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Global linear stability analysis of open flows leads to difficulties associated to boundaiy conditions, leading to either spurious wave reflections (in compressible cases) or to non-local feedback due to the elliptic nature of the pressure equation (in incompressible cases). A nove( approach is introduced to address both these problems. The approach consists of solving the problem using a complex mapping of the spatial coordinates, in a way that can be directly applicable in an existing code without any additional auxiliaiy variable. The efficiency of the method is first demonstrated for a simple 1D equation modeling incompressible Navier-Stokes, and for a linear acoustics problem. The application to full linearized Navier-Stokes equation is then discussed. A criterion on how to select the parameters of the mapping function is derived by analyzing the effect of the mapping on plane wave solutions. Finally, the method is demonstrated for three application cases, including an incompressible jet, a compressible hole-tone configuration and the flow past an airfoil. The examples allow to show that the method allows to suppress the artificial modes which otherwise dominate the spectrum and can possibly hide the physical modes. Finally, it is shown that the method is still efficient for small truncated domains, even in cases where the computational domain is comparable to the dominant wavelength.

Introduction

Numerical simulations of real flow configurations in open domains require artificial boundary conditions to allow vortical structures to freely escape from the domain and avoid wave re flections. The most common Artifi cial Boundary Conditions (here denoted as ABC) chosen for compressible fluid flows are the sponge regions which imply the introduction of an artificial damp ing term in an outer 'sponge layer' located far away from the interesting regions. The main advantage of this method is its simplicity. However, it generally leads to extremely large meshes characterized by sponge layers much larger than the regions of interest. An alternative method is the Perfectly Matched Layer (PML) treatment of ABCs. First introduced by Berenger (1) for electromagnetic radiation problems and later extended for lin ear acoustics problems by Bermudez et al. (2), this method has proven its effi ciency for studying compressible flows using lin earized Navier-Stokes Equations (LNSE) in the frequency do main. However, since the method introduces a spatial attenuation which depends upon the frequency, it cannot be directly applied to global stability problems where the frequency is unknown. A possible solution is to introduce auxiliary variables in the buffer region leading to a formulation where the dependency with re spect to the frequency does not appear anymore, as done for instance by Hu et al. (3) and Whitney (4). However the introduc tion of these new variables significantly increases the dimension of the problems under investigation. As well, in the formulation of PML the estimation of a base state is required, which is not generally an easy task for flows with domains whose geometry is convoluted.

ABC are also required for the stability analysis of purely in compressible open configurations such as swirling flows (see [SI). The diffi culties are due to the strong convective amplification of vortical perturbations, which may still be active at the ourlet boundary, and to the elliptic nature of the pressure equation leading to nonlocal feedback between upstream and downstream boundary conditions. Lesshaft (6) showed that these two prob lems lead to the existence of two families of artificial eigenmodes which can in some situations dominate the spectrum and hide the physically relevant modes. Fabre et al. (7) observed similar difficulties in studying the response to harmonie forcing of a jet flow through a zero-thickness circular hole. ln this work, the authors introduced a method based on the Complex Mapping (CM) of the spatial coordinates. The key idea is to introduce a spatial damping which is independent upon the frequency and thus directly fitted to eigenvalue computations. In a subsequent work Fabre et al. [8], the method was successfully applied to the eigenvalue analysis of the jet through a circular hole of nonzero thickness, allowing to capture unstable global modes arising from the existence of a recirculation region within the thickness of the hole.

The purpose of this work is to explain the principle of the CM technique and to show that is applicable to the linear stability analysis of both compressible and incompressible flows. We demonstrate that (i) it is efficient as a non-reflexion condition for acoustic perturbations and (ii) it is able to provide a sufficient decay for the large convective amplification of vortical perturbations, thus efficiently fixing both problems identified above.

The remainder of the paper is organized as follows: In Section 2 we introduce the complex mapping methodology for a linear PDE problem and we draw some parallels between CM and PML. In Section 3 we apply CM to a canonical scalar PDE problem, the Ginzburg-Landau equation. This toy model serves to demonstrate how CM can be used to reduce non-local effects, i.e. to suppress the (elliptic) feedback pressure mechanism in the incompressible Navier-Stokes equations. In Section 4 we discuss the effect of CM on the spectrum of the Helmholtz equation that governs inviscid linear acoustics, showing that the methods effectively work as a non-reflective boundary condition. Sections 5 and 6 focus on the application of complex mapping to Navier-Stokes equations. We first review the concept of global stability of both incompressible and compressible flows, which motivates the study of the effect of CM in plane acoustic and hydrodynamic waves. Finally, in Section 6 three application cases, where CM is used for stability computations, are presented. First an incompressible jet flow which suffers from non-local feedback due to strong spatial amplification of linear perturbations. ABC are mandatory in this case to correctly characterize the spectrum of the linear problem. Second, we study the effect of CM in a compressible flow, the hole-tone configuration, by looking at the performances of CM with respect to sponge layers. The last numerical case is the weakly compressible flow past a symmetric airfoil at a large angle of attack. In this last test case, it is shown that complex mapping region is still effective even when its length is shorter than the acoustic wavelength. The Navier-Stokes and linear acoustics computations are performed using the FreeFem++ solvers and Octave/Matlab drivers provided by the StabFem suite (see the review paper by Fabre et al. [9] for details). Programs reproducing most of the figures of the paper are available online on the web page of the project (https: //gitlab.com/stabfem/StabFem).

Introduction of the complex mapping technique for eigenvalue problems

Mathematical framework (1D case)

To introduce the method, let us first consider for simplicity a one dimensional autonomous linear partial differential equation (PDE) with the following form:

∂Ψ ∂t = LΨ (1) 
where Ψ (x, t) is defined on the domain x ∈ Ω = [0, ∞], and L is a linear operator. The asymptotic linear stability of such PDE is driven by modal solutions with the form

Ψ (x, t) = Ψ (x)e -iωt ( 2 
)
where ω is the complex eigenvalue. We are therefore led to a linear eigenvalue problem with the form -iωΨ = LΨ .

(

) 3 
The problem is then said to be linearly unstable if there exists at least one eigenvalue such as ω i > 0. Note that the modal ansatz ( 2) is also at the basis of the so-called frequency-domain approach to harmonically forced non-homogeneous PDEs (such as wave scattering problems). The difference is that in the frequencydomain approach it is sufficient to consider the solution for real values of the frequency ω, while in the linear stability approach ω has generally to be solved as a complex number.

