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A B S T R A C T

This study provides a new insight on the EHL regime in time-varying conditions. A full-analytical resolution of
the Reynolds equation was proposed considering forced oscillations. Confronted to experimental validation, the
analytical film thickness equations provide perfect modeling of the film forming mechanisms: squeeze induced
by the transient evolution of the film thickness with time, asymmetry and hysteresis in the film distribution
resulting from the change in direction and the transport effect. Furthermore, the analytical equations combined
with a modulation of the inlet flow give an accurate prediction of the effects induced by the starvation resulting
from the change in direction, i.e. as the original outlet zone becomes the next inlet zone.

1. Introduction

Various dynamic phenomena can induce a perturbation in the film-
forming capability of a lubricated contact such as the surface rough-
ness, the heterogeneity of the confined lubricant, the presence of a
boundary film on the surfaces, the time-varying tribological conditions
(load or velocity), or the transient changes in the flooding regimes.
For example, the local increase in lubricant film thickness observed
with laser-textured surfaces is mainly related to the squeeze-term of the
Reynolds equation that cannot be neglected even when the velocities
are stationary (see [1–3]).

In colloidal lubrication, shearing of complex fluids in confined
interfaces submitted to reciprocating motions promoted film instabili-
ties [4–7], which were correlated with local friction variations. Similar
observations were also made for more simple fluids within time-varying
conditions and were qualitatively backed-up by numerical (more or less
simplified) resolution of Reynolds equation (see [8–15]). Compared to
the classical steady-state film thickness prediction by Hamrock–Dowson
or Moes–Venner models [16,17], the numerical solutions of the full
Reynolds equation including the transient term capture features such
as the hysteretic nature of the film thickness evolution or successive
squeeze [15]. The effects of the velocity or the deceleration rate has
been investigated experimentally and theoretically in [18] and in [19],
respectively. A tentative general theoretical solution of the Reynolds
equation for non-stationary elastohydrodynamic was proposed by [20].
Nevertheless, this approximated solution was in parametric form using
the velocity as a parameter, making the application of this solution

difficult for transient conditions. The first successful analytical solution
of the full Reynolds equation in 1D and 2D can be found in [19]
for linear deceleration. This solution was experimentally validated
over two decades of viscosity in the range of deceleration between
0.004 and 0.2 m/s2 under fully-flooded conditions. It is worth noting
that all these works concerns fully-flooded contacts. However when
lubricated contacts are submitted to reciprocating motions, the oil-
supply conditions may change during time: for instance, the contact
becomes transitorily starved at the position where the direction of the
displacement changes (see figure 8 in [21]). The starvation phenomena
are referred in the literature only under steady-state kinematics either
experimentally [22–25] or numerically [26–28]. For smooth contacts,
the starvation mechanisms resulted from the balance between the flow
rates, in the inlet zone, : a competition between Poiseuille and Couette
flows leads to the formation of a small reservoir at the entrance of the
Hertz contact. Along the transverse direction (i.e. perpendicular to the
entrainment velocity direction), only the Poseuille flow is responsible
for the ejection of the fluid while in the outlet, the fluid is ejected
in the direction of the flow and entrained away from the contact.
A dimensionless master curve was obtained by [26] to define the
transition between starved and fully-flooded regime in steady-state
conditions. This transition was governed by a parameter, function of
the two Moes parameters M and L.

In this framework, the film-forming mechanisms in a smooth EHL
contact moved by forced oscillating velocities (succession of accelera-
tion/deceleration cycles) were analyzed considering the contributions
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Nomenclature

� Stroke distance, m;

� Lubricant viscosity, Pa s;


 Reduction factor exponent;

� Dimensionless space–time parameter;

� Acceleration or deceleration time, s;

� Non-null sign function;

b Hertzian radius, m;

ℎ Film thickness, m;

ℎc Hamrock–Dowson film thickness, m;

H Dimensionless film thickness;

H2n,H2n+1 Odd and even iterations of film thickness
calculation;

