure to hi, locks
the structure, and disseminates a handoff request Req1 message
including seqC and SesLC to its s node neighbors in the tree
overlay that will forward it to their neighbors and so on.

As previously explained, only one handoff procedure per
node is executed at a given time, following the Ses value of
Req1, even if hi has tried to connect to several s nodes in
a short time interval. Req1 messages related to more recent
connections of hi, and received during the execution of another
handoff procedure, are handled only after the latter ends
(Algo4.67-69&Algo4.99-100). sn discards every Req1 message
concerning an older connection than the current one and
propagates a Delete message containing the request’s Ses value
(Algo4.72), so that the s node which sent the Req1 in question
deletes the structure it associated with hi. Before deleting the
structure associated to hi, a s node checks if it has a pending
Req1 request (Algo4.59), and broadcasts it, so that no Req1
message is lost.

If no handoff procedure is currently in progress and Req1’s
Ses value is higher than the one sp stores, then sp replies
to Req1 with Rsp1 which contains the list of id’s of the
messages which hi has not delivered. Moreover, if the last
established connection (SesLC) of hi was with sp, then sp
considers Req1’s sequence number as an acknowledgment
(Algo4.75). Finally, sp saves the state of its SBuffer by saving
its seqCj , which identifies the sequence number of the next
broadcasted message, identifying therefore also the maximum
sequence number of currently broadcasted messages.

Several s nodes may associate a structure to hi simultane-
ously, since hi might tried to connect to several s nodes in a
short time interval. Hence, to ensure that the Rsp1,Req2 and
Rsp2 handoff messages are only processed by sn and sp, they
are only taken into account of by s nodes if their associated Ses
session number is equal to the session number Sesj,i to which
the stored structure is associated (Algo4.80). Otherwise, the
messages are broadcasted to the neighbor s nodes to propagate
them in the overlay network.

When receiving Rsp1, sn sends a Req2 message to sp,
asking for messages it deleted among those of Req1’s list
(Algo4.87). Moreover, sn stores the state of hi as viewed by
sp (seqhj,i ,seqCoj,i , mndj,i ).

sp replies to the Req2 message with a Rsp2 message that
includes two lists: (1) the list of requested messages that sn
has discarded (Algo4.90); (2) the list of messages that sp
has received since the sending of (Rsp1) (Algo4.91). Finally,
sp deletes the structure associated to hi and removes those
messages from SBuffer whose only missing acknowledge was
the one from hi.

When receiving the Rsp2 message, sn has the information
needed to ensure that hi delivers all messages exactly once (at
least once and at most once), respecting the causal order of
them.

At least once: sn keeps all messages received after the
reception of the init message and sends them to hi. In fact
sn associates a structure to hi (Algo2.32), and sets the seqC
of this structure to minSeq(), corresponding to the sequence

8



number of the oldest message it stores in its SBuffer. There-
fore, no message of sn’s SBuffer will be discarded until hi
acknowledged it, since a message is only discarded once all
connected h nodes have acknowledged it. Moreover, due to
the FIFO channels between s nodes, the messages received by
sn before init are received by sp before it receives Req1. Thus,
hi always delivers these messages, since sn requests them to
sp in Req2 (Algo4.87), if it has discarded those sp identified
as not delivered by hi.

At most once: hi might deliver messages from sp until it
tries to connect to sn by sending an init message. Since the
wired network is FIFO, and sn sends Req1 after receiving init,
the messages that hi might have already delivered are those sn
receives before the reception of Rsp1. Among these messages
which are still in its SBuffer, sn determines which ones have
not been delivered yet by hi: (1) messages identified by sp
in the Rsp1 (Algo4.96 mndj,i ) message (m1 in Figure 5); (2)
messages that sp received between the sending of Rsp1 and
reception of Req2 (Algo4.96 msgrcv) (m3 in Figure 5). Due
to FIFO channels, sp has received these messages before the
reception of Req2 and includes them in the Rsp2 message.
Messages hi has already delivered are identified by sn which
adds the id of hi to the Md of all the other messages received
before Rsp1 not included in (1) or (2).