Motivation of the complex mapping

The difficulty we want to solve is associated to the existence of solutions behaving as Ψ (x, t) ≈ e ikx-iωt as x → ∞, which, according to the argument of k, may be oscillating, or even worse, exponentially growing. The idea is to consider an analytical continuation of the solution for complex x, and solve in a region of the complex plane where all physically relevant solutions are nicely decaying. To this aim, we will define a mapping from a (real) numerical coordinate X defined in a truncated domain X ∈ [0, X max ] to the physical coordinate x.

Definition of a smooth mapping

The application of the proposed method to a given problem leads to two separate regions: (i) an unmodified domain for X < X 0 and (ii) a mapped region for X > X 0 , characterized by a parameter γ c defining the direction in the complex plane. The simplest choice is as follows:

x = G x (X ) = { X for X < X 0 , [ 1 + iγ c ] X for X > X 0 , (4) 
which transforms the x-derivatives as follows:

∂ ∂x = ⎧ ⎪ ⎨ ⎪ ⎩ ∂ ∂X for X < X 0 , 1 1 + iγ c ∂ ∂X for X > X 0 , (5) 
In practice it is desirable to design a mapping function which gradually enters into the complex plane with a transition region of characteristic length L c , in order to avoid possible reflections caused by an abrupt change at X = X 0 . This can be achieved using a mapping function with the form:

G x : R → C such that x = G x (X ) = [ 1 + iγ c g(X ) ] X ( 6 
)
where g(X ) has to be chosen as a smooth function such as g(X ) = 0 for X < X 0 and g(X ) ≈ 1 for X > X 0 + L c up to X max for a length

L CM = X max - ( X 0 + L c )
where complex mapping is activated. We found good performance using g(X ) = tanh ( [

X -X 0 Lc ] 2 )
. To apply the method to a linear PDE of the form (3), one has simply to modify the spatial derivatives as follows:

∂ ∂x ≡ H x ∂ ∂X with H x (X ) = ( ∂G x ∂X ) -1 . (7) 
For a given PDE problem, complex mapping function g ∈ C r (Ω),

where r is equal to the highest derivative order of the considered PDE problem. This requirement is due to the fact that the derivative should be continuous between the physical and the complex mapping domain to avoid any numerical reflection. 

Comparison with the perfectly matched layer method

The CM method introduced here shares similarities with the PML technique. The PML technique was first introduced by Beranger in the context of electromagnetic waves (Maxwell equations). The initial exposition of the method was formulated in the temporal domain and involved the introduction of auxiliary variables. Soon after, the method was reformulated in the frequency domain (i.e. considering solutions with modal temporal dependance e -iωt ) by Teixeira [10] who showed that it is equivalent to modifying the spatial derivative operators as follows :

∂ ∂x → 1 1 + i σ (x) ω ∂ ∂x . (8) 
Teixeira & Chew [10] also pointed out that this reformulation is equivalent to solving for a complex variable defined as follows:

x = G PML (X ) = X + i ω ∫ X σ (X ′ )dX ′ . (9) 
Comparing these equations with the ones defining our complex mapping, we immediately see that the two methods are closely related, the difference being that in the PML the coordinate mapping depends upon the frequency ω. Therefore, the method is not directly applicable to eigenvalue problems, where ω is unknown.

Application to a 1D model problem

Description of the model and theoretical solution

In this section we first demonstrate the efficiency of the method for a one dimensional PDE which has often been used as a model for global hydrodynamical instability of open shear flow, namely the linear Ginzburg-Landau equation (see the recent book of Schneider & Uecker [11,Ch. 10] for a rigorous mathematical derivation and analysis of this equation):

-iωΨ = -U ∂Ψ ∂x + κ ∂ 2 Ψ ∂x 2 + µ(x)Ψ + F (ψ ). (10) 
In this model, U represents the convective velocity, κ a diffusion coefficient, µ(x) a local growth rate of the instability, F a nonlocal coupling term. We use the following law for the local growth rate:

µ(x) = µ ∞ + µ 1 e -x/L * . ( 11 
)
where µ ∞ , µ is the solution belongs to the space, here H 1 0 (R + )). Discrete modes are alike to eigenvalues in finite dimensional problems. The spectrum of Eq. ( 10) is also composed of a second set, denoted as essential spectrum ω ess (ℓ) with ℓ ∈ R (where the linear operator is no longer Fredholm or closed, for more details on the spectrum of infinite dimensional operators see the book of Kapitula & Promislow [12,Ch. 3]). This set depends uniquely on asymptotic coefficients of Eq. (10). The corresponding solution is given in Appendix A ( Eq. (35) and Eq. ( 37)). Following Lesshafft [6], we introduce a nonlocal feedback term defined as

F (ψ ) = ϵe - (x-x A ) 2 b 2 Ψ (x S ) (12)
where ϵ is a coupling parameter, x S is the location of a ''sensor'' (located close to the outlet) and x A the location of an activator (located close to the inlet). Such a feedback exists in real flows through the pressure, either as a result of backward-propagating pressure waves (in compressible flows) or as an instantaneous non-local effect (in incompressible flows). Lesshaft [6] showed that this nonlocal term leads to the appearance of a family of artificial eigenmodes called ''arc branch modes'' which are clearly dependent on the size of the domain and hence have to be ruled out when one wants to focus on the discrete modes. We will show that the complex mapping technique efficiently reaches this objective.

Numerical solution and effect of CM

In this section, we assume the following values for the model parameters: µ ∞ = -1, µ 1 = 10, κ = 1 -i, U = 6.5 and L * = 10. With this choice, the problem is absolutely unstable in the range x ∈ [0, 4.6], convectively unstable in the range x ∈ [4.6, 23], and locally stable for x ∈ [23, ∞]. Moreover, the analytical solution (see Appendix A) tells us that the two first modes of the discrete spectrum are unstable while the higherorder discrete eigenvalues and the essential spectrum are stable. In the following we will consider the numerical solution of the problem using a feedback term with parameters [START_REF] Sierra | International Symposium on Fluid-Structure-Sound Interactions and Control (FSSIC)[END_REF], and yet some mismatch with the theoretical solution can be observed on the figure. Fig. 1 (b) displays the numerically computed spectra using the complex mapping technique, with the same values of the numerical domain size (X max = 15, 20 and 40), and applying the complex mapping starting from L 0 = X max -5. The other parameters affecting the complex mapping are γ c = 10 and L c = 1.

x A = 1, b = 0.2, x B = X max -1, ϵ = 0.1.
As one can observe, the introduction of CM has the effect of completely suppressing the arc-branch of artificial modes, and for all cases the two unstable discrete eigenvalues (plus two stable ones) are correctly recovered. One still observes a branch of artificial eigenvalues, but they are rejected far away from the unstable region, and below the theoretical essential spectrum. It is remarkable that the CM technique allows to correctly compute the unstable discrete modes independently of the size of the domain, even in the two smallest cases (X max = 15, X max = 20)

where the problem remains convectively unstable at the location of the numerical truncation.

