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Completeness for Clifford

Renaud Vilmart
vilmart@lri.fr

Université Paris-Saclay, CNRS, Laboratoire de Recherche en Informatique, 91405, Orsay, France

Abstract. We show that the formalism of “Sum-Over-Path” (SOP), used for symbolically
representing linear maps or quantum operators, together with a proper rewrite system, has
a structure of dagger-compact PROP. Several consequences arise from this observation:
– Morphisms of SOP are very close to the diagrams of the graphical calculus called ZH-
Calculus, so we give a system of interpretation between the two
– A construction, called the discard construction, can be applied to enrich the formalism so
that, in particular, it can represent the quantum measurement.

We also enrich the rewrite system so as to get the completeness of the Clifford fragments of
both the initial formalism and its enriched version.

1 Introduction

The “Sum-Over-Paths” (SOP) formalism [1] was introduced in order to perform verification on
quantum circuits. It is inspired by Feynman’s notion of path-integral, and can be conceived as a
discrete version of it.

The core idea here is to represent unitary transformations in a symbolic way, so as to be able
to simplify the term, which would for instance accelerate its evaluation. To do so, the formalism
comes equipped with a rewrite system, which reduces any term into an equivalent one.

As pure quantum circuits (which represent unitary maps) can easily be mapped to an SOP
morphism, one can try and perform verification: given a specification S and another SOP morphism
t obtained from a circuit supposed to verify the specification, we can compute the term S ◦ t† and
try to reduce it to the identity. In a very similar way, one can check whether two quantum circuits
perform the same unitary map.

The rewrite system is known to be complete for Clifford unitary maps, i.e. in the Clifford
fragment of quantum mechanics, the term obtained from t1 ◦ t†2 will reduce to the identity iff t1
and t2 represent the same unitary map. Moreover, this reduction terminates in time polynomial in
the size of the SOP term (itself related to the size of the quantum circuit), and still performs well
outside the Clifford fragment.

Another use for this formalism is quantum simulation, the problem of evaluating the unitary
map represented by a quantum circuit. Doing this is exponential in the number of variables in the
SOP term, but the rewrite strategy reduces this number of variables, so each step in the reduction
roughly divides the evaluation time by two.

Something that the SOP formalism cannot do for now however is circuit simplification. Indeed,
even though we can easily translate an arbitrary quantum circuit to an SOP term, and then reduce
it, there is no known way to extract a quantum circuit from the result.

We show in this paper that the formalism, when considered as a category (denoted SOP),
has the structure of a †-compact PROP. This structure is explained in details in Section 2. This
structure is shared by a much larger set of maps than just unitary maps, namely Qubit, the
category whose morphisms are linear maps of C2m×C2n . In particular, we show that any morphism
of Qubit could be expressed as a morphism of SOP.

Because the formalism is no longer restricted to unitary maps, we argue that it could benefit
from a slight redefinition, which is done in Section 4.

Another “family” of categories that share this structure is the family of graphical languages for
quantum computation: ZX-Calculus, ZW-Calculus and ZH-Calculus [3,6,7]. All three formalisms
represent morphisms of Qubit using diagrams, and come with equational theories, proven to be



complete for the whole category [3,10,18], i.e. whenever two diagrams represent the same morphism
of Qubit, the first can be turned into the other using only the equational theory.

In Section 5, we show that any diagram of the ZH-Calculus can be interpreted as a morphism
of SOP, and conversely, that any morphism of SOP can be turned into an equivalent ZH-diagram.

This link between the two formalisms was first shown in [12,13]. We give here a slightly different
presentation, that in particular uses our redefinition of sums-over-paths.

In Section 6, we realise that the rewrite system of SOP is not enough for the completeness of
the Clifford fragment of Qubit. We define a restriction of SOP that captures exactly this fragment,
and enrich the set of rules so as to get the completeness in this restriction.

In Section 7, we enrich the whole formalism using the discard construction [5], so as to be able
to represent completely positive maps, as well as the operator of partial trace. Again, one can
consider the Clifford fragment of this formalism. We give a new set of rewrite rules, and show that
it makes the fragment complete.

2 Background

2.1 PROPs and String Diagrams

The first kind of category we will be interested in is the PROP [11,19]. A PROP C is a strict
symmetric monoidal category [14,17] generated by a single object, or equivalently, whose objects
form N. Hence the morphisms of C are of the form f : n→ m. They can be composed sequentially
(. ◦ .) or in parallel (.⊗ .), and they satisfy the following axioms:

f ◦ (g ◦ h) = (f ◦ g) ◦ h f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h
idm ◦ f = f = f ◦ idn id0 ⊗ f = f = f ⊗ id0

(f2 ◦ f1)⊗ (g2 ◦ g1) = (f2 ◦ g2) ◦ (f1 ⊗ g1)

The category is also equipped with a particular family of morphisms σn,m : n + m → m + n.
Intuitively, these allow morphisms to swap places. They satisfy additional axioms:

σn,m+p = (idm ⊗ σn,p) ◦ (σn,m ⊗ idp) σn+m,p = (σn,p ⊗ idm) ◦ (idn ⊗ σm,p)
σm,n ◦ σn,m = idn+m (idp ⊗ f) ◦ σn,p = σm,p ◦ (f ⊗ idp)

Monoidal categories, and subsequently PROPs, have the benefit of having a nice graphical
representation, using string diagrams. The object n and equivalently idn is represented by n parallel

wires:
n... ; and a morphism f : n → m as a box with n input wires and m output wires:

n...

...
m

f .

The sequential composition (.◦ .) is obtained by plugging the outputs of the morphism on the right
to the inputs of the morphism of the left. The parallel composition (. ⊗ .) is obtained by putting
the two diagrams side by side.

The first set of axioms is for coherence: the two compositions are associative, so we can forget
about the parentheses, and the following string diagram is well defined, as:

f2◦f1 g2◦g1 =
f2⊗g2

f1⊗g1
:=

n...

...
m

p...

...
q

n+p...

...
m+q

...
m

f2

n...

f1
...

...
q

g2

p...
g1
... ...

The morphism σn,m is represented by

n... m...

... ...
. The following axioms are satisfied:

n+m... p...

... ...
=

... ...

m... p...
... ...

n...

...

m+p...n...

......
=

......

p...n...
......

m...

...
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n... m...

... ...

... ...

n... m...=

...
m

f

n... p...

...
... =

... ...
m

f

n... p...

...

2.2 †-Compact PROPs

Some PROPs can have additional structure, such as a compact-closed structure, or having a †-
functor.

A †-PROP C is a PROP together with an involutive, identity-on-objects functor (.)† : Cop → C
compatible with (. ⊗ .). That is, for every morphism f : n → m, there is a morphism f† : m → n
such that f†† = f . It behaves with the compositions by (f ◦ g)† = g† ◦ f† and (f ⊗ g)† = f† ⊗ g†.
Finally, we have σ†n,m = σm,n.

A †-compact PROP as two particular families of morphisms: ηn : 0 → 2n and εn : 2n → 0.
These are dual by the †-functor: η†n = εn. They satisfy the following axioms:

(εn ⊗ idn) ◦ (idn ⊗ ηn) = idn = (idn ⊗ εn) ◦ (ηn ⊗ idn)

σn,n ◦ ηn = ηn ηn+m = (idn ⊗ σn,m ⊗ idm) ◦ (ηn ⊗ ηm)

The morphisms ηn and εn may be denoted ...
n

...
n

and
n... n...

. They hence satisfy:

n...
...
n

= n...
n...

...
n

=... ...
...
n

...
n

... ...
...
n

...
n

=

=
... ......

n
...
m

...
n+m

...
n+m

In this context, one can define the transpose operator of a morphism f as:

f t := (εm ⊗ idn) ◦ (idm ⊗ f ⊗ idn) ◦ (idm ⊗ ηm) i.e.

m...

...
n

f t

...

...
f:= ...

n

m...

One can check that, thanks to the axioms of †-compact PROP, (f◦g)t = gt◦f t, (f⊗g)t = f t⊗gt,
and f tt = f .

We can then compose (.)t and (.)†: (.) := (.)†t. Again using the axioms of †-compact PROP,
one can check that (.)†t = (.)t†.

2.3 Example: Qubit

The usual example of a strict symmetric †-compact monoidal category is FHilb, the category whose
objects are finite dimensional Hilbert spaces, and whose morphisms are linear maps between them.
It is not, however, a PROP, as it is not generated by a single object.

One subcategory of FHilb that is a PROP, though, is Qubit the subcategory of FHilb gen-
erated by the object C2, considered as the object 1. A morphism f : n → m of Qubit is hence a
linear map from C2n to C2m . (. ◦ .) is then the usual composition of linear maps, and (.⊗ .) is the
usual tensor product of linear maps. One can check that the first set of axioms is satisfied.

This is not enough to conclude that Qubit is a PROP. We still need to define a family of
morphisms σn,m. In the Dirac notation, given a basis B of C2, we can define σn,m as σn,m :=∑
(x,y)∈Bn×Bm

|y,x〉〈x,y|. One can then check that all the axioms of PROPs are satisfied.

Qubit is not only a PROP, but also †-compact. Indeed, first, given a morphism:

f =
∑

(x,y)∈Bn×Bm
ax,y |y〉〈x|
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we can define its dagger f† :=
∑

(x,y)∈Bn×Bm
ax,y |x〉〈y|, which is the usual definition of the dagger

for linear maps.
Its compact structure can be given by ηn :=

∑
x∈Bn

|x,x〉, which implies εn = η†n =
∑

x∈Bn
〈x,x|.

One can check that all the axioms of †-compact PROPs are satisfied.
Since Qubit is †-compact, we can define the transpose (.)t which happens to be the usual

transpose of linear maps, and the conjugate (.), which again is the usual conjugation in linear
maps over C.

There is a subcategory of Qubit that is of importance: Stab. It is the smallest †-compact
subcategory of Qubit (the compact structure is preserved) that contains:

– |0〉 : 0→ 1
– H := 1√

2
(|0〉〈0|+ |0〉〈1|+ |1〉〈0| − |1〉〈1|) : 1→ 1

– S := |0〉〈0|+ i |1〉〈1| : 1→ 1
– CZ := |00〉〈00|+ |01〉〈01|+ |10〉〈10| − |11〉〈11| : 2→ 2

3 The Category SOP

3.1 SOP as a PROP

The point of the Sum-Over-Paths formalism [1], is to symbolically manipulate morphisms written
in a form akin to the Dirac notation. Reasoning on symbolic terms allow us to detect where a term
can be simplified in a “smaller” one, or to give a specification on a term.

A morphism of the category will be of the form |x〉 7→ s
∑

y∈V k
e2iπP (x,y) |Q(x,y)〉 where:

– x = x1, . . . , xn is the input signature, it is a list of variables
– V is a set of variables (hence y is a collection of these variables)
– P is a multivariate polynomial, instantiated by the variables x and y
– Q = Q1, . . . , Qm is the output signature, it is a multivariate, multivalued boolean polynomial
– s is a real scalar

We may denote Vf a subset of the variables V used in f . Then by default, if Vf and Vg are used
in the same term, we consider that Vf ∩ Vg = ∅. To distinguish the two sum operators (the one
in P and the one in Q), we can denote the one in the output signature Q as ⊕. Moreover, it will
sometimes be necessary to immerse one of the boolean polynomials Qi in the polynomial P . We
hence define Q̂i inductively as x̂ = x for a variable x, p̂q = p̂q̂ and p̂⊕ q = p̂+ q̂ − 2p̂q.