sn and hi exchange messages to conclude the handoff proce-
dure. hi must first deliver the messages it has not delivered but
which sn has discarded (m2 in Figure 5), before delivering sn’s
pending messages (m3 in Figure 5). Those messages are those
contained in mndj,i and are sent by the BroadcastCo function
(Algo4.98). They are sent as AppCo messages, to distinguish
them with regular broadcasted application messages by the s
nodes (AppS_h messages). hi changes its state to connecting
when receiving the first AppCo message (Algo1.27). These
messages contain hi’s id to identify the handoff (Algo1.26).
They have a sequence number and are thus delivered respect-
ing causal order, as AppS_h messages. Moreover, Hlockj,i is set
to false, since the handoff between the s nodes is finished.
Furthermore, if a handoff request message Req1 was received
during the handoff, then sn processes it (Algo4.99-100).

sn concludes the handoff by sending an initACK message to
hi, if no AppCo messages need to be sent to hi and there is no
pending Req1 request (Algo4.101), or once hi confirmed the
delivery of all pending AppCo messages. It assigns to hi the
sequence number (seqC) of the oldest pending message of its
SBuffer which was not delivered by hi. Finally, hi updates its
sequence (seqCi ) and session (SesLCi ) numbers, and removes
from its SBuffer the messages that initACK has acknowledged.
hi also restarts the sending of ack messages.

Handoff example: Figure 5 shows a simple example of a
handoff procedure when hi moves from cell 1 to cell 2 but that
covers the general case. Three messages m1, m2, and m3, are
broadcasted: broadcast(m1) is concurrent to broadcast(m2) and
broadcast(m2)→ broadcast(m3). hi has already delivered m1.
We consider that s1 has discarded m1 and stores m2, while
s2 has discarded m2 and stores m1 (SBuffer1 = {m2} and
SBuffer2 = {m1}). Both s nodes receive m3 during the handoff.

The handoff procedure starts when hi sends an init message

sp = s1

sn = s2

m2m2m2

m1m1m1

m3m3m3

m3m3m3

hi

in
itin
it

in
it

Re
q 1

Re
q 1

Re
q 1

Rsp
1

Rsp
1

Rsp
1

Re
q 2

Re
q 2

Re
q 2

Rsp
2

Rsp
2

Rsp
2

hi

App=2
App=2
App=2 ac

k
ac

k
ac

k

hi

initACK

initACK

initACK

Fig. 5: Handoff procedure

to s2. The init message contains seq=1, since hi delivered
m1. We assume that no other handoff takes place for hi
simultaneously. Upon reception of init, s2 sends Req1 message
to s1 with seqs=1 and SesLC which contains the session
number of the connection with s1.

When receiving Req1, s1 learns that hi has not delivered m2
since seqs=1. It thus replies with Rsp1 = {{id(m2)}, seqh = 0},
where seqh=0 because hi did not broadcast any message.

Upon reception of Rsp1, s2 requests m2 (Req2) since it
discarded m2. s1 replies with Rsp2 message which contains
the list of requested messages ({m2}) and the list of received
messages since s1 sent Rsp1 ({id(m3)}). Moreover, s1 deletes
the structure associated to hi.

Based on Rsp2, s2 can determine which messages of its
SBuffer={m1, m3} hi has delivered: s2 received m1 before
Rsp2 and m1 is not identified by s1 as not delivered by hi.
Therefore, hi already delivered m1 and s2 adds hi’s id to m1’s
Md. s1 received m3 between the send of Rsp1 and the send
of Rsp2. Hence, hi did not deliver m2 and must deliver it
before delivering s2’s pending messages. Thus, s2 sends m2
with seq=0 to hi and discards m2 once hi acknowledged it.

Finally, s2 assigns to hi seqs=3, since hi delivered m1
and m2, and sends an initACK message to hi, concluding the
connection process. When receiving initACK, hi sets seqs=3.
Hence, m3 is the next message hi will deliver.

E. Fault resilience

h nodes are subject to transient faults. For recovery sake,
h nodes save the following variables on persistent local
storage: the sequence number of broadcasted and received
messages, both session numbers, and the SBuffer. Note that
our experiments show that h nodes’ SBuffer are of small size.
The SBuffer and its associated sequence number are saved
whenever the h node broadcasts a message, while the sequence
number of received messages is saved when it sends ack
messages. Finally, Ses is saved each time it is incremented
and SesLC whenever a new session connection is confirmed
(reception of initACK message). Upon recovering, a h node
restores these variables and sends an init message, similarly
to when it changes cells. Therefore, h node transient faults are
tolerated with few persistent information.