Application to linear acoustics

Physical problem and asymptotic solution

In this section, we demonstrate the efficiency of the complex mapping method for a purely linear acoustic wave problem, corresponding to a cylindrical pipe of radius D 2 and length L opening to a semi-infinite domain. This is a classical problem in linear acoustics, the interested reader is referred to the book of Fletcher & Rossing [13,Ch. 8] for a brief review.

In an inviscid framework, it is classical to express the velocity and pressure in terms of the velocity potential Φ, namely u = ∇Φ, p = ρ ∂Φ ∂t . The problem reduces to the Helmholtz equation:

∇ 2 Φ + ( ω c ∞ ) 2 Φ = 0 in Ω (13)
where c ∞ is the speed of sound. Eq. ( 13) is complemented with boundary conditions. At the walls, the bottom and the axis we impose non-penetration conditions:

∇Φ • n = 0 at Γ in , Γ wall , Γ a (14) 
In addition, in an unbounded space, the relevant asymptotic condition is the Sommerfeld condition (see the review of Schot [14]):

∂Φ ∂r s

-

( i ω c ∞ Φ + Φ r s ) → 0 as r s = √ r 2 + z 2 → ∞ (15)
Physically this condition means that away from the outlet, the acoustic field matches with a monopolar source leaving the domain, and there is no wave coming from infinity. In practice, when working with a truncated domain, this asymptotic condition has to be replaced by an artificial boundary condition at the outlet surface Γ out which does not lead to any notable reflection.

We will show in the next subsection that the use of CM efficiently fulfills this goal. Note that the physical problem considered here admits an analytical solution in the limit of long pipes (L/D ≫ 1). This solution is obtained by matching a plane-wave description within the pipe to a monopolar radiation in the outer domain, and details are given in Appendix B. The corresponding result is as follows:

ω ≈ (n -1/2)π c ∞ L + ∆ - iπ 2 32 (2n -1) 2 c ∞ D 2 (L + ∆) 3 with n = 1, 2, . . . ( 16 
)
where ∆ = 4D/3π is the so-called correction length [13]. The first term in this expression means that the acoustical wavelength

λ ac = 2π c ∞ /ω r is 4/(2n -1) times the effective length (L + ∆)
of the pipe, which corresponds to the resonance condition of an ideally open pipe. The second term represents the damping rate due to radiation in the semi-infinite space, which is found to be largest for higher-order modes. In addition, the physical problem in infinite domain admits an essential spectrum whose outer boundary, the Fredholm border (FB), is located on the real ω-axis, corresponding to weak solutions of the problem which are not square-integrable and do not satisfy the Sommerfeld condition, and defined as:

ω FB = c ∞ ℓ, for ℓ ∈ R (17) 
Physically, these solutions correspond to plane waves coming from infinity and reflecting along the wall (with weak influence of the pipe).

Numerical results

In this section we present results obtained using the CM method. Technically, the method was used by applying the mapping equation ( 6) to both r and z coordinates, namely r = G(R) and z = G(Z ) where R, Z are the numerical coordinates in the truncated domain Ω. Hence, both r and z derivatives appearing in the Laplacian operator are modified using Eq. ( 7). We apply the mapping outside of the box (R,

Z ) = [0, R 0 ] × [-H, Z 0 ]
(corresponding to the dashed box in Fig. 2).

Fig. 3 displays the computed spectra for a long and a short pipe, respectively L/D = 10 and L/D = 3. The results of the CM method are compared to a reference solution using a much larger domain (R max = 50) and imposing directly the Sommerfeld boundary condition at the outlet (see Appendix C for details about implementation of this case). For the longest pipe, the both the CM method and the reference case allow to compute accurately the discrete spectrum (8 discrete modes can be found in the range displayed in the figure). In the reference case without CM, the numerically computed spectrum also contains a large number of artificial eigenvalues, all located in the stable range (ω i < -0.05), which correspond a discretized version of the essential spectrum discussed above.

For the physical modes, the numerical results fit well with the asymptotic formula equation ( 16) for the lowest modes. For the higher frequency modes the asymptotic formula overpredicts the damping; this is not surprising since the asymptotic theory assumes monopolar radiation while high frequency modes are known to be more directive, hence less energy is radiated.

For the shortest pipe ( Fig. 3 (b)), the discrete modes are much more damped. As one can observe, the computation without CM only allows to compute the first mode of the series. All the others are located in the region occupied by the artificial modes, leading to the impossibility to compute them. Note that the agreement with the asymptotic formula equation ( 16) is less good than for the long pipe because the hypothesis L/D ≫ 1 does not hold.

Considering the second mode, the pressure component along the axis for L/D = 3 is reported in Fig. 2 (b). The pressure field in the physical case (without CM) is approximately a standing wave within the pipe (with real and imaginary parts in phase) and an outward propagating wave outside of the pipe (with a π /2 phase shift). As can be seen, use of the CM leaves the pressure field unaffected within the pipe and up to z = Z 0 , but the structure is completely damped for farther distances.

As for the artificial eigenvalues, using the CM technique has the effect of 'sweeping' them towards much larger damping rates, and allows to correctly compute the 6 first modes of the series. Moreover, it can be seen that the imposition of the CM method dramatically affects their location in the complex plane. Mathe matical analysis if the essential spectrum shows that the effect of CM is to 'tilt' it from the real axis (as defined by ( 17)) to a line in the complex plane defined by

WfB = C oo l--1 -. -= ic oo le -iarcran(ycl, for l E JR . 1 +1yc ( 18 
)
The artificial modes obtained with CM are obseived to lie approx imately along this line. Note that in addition to be more accurate with shorter do mains, the CM is numerically less demanding than the Sommer feld method. ln elfect, as the eigenvalue appears only as w 2 , it is enough to formulate the problem for <I> and solve for w 2 • On the other hand, using Sommerfeld method, as the eigenvalue appears as w 2 in the Helmholtz equation and w in the boundary condition, it is required to solve for an augmented state vector [ <I>, <l>i] with </>1 = w<I>. The corresponding formulation is detailed in Appendix C.