L Moes dimensionless material parameter;

M Moes dimensionless load parameter;

p Contact pressure, Pa;

r Successive iterations film thickness ratio;

R Ball radius, m;

R∗ =
2

1
Ra

+
1
Ra

Combined surface roughness, m;

Ra Contact bodies surface roughness, m;

 Reduction factor;

S, S∗ Dimensionless space–time parameter;

t Time, s;

T Dimensionless time;

u Entrainment velocity, m/s;

u1, u2 Absolute velocities of contact bodies, m/s;

umax Maximum velocity, m/s;

x Position in the contact, m;

X Dimensionless position;

X1 Convergent position;

Xm Divergent position;

Xm Divergent position.

of both squeeze and starvation. Thanks to an extension of a recent
theoretical work [19], an analytical solution of Reynolds equation was
proposed and experimentally validated to get a better understanding
of the lubrication mechanisms under these time-varying conditions.
In addition to bring a full prediction of the film thickness, a quan-
tification of the starvation degree, was provided by the confrontation
analytical/experimental film thickness.

2. Modeling of transient EHL line contact

2.1. General assumptions

The Reynolds equation that models the coupling between the film
thickness ℎ(x, t) and the pressure p(x, t) within a lubricated contact
between two solids can be written in one dimension as:

)

)x

[
ℎ3

�

)p

)x

]
= 6u(t)

)ℎ

)x
+ 12

)ℎ

)t
(1)

with u(t) = u1(t) + u2(t) the entrainment velocity, � the viscosity of the
fluid under pressure following the Barus law (taken for mathematical
convenience), x the position in the contact and t the time. The general
assumptions required to get an analytical solution of the Reynolds equa-
tion includes Ertel hypotheses and Crook’s approximation. They are
detailed in [19]. Then, the Reynolds equation was solved by successive
integrations in the contact inlet and in the Hertzian contact consid-
ering the fluid entrainment and squeeze contributions. The resulting
analytical solution was proposed and experimentally backed-up in the

Fig. 1. Triangular velocity profile after an initial constant velocity step. � represents the
deceleration/acceleration duration. Each step is described and the change in directions
is indicated with an arrow. The associated sine velocity used in reciprocating sliding
experiments is superimposed in dashed line.

case of a linear deceleration over a deceleration time �. We showed
that it was mandatory to account for the squeeze contribution and the
transport effects in the lubricant flow to predict the evolution of the
film thickness according to time and contact position.

Here, a similar approach was used, solving analytically the Reynolds
equation in three zones: the convergent, the high-pressure zone and
the constriction zone. Accounting for the constriction zone was here
compulsory as the outlet zone becomes the new inlet zone at each
change in direction. To model the forced oscillations, after an initial
step at constant velocity u0, as a first approximation, the velocity profile
was set triangular instead of sinusoidal as in the reciprocating sliding
experiments (Fig. 1). In this case, it is important to emphasize that after
a deceleration, when the velocity vanishes, the following acceleration
was performed with a change of direction. Nevertheless, after the
acceleration, the deceleration takes place in the same direction. In
the remainder of the paper, the deceleration phase (resp. acceleration
phase) corresponds to a decrease in |u(t)| (resp. an increase in |u(t)|).

In the central contact zone, the pressure field was assumed constant.
The Reynolds equation (Eq. (1)) was simplified as follows:

u(t)
)ℎ

)x
+ 2

)ℎ

)t
= 0 (2)

This equation can then be solved using the method of character-
istics as described in [19]. Consequently, three main film thickness
equations can be proposed during the first deceleration, the follow-
ing accelerations and decelerations based on the work of Mazuyer
et al. [19].

2.2. Film thickness equations

First of all, the following dimensionless parameters were calculated
from the distance x, the time t and the film thickness ℎ:

• The dimensionless distance X =
x

b
with b the Hertzian radius.