Definition 1 (SOP). SOP is defined as the PROP where, given a set of variables V :

– Identity morphisms are idn : |x〉 7→ |x〉
– Morphisms f : n → m are of the form f : |x〉 7→ s

∑
y∈V k

e2iπP (x,y) |Q(x,y)〉 where s ∈ R,

x ∈ V n, P ∈ R[X1, . . . , Xn+k]/(1, X2
i −Xi), and Q ∈ (F2[X1, . . . , Xn+k])

m

– Composition is obtained as f ◦ g := |xg〉 7→ sfsg
∑

yf∈V
kf
f

yg∈V
kg
g

e2iπ(Pg+Pf [xf←Q̂g ]) |Qf [xf ← Qg]〉

– Tensor product is obtained as f ⊗ g := |xfxg〉 7→ sfsg
∑

yf∈V
kf
f

yg∈V
kg
g

e2iπ(Pg+Pf ) |QfQg〉

– The symmetric braiding is σn,m : |x1,x2〉 7→ |x2,x1〉

The polynomial P is called the phase polynomial, as it appears in the morphism in e2iπ..
Because of this, we consider the polynomial modulo 1. We also consider the polynomial quotiented
by X2 −X for all its variables X, as these variables are to be evaluated in {0, 1}, so we consider
X2 = X.

Notice that the definition of the identities does not directly fit the description of the morphisms.
However, we can rewrite it as |x〉 7→ |x〉 = |x〉 7→ 1

∑
y∈V 0

e2iπ0 |x〉. Hence, when we sum over a single
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element, we may forget the sum operator, and when the phase polynomial is 0, we may not write
it. Notice by the way that id0 = |〉 7→ |〉. Indeed, |〉 is absolutely valid, it represents an empty
register.

Example 1. We can give the SOP version of the usual quantum gates:

RZ(α) := |x〉 7→ e2iπ
αx
2π |x〉

H := |x〉 7→ 1√
2

∑
y∈V

e2iπ
xy
2 |y〉

CNot := |x1, x2〉 7→ |x1, x1⊕x2〉

CZ := |x1, x2〉 7→ e2iπ
x1x2

2 |x1, x2〉

Example 2. Let us derive the operation (id⊗H) ◦ CNot ◦ (id⊗H):

(id⊗H) ◦ CNot ◦ (id⊗H)

= (id⊗H) ◦

 |x1, x2〉 7→ |x1, x1⊕x2〉
 ◦

|x1, x2〉 7→ 1√
2

∑
y∈V

e2iπ
x2y
2 |x1, y〉


=

|x1, x2〉 7→ 1√
2

∑
y∈V

e2iπ
x2y
2 |x1, y〉

 ◦
|x1, x2〉 7→ 1√

2

∑
y1∈V

e2iπ
x2y1

2 |x1, x1⊕y1〉


= |x1, x2〉 7→

1

2

∑
y1,y2∈V

e2iπ( x2y12 +
x1+y1−2x1y1

2 y2) |x1, y2〉

where x1 + y1 − 2x1y1 = x̂1 ⊕ y1.

The previous definition contains a claim: that SOP is a PROP. To be so, one has to check all
the axioms of PROPs. One has to be careful when doing so. Indeed, the sequential composition
(.◦ .) induces a substitution. Hence, one has to check all the axioms in the presence of a “context”,
that is, one has to show that the axioms can be applied locally.

If an axiom states

...

...
t1 =

...

...
t2 , one should ideally check that

...

...
t1... ...

B

A
...

...

=
...

...
t2... ...

B

A
...

...

for

any “before” morphism B and any “after” morphism A. However, this can be easily reduced to

checking that

...

...
t1

B

A
...

...

=
...

...
t2

B

A
...

...

.

In the case of the axioms of PROPs, this can further be reduced to showing the axioms without
context, as neither idn nor σn,m introduce variables or phases. For the other axioms, however, the
context will have to be taken into account.

A fairly straightforward but tedious verification gives that, indeed, SOP is a PROP. We give as
an example the proof of associativity of the sequential composition (without context for simplicity):

(f ◦ g) ◦ h =
(
|x〉 7→ sgsf

∑
e2iπ(Pg+Pf [xf←Q̂g]) |Qf [xf ← Qg]〉

)
◦ h

= |x〉 7→ sgsfsh
∑

e2iπ(Ph+Pg [xg←Q̂h]+Pf [xf←Q̂g,xg←Q̂h]) |Qf [xf ← Qg,xg ← Qh]〉

= |x〉 7→ sgsfsh
∑

e2iπ(Ph+Pg [xg←Q̂h]+Pf [xf←Q̂g [xg←Q̂h]]) |Qf [xf ← Qg[xg ← Qh]]〉

= f ◦
(
|x〉 7→ sgsh

∑
e2iπ(Ph+Pg[xg←Q̂h]) |Qg[xg ← Qh]〉

)
= f ◦ (g ◦ h)

or that σ swaps the places of morphisms:

(idp ⊗ f) ◦ σn,p =
(
|x1,x2〉 7→ s

∑
e2iπPf |x1,Qf 〉

)
◦ (|x1,x2〉 7→ |x2,x1〉)
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= |x1,x2〉 7→ s
∑

e2iπPf |Qf ,x1〉

= (|x1,x2〉 7→ |x2,x1〉) ◦
(
|x1,x2〉 7→ s

∑
e2iπPf |Qf ,x2〉

)
= σm,p ◦ (f ⊗ idp)

3.2 From SOP to Qubit

To check the soundness of what we are going to do in the following, it may be interesting to have
a way of interpreting morphisms of SOP as morphisms of Qubit.

Definition 2. The functor J.K : SOP → Qubit is defined as being identity on objects, and such
that, for f = |x〉 7→ s

∑
y∈V k

e2iπP (x,y) |Q(x,y)〉:

JfK := s
∑

(x,y)∈{0,1}n×{0,1}k
e2iπP (x,y) |Q(x,y)〉〈x|

Example 3. The interpretation of H is as intended the Hadamard gate:

JHK =
1√
2

∑
x,y∈{0,1}

e2iπ
xy
2 |y〉〈x| = 1√

2
(|0〉〈0|+ |0〉〈1|+ |1〉〈0| − |1〉〈1|)

Proposition 1. The interpretation J.K is a PROP-functor, meaning:

– J. ◦ .K = J.K ◦ J.K
– J.⊗ .K = J.K⊗ J.K
– Jσn,mK = σn,m

Proof. This is a straightforward verification.

3.3 SOP as a †-Compact PROP

Towards a Compact Structure It is tempting to try and adapt the compact structure of Qubit
to SOP. To do so, we can first define ηn := |〉 7→

∑
y∈V n

|y,y〉. However, we cannot as easily define

εn. What ε1 intuitively does in Qubit is: given two inputs x1 and x2, it checks if they are equal,
if so it returns the scalar 1, if not, the scalar 0.

In SOP we can force two variables to be equal, using a third fresh variable y. Indeed, consider

the sum
∑
e2iπ(

x1+x2
2 y+P ) where y is fresh i.e. not used in P . Then, if the variables x1 and x2 are

different, then∑
e2iπ(

x1+x2
2 y+P ) =

∑
e2iπ(

y
2+P ) =

∑
e2iπ(0+P ) +

∑
e2iπ(

1
2+P ) =

∑
e2iπP −

∑
e2iπP = 0

Hence, we can define ε1 as ε1 := |x1, x2〉 7→ 1
2

∑
y∈V

e2iπ
x1+x2

2 y |〉 and even extend it to arbitrary

objects: εn := |x1,x2〉 7→ 1
2n

∑
y∈V n

e2iπ
x1·y+x2·y

2 |〉.

We can check that Jε1K = ε1:

Jε1K =
1

2

∑
xi,y∈{0,1}

e2iπ
x1+x2

2 y |〉〈x1, x2| =
1

2

∑
xi∈{0,1}

(1 + eiπ(x1+x2)) 〈x1, x2|

= 〈00|+ 〈11|

Similarly, JεnK = εn.
We can now try to check whether the axioms of †-compact PROPs (at least the ones that do

not require the †, as we have not defined it yet) are satisfied:

σn,n ◦ ηn =

 |x1,x2〉 7→ |x2,x1〉

 ◦
|〉 7→ ∑

y∈V n
|y,y〉

 = |〉 7→
∑

y∈V n
|y,y〉 = ηn

6



(idn ⊗ σn,m⊗idm) ◦ (ηn ⊗ ηm)

=

 |x1,x2,x3,x4〉 7→ |x1,x3,x2,x4〉

 ◦
|〉 7→ ∑

y1∈V n,y2∈Vm
|y1,y1,y2,y2〉


= |〉 7→

∑
y1∈V n,y2∈Vm

|y1,y2,y1,y2〉 = |〉 7→
∑

y∈V n+m

|y,y〉 = ηn+m

These two equations were shown without a context for simplicity, but still hold with it.
However, the equation:

(εn ⊗ idn) ◦ (idn ⊗ ηn) = idn = (idn ⊗ εn) ◦ (ηn ⊗ idn)

is not satisfied, as:

(εn ⊗ idn) ◦ (idn ⊗ ηn) = |x〉 7→ 1

2

∑
y1,y2∈V n

e2iπ
x·y2+y1·y2

2 |y1〉 6= idn

The fact that we have (εn⊗idn)◦(idn⊗ηn) 6= idn in SOP but J(εn ⊗ idn) ◦ (idn ⊗ ηn)K = JidnK
in Qubit hints at a way to rewrite the first term as the second in SOP.

∑
y

e2iπP |Q〉 −→
y0 /∈Var(P,Q)

2
∑

y\{y0}

e2iπP |Q〉 (Elim)

∑
y

e2iπ( y02 (y′0+Q̂2)+R) |Q〉 −→
y0 /∈Var(R,Q2,Q)

y′0 /∈Var(Q2)

2
∑

y\{y0,y′0}

e2iπ(R[y′0←Q̂2]) ∣∣Q [y′0 ← Q2

]〉
(HH)

∑
y

e2iπ( y04 +
y0
2
Q̂2+R) |Q〉 −→

y0 /∈Var(Q2,R,Q)

√
2
∑

y\{y0}

e2iπ( 1
8
− 1

4
Q̂2+R) |Q〉 (ω)

Fig. 1. Rewrite strategy −→
Clif

.

An Equational Theory A rewrite strategy is given in [1], and we show in Figure 1 the ones we
are going to use in the paper. Each rewrite rule contains a condition, which usually ensures that a
variable (the one we want to get rid of) does not appear in some polynomials. We hence use Var
as the operator that gets all the variables from a sequence of polynomials:

Var(Q1, Q2, . . .) = Var(Q1) ∪Var(Q2) ∪ . . .
Var(Q1 ⊕Q2) = Var(Q1) ∪Var(Q2)

Var(Q1Q2) = Var(Q1) ∪Var(Q2)

Var(y) = {y} if y ∈ V
Var(0) = Var(1) = ∅

For simplicity, the input signature is omitted, as well as the parameters in the polynomials.
−→
Clif

denotes the rewrite system formed by the three rules (Elim), (HH) and (ω).
∗−→

Clif
is the

transitive closure of the rewrite system. Notice that all the rules remove at least one variable from
the morphism, so we know −→

Clif
terminates.