On the other hand, permanent failures are not tolerated. A
s node keeps a pending message in its SBuffer until all h
nodes connected to its cell acknowledged it, move to another

9



cell, or leave the system properly. Hence, s nodes would
never discard unacknowledged messages in the presence of
permanent failures. The memory footprint of s nodes would
then grow infinitely, and the wireless network would rapidly be
overloaded. In fact, all these unacknowledged messages would
be periodically broadcasted on the cell’s wireless network,
increasing message loss rate until all messages on the wireless
network would be lost due to interferences. Based on this
observation, we point out that transient failures cannot last too
long. However, this limitation is inherent to wireless networks’
nature. No algorithm can safely discard messages and cope
with interferences in such conditions. Nevertheless, transient
failures of long duration, as well as permanent failures, could
be handled with the assumption that a h node recovers and
reconnects to the s node to which it was connected before
failing within at least T seconds. In this case, a s node would
delete the information it stores about a failed h node if no
message is received from it during T seconds, considering this
h node as a new one when it recovers.

V. PERFORMANCE EVALUATION

We have conducted experiments on OMNeT++, with the
INET extension [18]. INET renders simulations more real-
istic by implementing communication layers (e.g., TCP/UD-
P/Ethernet/IPv4/MAC), node mobility, propagation delays, and
wireless networks with interferences.

The wireless network’s antennas have a communication
range of 120m. The wired network has a bandwidth of 10Mb/s
and a delay of 10ms between each link. The network contains
7 s nodes, configured as in Figure 2. Initially, 70 h nodes are
placed randomly, connected to the closest s node.

Application messages have a fixed size of 100 bytes and
are encapsulated into UDP/TCP/IPv4/MAC packets. These
protocols have headers of 8 bytes for UDP, and 20 bytes for
TCP, IPv4, and MAC. Thus, application messages sent with
UDP have a length of 100+8+20+20=148 bytes, and those sent
with TCP (TCP Reno) a length of 100+20+20+20=160 bytes.
Our algorithm uses TCP only on the wired network while UDP
on the wireless network. A separately implemented control
module verifies that messages are causally delivered.

Experiments were executed several times, and the initial
position of the h nodes is set randomly at each run. Moreover,
experiments are run with different message emission frequen-
cies. In the first experiment, we compare our algorithm with a
TCP flooding one, considering that h nodes are static. We then
evaluate our algorithm in a dynamic context where h nodes
move but do not fail. We then extend this experiment where
h nodes can fail and recover (transient failures). Finally, we
analyze the memory footprint.

A. Static system

Figure 6 compares our algorithm with [13] (denoted TCP-
Flooding), which is based on reliable FIFO channels imple-
mented with TCP connections.

Each h node broadcasts, on average, an application mes-
sage every 12.5 seconds. Since there are 70 h nodes, there

are 70/12.5≈5.6 messages broadcasts per second. In TCP-
Flooding, a s node disseminates an application message by
sending it point-to-point to each of its connected h nodes.
However, some application messages might be acknowledged
right after reception, and the respective ack messages will then
collide on the wireless network with the application messages
sent to the other h nodes. Hence, in order to reduce these
collisions, we have included a 5ms delay between every point-
to-point sending of a given application message by a s node
to each of its connected h nodes.

Figure 6a gives the average number of messages stored in
s nodes’ SBuffer. We use a logarithmic scale in the case of
Figure 6a, due to the different order of magnitudes of SBuffer
sizes. Figure 6c shows that our algorithm’s h nodes’ RBuffer
are much smaller (0.5<) than TCP-Flooding’s (<5). The size
of SBuffer of h nodes and the RBuffer of s nodes are small,
because h nodes only disseminate one message every 12.5
seconds. Therefore, we do not discuss them. On the other
hand, the number of messages in TCP-Flooding’s buffers is
much higher than in our algorithm. Using TCP-flooding, s
nodes’ SBuffer stores many more messages because of the
choice of the communication protocol itself and the congestion
avoidance strategy.