Then, X1 corresponds to the dimensionless position at the end of
the inlet and Xm to the one at the beginning of the outlet.
• The dimensionless time T =

tu0

b
.

• The dimensionless film thickness H =
ℎ(x,t)

ℎ(0,0)
.

• The dimensionless space–time parameters � =
�u0

b
and S = 1−

T

�
.

The dimensionless contact film thickness during the first deceler-
ation H1(X,S) can be expressed by the equations system (3). S = 1

corresponds to t = 0 and then H0[X] = H[X,S = 1] corresponds to
the initial thickness profile (i.e. in pure rolling before the first decel-
eration). This initial film thickness can be measured with a constant



velocity experiment or generated using Hamrock–Dowson equation and 
Crook’s approximation or generated with a numerical simulation [29].
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During the accelerations, with an initial change in direction, the
dimensionless film thickness H2,H4,… ,H2n (∀n ∈ N∗) are defined by
the equations systems (4) and (5).

Using, �(X,S∗) = H0(X) ⋅
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non-null sign function � =

{
1 if S ≥ 0

−1 if S < 0.
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During the following decelerations (i.e. except the initial one), the
dimensionless film thickness H3,… ,H2n+1 (∀n ∈ N) are defined by the
Eq. (6).
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2.3. Film thickness evolution with position and time

The evolution of the film thickness profile as a function of time and
position is presented in Fig. 2. In addition, the waterfall representation
in Fig. 3a gives this evolution in a single view. It is noteworthy that
the transient effects are well described here as the hysteresis between
the deceleration and acceleration periods is well highlighted. After the
first cycle, the film thickness decreased to reach a steady-state level and
the evolution of the film thickness was then identical in the following
cycles.

In more detail, it can be seen that:

• The initial profile, H0(X), corresponds to the profile at constant
velocity with a fluid flow going from the left to the right.
• Then, during the first deceleration, as the velocity decreases,
the film thickness decreases from the inlet and this decrease
propagates to the rest of the contact with time. However, at zero
velocity, the surfaces are still rather well separated, consistently
with [19].

• During the first acceleration, the change of sliding direction pro-
duces lower film thickness of lubricant in relation with the prop-
agation of the dimple formed at zero velocity and of the thin
film constriction zone. This clearly illustrates the transport effect
taking place in the contact. After this phase, the film thickness
starts increasing again.
• During the second deceleration, the film thickness keeps increas-
ing and reaches its maximum amplitude (however, the amplitude
of the initial profile is not retrieved here). Then, the profile
amplitude slightly decreases until a local minimum.
• During the second acceleration, again, with the change in direc-
tion, the dimple formed at zero velocity propagates through the
contact and the film thickness decreases before starting increas-
ing.

The plot of the central film thickness confirms these observations
(see Fig. 3b). This analytical model predicts the evolution of the film
thickness in fully-flooded conditions. The asymmetry in film thickness
distribution during acceleration and deceleration phases results in a
strong hysteresis in the film thickness.

3. Experimental validation

3.1. Device setup

The experiments were performed using a forced oscillations tri-
bometer CHRONOS described in [21]. The contact is in ball-on-flat
configuration using a fixed steel ball with a diameter of 25.4mm and
a quartz moving flat counterpart. The flat quartz counterpart has a
semi-reflective coating to allow optical measurement of lubricant film
thickness distribution. Before the experiments, the ball was approached
to the counterpart and a drop of polyalphaolefin (PAO) was set between
the two surfaces to form a meniscus. Then, the sinusoidal movement
was launched without contact to avoid wear at the beginning of the
strokes. Once the motion set, a constant normal load was applied and
the contact was formed and visualized. The experimental measurement
began after tens of sliding cycles and the first cycles were not acquired.