To investigate the performance of the CM method, we display in Table 1 the numerical values of the three first eigenvalues of the short pipe (with L/D = 3) for various choices of the domain size Raut and complex mapping parameters r 0 , z 0 , Le and Yc• We note that the results agree within 1% . Considering that the acoustic wavelength of the first mode is Àac � 2:,r / w 1 ,, � 13.7, it is specially remarkable that the CM method is able to produce accurate result with a domain as short as Rout = 5, which represents a fraction of this wavelength.

Application to global srability anatysis

Governing equations

Let us consider both compressible or incompressible Navier Stokes equations written in compact operator form as ôq(x• t)

B--' -= NS(q(x; t)). ôt [START_REF] Longobardi | IU-TAM Symposium on Critical Flow Dynamics Involving Moving/deformable Structures With Design Applications[END_REF] Here q denotes the state vector defined as q = [u; p; T; p) using non-conseivative variables for compressible or q = [u; p) for incompressible flows. B is a linear operator specifying how the time derivative applies to variables. Finally, NS is the nonlinear Navier -Stokes operator. A detailed form of the compressible op erator is given by Fani et al. (15) and the incompressible case is detailed in the review article of Fabre et al. (9). ln the following sections, Reynolds number is defined as Re = U,Lr where L,, U, are the characteristic length and velocity scate"f of the flow configuration and ν ∞ is the kinematic viscosity at the far field.

For compressible cases, the Mach number is defined as the ratio of the characteristic velocity to the speed of sound at the far field, M = Ur c∞ .

Base flow solution & linearized Navier-Stokes-modal decomposition

Stability studies rely on the linearization about a base state q 0 . We define here q 0 as the base flow corresponding to the solution of the steady Navier-Stokes equations :

N S(q 0 (x)) = 0 [START_REF] Sierra | International Symposium on Fluid-Structure-Sound Interactions and Control (FSSIC)[END_REF] In addition, the base-flow has to fulfill a set of boundary conditions which depend on the application case and will be detailed in Section 6.

In the framework of LNSE, we are led to consider smallamplitude perturbations of this base flow:

q = q 0 (x) + ϵq ′ (x, t), ( 21 
)
where ϵ is a small parameter and the perturbation is expressed as in Eq. ( 3) under the modal form

q ′ (x, t) = qe -iωt + c.c. ( 22 
)
For both the forced and the autonomous problem, injecting the modal ansatz in Navier-Stokes equations (21) leads to a linear problem which can be written as follows:

-iωB q = LN S q

(23)
Here LN S is the Linearized Navier-Stokes operator whose definition may be found in the analysis of Fani et al. [15] for the compressible and in see Fabre et al. [9] for the incompressible case. In addition to the case-dependent set of physical boundary conditions, an unbounded problem requires another set of asymptotic conditions. Physically, we can expect the velocity perturbations associated with vortical structures to decay under the effect of viscous diffusion, and the pressure perturbations to behave like a divergent acoustic wave as function of the spherical coordinate r s = |x|. In the compressible case these conditions are expressed as follows û, ∇ û ≈ 0 for r s = |x| → ∞;

(24)

r s [ c ∞ ∂ p ∂r s + ( U ∞ ∂ ∂x -iω + 1 r s ) p] ≈ 0 for r s = |x| → ∞. ( 25 
)
where the second expression is recognized as the so-called Sommerfeld condition, which coincides with Eq. ( 15) in the case of quiescent ambient flow. In the incompressible setting Eq. ( 24) is the unique boundary condition, because pressure is automatically set by the velocity-pressure Poisson equation. Note that this way of exposing the boundary conditions is not fully rigourous and involves a number of pedagogical shortcuts. For instance, the assumption that vortical perturbations are eventually damped relies on the effect of viscosity, while the Sommerfeld condition comes from an inspection of the inviscid equations. To express the conditions more rigourously one should also separate the perturbations of the thermodynamical variables into adiabatic (acoustic)

and non-adiabatic (entropy) components. However, this pair of equations contains all problems related to artificial boundary conditions and is well suited to the discussion in the next section.

Effect of CM in the spatial structure of modes

Study of plane-wave solutions for a parallel flow

The condition that the base-flow is asymptotic to a uniform flow u ≈ U ∞ e x is generally impossible to reach in a truncated domain with reasonable dimensions. On the other hand, it is generally reasonable to assume that in the vicinity of the truncation plane, the flow approaches a parallel shear flow. We will thus first investigate the behavior of possible solutions of the LNSE under this hypothesis. We thus consider a parallel shear flow defined as u 0 = U(y)e x (or for problems with axial symmetry u 0 = U(r)e x ) developing in the half-space defined by x > 0, here e x denotes a unit vector in the x positive direction. We suppose that U(y)

tends to U ∞ when y is sufficiently large, and note U c = U(0) the velocity at the centerline. This situation represents both a wake (with U c < U ∞ ) or a jet (with U c > U ∞ ) (see Fig. 4). It is also reasonable to assume that U c and U ∞ are both positive which means that the local velocity profile is convectively unstable (see the book of Huerre & Rossi [16]). Under those hypotheses, the solution of the eigenvalue problem can be expected as a superposition of plane-wave solutions, namely q(x, y)e -iωt = ∑ k q(y) k,ω e i(kx-ωt)

(26)

Two kinds of solutions can be expected. The fist kind corresponds to acoustic waves. Restricting to longitudinal waves (independent of the y-direction) and assuming U c ≈ U ∞ for simplicity, two solutions are defined as

ω k ± ac = ±c ∞ + U ∞ (27) 
If the mean flow is subsonic (U ∞ -c ∞ < 0), then the solution k - ac (representing an acoustic wave propagating in the negative direction) does not verify the condition equation ( 25) and has to be canceled by the ABC. On the other hand, k + ac must not be affected by the ABC.