For broadcasting an application message inside its cell, a
s node needs to send the message to each h node of its
cell using TCP (point-to-point communication) whereas our
algorithm sends only one UDP message (broadcast function).
Hence, until reception of the corresponding acknowledgment,
a s node keeps in its SBuffer, on average, ≈70/7=10 messages
per application message for TCP-Flooding, and only one for
our algorithm.

TCP’s congestion avoidance strategy increases the time in-
terval during which messages are stored in SBuffer. It consists
of multiplying by 2 the retransmission delay (beginning at
0.2s) at each attempt. On the other hand, in our algorithm,
retransmission delays start at 1s, and decrease with the num-
ber of sent messages, down to 200ms, aiming at delivering
long outstanding messages faster. Moreover, TCP bounds the
number of messages simultaneously sent to 46 (congestion
window), while our algorithm bounds it to 150. The con-
gestion window’s standard size is 7504 bytes, corresponding
to 7504/160≈=46 application messages sent simultaneously,
while we limit it by 150 messages. Hence, TCP-Flooding takes
longer to deliver messages, even though congestion avoidance
reduces collisions (5% vs 10%). Nevertheless, messages are
mainly stored on s nodes’ SBuffer since the congestion window
born the number of simultaneously sent messages at 46.

A final remark is that we observe a low variation of buffer
sizes in our algorithm, while TCP-Flooding’s buffer sizes vary
a lot due to congestion avoidance (peaks) and fast retransmis-
sion (rapid decrease). The latter happens when outstanding
messages are re-sent without waiting for the trigger of the
corresponding timeouts upon detection of low network load.
Our algorithm does not implement such mechanisms, and the
buffer sizes are quite stable.

Figure 6b shows that TCP-Flooding sends more informa-
tion than our algorithm. The former sends bigger messages

10



0 50 100 150 200 250 300
Time(s)

100

101

102

103
s n

od
es

 S
Bu

ffe
r (

m
es

sa
ge

s)

Our algorithm
TCP-Flooding

(a) Average messages in SBuffer of s nodes

0 50 100 150 200 250 300
Time(s)

0

200000

400000

600000

800000

1000000

1200000

Se
nt

 d
at

a 
(b

yt
es

)

(b) Sent amount of data per second

0 50 100 150 200 250 300
Time(s)

0.0

0.5

1.0

1.5

2.0

2.5

h 
no

de
s R

Bu
ffe

r (
m

es
sa

ge
s)

(c) Average messages in RBuffer of h nodes

0 50 100 150 200 250 300
Time(s)

0

200

400

600

800

1000

Se
nt

 m
es

sa
ge

s

Our algorithm
TCP-Flooding

(d) Sent messages per second

Fig. 6: Experimental results in static configuration

than the latter, due to TCP’s aggregation of messages. Hence,
more data is lost and must be re-sent, even though fewer
messages are lost. Moreover, 6d shows that TCP-Flooding
sends more application messages, as well as more acknowl-
edge messages (at least one/200ms vs one/500ms for our
algorithm). Hence, the average ratio of messages sent per
delivery, which stabilizes quickly for both algorithms, is much
lower for our algorithm (0.4 msg/delivery) than TCP-Flooding
(1.58 msg/delivery).

We evaluate the average message delivery delay, defined
as the average time between the broadcast of an application
message m (coBroadcast(m)) by a h node and the delivery
of m (coDeliver(m)) by the h nodes. Our algorithm delivers
messages with an average of 0.20s, much faster than TCP-
Flooding, whose average delivery delay is 2s.

We also observe that TCP-Flooding hardly handles heavier
loaded networks, because some h nodes will have great
difficulty in receiving messages due to repeated collisions
and the ensuring congestion avoidance strategy. Moreover,
the establishment of TCP connections is sometimes long and
even fails (exceeds 75 seconds). These problems are much
worse in highly loaded networks, leading to buffers, and
delivery delays, which grow indefinitely. Consequently, we
could not collect meaningful statistics for TCP-Flooding in
heavier loaded scenarios. On the other hand, our algorithm
tolerates it (up to 35 messages/second), with an average of
s nodes’ SBuffer size of 35 messages, an average delivery
time of 0.31 seconds, RBuffer size of h nodes of 6 messages,

an average of 700 sent messages/second, and, on average,
4300000 bytes of data sent/second.