The following contact conditions were used in this study for the
experimental validation and the calculation:

• The steel ball Young modulus is of 210GPa and the Poisson ratio
is of 0.3. The glass flat has a Young modulus of 70GPa and a
Poisson ratio of 0.17.
• The surface roughness of both sphere and flat measured at Ra =

14±1 nm give then a combined surface roughness R∗ = 14±1 nm.
• A lubricant drop of 20 μL of a PolyAlphaOlefin oil at a room
temperature of 20.5 ◦C with a corresponding viscosity of 0.8 Pa
s.
• A load fixed at 5, 10, 15 or 20N corresponding to respective
Hertzian contact pressures of 175, 220, 252 or 278MPa and
contact radius b of 95, 120, 137 and 151 μm. The nominal load
was 10N.
• The nominal stroke length � was fixed at 1mm which is at least
six times larger than the contact radius.
• The nominal frequency was fixed at 10Hz.
• Observations were performed using a speed camera with a frame
size of 1600 × 500pixel2, a resolution of 1.6 μm/pixel and a frame
rate of 1000 fps. This camera is associated with a lens allowing
interferometric measurements [21].

In these conditions, neither wear nor roughness modification was
detected after the experiments. However, the first steps of the velocity
profiles (pure rolling and first cycles) were missed.



Fig. 2. Evolution of the dimensionless film thickness profile as a function of time and position: (a) first deceleration from pure rolling phase i.e. the initial film thickness (from
blue to green); (b) change in direction and first acceleration (from green to yellow); (c) second deceleration (from yellow to red); (d) change in direction and second acceleration
(from red to black). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Evolution of the dimensionless film thickness with dimensionless time during the first two cycles: (a) waterfall display of film thickness distribution; (b) central film
thickness.

3.2. Contact visualization under forced oscillations

The lubricated interface displays similar periodic dynamics as shown
in Fig. 4:

• After deceleration, at zero velocity, the interface shows a typical
circular zone of squeezed entrapped lubricant surrounded by a
ring constriction zone.

• During an acceleration with a change in direction, the previously
squeezed lubricant volume flowed out of the contact and a new
volume of lubricant flowed in the contact. This step highlights the
lubricant transport effect i.e. the transport of the well-identified
squeezed lubricant volume in the middle of the contact around
u = 0 to the contact outlet around u =

umax

2
. The time needed to

performed this transport of lubricant is called the residence time
in the rest of this paper.



Fig. 4. Contact interferograms from a zero velocity to half maximum velocity and
maximum velocity during an acceleration and to half maximum velocity during a
deceleration (purple ≈ 3 nm, blue ≈ 10 nm, green ≈ 70 nm and red ≈ 140 nm) for 0.8 Pa s at
a load of 10N i.e. a contact radius of 120 μm. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

• Around maximum velocity, the conventional EHL horse-shoe
shape appears with a large homogeneous inner zone of equal
lubricant thickness.
• During a deceleration, most of the lubricant volume is maintained
by the squeeze effect in the contact and a small amount of
lubricant flows out of the contact. And so on, the contact is
emptied once again during the next acceleration.

Experimentally, a transient starvation effect due to the presence of
a smaller fluid volume in the inlet zone, was clearly visible in front
of the contact around the maximum velocity. This phenomenon can
be explained by the time-varying length and position of the cavitation
wake length. At the change in direction, the original exit zone becomes
the inlet zone and a smaller lubricant reservoir flows in the contact
leading to a starvation effect.

3.3. Film thickness measurement

The central longitudinal profiles of lubricant film thickness can
be plotted to give a clear view of the lubricant dynamic during an
acceleration and a deceleration (Fig. 5) for the reference conditions:

• At zero velocity, the squeezed lubricant is confined to form a dim-
ple of a maximum film thickness around 70nm and surrounded
by a ring of constriction of thickness around 20nm.
• During the following acceleration (Fig. 5a), the confined dimple
flows towards the exit constriction. Then, as this fluid volume
flows out of the contact, a new volume of lubricant simulta-
neously enters the contact front (e.g. here after a velocity of
20mm/s). Around the maximum velocity, the squeeze volume is
totally out of the contact. The profile forms a wedge.
• During the deceleration (Fig. 5b), from the wedge shape, the
profile tends towards the EHL classical horse-shoe shape profile
observed in the constant velocity experiments. When approaching
the zero velocity, the profile forms again the shape of a dimple.