When the rules are not oriented, we get an equivalence relation on the morphisms of SOP. We
denote this equivalence ∼

Clif
.

We denote SOP/ ∼
Clif

the category SOP quotiented by the equivalence relation ∼
Clif

.

It is to be noticed that:

7



Proposition 2. For any rule r of ∼
Clif

:

∀t1, t2 ∈ SOP, t1 −→
r
t2 =⇒

A ◦ t1 ◦B −→r A ◦ t2 ◦B for all A and B composable

A⊗ t1 ⊗B −→
r
A⊗ t2 ⊗B for all A and B

Proof. This is an easy check.

This obviously implies that:

Corollary 1.

∀t1, t2 ∈ SOP, t1 ∼
Clif

t2 =⇒

A ◦ t1 ◦B ∼Clif
A ◦ t2 ◦B for all A and B composable

A⊗ t1 ⊗B ∼
Clif

A⊗ t2 ⊗B for all A and B

This result allows us to forget about the context in the rewriting process.

The newly obtained category SOP/ ∼
Clif

is still a PROP. It even has a compact structure, as

the last necessary axiom is now derivable:

(ε⊗ id) ◦ (id⊗ η) = |x〉 7→ 1

2

∑
y1,y2∈V

e2iπ(
y1y2

2 +
xy2
2 ) |y1〉 −→

(HH)
|x〉 7→ |x〉 = id

and similarly for (id⊗ ε) ◦ (η ⊗ id) = id.

†-Functor for SOP To show that SOP/ ∼
Clif

is †-compact, we lack a notion of †-functor SOP.

Remember that we defined (.) as (.)†t. Since we have a compact structure, we can already define
the functor (.)t. Thanks to the new equivalence relation ∼

Clif
, this functor is involutive. Hence, we

have (.)† = (.)
t
. An appropriate definition of the conjugation can be given:

Definition 3. The conjugation is defined on morphisms f = |x〉 7→ sf
∑
e2iπPf |Qf 〉 as:

f := |x〉 7→ sf
∑

e−2iπPf |Qf 〉

This gives a definition of the †. For the record, if f is of the above form:

f t = |x〉 7→ sf
2m

∑
e
2iπ

(
Pf+

Q̂f [xf←y]·y′+x·y′

2

)
|y〉

f† = |x〉 7→ sf
2m

∑
e
2iπ

(
−Pf+

Q̂f [xf←y]·y′+x·y′

2

)
|y〉

These three functors are the expected ones:

Proposition 3. J(.)tK = J.Kt ,
r

(.)
z

= J.K ,
q
(.)†

y
= J.K†

Proof. In appendix at page 23.

We can finally prove the wanted result:

Theorem 1. SOP/ ∼
Clif

is a †-compact PROP.

Proof. In appendix, at page 23.
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4 Redefinition of SOP

In Qubit, and hence in SOP, it may feel unnatural to have asymmetrical input and outputs.
Why not have morphisms of the form f = s

∑
y e

2iπP |O〉〈I|? In this case, we have to change the
definition of the composition, and, because of this, the SOP morphisms do not form a category.
However, it is a category when quotiented by ∼

Clif
. This is the reason why we did not define SOP

like this at first, although it greatly simplifies the notions of compact structure and †-functor.
We now redefine SOP, and will use this new definition in the rest of the paper:

Definition 4 (SOP). We redefine SOP as the collection of objects N and morphisms between
them:

– Identity morphisms are idn :
∑

y∈V n
|y〉〈y|

– Morphisms f : n → m are of the form f : s
∑

y∈V k
e2iπP (y) |O(y)〉〈I(y)| where s ∈ R, P ∈

R[X1, . . . , Xk]/(1, X2
i −Xi), O ∈ (F2[X1, . . . , Xk])

m
and I ∈ (F2[X1, . . . , Xk])

n

– Composition is obtained as f ◦ g :=
sfsg

2|If |
∑

yf ,yg
y∈Vm

e
2iπ
(
Pg+Pf+

Og·y+If ·y
2

)
|Of 〉〈Ig|

– Tensor product is obtained as f ⊗ g := sfsg
∑

yf ,yg
e2iπ(Pg+Pf ) |OfOg〉〈IfIg|

– The symmetric braiding is σn,m =
∑

y1,y2

|y2,y1〉〈y1,y2|

– The compact structure is ηn =
∑
y
|y,y〉〈| and εn =

∑
y
|〉〈y,y|

– The †-functor is given by: f† := s
∑
y
e−2iπP |I〉〈O|

– The functor J.K is defined as: JfK := s
∑

y∈{0,1}k
e2iπP (y) |O(y)〉〈I(y)|

As announced, this is not a category, as id ◦ id = 1
2

∑
y e

2iπ
y1+y2

2 y3 |y2〉〈y1| 6=
∑
y |y〉〈y| = id.

This problem is solved by reintroducing the rewrite rules, that we adapt to the new formalism in
Figure 2.

∑
y

e2iπP |O〉〈I| −→
y0 /∈Var(P,O,I)

2
∑

y\{y0}

e2iπP |O〉〈I| (Elim)

∑
y

e2iπ( y02 (y′0+Q̂)+R) |O〉〈I| −→
y0 /∈Var(R,Q,O,I)

y′0 /∈Var(Q)

2
∑

y\{y0,y′0}

e2iπ(R[y′0←Q̂]) (|O〉〈I|)
[
y′0 ← Q

]
(HH)

∑
y

e2iπ( y04 +
y0
2
Q̂+R) |O〉〈I| −→

y0 /∈Var(Q,R,O,I)

√
2
∑

y\{y0}

e2iπ( 1
8
− 1

4
Q̂+R) |O〉〈I| (ω)

Fig. 2. Rewrite strategy −→
Clif

.

Again, we give the same name to the rewrite system, but this last one is the one we will use in
the rest of the paper.

The results given for the previous formalisation can easily be adapted. In particular:

Proposition 4. SOP/ ∼
Clif

is a †-compact PROP, and J.K is a †-compact PROP-functor.

Remark 1. In this new formalism, it is fairly easy to perform weak simulation: given a quantum
circuit C and two quantum states |ψi〉 and |ψo〉, what is the probability of outputting |ψo〉 when
the circuit C is applied to the input |ψi〉?

Given SOP-morphisms tC for the circuit and ti and to for the states |ψi〉 and |ψo〉, one simply
needs to compute t†o ◦ tC ◦ ti and simplify the term (which represents a scalar), before evaluating it.

Obviously, the efficiency of this method is conditioned by the simplification strategy used before
evaluation.

9



Remark 2. When building a SOP-morphism t from a circuit (or a diagram as we will show in the
following) in this formalism, the resulting t is always of size O(d × n) where n is the size of the
register, and d the depth of the circuit (and for a diagram in O(G× a) where G is the number of
generators and a the maximum arity of these generators).

This contrasts with the first definition of SOP, where the size of the constructed SOP term
is polynomial for fixed restrictions of quantum mechanics (where the gates RZ are restricted to
parameters that are multiples of π

2p−1 for a fixed p), but exponential in general. This is due to the

substitution [x ← Q̂] in the composition. Indeed, if Q contains ` monomials, Q̂ contains in the

worst case 2`− 1 monomials. In the considered fragment, the size is constrained as 1
2p Q̂ mod 1 has

at most
p∑
k=1

(
`
k

)
≤ p`p monomials.

5 SOP and Graphical Languages

The sum-over-paths formalism was initially intended to be used for isometries. As such, it was given
a weak form of completeness – as we will discuss in the next section. However, if transforming a
quantum circuit – that describes an isometry – into an SOP morphism is easy, the converse,
transforming a SOP morphism into a circuit is not. And actually, all SOP morphisms do not
represent an isometry. For instance, the morphism ε1 described above is not an isometry. An even
smaller example is

∑
y |〉〈y| which is a valid SOP morphism, but clearly does not represent an

isometry.
The fact that SOP is †-compact hints at another (family) of language(s) more suited for

representing it: the Z∗-Calculi: ZX, ZW and ZH. These are all †-compact graphical languages, that
have an interpretation in Qubit, and are universal for Qubit. This means that any morphism of
Qubit can be represented as a morphism of either of these 3 languages.

The language that happens to be the closest to SOP is the ZH-Calculus. This is the one we
are going to present in the following. However, bear in mind that, as we have semantics-preserving
functors between any two of these three languages, one can do the same work with ZX and ZW-
Calculi.

The link between the sum-over-paths formalism and the ZH-Calculus was first shown in [12,13].
We give here a slightly different but equivalent presentation, that in particular uses the fact that
we altered the formalism of SOP.

5.1 The ZH-Calculus

ZH is a PROP whose morphisms are composed (sequentially (. ◦ .) or in parallel (. ⊗ .)) from
Z-spiders and H-spiders:

– Znm : n→ m ::

...

...
, called Z-spider

– Hn
m(r) : n→ m :: r

...

...
, called H-spider, with a parameter r ∈ C

When r is not specified, the parameter in the H-spider is taken to be −1.
ZH is made a †-compact PROP, which means it also has the symmetric structure σ, the com-

pact structure (η, ε), and a †-functor (.)† : ZHop → ZH. It is defined by:

(Znm)† := Zmn and (Hn
m(r))† := Hm

n (r)

For convenience, we define two additional spiders:
...

...
:=

...

...
1
2 and

...

...
:=

...

...
¬ 1

2

The language comes with a way of interpreting the morphisms as morphisms of Qubit. The
standard interpretation J.K : ZH→ Qubit is a †-compact-PROP-functor, defined as:

t ...

...

|

= |0m〉〈0n|+ |1m〉〈1n|
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t

r

...

...

|

=
∑

jk,ik∈{0,1}

rj1...jmi1...in |j1, . . . , jm〉〈i1, . . . , in|

Notice that we used the same symbol for two different functors: the two interpretations J.K : SOP→
Qubit and J.K : ZH→ Qubit. It should be clear from the context which one is to be used.

The language is universal: ∀f ∈ Qubit, ∃Df ∈ ZH, JDf K = f . In other words, the inter-
pretation J.K is onto. This is shown using a notion of normal form. This means there is a functor
N : Qubit→ ZH.

The language comes with an equational theory, which in particular gives the axioms for a
†-compact PROP. We will not present it here.

5.2 From ZH to SOP

We show in this section how any ZH morphism can be turned into a SOP morphism in a way
that preserves the semantics. We define [.]

sop
: ZH→ SOP as the †-compact PROP-functor such

that: [
eiα

...

...

]sop
:=
∑

e2iπ
α
2π x1...xny1...ym |y1, . . . , ym〉〈x1, . . . , xn|

[ s ]
sop

:= s |〉〈| for s ∈ R[ ...

...

]sop
:=
∑
y

|y, . . . , y〉〈y, . . . , y|

[
0

...

...

]sop
:=

[ ...

...
1
2

]sop
This does not give a full description of [.]sop, as we did not describe the interpretation of the
H-spider for all parameters, but only for phases and 0. However, any H-spider can be decomposed
using the previous ones:

Lemma 1. For any r ∈ C such that |r| /∈ {0, 1}, there exist s ∈ C, α, β ∈ R such that:

t

r

...