B. Dynamic system

In this section, we do not compare our algorithm with TCP-
Flooding because the mobility model described in the article
[13] is not comparable to ours: mobile nodes must always
be connected to at least one base station preventing temporal
disconnection. Furthermore, as we have shown in the previous
section, the TCP channels approach used by the algorithm
strongly degrades the performance of message flooding over
mobile networks.

We keep the same network configuration, except that the h
nodes move, with a velocity of 5km/h≈1.38m/s. Our algorithm
handles h nodes moving outside the covered area, but the
moving h node would then stop receiving and acknowledging
messages, and the SBuffer of the s node at which it was
previously registered would then grow until it reconnects to
some s node. For the sake of clarity of results, h nodes move
inside the area covered by the station cells.

Every h node sends, on average, an application message
every 2.8 seconds, i.e., a total of 25 application messages are
broadcasted per second. Note that the network load of this
scenario is much higher (25 messages per second) than those
of the static experiment (5.6 messages per second).

Figure 7a shows the size of s nodes’ SBuffers and h nodes’
RBuffers. We observe that network dynamics do not have a
significant impact on performance. The variations of the buffer
sizes are mostly due to the collision of messages (between

11



0 50 100 150 200 250 300
Time(s)

0

10

20

30
Bu

ffe
rs

 si
ze

 (m
es

sa
ge

s)
SBuffer s nodes
RBuffer h nodes

(a) Average size of buffers

0 50 100 150 200 250 300
Time(s)

0

100

200

300

400

500

600

Se
nt

 m
es

sa
ge

s

(b) Sent messages per second

Fig. 7: Experimental results in a dynamic system

7.5-8.5%). The loss of a message delays the acknowledgment
and the removal/delivery of all the messages whose sequence
number is higher than the one of the lost message. On the
other hand, when the latter is finally received, several messages
are generally acknowledged. Hence, the buffer sizes first
increase progressively, before decreasing abruptly. Moreover,
the increasing peak of RBuffer’s size usually comprises the
RBuffer of several h nodes of the same cell. In addition,
h nodes in regions where cells overlap also have a bigger
RBuffer, because of interferences caused by the collision of
messages sent by the two s nodes whose cells are overlapping.

s nodes’ SBuffers usually contain no more than a few dozen
messages. Moreover, h nodes mostly move between neighbor
cells, which receive messages similarly, and which have a
high probability to store the same messages. Hence, the list of
discarded messages exchanged during the handoff is small or
even empty and is quickly propagated among the neighbor h
nodes. Some h nodes may not receive many messages when
their cell is loaded, or when they are changing cell several
times in a short time interval. Their cell’s SBuffer and the
list of discarded messages exchanged during the handoff then
become much bigger (up to 200 messages).

We point out that the number of messages kept by SBuffer
of h nodes and the RBuffer of s nodes are not shown in any
figure since their respective size keeps very small during the
whole execution (≈0.1-0.3 messages/node).

Results of the experiment for the number of sent messages
(Figure 7b) are quite similar to the ones for static networks,
since the size of the buffers are almost the same and only a
few discarded messages must be sent to moving h nodes.

The average delivery latency is ≈0.3 seconds, slightly
higher than in the static network (+0.05s), but keeps stable,
even though buffers’ size varies. Indeed, the majority of the
h nodes receive and deliver messages at the first broadcast.
Therefore, most of them are delivered quickly and with the
same latency. The slight increase in delivery delay is due to
the slight increase of collisions and the handoff procedures,
where h nodes do not deliver messages, and messages they
send are discarded.

C. Dynamic system with transient faults

We keep the dynamic configuration and inject transient
faults on randomly chosen h nodes connected to the s node s3.
Beginning at t=15s of the experiment, a h node fails at every
30 seconds. The first failure lasts 3s and the duration of the
failure increases by 1s at each new fault, i.e., the second lasts
4s, the third 5s, etc. A faulty node stops sending and receiving
messages and comes back at its previous location.