These observations remain valid for the whole range of contact
size and pressure investigated. As predicted by the calculation (see
Fig. 2), the lubricant film thickness never reaches zero even when the
velocity is null. For instance, with a viscosity of 0.8 Pa s, at 10Hz and
under a load of 10N, the minimum film thickness is about 14 nm. In
addition, the evolution of the film thickness presented in Fig. 2 and 5
are identical.

4. Film thickness mechanisms and discussion

4.1. Transient squeeze & residence time effect

For the first deceleration, the theoretical calculation was perfectly
well backed-up in [19] for 70 different experimental conditions. In the
present work, when the initial deceleration is followed by a change in
direction and acceleration, for reference conditions, at 10Hz and for
a viscosity of 0.8 Pa s, the comparison in Fig. 6 between the dimen-
sionless experimental and theoretical central film thickness evolutions
also shows a very good agreement. Both shapes follow the same trend
and are very similar, confirming that the main mechanisms, here the
transient squeeze and the transport effect, are well accounted for by the
theory. In addition, it is also interesting to note that between an acceler-
ation and a deceleration the measured thickness displayed an inflection
not predicted by the calculated film thickness (see Section 4.2).

The contact size b and the stroke distance � have a direct influence
on the transient squeeze and the transport effect, even though the
mechanisms remain identical. These two parameters directly influence
the lubricant residence time in the contact. Furthermore, the experi-
ments and the calculation showed that neither the sliding frequency
nor the viscosity have an effect on the residence time. In this way,
the dimensionless time parameter � =

�u0

b
=

�

4
⋅
�

b
highlighted by the

analytical resolution combines the contact size and the stroke distance.
In other word, the larger the contact size or the smaller displacement
amplitude, the longer the lubricant flow residence time. At low �

values, i.e. at relatively high contact load/large contact size (here at
constant displacement amplitude), the local minimum observed at the
zero velocity, when t/T = 0.25 and 0.75, disappears (Fig. 6a) which is
well predicted by the calculation (Fig. 6b). At high � value, i.e. here at
smaller contact size, a larger drop of film thickness around the zero
velocity was then observed. This seems to confirm the role played
by the residence time in the observation of the film drop. A detailed
investigation of the effects of the displacement amplitude could validate
this interpretation in the future. Eventually, it is also clear that the
dimensionless film thickness level and spread between 0.3 and 0.8 was
not affected by the change of contact load/size.

4.2. Starvation effect consideration

Even though the theoretical calculation well predicts the trends
observed experimentally, the level of the central film thickness is over-
estimated by the theory. This can be attributed to starvation observed
experimentally. It is induced by the change in direction, when the orig-
inal outlet becomes the inlet and the contact crosses over the previous
and persistent cavitation wake (see Fig. 4). To take in consideration
this starvation effect, a film thickness reduction factor  was added
in the analytical solution (Eq. (7)). In the previous Eqs. (4), (5) and
(6), the initial profile term H0(X) was modulated by the  factor:
 × H0(X). The first deceleration was obviously not affected by any
starvation effect and no starvation coefficient was applied to the Eq. (3).

The film thickness reduction factor was first proposed by Chevalier
et al. [30] and associated to a factor 
 for constant velocity conditions.
In those conditions, Damiens et al. [31] interpreted the 
 factor as
the resistance that the contact opposes to the lubricant which tries to
bypass it. Such resistance reduces contact bypass by the lubricant. It
therefore forces it to cross the contact. Damiens et al. considered the
inlet area could be regarded as a tube in which part of the lubricant



Fig. 5. Longitudinal profiles of lubricant film thickness with a viscosity of 0.8 Pa s, at 10Hz and under a load of 10N (i.e. a Hertzian radius of 120 μm): (a) during an acceleration
with inflow from right to left; (b) during a deceleration.