...

|

=

u

v
...

...
s

eiα

eiβ

}

~

Proof. In appendix at page 24.

As a consequence, we extend the definition of [.]sop by:

[
r

...

...

]sop
:=

 ...

...
s

eiα

eiβ

sop

This interpretation of ZH-diagrams as SOP-morphisms preserves the semantics:

Proposition 5. J[.]sopK = J.K. In other words, the following diagram commutes:

ZH

SOP

Qubit[.]sop

J.K

J.K

Proof. This is a straightforward verification.
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5.3 From SOP to ZH

As we explained previously, there exists a functor from Qubit to ZH. Hence, we have the following
(non commutative) diagram:

ZH

SOP

Qubit[.]sop J.K

J.K

N

We could hence define the interpretation from SOP to ZH as N (J.K). This would preserve the
semantics, as N does. However, this would yield in general a diagram of exponential size in the size
of the SOP morphism. Instead, we define in the following an interpretation of SOP morphisms as
ZH-diagrams of roughly the same size.

We define [.]
ZH

: SOP→ ZH on arbitrary SOP morphisms as:

[
s
∑
y

e2iπP |O1, . . . , Om〉〈I1, . . . , In|

]ZH
:=

P

...

...

O1 Om

y1 yk

s

...
I1 Im

where the row of Z-spiders represents the variables y1, . . . , yk.

The inputs of Oi are linked to y1, . . . , yk. The nodes Oi can be inductively defined as:

:=
...

0

...
1 :=
... ...

¬
:=

...
yj

... ...
yj

:=
Q1⊕Q2

...

Q1

...

Q2

:=
Q1Q2

...

Q1

...

Q2

1
2

The nodes Ii are defined similarly, but upside-down.

The node P can be inductively defined as:

P1+P2

...
:=

...

P1 P2
αyi1 ...yis

...
:=

...

e2iπα

......

e2iπα

yi1 yis

The obtained diagram may be simplified using the simple ZH-rules:

...

...

...

...

=

...

...

=
...

...
2 yx = xy

...

...

...

...

=
...

...

...

...

=
¬

¬
...

...

...

...

=
¬
¬

For instance, the polynomial 1⊕ x1 ⊕ x1y1y2 in a diagram that contains variables x1, x2, y1, y2

will be represented after simplification as:

¬

x1 x2 y1 y2

1
2

12



Example 4. The SOP morphism:

1

2
√

2

∑
y

e2iπ( 1
4y0+

1
2y4y0+

1
8y5y0y1+

3
4y1y2y3+

1
2y0y3) |0, 1⊕y0⊕y4y2, y5〉〈y4, y5⊕y2⊕y3|

is mapped to

e
iπ
4 e

3iπ
2e

iπ
2

1
4
√

2
¬

y4

y5

y1

y3
y2y0

Proposition 6.
[
[.]ZH

]sop ∼
Clif

(.)

Proof. In appendix at page 24.

Corollary 2.
q
[.]ZH

y
= J.K. In other words, the following diagram commutes:

ZH

SOP

Qubit[.]ZH

J.K

J.K

Proof. Since ∼
Clif

preserves the semantics, we have J.K =
q[

[.]ZH
]sopy

=
q
[.]ZH

y
by Propositions 6

and 5.

6 SOP for Clifford

The Clifford fragment of Quantum Mechanics is the one that represents Stab. We would like to
have a characterisation of this fragment for SOP. Thankfully, this fragment is well known in ZH.
It can hence be inferred in SOP thanks to [.]sop.

6.1 The Subcategories of ZH and SOP for Clifford

Definition 5. ZHClif is the †-compact subPROP of ZH with the same objects, and generated by:
...

...
, , eiα (α ∈ {0, π2 , π,−

π
2 }), 1√

2 , ei
π
4 .

Defining 1
2 := 1√

2
1√
2 , we can still define the black spiders in this fragment.

Proposition 7. J.K : ZHClif → Stab, the standard interpretation of ZH-diagrams restricted to
the Clifford fragment in Stab is onto.

Proof. In appendix at page 25.

We hence propose a restriction of SOP for the Clifford fragment, and show afterwards that it
does indeed capture exactly Stab.

Definition 6. SOPClif is the subPROP of SOP with the same objects, and whose morphisms are
of the form:

1
√

2
p

∑
e2iπ( 1

8P
(0)+ 1

4P
(1)+ 1

2P
(2)) |O〉〈I|

where P (i) is a polynomial with integer coefficients of degree at most i (hence P (0) is in fact merely
an integer); and where all the Oi and Ii are linear.
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Proposition 8. J.K : SOPClif → Stab, the restriction of the standard interpretation to SOPClif

is onto Stab.

Proof. In appendix at page 26.

Hence, SOPClif does capture the Clifford fragment of quantum mechanics.

6.2 A Complete Rewrite System for Clifford

In [1], where the rewrite rules are introduced, the author gives a notion of completeness for Clifford
unitaries, that we will refer to in the following as “weak completeness”:

Proposition 9 (Weak Completeness for Clifford Unitaries). Given two terms t1, t2 of

SOPClif such that JtiK ◦ JtiK
†

= id = JtiK
† ◦ JtiK, we have:

t1 ◦ t†2
∗−→

Clif
id ⇐⇒ Jt1K = Jt2K

In practice, this is sufficient for deciding the equivalence of two Clifford quantum circuits, as
they are represented as unitary morphisms of SOPClif . However, in our case, where we deal with
more than unitaries, we cannot use this trick. Instead, we aim at a result like “t1

∗−→ t
∗←− t2 ⇐⇒

Jt1K = Jt2K”. In other words, we want a rewrite system that will transform any term of SOPClif

into a unique normal form.
The rewrite system −→

Clif
is not enough for this:

Lemma 2. There exist t1 and t2 two morphisms of SOPClif such that:

– Jt1K = Jt2K
– there is no t′i such that ti −→

Clif
t′i

– t1 6= t2

Proof. An example of such behaviour can be obtained with:

t1 :=
∑

e2iπ( y1y22 +
y2y
2 ) |y〉〈y1, y2| t2 :=

∑
e2iπ

y2y
2 |y1⊕y〉〈y1, y2|

To palliate this problem, we propose to add three rewrite rules to the previously presented ones.
These new rewrite rules are shown in Figure 3.

∑
y

e2iπ(P )|O1, · · · ,

Oi︷ ︸︸ ︷
y0 ⊕O′i, · · · , Om〉〈I| −→

y0 /∈Var(O1,...,Oi−1,O
′
i)

O′i 6=0

∑
y

e2iπ(P [y0←Ôi]) (|O〉〈I|) [y0 ← Oi] (ket)

∑
y

e2iπ(P ) |O〉〈I1, · · · ,

Ii︷ ︸︸ ︷
y0 ⊕ I ′i, · · · , Im| −→

y0 /∈Var(O,I1,...,Ii−1,I
′
i)

I′i 6=0

∑
y

e2iπ(P [y0←Îi]) (|O〉〈I|) [y0 ← Ii] (bra)

s
∑
y

e2iπ( y02 +R) |O〉〈I| −→
R 6=0 or OI 6=0
y0 /∈Var(R,O,I)

∑
y0

e2iπ( y02 ) |0, · · · , 0〉〈0, · · · , 0| (Z)

Fig. 3. Additional rewrite rules. Together with those of −→
Clif

, they constitute the rewrite system −→
Clif+

.

The last rule (Z) describes what happens for a term that represents the linear map 0. Rule (bra)
is simply the continuation of (ket). They explain how to operate suitable changes of variables.

Proposition 10. The rewrite system −→
Clif+

terminates.
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Proof. In appendix at page 26.

Not only does this rewrite system terminate, it is confluent in SOPClif and the induced equiv-
alence relation ∼

Clif+
is complete for Clifford. We prove this by showing that any morphism of

SOPClif reduces to a normal form that is unique.

Lemma 3. Any morphism of SOPClif reduces by −→
Clif+

to a morphism of the form

1
√

2
p

∑
e2iπP |O〉〈I|

where:

– Var(P ) ⊆ Var(O, I) or P = y0
2 where y0 /∈ Var(O, I)

– Oi =


yk

or

c⊕
⊕

y∈Var(O1,...,Oi−1)

cyy where c, cy ∈ {0, 1}

– Ii =


yk

or

c⊕
⊕

y∈Var(O,I1,...,Ii−1)

cyy where c, cy ∈ {0, 1}

Proof. In appendix at page 26.

To start with, we deal with the case where the term represents the null map.

Proposition 11. Let t be a morphism of SOPClif such that JtK = 0. Then:

t
∗−→

Clif+

∑
y0

e2iπ
y0
2 |0, ..., 0〉〈0, ..., 0|

Proof. In appendix at page 26.

Corollary 3. If a morphism t = 1√
2
p

∑
e2iπP |O〉〈I| of SOPClif is irreducible such that Var(P ) ⊆

Var(O, I), then JtK 6= 0.

Before moving on to the completeness by normal forms theorem, we need a result for the
uniqueness of the phase polynomial:

Lemma 4. Let P1 and P2 be two polynomials of R[X1, ..., Xk]/(1, X2 −X), such that:

∀x ∈ {0, 1}k, P1(x) = P2(x)

Then, P1 = P2.

Proof. In appendix at page 27.

Theorem 2. Let t1, and t2 be two morphisms of SOPClif such that Jt1K = Jt2K. Then, there exists

t in SOPClif such that t1
∗−→

Clif+
t
∗←−

Clif+
t2, up to α-conversion.

Proof. In appendix at page 27.

Corollary 4. The equality of morphisms in SOPClif/ ∼
Clif+

is decidable in time polynomial in the

size of the phase polynomial and in the combined size of the ket/bra polynomials.

Although the set of rules is confluent in SOPClif , it is not in SOP:

Lemma 5 (Non-confluence). The rewrite systems −→
Clif

and −→
Clif+

are not confluent in SOP.
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Proof. Consider the morphism
∑
e2iπ( y04 +

y0y1y2
2 +

y1y3
2 ) |y3〉:∑

e2iπ( y04 +
y0y1y2

2 +
y1y3

2 ) |y3〉 −→
(HH)

2
∑

e2iπ( y04 ) |y0y2〉

However ∑
e2iπ( y04 +

y0y1y2
2 +

y1y3
2 ) |y3〉 −→

(ω)

√
2
∑

e2iπ( 1
8−

y1y2
4 +

y1y3
2 ) |y3〉

The two resulting morphisms are not reducible, be it with −→
Clif

or with −→
Clif+

.

6.3 Pivoting and Local Complementation

We show here how, in the Clifford case, the rule (HH) corresponds to the operation of pivoting [9],
and the rule (ω) to that of local complementation [2,15]. To do so, we realise that graph states are
easily representable in SOP, for instance by interpreting the ZH-version of the graph state as a
SOP morphism.

Let G = (V,E) be a graph, with vertices V and edges E ⊆ V × V . The associated SOP
morphism is:

∑
y∈V

e
2iπ

 ∑
(yi,yj)∈E

yiyj
2


|y〉

Pivoting The operation of pivoting can be used to simplify a diagram of ZHClif (or equivalently
a Clifford diagram of the ZX-Calculus, as described in [9]). Informally, pivoting can be applied on
any neighbouring pair of white nodes (where at least one of them is internal i.e. not linked to an
input/output, for it to actually simplify the diagram). In the process, we complement the exclusive
neighbours of both nodes with the other neighbours. Moreover, the common neighbours get an
additional phase of π.