Figure 8a shows the average size of all s nodes’ SBuffer,
and Figure 8b the size of s3’s SBuffer. The former shows that
the main impacted SBuffer of s nodes is the one of the cell
in which the fault occurs, which is s3. Nevertheless, it drops
quickly down to its previous size a few seconds after the faulty
h node recovers.

We observe that the longer the failure duration, the bigger
the SBuffer size of the s node to which the faulty h node was
connected, and the longer the delay required for this h node
to deliver the outstanding messages of the s node’s SBuffer
when it recovers. Thus, the maximum duration of faults that s
nodes can cope with is bounded by the maximum number of
simultaneously disseminated messages per second (supported
network load), and the maximum number of messages that s
nodes’ SBuffer can keep. In our simulations, s nodes can send
up to 400 messages simultaneously. Beyond it, messages will
not be delivered fast enough to counterbalance new incoming
messages, because of too many interferences. The number of
outstanding messages of the s node’s SBuffer to which the
faulty h node was connected will then increase indefinitely,
rendering the cell unstable. This instability will eventually
propagate to the other cells.

Figure 8b also shows two special cases. First, the SBuffer
of s3 does not entirely recover between t=200 and 250s. A
h node fails at t=195s and recovers at t=204s. s3’s SBuffer
then begin to reduce, but a new fault occurs at 225s, before
the SBuffer comes back to its original size. Secondly, between
165 and 180s and 225 and 250s the size of SBuffer of another
station (resp. s0 and s5) also grows due to interferences when
s3 broadcasts many messages, or by the changing of cells of a
recovering h node before it received all outstanding messages.

12



0 50 100 150 200 250 300
Time(s)

0

20

40

60

80

100

Bu
ffe

rs
 si

ze
 (m

es
sa

ge
s)

SBuffer s nodes
RBuffer h nodes

(a) Average size of buffers

0 50 100 150 200 250 300
Time(s)

0

100

200

300

SB
uf

fe
r o

f s
3 (

m
es

sa
ge

s)

(b) Average size of SBuffer of s3

Fig. 8: Experimental results with transient failures

D. Scalability and memory analysis

The control information included in application messages
concerns just some few integers while experiments show that
the list of id’s (Md), piggybacked on s nodes’ application
messages usually contains one or no id.

The two lists of messages exchanged during the handoff
between the s nodes contain at most the number of messages
stored by the previous s node’s SBuffer to which the moving
h node was connected. Experiments show that the SBuffer
of s nodes remains small, and practically very few messages
are received by s nodes during the handoff procedure, since
h nodes mostly move between adjacent s nodes. Hence,
messages piggyback a few control information.

Additionally to the SBuffer and RBuffer, h nodes keep some
integer variables, and s nodes some integers and a structure
for each connected h node. Experiments show that all buffers,
except s nodes’ SBuffer, remain very small. s nodes’ SBuffer
contains only a few dozen messages except temporarly when
some previously connected h node fails or if the s node’s cell
is overloaded. The structure s nodes keep for each h node
contains only a few integers. The number of those structures
a s node keeps grows linearly with the number of h nodes
connected to the s node’s cell.

In summary, the amount of control information required by
the algorithm is low for h nodes and grows linearly in terms
of locally connected h nodes for s nodes.

E. Experiments conclusion

We can draw the following conclusions from the results of
our experiments:

Firstly, TCP-Flooding algorithm induces a high local control
information overhead, increased transmission delays, and a
high number and size of sent messages. Therefore, it is not
suited for wireless networks, even in static systems.

Secondly, our algorithm shows good results in a dynamic
network. Node mobility has a slight impact on the performance
of causal broadcast, and performance is similar to those
presented for static networks. On the other hand, transient
faults degrade performance, particularly within the cell in
which they occur. However, such a degradation disappears
after a few seconds when the faulty h nodes recover. Hence,
our algorithm tolerates high load, mobility, and transient faults.

Finally, in terms of scalability, very few control information
is piggybacked on messages. Moreover, h nodes maintain few
information, and s nodes’ memory footprint grows linearly
with the number of locally connected h nodes. Overall our
algorithm has a small memory footprint.

VI. RELATED WORK

Several approaches have been proposed aiming at reduc-
ing the control information necessary to implement causal
broadcast algorithms in distributed systems. However, they are
not always suitable for tolerating the dynamics, and wireless
interferences of mobile networks neither present solutions for
discarding no longer usable messages.