The second kind corresponds to vorticity waves. The corresponding values for k can be obtained from the local stability analysis of the considered shear flow. This topic is well known and such solutions can be found in several textbooks (e.g. Huerre & Rossi [16] ). The possible solutions are given by a dispersion relation D(k H , ω). In the spatial stability framework which is relevant here, the solutions k H (ω) are of two different types, noted k + H and k - H . Only the k + H branches should appear in a solution developing in the positive x-direction, so one should check that the ABC does not result in any problem related to the k - H branches. For the present discussion, we will consider the simplest case of a shear layer of zero thickness (see Fig. 1b). The problem corresponds to the classical Kelvin-Helmholtz instability, and the corresponding solutions for k as given by: Here kt is the spatially unstable Kelvin-Helmholtz wave and kt is a'"spatially stable wave which does not lead to particular priblems but has to be retained in the discussion. Note that bath solutions belong to the kt category and should thus be present in the solution of the problem for x � +oo. The zero-thickness shear layer does not possess any kïj solutions (for reasons dis cussed in Huerre & Rossi (161) but continuous U(y) profiles admit such solutions which, except in cases where U 00 and/or Uc are negative, are always located in the half-plane lm(k) < 0 and far away from the kt s solutions. ,u

ω k + H,s = U ∞ + U c 2 -i |U ∞ -U c | 2 ω k + H,u = U ∞ + U c 2 + i |U ∞ -U c | 2 (28)

Effect of CM on plane-waves

For the present discussion we will thus restrict to five solu tions. Acoustic waves ktë, the KH waves kt s and a possible kij solution. The behavior of these solutions as'"l xl � oo is one of the three following cases:

(i) Dominant if lm(kx) < 0 , i.e. arg(kx) E [-rr, 0) (29) (ii) Evanesce nt if lm(kx) > 0, i.e. arg(kx) E (0, rr] ( 30 
) (iii) Oscillating if lm(kx) = 0, i.e. arg(kx) = 0, 1r (31) 
We will consider the asymptotic effect of complex mapping equa tion (4). The situation differs according to the argument of w. We consider three cases:

Case 1: arg(w) = 0
The case where w is real is particularly important as it is relevant to bath the Jorced problem resolved in frequency do main, and to the stability problem at marginal conditions. Fig. 6(a) sketches the location of the fwe considered plane-wave solutions in the complex k-plane. The region lm(k) < 0 corresponding to dominant solutions in the absence of mapping is indicated by the gray area. Bath solutions kt u and kij belong to this region, while kt s is evanescent and k! are bath oscillating.

• As sketched in Fig. 6(b), the effect of the complex map ping Eq. ( 4) for xis to 'tilt' the boundary between dominant and evanescent solutions by an angle arg(y c )-As a result, the choice Y c > 0 is sufficient to turn the physically relevant k;t; into an evanescent wave and the unwanted k;;; into a dominant wave, which will thus be damped as it propagates backwards. However, if Y c is small, the solution will still contain a dominant kt u wave.

This solution corresponds to the spatially growing' Kelvin Helmholtz instability, and is perfectly relevant from a physical point of view. However, if the spatial growth of this wave is larger than the spatial damping of the backward-propagating k;;; induced by the mapping, the k;, solution may still be present in the domain as a reflection of the kt u• The remedy to avoid this is to chose Yc such as kt u becomes evanescent, see Fig. 5 (b). This requirement leads to the following condition:

+ . IUoo -Ucl arctan(yc) > -arg(k H,u ) , 1.e. Y c > ---- (32) U oo + Uc
The corresponding situation, where only the k;, wave is dom inant, is sketched in Fig. 6 (b). CM is also effective in a situation where kt u does not decay enough before reaching the outer boundary,' but backward propagating wave does before escaping complex mapping region and reaching the physical domain. lt is found that in that case CM is more effective for compressible flows and Eq. (32) turns to be the condition for the low Mach limit, see Appendix D for details. Case 2: 0 < arg(w) « !}

This second case corresponds to the expected behavior of a temporally unstable mode. As seen in Fig. 7, this case is more favorable, as the k; wave is already in the dominant region without need of the mapping. If one wants to turn the kt u wave into an evanescent as in Fig. 5 (b) one needs to choose Yc 'in such a way it possesses a sufficient decay (see Fig. 7):

(IUoo -Ucl)

arctan(yc) > arctan

Uoo + Uc -a�(w)

Case 3: -!} « arg(w) < 0 (33)
Now we consider a value w corresponding to a stable global mode. This case is the less favorable, as without mapping (see Fig. 8 (a)). The k� wave is in the dominant region, meaning that it will be amplified as propagating backwards, destroying any chances to correctly compute the mode. The condition to change this mode into a dominant one and turn the kt u into an evanescent one is still given by Eq. ( 33), but it is more restrictive here than in previous cases since arg(w) < O.

Application cases

Incompressible flow through a single hale

ln this section we will discuss the application of the complex mapping methodology to incompressible Navier-Stokes equa tions. The hole diameter is considered as the reference length, denoted by L,-and the characteristic scale, U r is the mean velocity across the hole. The application case is the flow past a single hole of finite thickness. This configuration has been recently studied by Fabre et al. see (8,Sec. 3) for the definition of the problem and a discussion about boundary conditions. Severe numerical difficul ties arise in the solution of the linearized Navier-Stokes equations ,,,-r ---- ,,,:"" ;- due to the strong spatial amplification of linear perturbations, in particular pressure (see Fig. 9). An artificial boundary treatment is a mandatory technique for this type of study. Large amplifications of linear perturbations lead to physical perturbations far downstream the hole. ldeally, this would require an infinite domain, at least in the streamwise direction. However, numerical computations are realized in trun cated domains. If the computational domain is not sulficiently large, that is amplitude of the perturbed field is negligible close to the outer boundary, "spurious eigenvalues" constituting the discretized version of the continuous spectrum may arise. ln the case of large perturbations, these "spurious eigenvalues" can be even located in the unstable side of the spectrum and close to discrete physical eigenvalues as Reynolds number increases.

The linear stability study of the flow past a hole in a thick plate shows that dynamics of Re < 3000 can be explained by the presence of three discrete physical modes, here denoted by H 1 , H 2 and H 3 . For validation purposes we have designed three computational meshes M i for i = 1, 2, 3, the first one with CM uniquely in the axial direction and the other two without any ABC but with longer axial dimension, denoted L out (see Table 2). and upstream locations. Computations of the spectra without ABC, M 2 and M 3 , lead to the presence of unstable spurious eigen values (w; > 0). Moreover, as the Reynolds number increases they tend to approach discrete eigenvalues H;. The use of CM results in a good separation of physical and spurious eigenvalues. However, CM methodology with Yc > 0 does not allow to identify the complex conjugate modes of Hi located in w, < O. The exploration of the other side of the spectrum can be determined by choosing Yc < O. ln Fig. 10 it is possible to visualize the elfect of complex mapping on the structure of the pressure component of the H 2 mode. lndeed, one may observe how CM can efficiently transform a convective dominant wave into evanescent, hence any non-local effect, i.e. arc-branch eigenvalues, is avoided. Finally, Table 3 and Table 4 display a comparison of the nu merical elficiency of numerical methodologies M; for i = 1, 2, 3

for the computation of discrete eigenvalues. Following, similar arguments as in Fabre et al. (8) we conclude that CM methodology allows a precise identification of discrete spectrum with a lower number of vertices with respect to methodologies without ABC.