Let us see how it translates in SOP. Let t = s
∑
e2iπ( y0yi2 +

y0
2 Q̂0+

yi
2 Q̂i+

y0+yi
2 Q̂0i+R) |O〉〈I| be

a Clifford term, where the phase polynomial is already factorised by y0 and yi, the pair of vari-
ables/white dots on which to apply the pivoting. We consider that y0 is internal y0 /∈ Var(O, I).
The fact that y0 and yi are neighbours is captured by the term y0yi

2 in the phase polynomial.
We can distinguish the exclusive neighbours of y0 (resp. yi) by Q0 (resp. Qi), and their common
neighbours by Q0i.

The rule (HH) can be applied, with the substitution [yi ← Q0 ⊕Q0i]. The result is

t′ = 2s
∑

e
2iπ
(

1
2 Q̂0Qi+

1
2 Q̂0iQi+

1
2 Q̂0Q0i+

1
2 Q̂0i+R

)
(|O〉〈I|) [yi ← Q0 ⊕Q0i]

The term 1
2 Q̂0Qi creates the monomial yky`2 for all yk ∈ Var(Q0) and y` ∈ Var(Qi). If this monomial

was already in R, it gets cancelled. This performs the complementation between the groups of

variables in Q0 and those in Qi, and similarly for 1
2 Q̂0iQi and 1

2 Q̂0Q0i. On the other hand, the

term 1
2 Q̂0i creates a π phase for all the common neighbours of y0 and yi.

Local Complementation The operation of local complementation is another operation that
can be used to simplify the Clifford term at hand. Consider an internal white node in a Clifford
diagram. If this node has a phase of ±π2 , it can be removed. Doing so will add a phase of ∓π2 to all
the neighbours of the node, and at the same time, will perform a local complementation on them
(all the nodes connected through an H will get disconnected, and vice-versa). A global phase is
also created.

A SOP morphism in this situation is of the form t = s
∑
e2iπ( y04 +

y0
2 (
∑
xi)+R) |O〉〈I| with y0 an

internal variable and xi its neighbours. The rule (ω) can hence be applied, and the resulted term
is:

t′ =
√

2s
∑

e
2iπ

(
1
8−

1
4 (
∑
xi)+

1
2 (
∑
i6=j

xixj)+R

)
|O〉〈I|
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as − 1
4

⊕̂
xi = − 1

4 (
∑
xi) + 1

2 (
∑
i6=j

xixj) mod 1.

The constant 1
8 corresponds to the global phase, the term − 1

4 (
∑
xi) represents an additional

−π2 phase to all the neighbours of y0, and term 1
2 (
∑
i6=j

xixj) performs the local complementation on

them.

In the case where y0 holds a −π2 phase, the term can also be simplified like this.

7 SOP with Discards

7.1 The Discard Construction on SOP

In [5], a construction is given to extend any †-compact PROP for pure quantum mechanics to
another †-compact PROP for quantum mechanics with environment. This new formalism can also
be understood as the previous one, but where on top of it, one can discard the qubits. Because
SOP fits the requirements, the construction can be applied to it.

First, we have to create the subcategory SOPiso of SOP that contains all its isometries. The
objects of the new category are the same, and its morphisms are {f ∈ SOP |

q
f† ◦ f

y
= id}.

These are important, as the isometries are exactly the pure quantum operators that can be
discarded. The next step in the construction does just that. We perform the affine completion of
SOPiso, that is, for every object n, we add a new morphism !n : n→ 0, and we impose that !◦f =!
for any f in the new category, that we denote SOP!

iso. We also need to impose that !n⊗!m =!n+m
and !0 = id0.

Finally, the category SOP is obtained as the pushout:

SOPiso SOP

SOP!
iso SOP

where the

arrows are the inclusion functors.

We write morphisms in the new category in the form:

s
∑
y∈V k

e2iπP (y) |O(y)〉!D(y) 〈I(y)|

where the additional D is a set of multivariate polynomials of F2. The fact that it is a set, and not
a list, already captures some rules on the discard: first permuting qubits and then discarding them
is equivalent to discarding them right away. Similarly, copying data and discarding the copies is
equivalent to discarding the data right away.

Pure morphisms are those such that D = {}. In those, no qubits are discarded. We hence easily
induce usual morphisms such as H and CZ in the new formalism.

The new morphisms !n are given by:

!n :=
∑

y∈V n
|〉!{y1, . . . , yn} 〈y1, . . . , yn|

In the new formalism, the compositions are obtained by:

f ◦ g :=
sfsg

2|If |

∑
yf ,yg

y∈V |If |

e
2iπ
(
Pg+Pf+

Og·y+If ·y
2

)
|Of 〉!Df ∪Dg 〈Ig|

f ⊗ g := sfsg
∑
yf ,yg

e2iπ(Pg+Pf ) |OfOg〉!Df ∪Dg 〈IfIg|

It might be useful to be able to give an interpretation to the morphisms of the new formalism.
To do so, we use the CPM construction [16] to map morphisms of SOP to morphisms of SOP.
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Definition 7. The functor CPM : SOP / ∼
Clif

→ SOP/ ∼
Clif+

is defined as:

s
∑
y

e2iπP |O〉!D 〈I| 7→

s2

2|D|

∑
y1,y2,y

e
2iπ
(
P (y1)−P (y2)+

D(y1)·y+D(y2)·y
2

)
|O(y1),O(y2)〉〈I(y1), I(y2)|

We can now define a standard interpretation of SOP -morphisms as:

Definition 8. The standard interpretation J.K of SOP is defined as J.K := JCPM(.)K.

Again, it is easy to transform any morphism of SOP in ZH and vice-versa:

s ∑
y∈V k

e2iπP (y) |O(y)〉!D(y) 〈I(y)|

ZH

:= P

...

...

O1 Om

y1 yk

s

...
I1 Im

...
D1 Dd

and [ ]
sop

=!1.

7.2 SOP with Discards for Clifford

The discard construction can be applied to the subcategory SOPClif . We end up with a new
category SOPClif , such that the following diagram, whose arrows are inclusions, commutes:

SOPClif SOP

SOPClif SOP

Following the characterisation of SOPClif morphisms, we can determine that all the morphisms
of SOPClif are of the form:

1
√

2
p

∑
e2iπ( 1

8P
(0)+ 1

4P
(1)+ 1

2P
(2)) |O〉!D 〈I|

where p ∈ Z, where P (i) is a polynomial with integer coefficients and of degree at most i, and
where the polynomials of O,D and I are linear.

The rewrite system presented previously can obviously be adapted to the new formalism (when
there is a substitution, it has to be applied in !D as well). On top of that, the condition that makes
SOP!

iso terminal can be translated as the meta rule:

t
sfsf

2|Of |

∑
e
2iπ

(
Pf (y)−Pf (y′)+

Of (y)·y′′+Of (y′)·y′′

2

)
|I(y′)〉〈I(y)|

|

= id

=⇒ sfsB
2|OB |

∑
e
2iπ
(
PB+Pf+

If ·y+OB ·y
2

)
|O〉!{Of , . . .} 〈IB | = sB

∑
e2iπPB |O〉!{OB , . . .} 〈IB |

As you can see, this rule is not easy to apply. Thankfully, the last part of [5] is devoted to showing
that the big meta rule can sometimes be replaced by a few small ones. The idea is that, in some
cases (in particular in the Clifford fragment), all the isometries can be generated from a finite set
of generators. In particular, it is enough to impose that:

– eiα = 1
– ! ◦ |0〉 = 1
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∑
y

e2iπP |O〉!D 〈I| −→
y0 /∈Var(P,D,O,I)

2
∑

y\{y0}

e2iπP |O〉!D 〈I| (Elim)

∑
y

e2iπ( y02 (y′0+Q̂)+R) |O〉!D 〈I| −→
y0 /∈Var(R,Q,D,O,I)

y′0 /∈Var(Q)

2
∑

y\{y0,y′0}

e2iπ(R[y′0←Q̂]) (|O〉!D 〈I|)
[
y′0 ← Q

]
(HH)

∑
y

e2iπ( y04 +
y0
2
Q̂+R) |O〉!D 〈I| −→

y0 /∈Var(Q,R,D,O,I)

√
2
∑

y\{y0}

e2iπ( 1
8
− 1

4
Q̂+R) |O〉!D 〈I| (ω)

∑
e2iπ(P+α ̂D1...Dp) |O〉!{D1, . . . , Dp, . . .} 〈I| −→

∑
e2iπP |O〉!{D1, . . . , Dp, . . .} 〈I| (Z )

∑
y

e2iπ(P+
y0
2
Q̂) |O〉!D∪{y0} 〈I| −→

y0 /∈Var(P,O,I,D)

√
2
∑

y\{y0}

e2iπP |O〉!D∪{Q} 〈I| (H )

∑
e2iπP |O〉!{D1, . . . , Dp, D1...Dp⊕Dp+1, . . .} 〈I| −→

∑
e2iπP |O〉!{D1, . . . , Dp, Dp+1, . . .} 〈I| (⊕ )

∑
e2iπP |O〉!{c, . . .} 〈I| −→

c∈{0,1}

∑
e2iπP |O〉!{. . .} 〈I| (Cst )

∑
y

e2iπ(P ) |O〉!D ∪ {

Di︷ ︸︸ ︷
y0 ⊕D′i} 〈I|

−→ y0 /∈Var(D′i)

|{Dk∈D |mon(Dk)≥2}|>|{Dk∈D[y0←Di] |mon(Dk)≥2}|
(disc)∑

y

e2iπ(P [y0←D̂i]) (|O〉!D ∪ {Di} 〈I|) [y0 ← Di]

∑
y

e2iπ(P )| · · · ,

Oi︷ ︸︸ ︷
y0⊕O′i⊕O′′i , · · · 〉!D 〈I| −→

O′i 6=0

y0 /∈Var(O1,...,Oi−1,O
′
i,O
′′
i )

y0 /∈Var(D) or {y0,O′i}⊆D∪{1}

∑
y

e2iπ(P [y0←Ôi]) |O[y0←Oi]〉!D 〈I[y0←Oi]| (ket)

∑
y

e2iπ(P ) |O〉!D〈· · · ,

Ii︷ ︸︸ ︷
y0⊕I ′i⊕I ′′i , · · · | −→

I′i 6=0

y0 /∈Var(O,I1,...,Ii−1,I
′
i,I
′′
i )

y0 /∈Var(D) or {y0,I′i}⊆D∪{1}

∑
y

e2iπ(P [y0←Îi]) |O〉!D 〈I[y0←Ii]| (bra)

s
∑
y

e2iπ( y02 +R) |O〉!D 〈I| −→
R 6=0 or OI 6=0

y0 /∈Var(R,D,O,I)

∑
y0

e2iπ( y02 ) |0, · · · , 0〉!{} 〈0, · · · , 0| (Z)

Fig. 4. Rewrite system −→
Clif

for SOP .