Prakash and al. observed in [14] that, for controlling causal
order among messages, it is sufficient to piggyback in a
message just the information about its direct dependencies.
Even though this approach copes with node dynamics (churn)
of mobile networks, since it is based on message identifiers
and not on node identifiers, every node maintains a matrix
of size N2, where N is the maximum number of nodes of the
system. Additionally, in the worst case, the control information
attached to messages presents a size of O(N).

Vector clocks [6][10] of size N are the smallest data
structures which capture causality of events of a system with
N nodes [5]. Nevertheless, to implement a causal broadcast
algorithm that exploits vector clocks [16], each node keeps a
local vector variable of size N, which is included in every
broadcasted message. Hence, since the vector size is fixed
to N, such clocks are not adjustable for systems where the
number of nodes varies dynamically. Their size still grows
linearly with N, even with solutions that compress them, such
as [3]. Moreover, a garbage collector and additional control
information are needed to delete obsolete messages.

By applying Bloom filters on messages, Ramabaja aims in
[15] at reducing messages’ piggybacked information. These
filters have a much lower space complexity, but they can throw
false positive (but not false negative) requiring, therefore, a
mechanism to handle them. Furthermore, in order to limit the
number of false positives, Bloom filter’s size should increase
proportionally to the number of nodes.

Both plausible [17] and probabilistic clocks [2] are vector
clocks whose size is much smaller than the number of nodes in

13



the system. The quality of the detected causality information
is related to the vector size: the greater the size of the
vector, the higher the accuracy of the captured causality. In
plausible clocks, an entry of the vector clock is associated with
several nodes. The probabilistic clocks extend the plausible
clock by also associating several entries to a node. The use
of these vector clocks by causal broadcast algorithms [2]
strongly reduces the size of control information but they do
only capture causality among broadcast messages with a high
probability. An extra procedure is thus necessary to handle
causally related messages that were not ordered. Moreover,
contrary to our solution, the authors do not propose any
mechanism to discard delivered messages.

Some works address scalability issues by organizing nodes
in logical structures. In Adly et al. [1], nodes are grouped into
clusters, logically organized into a tree. Thereby, a node needs
to send and keep track of messages only to/from few nodes.
However, at the presence of node churn, clusters often need to
be reorganized. Moreover, the mobility of a node is restricted
to its cluster. Hence, it is not suitable for mobile networks.

By organizing the nodes into an application-level tree on
top of which messages are propagated, Blessing et al.’s causal
broadcast algorithm [4] does not require that messages carry
any causal information. However, the authors do not consider
system dynamics.

Nédelec et al. [13][12] extend this approach to dynamic
topologies. A node discards a message once it has received
it by each of its links. Links are FIFO, and they can be
dynamically added or removed between nodes using handoff
procedures, provided that the nodes of the system are always
connected through initialized links. Therefore, dynamics are
tolerated under certain conditions. Particularly, to add a new
link between two nodes, an already initialized path must exist
between them. Hence, the system can never be partitioned.

VII. CONCLUSION

We have presented in this article a causal broadcast algo-
rithm that is tailored to the characteristics of mobile networks,
such as nodes mobility, dynamic membership and connec-
tions, mobile nodes memory constraints, scalability issues,
and wireless interferences. The size of required information
piggybacked on messages is small, as well as mobile nodes’
memory footprint, while mobile support stations’ memory
footprint grows linearly with the number of local connected
mobile nodes. Simulation results on OMNet++ show that TCP
induces a heavy message overhead in mobile networks and that
our causal broadcast has good performance in both static and
dynamic systems.

For future work, we aim to extend our causal broadcast
algorithm in order to handle mobility of support stations. A
second research direction will be a hybrid approach with FIFO
ordering and probabilistic clocks [2], proposed in [12]. The
latter partially restores causality tracking and thus allows the
delivery of some concurrent messages without waiting for their
FIFO ordering.

REFERENCES

[1] N. Adly and M. Nagi. Maintaining causal order in large scale distributed
systems using a logical hierarchy. In Proc. IASTED Int. Conf. on Applied
Informatics, pages 214–219, 1995.