Hole-tone configuration

The problem of the flow passing through a circular hole in a plate is encountered in many practical applications and has been widely studied by experimental and numerical investigations. This situation is encountered in various applications, including the whistle of a tea kettle, which has been studied by Henrywood & Agarwal (17) or birdcalls (devices used by hunters to imitate bird singing) analyzed by Fabre et al. [START_REF] Fabre | International Symposium on Musical Acoustics (ISMA)[END_REF] (see Fig. 12).

Attempts to characterize the instability mechanism were pre viously made using incompressible (see Fabre et show CM efficiency by Sierra et al. [START_REF] Sierra | International Symposium on Fluid-Structure-Sound Interactions and Control (FSSIC)[END_REF], where more details about governing equations, i.e. compressible Navier-Stokes, boundary conditions and methodology may be found.

Eigenvalue computations

We study some characteristics of the spectrum of the flow by solving Eq. ( 19) in the compressible setting. Linear dynamics of the birdcall flow at a sufficiently high Reynolds number is governed by a set of unstable discrete modes, the continuous spectrum remains stable. ln the studied range of Re and M 00 , we have appreciated the presence of four unstable modes up to Re = 1600. These modes have been computed with two techniques, sponge as boundary condition at the far field and complex mapping. Artificial boundary conditions are needed to compute physically relevant modes and to avoid the appearance of spurious modes in the spectrum due to boundary conditions.

To identify these modes at threshold we have used complex mapping. Complex mapping technique allows to tilt the continu ous branch of the spectrum to leave discrete modes isolated and easy to be identified at the threshold. This phenomenon is briefly described in Section 4. At Fig. 13, spectrum is displayed for two Reynolds numbers at M 00 = 0.05. The spectrum corresponding to the simulation with sponge boundary condition at far field at threshold presents some discrete eigenvalues and a continuous branch along the real axis. Let us consider the case Re = 320 and M 00 = 0.05. At that configuration Mode 1 is neutrally stable. However, we are not able to identify it by numerical means since it is clustered inside the continuous branch. So, one should increase further the Reynolds number hoping to find the mode in the unstable zone. With the complex mapping technique continuous branches are rotated from the origin with an angle arg x whereas discrete modes remain invariant. This allows to identify modes near and at threshold. These modes are displayed in Fig. 14. ln that figure it is possible to appreciate the hydro dynamic instability which is the part of the mode of highest amplitude. lt is possible to remark a few properties of these modes. The pressure is fairly constant in the cavity but it is not constant as it has been reported by Longobardi et al. [START_REF] Longobardi | IU-TAM Symposium on Critical Flow Dynamics Involving Moving/deformable Structures With Design Applications[END_REF]. The spatial structure of pressure mode inside and outside the cavity is proportionally dependent of the temporal frequency w, which indicates a direct link between the quantization of frequency and pressure oscillations between bath hales (see Fig. 14 for the frequency). Similarly, as w increases a given mode tends to have its support farther from the cavity. From the vorticity field of Fig. 14 it is possible to observe the antisymmetric pattern of vorticity inside the cavity for mode 1 and mode 2 and the tendency of the shear layer to become symmetric and reduce its thickness as w increases, this is specially remarkable for mode 4.

Finally in Fig. 15, we depict the imaginary part of the pressure of global modes for Re = 1600 and Moo = 0.05 for Mode 2 and Mode 4. lt is possible to observe the radiation of acoustic waves propagating into the far field as spherical waves. Acoustic radiation between Mode 2 and Mode 4 differs in wavelength Àac and acoustic directivity. Wavelength decreases as w increases whereas the acoustic directivity seems to change when the acous tic wave is able to penetrate into the cavity as it has been previously observed by Longobardi et al. [START_REF] Longobardi | IU-TAM Symposium on Critical Flow Dynamics Involving Moving/deformable Structures With Design Applications[END_REF].

For this study we have used four meshes which are shown in Table 5. M 1 has been used as a reference test case computed with sponge layers. Remaining meshes are used with CM method ology which allows to greatly reduce the size of the domain and the number of points. The size of the domain is denoted by [Xmin,Xmwc, Rmwcl, where Xmin is the x-coordinate of the inlet, Xm wc is the x-coordinate of the outlet and Rm wc corresponds to the outer radius of the domain. Please note that the minimum size of the sponge section, denoted by lXmin,Xmwc, Rmwcl in Table 5, is the minimum domain size to elfectively damp acoustic waves. The outer boundary is located at a distance approximately three times the acoustic wavelength of the first bifurcated mode. The reduction in computational time from the use of Sponge or Com plex mapping can be also perfectly visualized in Table 5 where it is displayed the time needed to compute the leading eigenvalue with each of the considered meshes.

Computations with mesh M 1 were carried out in serial with an Intel i7 2.6 GHz whereas numerical tests for M; for i = 2, 3, 4 were computed with an Intel i7 2.2 GHz. Computational time takes into account the computation of the baseflow and the leading eigenvalue at Re = 400 and M 00 = 0.05. The gain in computational rime between Sponge and CM is around 50 for the finest mesh and 125 for the coarsest. This gain in performance is due to the fact that the domain size of the mesh is greatly reduced, therefore reducing the number of elements required for the computation.

Concerning precision, a comparison between the four consid ered meshes is displayed in Fig. 16. ln that figure it is possible to observe in (b) linear frequency results are in agreement between the two considered methodologies. Whereas for the linear growth despite the fact the good fit between both methodologies and the four considered meshes there is a slighter disagreement between M4 and M1 for the mode with linear frequency around w, � 9 at high Re. The difference in the growth rate between M 3 and M 1 is lower than 5% in the worst case scenario, which corresponds to the growth rate of Mode 4. ln this case the relative error is large because of the small magnitude of the growth rate.