– ! ◦H =! (test)
– ! ◦ S =!
– !2 ◦ CZ =!2

We give in Figure 4 the updated set of rewrite rules.
Notice that we have made the choice to simplify the discarded polynomials before those in kets

and bras. This is motivated by the example:

Example 5. Consider t := |y1, y2, y3〉!{y1⊕y2, y2⊕y3, y1⊕y3}. If (ket) had priority over (disc), the
term could not be reduced. Instead, we reduce t as:

|y1, y2, y3〉!{y1⊕y2, y2⊕y3, y1⊕y3} −→
(disc)

|y1⊕y2, y2, y3〉!{y1, y2⊕y3, y1⊕y2⊕y3}

−→
⊕
|y1⊕y2, y2, y3〉!{y1, y2⊕y3} −→

(disc)
|y1⊕y2, y2, y2⊕y3〉!{y1, y3}

−→
ket
|y2, y1⊕y2, y1⊕y2⊕y3〉!{y1, y3} −→

ket
|y2, y1⊕y2, y2⊕y3〉!{y1, y3}
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Hence, by giving priority to (disc) over (ket) and (bra), one can hope to reduce the number of
discarded polynomials.

Proposition 12. The rewrite system −→
Clif

terminates.

Proof. In appendix at page 28.

Lemma 6. Any non-null morphism of SOPClif can be reduced to:

1
√

2
p

∑
y,yd

e2iπ( 1
4P

(1)(y)+ 1
2P

(2)(y,yd)) |O(y,yd)〉!{yd} 〈I(y,yd)|

where:

– polynomials of O and I are linear
– the set of discarded polynomials is reduced to a set of variables {yd}
– P (1) and P (2) have no constants
– no monomial of P (2) uses only variables of yd
– {yd} ⊆ Var(O, I) i.e. discarded variables have to appear somewhere in the ket or bra
– Var(P (1), P (2)) ⊆ Var(O, I,D) or P = y0

2 with y0 /∈ Var(O, I,D).

Proof. In appendix at page 28.

Corollary 5. Any morphism of SOPClif eventually reduces to a morphism of the form given in
Lemma 6.

Proof. As the rewrite system terminates, and since every morphism of SOPClif can be reduced
into the form of Lemma 6, the rewrite system terminates in a term of the form of Lemma 6.

Lemma 7. Any morphism t of SOPClif such that JtK = 0 reduces to:∑
y0

e2iπ( y02 ) |0, · · · , 0〉!{} 〈0, · · · , 0|

Proof. In appendix at page 29.

Corollary 6. If a morphism t of SOPClif is terminal with Var(P ) ⊆ Var(O,D, I), then JtK 6= 0.

Theorem 3 (Completeness for Clifford). Let t1 and t2 be two morphisms of SOPClif such

that Jt1K = Jt2K. If t′1 and t′2 are terminal such that t1
∗−→

Clif
t′1 and t2

∗−→
Clif

t′2, then t′1 = t′2 up to

α-conversion.

To prove this theorem, we suggest to use the similar result in SOPClif , and transport it to our
case. To do so, we need some additional constructions.

Definition 9. We define SOPClif as the set of morphisms of SOPClif in the form given in Lemma

6. We define the function F on SOPClif such that, for any morphism

t =
1
√

2
p

∑
y,yd

e2iπP (y,yd) |O(y,yd)〉!{yd} 〈I(y,yd)|

of SOPClif :

F (t) :=
1
√

2
2p

∑
y,y′,yd

e2iπ(P (y,yd)−P (y′,yd)) |O(y,yd),O(y′,yd)〉〈I(y,yd), I(y′,yd)|

This new functor F can be seen as a simplified CPM construction, in the case where the term
is already simplified.

Proposition 13. For any t ∈ SOPClif , F (t) ∼
Clif+

CPM(t). This implies JF (.)K = JCPM(.)K.
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Proof.

CPM(t) =
1

2p+|yd1 |
∑

y1,yd1 ,y2,yd2 ,y

e
2iπ

(
P (y1,yd1 )−P (y2,yd2 )+

yd1
·y+yd2

·y
2

)
|O(y1,yd1),O(y2,yd2)〉〈I(y1,yd1), I(y2,yd2)|

∗−→
(HH)

1
√

2
2p

∑
y1,y2,yd1

e2iπ(P (y1,yd1 )−P (y2,yd1 )) |O(y1,yd1),O(y2,yd1)〉〈I(y1,yd1), I(y2,yd1)| = F (t)

Definition 10. We define the function G on some morphisms of SOPClif .
Let t = 1√

2
p

∑
y e

2iπP |O1,O2〉〈I1, I2| such that:

– p = 2p′

– |O1| = |O2| and |I1| = |I2|
– {yd} := {y} \Var(O1 ⊕O2, I1 ⊕ I2)
– {y1} := Var(O1, I1) \ {yd}
– {y2} := ({y} \ {y1}) \ {yd}
– |y1| = |y2|
– there exists a unique bijection δ : {y2} → {y1} such that (O1 ⊕O2, I1 ⊕ I2)[y2 ← δ(y2)] = 0

then G(t) is defined, and:

G(t) :=
1
√

2
p′

∑
y1,yd

e−2iπP [y1←0][y2←δ(y2)] |O2[y1←0][y2←δ(y2)]〉!{yd} 〈I2[y1←0][y2←δ(y2)]|

The function G is designed to be an inverse of F for some morphisms, while at the same being
impervious to some rewrite rules.

Proposition 14. Let t be terminal with −→
Clif

. Then, the following diagram commutes up to α-

conversion:

F (t) t′

t

∗
Clif+

GG

for any t′ obtained by reducing F (t).

Proof. In appendix at page 29.

Proof (Theorem 3). Let t1 and t2 be two morphisms of SOPClif such that Jt1K = Jt2K. Since
−→
Clif

terminates by Proposition 14, both t1 and t2 reduce to respectively t′1 and t′2, two terminal

morphisms of SOPClif . By soundness, Jt′1K = Jt′2K, so, by Proposition 13, JF (t′1)K = JF (t′2)K. By

completeness of −→
Clif+

, we have F (t′1)
∗−→

Clif+
t′

∗←−
Clif+

F (t′2) up to α-conversion. Finally, by Proposition

14, t′1 = G(t′) = t′2 up to α-conversion:

F (t′1) ∗
Clif+

G
G

t1
∗

Clif
t′1

F (t′2)∗
Clif+

G
G

t′

t2
∗

Clif
t′2

Remark 3. Interestingly, the previous proposition and theorem show that the simplification of a
term of SOPClif can be operated in the “pure” setting, and then G can be used to retrieve the
normal form. More precisely:

t
∗

Clif+

GCPM

t
∗

Clif
t ↓

t↓

Corollary 7. The equality of morphisms in SOPClif/ ∼
Clif

is decidable in time polynomial in the

size of the phase polynomial and in the combined size of the ket/bra/discarded polynomials.
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Conclusion and Further Work

We have shown that SOP could represent any morphism of Qubit, and that it could be enriched
using the discard construction to include measurements. We have shown a correspondence between
this formalism and graphical languages such as the ZH-Calculus, and we have provided two rewrite
strategies for simplifying terms. We have shown that these are complete in the Clifford case.

This framework can be used to simplify Z*-diagrams: one simply needs to translate the diagram
as a SOP-morphism, simplify it, then translate the result as a diagram in the target language.

By applying the discard construction, we have extended the domain of use of SOP to pro-
grams that contain measurements. For instance, schemes for error detection/correction can now
be studied/verified/simplified in the framework.

One of the obvious further developments of the framework is to use the completeness of (frag-
ments of) Z*-Calculi and their interpretation to generate rewrite strategies complete for fragments
larger than Clifford. On can also transport constructions that are known in the Z*-Calculi to
perform non trivial operations on SOP morphisms.

Another important development of the framework would be to more easily represent families
of processes. The recent enrichment SZX [4] could be of help for this topic.

Finally, it could be interesting to see how graph-theoretic notions like the gflow [8] translate
to SOP. This particular notion could for instance allow to extract a quantum circuit from an
arbitrary (isometry) SOP-morphism.

Acknowledgements

The author acknowledges support from the project PIA-GDN/Quantex. The author would like to
thank Simon Perdrix, Emmanuel Jeandel and Benôıt Valiron for fruitful discussions.
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A Appendix

Proof (Proposition 3).

– J(.)tK = J(εm ⊗ idn) ◦ (idm ⊗ .⊗ idn) ◦ (idm ⊗ ηm)K = (εm⊗ idn)◦(idm⊗J.K⊗ idn)◦(idm⊗ηm)
= J.Kt

–
q
f
y

= sf
∑

y,x∈{0,1}
e−2iπPf |Qf 〉〈x| = sf

∑
y,x∈{0,1}

e2iπPf |Qf 〉〈x| = JfK

–
q
(.)†

y
=

r
(.)
t
z

= J.K
t

= J.K†

Proof (Theorem 1). As we already mentioned, SOP is a PROP. Quotienting it with the equivalence
relation ∼

Clif
does not change this property. We already saw that all the axioms for a compact

structure are satisfied. It remains to show that (.)† is involutive.
First, for any morphism f ∈ SOP, we have:

f = |x〉 7→ sf
∑

e−2iπPf |Qf 〉 = |x〉 7→ sf
∑

e2iπPf |Qf 〉 = f

so (.) = (.).
Moreover:

f
t

= |x〉 7→ sf
2m

∑
e
2iπ

(
−Pf+

Q̂f [xf←y]·y′+x·y′

2

)
|y〉
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= |x〉 7→ sf
2m

∑
e
2iπ

(
−Pf−

Q̂f [xf←y]·y′+x·y′

2

)
|y〉 = f t

Indeed, Q̂f [xf ← y] · y′ + x · y′ is integer-valued, and eiπn = e−iπn for any n ∈ Z.

Finally: (.)†† = (.)
t
t

= (.)
tt

= (.)

Proof (Lemma 1). First, one of the (sound) rules of the ZH-Calculus tells us that:

t

r

...

...

|

=

t ...

...
r1

2

|

Then, let ρeiθ := 1−r
1+r with ρ > 0, which is well defined and unique since r 6= −1 and r 6= 1. Let

also α := 2 arctan ρ
2 , β := θ + π

2 and s := 1+r
2(1+eiα) . Then, one can check that:

u

v
r

1
2

}

~ =

u

v
ρeiθ

1+r
2

}

~ =

u

w
v

eiα

s
eiβ

}

�
~

Proof (Proposition 6). First, we can show inductively that

[
P

...
]sop

∼
Clif

∑
y e

2iπP (y) |〉〈y|. Indeed,

we have: [
αyi1 ...yis

... ]sop
=

 ...

e2iπα

......

e2iπα

yi1 yis

sop

=
∑

e2iπαyi1 ...yis |〉〈y|

and [
P1+P2

... ]sop
=

[ ...