[2] Achour Mostéfaoui an Stéphane Weiss. Probabilistic causal message
ordering. In Victor Malyshkin, editor, Parallel Computing Technologies
- 14th International Conference, PaCT 2017, Nizhny Novgorod, Russia,
September 4-8, 2017, Proceedings, volume 10421 of Lecture Notes in
Computer Science, pages 315–326. Springer, 2017.

[3] Kenneth P. Birman, André Schiper, and Pat Stephenson. Lightweigt
causal and atomic group multicast. ACM Trans. Comput. Syst., 9(3):272–
314, 1991.

[4] Sebastian Blessing, Sylvan Clebsch, and Sophia Drossopoulou. Tree
topologies for causal message delivery. In Proceedings of the 7th ACM
SIGPLAN International Workshop on Programming Based on Actors,
Agents, and Decentralized Control, AGERE 2017, page 1–10, New York,
NY, USA, 2017. Association for Computing Machinery.

[5] Bernadette Charron-Bost. Concerning the size of logical clocks in
distributed systems. Inf. Process. Lett., 39(1):11–16, 1991.

[6] Colin J. Fidge. Timestamps in message-passing systems that preserve
the partial ordering. In Proceedings of the 11th Australian Computer
Science Conference, 1988.

[7] Roy Friedman and Shiri Manor. Causal ordering in deterministic overlay
networks. 05 2004.

[8] Tomasz Imielinski and B. R. Badrinath. Mobile wireless computing:
Challenges in data management. Commun. ACM, 37(10):18–28, October
1994.

[9] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[10] Friedemann Mattern. Virtual time and global states of distributed
systems. In PARALLEL AND DISTRIBUTED ALGORITHMS, pages
215–226. North-Holland, 1988.

[11] Achour Mostéfaoui, Matthieu Perrin, Michel Raynal, and Jiannong Cao.
Crash-tolerant causal broadcast in O(n) messages. Inf. Process. Lett.,
151, 2019.

[12] Brice Nédelec, Pascal Molli, and Achour Mostéfaoui. Causal broadcast:
How to forget? In 22nd International Conference on Principles of
Distributed Systems, OPODIS 2018, December 17-19, 2018, Hong Kong,
China, volume 125 of LIPIcs, pages 20:1–20:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018.

[13] B. Nédelec, P. Molli, and A. Mostéfaoui. Breaking the scalability barrier
of causal broadcast for large and dynamic systems. In 2018 IEEE 37th
Symposium on Reliable Distributed Systems (SRDS), pages 51–60, 2018.

[14] R. Prakash, M. Raynal, and M. Singhal. An efficient causal ordering
algorithm for mobile computing environments. In Proceedings of 16th
International Conference on Distributed Computing Systems, pages 744–
751, 1996.

[15] Lum Ramabaja. The bloom clock. CoRR, abs/1905.13064, 2019.
[16] André Schiper, Jorge Eggli, and Alain Sandoz. A new algorithm to

implement causal ordering. In Distributed Algorithms, 3rd International
Workshop, Nice, France, September 26-28, 1989, Proceedings, pages
219–232, 1989.

[17] Francisco J. Torres-Rojas and Mustaque Ahamad. Plausible clocks:
Constant size logical clocks for distributed systems. In Özalp Babaoglu
and Keith Marzullo, editors, Distributed Algorithms, 10th International
Workshop, WDAG ’96, Bologna, Italy, October 9-11, 1996, Proceedings,
volume 1151 of Lecture Notes in Computer Science, pages 71–88.
Springer, 1996.

[18] András Varga. The omnet++ discrete event simulation system. Proc.
ESM’2001, 9, 2001.

[19] Daniel Wilhelm, Luciana Arantes, and Pierre Sens. A scalable causal
broadcast that tolerates dynamics of mobile networks. Technical report,
Sorbonne University , UPMC, May 2020.

14


	Introduction
	Background
	Model
	Causal broadcast algorithm
	Data structures and message types
	Dissemination of application messages
	Join/leave the system
	Handoff procedure
	Fault resilience

	Performance Evaluation
	Static system
	Dynamic system
	Dynamic system with transient faults
	Scalability and memory analysis
	Experiments conclusion

	Related work
	Conclusion
	References