Flow past an airfoil

Low Reynolds number flow past an airfoil is a flow con figuration which has attracted interest from micro-air vehicles or bio inspired air vehicles designers. Airfoils in these types of configurations are usually configured to operate at high angles of attack . Characteristic length and velocity scales are the chord length of the airfoil profile and the far field uniform velocity. Flow unsteadiness is encountered in the separated shear layer due to a Kelvin-Helmholtz instability and in the wake of the airfoil in the form of a Von Karman vortex street. ln the past Zhang & Samtaney (21] (22] have carried out the study of a NACA 0012 profile at angle of attack a = 16 °. ln the current section we strength of CM with respect to sponges which require several acoustic wavelengths to avoid any reflection. ln Table 6 it is also displayed a parametric comparison of [X 0 , Y 0 ], the size of the physical domain, we find that the activation of CM close to the body Xo = Y 0 = 2 does not affect much the leading eigenvalue, the relative error of the growth rate is less than 0.3% and the frequency varies less 0.1%. This result is not surprising due to the fact that eigenvalue sensitivity tensor has its support close to the trailing edge of the body, then in the physical domain even for small values of [Xo, Yo] (see Fig. 17).

Conclusion

A novel non-reflecting boundary condition for linear stability computations, i.e. modal stability, has been introduced. Complex mapping arises as a spectral transformation of the PDE problem to easily identify the onset of unsteady modes near the threshold by the rotation of the continuous spectrum, see Section 6.2. lt is also an artificial boundary treatment that preserves the number of degree of freedoms and it is easy to implement in any numerical code. ln the present study, we have discussed the elfect of CM in the spectrum of PDE problem, see Section 3. As well, a guideline for the choice of the direction and length of the complex mapping has been introduced in the framework of hydrodynamic and acoustic flow instabilities. Complex mapping avoids the increase of the number of degrees of freedom imposed by buffer layers or Perfectly Matched Layer methods, whereas precision is similar to those as it has been shown in the four numerical cases. Opposed to sponge regions which require enormous domain sizes at low Mach numbers to damp acoustic wave reflections, complex map ping has proved to be much more efficient at this regime. ln the hole tone configuration at M 00 = 0.05 the number of degrees of freedom was reduced by at least 50 which demonstrates the usefulness of the methodology, see Section 6.2. lt has been also shown in the flow past a NACA 0012 airfoil, Section 6.3, or in the acoustic circuit of cylindrical pipe, Section 4, the application of a complex mapping layer with a length of fraction around a fourth or a third of the acoustic wavelength is sulficient for the computation of the quantity of interest, i.e. leading eigenvalue, within 1% of error. Moreover, the application of complex map ping to incompressible flows with large amplifications due to convective instabilities allows to mitigate the non local feedback effect between downstream and upstream boundaries due to the elliptic nature of Navier-Stokes equations, see Section 6.1. ln those cases, the complex transformation is able to provide sufficient decay to vortical perturbations to alleviate non-local interactions with the outer boundary. The current discussion of the methodology is mainly focused on the study of fluid me chanics instabilities nevertheless, the proposed approach can be used to simulate other wave supporting problems. Here we cite some other physical phenomena, for instance those described by Maxwell's, Helmholtz, elastodynamic or poroelasticity equations.
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 1 Fig. 1. Numerical spectrum of the Ginzburg Landau equation (a) without and (b) with complex mapping, for domain size X max = 40 (red crosses), X max = 20 (blue squares) and X max = 15 (green circles). The theoretical solution in infinite domain in absence of non-local feedback is displayed by black dots (discrete spectrum) and black dotted line (essential spectrum).
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 23 Fig. 2. (a) Sketch or the now configuration representing the now through the acoustic circuit. Geometric paramerers are displayed. (b) Evolution or acoustic waves along the z-direcrion at the axis for the short pipe (L/D = 3). Real and imaginary parts or the pressure componenr or the Jeading mode (see Fig. 3 (b)) are depicted. Solid line corresponds ro CM and dashed-dotted (red online) ro Sommerfeld boundary condition. (For inrerpretation or the rererenoes ro color in this figure legend, the reader is rererred ro the web version or this article.) 2.5 2 �1.5 Ci 3 1 0.5
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 4 Fig. 4. (a) Basic velocicy profile of wake shear now. (b) Simple velocicy profile mode! of a zero-thickness shear layer.
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 678 Fig. 6. Diagram displaying a complex mapping ç,(X) for a real rrequency w, such chat arg(w) = o, in the complex plane or the wave-veccor k. Red squares represenc spatial acouscic modes fç, whereas blue circles represenc hydrodynamic modes k ; _, and the blue cross denoces the kjj mode.
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 92 Fig. 9. Sketch or the now configuration representing the oscillating now past a circular hole in a thick plate. Table 2 Description or meshes M; ror i = 1, 2, 3. N 0 denotes the number or verrices of the mesh. GeometricaJ parameter l "' ' denotes the axial longitude of the mesh and Ro ur is the radial extension or the numerical domain. Description of numerical domains M1 -M3 Mesh
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 11 displays the numerically computed spectra using nu merical domains M 1 , M 2 and M 3 for Re= 1700, Re= 2000. The spectra here displayed presents three discrete eigenvalues Hi for i = 1, 2, 3 and a set of "spurious eigenvalues", named arc-branch byLesshafft (6), which arise due to non-local feedback mecha nism of spurious pressure signais from the truncated boundary
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 10111012 Fig. 10. Pressure componenr or the eigenmode H 2 with mesh M 1 (upper) and mesh M 3 (lower).

  (a) and (b) for the structure of Mode 1 and 2 at Re = 1600 and Fig. 16 (b)
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 1 Spectrum at Re= 640 Moo = 0.05. Spectrum at Re = 320 Moo = 0.05 Fig. 13. Specrrum near cwo bifurcation Re at M 00 = 0.05. Legend : o are used ta denore eigenvalues carresponding ta CM. Red is used for Yc = 0.1 and blue for Yc = 0.15. Black x denores those eigenvaJues compured wirhour artificial boundary conditions. (For incerpreration or the rererences ta color in this figure Jegend, the reader is rererred ta the web version of this article.) (a) Mode 1 at Re= 1600 (b) Mode 2 at Re= 1600 _'À-.. , .......... --Mode 3 at Re= 1600 (d) Mode 4 at Re= 1600
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 14 Fig. 14. Ir displays the four unstable modes at Re = 1600 and M 00 = 0.05. Toe real part or the pressure mode Pn and the imaginary part of the vorticicy !1; are shown for each mode at the upper and Jower si des of each figure respectively.
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 15616 Fig. 15. lmaginary part or the pressure p; or cwo direct modes the second mode ac the Jeft and the rourch mode ac the righc. The main figure displays the radiation or the acouscic field whereas the zoomed region shows the spatially Jocalized hydrodynamic mode.
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 17 Fig. 17. Streamwise velocicy u,., or the mosc unscable mode ac Re00 = 1000, M00 = 0.1 and a= 16 °.