Fig. 6. Dimensionless central lubricant film thickness measurement (a) and calculation (b) with a viscosity of 0.8 Pa s at a sliding frequency of 10Hz with Hertzian radii from
95 μm to 151 μm.

flow is diverted to the contact periphery. Thus, by modeling the lateral
flow of the ejected lubricant in this tube, he showed a linear relation
between the 
 factor and the square root of the ratio of Moes dimension-
less load parameter M and to Moes dimensionless material parameter
L. This ratio is related to the size of the inlet area which is constant in
a steady-state regime. In time-varying conditions, the amount of oil in
the inlet area is time-dependent and 
 does not follow a linear trend
anymore with this combination of Moes parameters.

That is why, the 
 factor was then calculated to fit the measured
the initial lubricant film thickness at the first stages of the oscillating
motion over 88 deceleration/acceleration experiments. It was then plot-
ted against the dimensionless Hamrock–Dowson film thickness ℎC∕R

calculated with the velocity amplitude u0 (Fig. 7). As a result, the

 factor is linear with the Hamrock–Dowson film thickness with a

coefficient of determination of 98.9%, meaning that it is proportional
to L3∕4∕M7∕9

 =
r



√
1+r


with

⎧
⎪⎨⎪⎩

if S ≤ 0, r =
H2n−1(Xm)

�̄(P )⋅H2n(0)

else r =
H2n−1(X1)

�̄(P )⋅H2n(0)

and

{

 = (6.50.1) × 104 ⋅ ℎC∕R

ℎC∕R = 1.92 ⋅ U0.67
⋅ G0.53

⋅W −0.067

(7)

Eventually, the central film thickness of various lubricated contacts
in time-varying conditions can be accurately calculated (Fig. 8). As
shown by the waterfall representations (Fig. 8a and b), the calculation
using the starvation factor gives similar variations and values of lubri-
cant thickness profiles as during the experiments. On the one hand, the



Fig. 7. 
 factor as a function of the dimensionless Hamrock–Dowson film thickness
ℎC∕R.

deviation of calculation from experiment increased for positions further

away from the contact center. This was presumably due to the strong

assumptions, i.e. Ertel hypotheses and Crooks? approximation, used for

the analytical resolution. This could also originate from the triangular

velocity profile. On the other hand, the calculated central film thickness

shows an accurate reproduction of the measurement (Fig. 8c). In partic-

ular, the film thickness inflexions previously observed around the zero

velocity and between each acceleration and deceleration was clearly

retrieved here by the calculation.

5. Conclusions

The film establishment mechanisms in EHL regime in forced os-

cillations were investigated thanks to the full-analytical resolution of

the Reynolds equation. This solution was backed-up with experimen-

tal measurements using the CHRONOS tribometer which permits di-

rect contact visualization under controlled forced oscillations. Con-

sequently, the main contributions to the film establishment i.e. the

squeeze and the transport effect, were well retrieved by the calculation,

which confirms several observations:

• The lubricant film thickness hysteresis in the contact as its evolu-

tion was asymmetric during an acceleration and a deceleration.

Therefore, the maximum film thickness was not synchronized

with the maximum velocity and the minimum film thickness did

not occur at the zero velocity.
• A slight drop of film thickness was observed around the zero

velocity due to the transient squeeze ad residence time effect

which depend on the dimensionless time parameter �.
• Between each deceleration and acceleration, a lubricant film

thickness inflection was observed due to the inlet flow reduction

at the change in direction. This effect was well considered in

the calculation using an adaptation of Chevalier’s film thickness

reduction parameter with an adjustment of the 
 factor as a

function of the film thickness.
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Fig. 8. Lubricant film thickness for a viscosity of 0.8 Pa s and sliding frequency of 10Hz under a load of 10N: (a) waterfall of calculated profiles; (b) waterfall of measured profiles;
(c) calculated and measured central lubricant film thickness.
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