P1 P2

]sop
=
(∑

e2iπ(P1(y1)+P2(y2)) |〉〈y1,y2|
)
◦
(∑

|y,y〉〈y|
)

∼
Clif

∑
e2iπ(P1(y)+P2(y)) |〉〈y| =

∑
e2iπ(P1+P2)(y) |〉〈y|

Similarly, we can prove that

[
Oi

... ]sop
∼
Clif

∑
y |Oi(y)〉〈y|. The base cases are straightforward,

so we show the sum and product. Notice that:[ ]sop
=

1

4

∑
e2iπ( y5y12 +

y6y2
2 +

y1y3
2 +

y2y3
2 +

y1y4
2 ) |y4〉〈y5, y6|

∗−→
Elim

∑
|y1 ⊕ y2〉〈y1, y2|

[
1
2

]sop
=

1

2

∑
e2iπ( y3y4y12 +

y1y2
2 ) |y2〉〈y3, y4| −→

Elim

∑
|y1y2〉〈y1, y2|

and 
Q1

...

Q2


sop

∼
Clif

∑
|Q1(y), Q2(y)〉〈y|

so we directly get:  Q1⊕Q2

... 
sop

=

 Q1

...

Q2


sop

∼
Clif

∑
|(Q1 ⊕Q2)(y)〉〈y|

24



and  Q1Q2

... 
sop

=


Q1

...

Q2

1
2


sop

∼
Clif

∑
|(Q1Q2)(y)〉〈y|

Finally: P

...

...
y1

yk

s

...
∑∣∣ym+n+1

〉
〈|

O1 In

∑
e2iπP (y) |ym+n〉〈|∑
e2iπP (y) |O1(y), . . . ,Om(y), I1(y), . . . , In(y)〉〈|

Hence:

 P

...

...

O1 Om

y1 yk

s

...
I1 Im



sop

∼
Clif

 P

...

...y1 yk

s

...

O1 Om ...I1 In

...



sop

∼
Clif

∑
e2iπP (y) |O(y)〉〈I(y)|

Proof (Proposition 7). First, we shall show that JZHClifK ⊆ Stab. To do so, it suffices to show
that all the generators of ZHClif are mapped to morphisms of Stab:

r
1√
2

z
=

1√
2

= ε ◦ (|0〉 ⊗ (H ◦ |0〉)) ∈ Stab

2 = ε ◦ η ∈ Stab
s {

= H × 2√
2
∈ Stab

s
1

{
= |0〉+ |1〉 =

2√
2
H |0〉 ∈ Stab

s
eik

π
2

{
= |0〉+ ik |1〉 = Sk(|0〉+ |1〉) ∈ Stab

s {
= (id⊗H) ◦ CZ ◦ (id⊗ (H ◦ |0〉)) ∈ Stab

s {
= (id⊗ ε) ◦

(s {
⊗ id

)
∈ Stab

s {
= ε ◦

s {
∈ Stab

s {
=

s {
◦ η ∈ Stab

q
ei
π
4

y
=

s
i

1√
2

{
∈ Stab

and

t ...

...

|

can be obtained as a composition of

s {
,

s {
,

s {
and

s {
.

Then, we can show that all the generators of Stab have a preimage by J.KClif in ZHClif :

s
1
2

{
= |0〉

s
1√
2

{
= H
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s {
= CZ

s
i
{

= S

Proof (Proposition 8). First, we show that JSOPClifK ⊆ Stab. To do so, it can be seen that

[SOPClif ]
ZH ⊆ ZHClif :

1√
2
p is mapped to 1√

2

p
, 1

8P
(0) contributes for ei

π
4

P (0)

, 1
4P

(1) contributes

to eiα linked to the associated variable (where α ∈ {0, π2 , π,−
π
2 }), and 1

2P
(2) contributes to

linked to the associated pair of variables; and Oi and Ii being linear, they are mapped to black
spiders (with or without ¬).
Hence, JSOPClifK =

q
[SOPClif ]

ZH
y
⊆ JZHClifK ⊆ Stab.

Next, it suffices to show that all the generators of Stab have a preimage by J.K in SOPClif :

s
1√
2

∑
e2iπ

y1y2
2 |y2〉〈y1|

{
= H

r∑
e2iπ

y
4 |y〉〈y|

z
= S

r∑
e2iπ

y1y2
2 |y1, y2〉〈y1, y2|

z
= CZ

J|0〉〈|K = |0〉

Proof (Proposition 10). For a morphism s
∑
y
e2iπP |O〉〈I| of SOP, consider the tuple:

(
|y| , mon(O1), . . . , mon(Om), mon(I1), . . . , mon(In),mon(P )

)
where:

– |.| denotes the cardinality
– mon(Q) counts the number of monomials in the expanded simplified polynomial Q

We can define an order on these tuples, as their lexicographic order. Notice that all the com-
ponents of the tuple are natural integers. Hence, if we can show that every rewrite rule in −→

Clif+

strictly reduces the tuple, then it means −→
Clif+

terminates.

It is easy to check that the three rules of −→
Clif

reduce the size of y, hence reducing the tuple.

When the rule (ket) is applied on Oi, we necessarily have mon(Oi) ≥ 2. Indeed, Oi = y0 ⊕ O′i
where O′i 6= 0. After application of the rule, this quantity is reduced to 1. Moreover, neither |y|,
mon(O1), ..., nor mon(Oi−1) is changed, as there is no creation or removal of variables, and y0
does not appear in O1, . . . , Oi−1. The rule (bra) works exactly in the same fashion.

Finally, the rule (Z) reduces the morphism to one whose tuple is (1, 0, . . . , 0, 0, . . . , 0, 1), and
only from a morphism with a larger associated tuple.

Proof (Lemma 3). The rules (ket) and (bra) quite obviously enforce the form of O and I. Then,
suppose y0 is an internal variable. Then either:

– the monomial 1
4y0 appears in the phase polynomial, in which case the rule (ω) can be applied

– the monomial 1
2y0yi appears in the phase polynomial, with some arbitrary yi, in which case

the rule (HH) can be applied
– the monomial 1

2y0 appears in the phase polynomial, as the only occurrence of y0, in which case
the rule (Z) can be applied

Proof (Proposition 11). By reductio ad absurdum, suppose that t reduces to t′ = 1√
2
p

∑
e2iπP |O〉〈I|

different from
∑
y0

e2iπ
y0
2 |0, ..., 0〉〈0, ..., 0|, but irreducible. By Lemma 3, this implies Var(P ) ⊆

Var(O, I). We show that we can build x1,x2 ∈ {0, 1}n+m such that 〈x1| Jt′K |x2〉 6= 0.
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To do so, consider O1. By Lemma 3, either it is a constant c, or a “fresh” variable yk. In the
first case, build

t(1) :=
1
√

2
p

∑
e2iπP |O2, ..., Om〉〈I| ,

in the second case, build

t(1) :=

(
1
√

2
p

∑
e2iπP |O2, ..., Om〉〈I|

)
[yk ← 0].

Notice that:

– t(1) is irreducible
– Var(P (1)) ⊆ Var(O(1), I(1))
–

q
t(1)

y
= (〈c| ⊗ idm−1) ◦ Jt′K if O1 = c

–
q
t(1)

y
= (〈0| ⊗ idm−1) ◦ Jt′K if O1 = yk

c (resp. 0) will be the first term of x1.
Doing so repeatedly (building t(i+1) from t(i)) first for the whole ket, and then for the whole

bra, we end up with a term t(n+m) of the form t(n+m) = 1√
2
p

∑
e2iπc with c a constant. In the

process, we build x1 and x2.
Clearly,

q
t(n+m)

y
6= 0, and yet,

q
t(n+m)

y
= 〈x1| Jt′K |x2〉. Hence, Jt′K 6= 0. We end up with a

contradiction, so t actually reduces to
∑
y0

e2iπ
y0
2 |0, ..., 0〉〈0, ..., 0|.

Proof (Lemma 4). Let us prove the result by induction on k:

– If k = 0, the result is obvious
– Suppose the result is true for k. Let Pi ∈ R[X1, ..., Xk+1]/(1, X2 − X). Then Pi(x, x0) =
P ′i (x) + x0P

′′
i (x) with P ′i , P

′′
i ∈ R[X1, ..., Xk]/(1, X2 − X). By hypothesis, we have ∀x ∈

{0, 1}k, P1(x, 0) = P2(x, 0), so by induction hypothesis, P ′1 = P ′2. Similarly, we get P ′′1 = P ′′2 .
Hence, P1 = P2.

Proof (Theorem 2). If Jt1K = 0 = Jt2K, by Proposition 11, the two terms reduce to the same normal
form.

Suppose now that JtiK 6= 0, and that ti reduce to t′i = 1√
2
pi

∑
e2iπPi

∣∣O(i)
〉〈
I(i)
∣∣, irreducible. By

Corollary 3, Var(Pi) ⊆ Var(O(i), I(i)).
We first show that O(1) = O(2) and I(1) = I(2) while at the same time building the α-conversion.

Consider O
(i)
1 . By Lemma 3, either O

(i)
1 = c constant or O

(i)
1 = yki . We can show that O(1) and

O(2) are in the form. Indeed, suppose O
(1)
1 = c and O

(2)
1 = yk. Then, (〈c⊕1|⊗id)◦Jt′1K = 0, however

(〈c⊕1| ⊗ id) ◦ Jt′2K =
r(

1√
2
pi

∑
e2iπPi

∣∣∣O(2)
2 , ..., O

(2)
m

〉〈
I(i)
∣∣) [yk ← c⊕1]

z
6= 0 by Corollary 3, since

the last term is irreducible with no internal variable.
Hence, either O

(1)
1 = c = O

(2)
1 or O

(1)
1 = yk1 and O

(2)
1 = yk2 . In the first case, build

t
(1)
i :=

1
√

2
pi

∑
e2iπPi

∣∣∣O(i)
2 , ..., O(i)

m

〉〈
I(i)
∣∣∣ .

In the second case, build

t
(1)
i :=

(
1
√

2
pi

∑
e2iπPi

∣∣∣O(i)
2 , ..., O(i)

m

〉〈
I(i)
∣∣∣) [yki ← 0],

and the α-conversion yk1 ↔ yk2 .
In parallel, we start building a particular operator that will be of use in the following. In the

first case, the operator is built from op := 〈+|, in the second case, from op := id.
We may notice that:

– t
(1)
i is irreducible

– t
(1)
i has no internal variable
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– by Corollary 3,
r
t
(1)
i

z
6= 0

–
r
t
(1)
i

z
= (〈c| ⊗ id) ◦ Jt′iK if O

(i)
1 = c

–
r
t
(1)
i

z
= (〈0| ⊗ id) ◦ Jt′iK if O

(i)
1 = yki

– (op⊗id) ◦ Jt′iK =
r

1√
2
pi

∑
e2iπPi

∣∣∣O(i)
2 , ..., O

(i)
m

〉〈
I(i)
∣∣z if O

(i)
1 = c

– (op⊗id) ◦ Jt′iK =
r

1√
2
pi

∑
e2iπPi

∣∣∣yki , O(i)
2 , ..., O

(i)
m

〉〈
I(i)
∣∣z if O

(i)
1 = yki

Doing so inductively first for the whole ket, then for the whole bra, we get:

– a matching of variables of t′2 with variables of t′1. We may call δ the bijection that maps a
variable of t′2 to a variable of t′1.