  , 2, . . . (where the linear operator is Fredholm and closed, that

1 , L * ∈ R are parameters of the problem. With this choice, the homogeneous problem in a semi-infinite domain (without the term F ) admits a discrete spectrum ω n with n = 1

Table 1

 1 Eigenvalues of a short open pipe (L/D = 3) for various choices of the complex-mapping parameters.

	R out	r 0	z 0	L c	γ c	ω 1	ω 2	ω 3
	20	2	2	1	1	0.4623-0.0076i	1.4089-0.0560i	2.3894-0.1197i
	10	2	2	1	1	0.4624-0.0076i	1.4091-0.0560i	2.3898-0.1200i
	5	2	2	1	1	0.4639-0.0061i	1.4085-0.0561i	2.3895-0.1199i
	10	2	2	1	0.2	0.4624-0.0076i	1.4091-0.0560i	2.3898-0.1200i
	10	5	5	2	1	0.4627-0.0089i	1.4092-0.0562i	2.3897-0.1199i

Table 3 / � ,

 3� 

Table 4 EigenvaJue computations ror Re= 2000.

 4 

				-0.0926i + 4.1230
				-0.105 li+ 4.1359
				-0.0944i + 4.1240
	M1	-0.0435i + 0.5615	0.3032i + 2.2436	0.2418i + 4.3184
	M2	-0.0421i + 0.5645	0.3114i + 2.2467	0.2287i + 4.3268
	M3	-0.0420i + 0.5628	0.2965i + 2.2399	0.1232i + 4.2807

Table 6 EigenvaJue computation for Re = 1000 and M00 = 0.1 wich respect co incompressible ONS resulcs or (22). CM corresponds co M, -MG. Ms corresponds co a compucacionaJ domain or size R.., and a sponge region accivaced ac [Xo, Yo ].

 6 

	Re= 1000 and M 00 = 0.1			
	Mesh	R°"'	(Xo, Yo]	W;	w,.
	M, M2 M3 M. Ms � Ms Ref. (22)	20 30 40 70 30 30 100	(10, 10] (10, 10] (10, 10] (10, 10] [5, 5] (2,2] (10, 10]	0.7110 0.7079 0.7071 0.7048 0.7079 0.7067 0.7036 0.716	2.6102 2.5954 2.5862 2.5692 2.5954 2.5953 2.5660 2.5095
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Appendix A. Analytical solution ofche Ginzburg-Landau model

ln this appendix we derive the analytical solution of the Ginzburg-Landau equation:

with homogeneous boundary conditions: f(0, t) = 0; f(oo, t) = 0, and with a local growth rate defined as µ(x) = µ 00 + µ 1 e-x1i•, where J.1,00, µ,1, L * E IR are parameters of the problem. The local stability of the Ginzburg-Landau equation depends on the local growth rate µ(x) (see Huerre & Rossi [16,Ch. 3) for more details). The theoretical solution in the physical do main x E [0, oo] consists of two kinds of modes:

• First, a discrete spectrum corresponding to square-integrable solutions. With our choice for µ(x), the corresponding modes can be searched in analytical form as

Ux[ Ux lie]

l/l(x)=e'lK Als(ae-r.)+BY 5 (ae-r.).

(

where Js and Ys are Bessel fonctions of first and second kinds, s = 2L * J � -Hµ, 00 + iw) and a = 2L * fij-. The condition that l/l(x, w) should decay at x � oo leads to B = 0, and application of the homogeneous Dirichlet boundary condition at X = 0 leads to the transcendental equation 1s ( a ) = 0 (36) which admits discrete solutions corresponding to frequen cies wn (n = 1, 2, .. ) of the discrete modes.

• Secondly, the fact that µ(x) asymptotes to a constant value J.l,oo for large x leads to the existence of an essential spectrum, corresponding to solutions which are not square-integrable but oscillating, with asymptotic form ,fF(x) � e itx with e ER. lnjecting this form in the equation with µ(x) � µ 00 leads to the following definition of the essential spectrum:

(37)

Convergence of thefinite dif f'erence discretization. ln order to guar antee that the centered second order finite dilference discretiza tion does not introduce a systematic error a convergence test is carried out, see Fig. 18. Eigenvalues corresponding to analytical solution are compared with numerical results. The expected sec ond order of convergence is recovered whenever the cell size Ll.x is sulficiently smalt. ., [ili + l 0 cot( 4)0 L)] ln the asymptotic limit À/D » 1 where À is the asymptotic wavelength, the ourlet impedance of an circular in a semi-infinite domain has the following expression:

where L1 is the so-called correction length given by L1 = :� � 0.425D. Therefore, substituting Eq. (40) into Eq. (39):

The eigenvalues of the autonomous problem for a pipe closed at the bottom can be tracked as potes of the impedance ( or zeros of the admittance Ym = l î ; 1 . At leading order (neglecting the radiation term) these correspond to cotie:, (L + L1)] = 0, hence

Coo w = (2n -l)1r 2(L + L1) A first-order approximation can be obtained by setting w = w <0l + w < 1J assuming lw (ll l « lw <0l l, and injecting into Y i n• This leads to ln this section we study how CM affects plane waves. Consider the situation of a wave whose amplitude is A 0 at X = Xo + Le and the complex parameter Yc > 0 is not sulficiently large to sufficiently decay kij u before the end of the domain. Backward propagating waves occur, among which k;; possess the largest spatial growth rate. ln this simplified analysis we take the hy where M 00 = Uao, Mc = .Y.... We note that the second term is positive and i� absolute ��lue is controlled by the complex mapping length, LcM. We consider the case Mc « 1, which is equivalent to suppose that the speed of sound is much larger than the velocity difference in the shear layer c 00 » Ue, Then the final expression is as follows

Note that in the low Mach limit M 00 -+ 0, Eq. (32) is recovered.