– the equalities O(1) = O(2)[y2 ← δ(y2)] and I(1) = I(2)[y2 ← δ(y2)]

– the equality 1√
2
p1 e

2iπP1[y1←0] =
r
t
(n+m)
1

z
=

r
t
(n+m)
2

z
= 1√

2
p2 e

2iπP2[y2←0] which implies equal-

ity for the pi and the constants in the phase polynomials.
– two operators op1 (for the ket) and op2 (for the bra), such that

op1 ◦ Jt′iK ◦ op2 =

s
1
√

2
pi

∑
e2iπPi

∣∣∣y(i)1 , ...
〉〈
..., y

(i)
k

∣∣∣{
It remains to show that P1 = P2[y2 ← δ(y2)]. We have:∑

y∈{0,1}k
e2iπP1(y) |y1, ...〉〈..., yk| =

r∑
e2iπP1 |y1, ...〉〈..., yk|

z

= op1 ◦ Jt′1K ◦ op2 = op1 ◦ Jt′2[y2 ← δ(y2)]K ◦ op2

=
r∑

e2iπP2 |y1, ...〉〈..., yk|
z

=
∑

y∈{0,1}k
e2iπP2(y) |y1, ...〉〈..., yk|

By linear independence of the family (|y1, ...〉〈..., yk|)y∈{0,1}k , we have:

∀y ∈ {0, 1}k, e2iπP1(y) = e2iπP2(y)

Since the Pi are considered modulo 1, we have ∀y ∈ {0, 1}k, P1(y) = P2(y). By Lemma 4, we
finally get P1 = P2.

Proof (Proposition 12). For a morphism s
∑
y
e2iπP |O〉!D 〈I| of SOP , consider the tuple:(

|y| , |{Di ∈D |mon(Di) ≥ 2}| ,
∑
i

mon(Di),mon(O1), . . . ,mon(Om),mon(I1), . . . ,mon(In),mon(P )

)
Again, we define an order on these, as their lexicographic order. We can show that all the rules of
−→
Clif

reduce the tuple:

– (Elim), (HH), (ω) and (H ) all reduce |y|
– (disc) reduces |{Di ∈D |mon(Di) ≥ 2}|
– (⊕ ) reduces

∑
i mon(Di) and sometimes even |{Di ∈D |mon(Di) ≥ 2}|

– (Cst ) reduces
∑
i mon(Di)

– (ket) reduces mon(Oi) and none of the previous quantities in the tuple
– (bra) reduces mon(Ii) and none of the previous quantities in the tuple
– (Z ) reduces mon(P ) and none of the previous quantities
– (Z) reduces any tuple with |y| ≥ 1 and mon(P ) ≥ 1 to (1, 0, . . . , 0, 1)

Proof (Lemma 6). The first and last conditions are verified just as in the pure case. Then, all the
constants in the phase polynomial can be removed using rule (Z ).

Then for the form of D, let us decompose it as D = {y1, . . . , yk}∪{Di1 , . . . , Dis} where all the
polynomials in the right hand side have mon(.) ≥ 2 (if 0 or 1 appears as a polynomial in D, it is
removed using (Cst )). Consider Di1 . Either
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– Di1 contains at least one variable yk+1 /∈ {y1, . . . , yk}, in which case (disc) can be used so
D′ = {y1, . . . , yk+1} ∪ {Di2 , . . . , Dis}[yk+1 ← Di1 ]

– or Di1 contains only variables of {y1, . . . , yk}, in which case, using (⊕ ) repeatedly, it can
be reduced to a constant that can then be removed using (Cst ), so D′ = {y1, . . . , yk} ∪
{Di2 , . . . , Dis}

Hence, in any case, D can be reduced to the form D = {y1, . . . , yk}.
We then have to show that P can be reduced to the form above. Suppose y0 appears both in

!{yd} and in P (1), then (Z ) can be used to remove it from P . The same goes for monomials of
the form y0y

′
0 in P (2) when {y0, y′0} ⊆ {yd}.

Finally, if a variable of yd appears only in !{yd} and in P , then the rule (H ) can be applied
to remove the variable.

Proof (Lemma 7). The proof is similar to that of Proposition 11, except now we have a set of
discarded variables {yd}. However, since {yd} ⊆ Var(O, I), the set of discarded variables will
deplete as the t(i) are built. The conclusion remains unchanged.

Proof (Proposition 14). First, let us prove that, if t ∈ SOP is terminal, G(F (t)) is defined and
G(F (t)) = t. By definition:

t =
1
√

2
p

∑
y,yd

e2iπP (y,yd) |O(y,yd)〉!{yd} 〈I(y,yd)|

where P has no constant, all its monomials contain a variable of y, {y} ⊆ Var(O, I) and {yd} ⊆
Var(O, I, P ). Hence, again by definition:

F (t) :=
1
√

2
2p

∑
y,y′,yd

e2iπ(P (y,yd)−P (y′,yd)) |O(y,yd),O(y′,yd)〉〈I(y,yd), I(y′,yd)|

Notice that:

– obviously |O(y,yd)| = |O(y′,yd)| and |I(y,yd)| = |I(y′,yd)|
– {yd} = {y,y′,yd} \Var(O(y,yd)⊕O(y′,yd), I(y,yd)⊕ I(y′,yd)).

Indeed, if Oi(y,yd) = yi1⊕ . . .⊕yik ⊕ydj1⊕ . . .⊕ydj` , then Oi(y,yd)⊕Oi(y′,yd) = yi1⊕ . . .⊕
yik⊕y′i1⊕ . . .⊕y

′
ik

, so {yd}∩Var(O(y,yd)⊕O(y′,yd), I(y,yd)⊕I(y′,yd)) = ∅. Moreover, all
the variables of y and y′ appear somewhere in Var(O(y,yd)⊕O(y′,yd), I(y,yd)⊕ I(y′,yd)),
since {y} ⊆ Var(O(y,yd), I(y,yd)).

– {y} := Var(O(y,yd), I(y,yd)) \ {yd} for roughly the same reasons
– {y′} := ({y,y′,yd} \ {y}) \ {yd}
– by construction of F , |y| = |y′|
– whenever Oi(y,yd) ⊕ Oi(y

′,yd) = yi1 ⊕ y′i2 we define δ(y′i2) := yi1 . We need to show that
it completely and uniquely defines δ as a bijection. Consider the variable yi. Let Ki be the
first (from left to right) polynomial of (O(y,yd), I(y,yd)) where yi appears. Then Ki(y,yd) =
yi, otherwise, either (ket) or (bra) could be applied on t, which means t is not terminal.
Hence Ki(y,yd) ⊕ Ki(y

′,yd) = yi ⊕ y′i, so δ(y′i) = yi, and y′i is the only possible preimage
of yi by δ. Notice that δ(y′) = y with no permutation on the indexes, so we obviously get
(O(y,yd)⊕O(y′,yd), I(y,yd)⊕ I(y′,yd))[y

′ ← δ(y′)] = 0.

Hence, G(F (t)) is well defined, and:

G(F (t)) =
1
√

2
p

∑
y,yd

e−2iπ(P (y,yd)−P (y′,yd))[y←0][y′←y] (|O(y′,yd)〉!{yd} 〈I(y′,yd)|) [y←0][y′←y]

=
1
√

2
p

∑
y,yd

e−2iπ(0−P (y,yd)) |O(y,yd)〉!{yd} 〈I(y,yd)| = t

We now need to show that for all the terms t′ that are reduced from F (t), G(t′) is defined, and
G(t′) = G(F (t)) = t. To do so, we show by induction that along any reduction path from F (t),
some properties are preserved.

Let t′ = 1√
2
p′
∑
y(t′)

e2iπP |O1,O2〉〈I1, I2| such that F (t)
∗−→

Clif+
t′. We claim that:
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– p′ = 2p
– y(t′) = y,y′,yd, i.e. no variable is removed, and the partitioning by G does not change
– Var(O1,O2, I1, I2) = {y,y′,yd}, i.e. no variable becomes internal

– ∀k,
∣∣∣Var(O

(k)
i ) ∩ {yd}

∣∣∣ ≤ 1 and


Var(O

(k)
1 ) \ {yd} ⊆ Var(O

(1)
1 , ..., O

(k−1)
1 )

Var(O
(k)
2 ) ⊆ Var(O1, O

(1)
2 , ..., O

(k−1)
2 )

or

O
(k)
i = yk′

– ∀k,
∣∣∣Var(I

(k)
i ) ∩ {yd}

∣∣∣ ≤ 1 and


Var(I

(k)
1 ) \ {yd} ⊆ Var(O1,O2, I

(1)
1 , ..., I

(k−1)
1 )

Var(I
(k)
2 ) ⊆ Var(O1,O2, I1, I

(1)
2 , ..., I

(k−1)
2 )

or

I
(k)
i = yk′

– G(t′) is well defined and G(t′) = t

It is the case for F (t). Indeed, t is terminal with −→
Clif

, so since the rule (ket) cannot be applied

to t, it in particular implies the above properties on F (t).
Let us consider one such t′. Notice that since there are no internal variables, none of the rules

(Elim), (HH), (ω) or (Z) can be applied. Suppose t′ −→
Clif+

t′′ in one step. Only (ket) or (bra) can

be applied from t′ to t′′, and only on either O1 or I1. Without loss of generality, suppose (ket) is

applied on, in the polynomial O
(k)
1 of t′. Notice that O

(k)
1 is necessarily of the form O

(k)
1 = ydk ⊕O′

where ydk ∈ {yd} \ Var(O
(1)
1 , ..., O

(k−1)
1 ) and Var(O′) ⊆ Var(O

(1)
1 , ..., O

(k−1)
1 ), otherwise the rule

cannot be applied.

By application of the rule, t′′ = t′[ydk←ydk⊕O′]. Since ydk /∈ Var(O
(1)
1 , ..., O

(k−1)
1 ), the first k−1

polynomials in the ket are left unchanged, so the variables Var(O
(1)
1 , ..., O

(k−1)
1 ) are still in the ket.

In particular, the variables Var(O′) ⊆ Var(O
(1)
1 , ..., O

(k−1)
1 ) are also still present in the ket. The sub-

stitution cannot remove other variables from the ket, so Var (Oi[ydk←ydk⊕O′], Ii[ydk←ydk⊕O′]) =
{y,y′,yd}. The overall scalar is obviously unchanged. It is fairly easy to check the property of the
ket for t′′. Finally, we can show that the partitioning of variables by G is unchanged.

We assume that G(t′) is well defined. O1 and O2 are hence of the same size. {yd} is defined
for t′ as {yd} = {y(t′)} \Var(O1 ⊕O2). Notice that ydk ∈ {yd} so ydk /∈ Var(O1 ⊕O2). Hence, if

it appears somewhere in O1, say in O
(j)
1 , it also appears in O

(j)
2 so that ydk /∈ Var(O

(j)
1 ⊕ O

(j)
2 ).

So, the substitution will not change:

{yd} = {y(t′)} \Var(O1 ⊕O2) = {y(t′)} \Var(O1[ydk←ydk⊕O′]⊕O2[ydk←ydk⊕O′])

Similarly, {y1} and {y2} are left unchanged, as well as the bijection δ.

Since Var(O′) ⊆ Var(O
(1)
1 , ..., O

(k−1)
1 ) ⊆ {y1}, the substitution [ydk←ydk⊕O′][y1 ← 0][y2 ← δ(y2)]

is the same as the substitution [y1 ← 0][y2 ← δ(y2)]. Hence, G(t′′) = G(t′) = t.
The whole reasoning is similar when the rule (bra) is applied instead of (ket). This concludes

the proof.
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