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Abstract This note aims to giving a new regularity criterion for weak solutions to the
three-dimensional micropolar fluid flows by imposing a critical growth condition on
the field of pressure.
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In this note we consider the following Cauchy problem (1) for the incompressible
micropolar fluid equations in R3:

∂tu−∆u+(u ·∇)u+∇π−∇×ω = 0, (1a)
∂tω−∆ω−∇∇ ·ω +2ω +(u ·∇)ω−∇×u = 0, (1b)

∇ ·u = 0, (1c)
u(x,0) = u0(x), ω(x,0) = ω0(x), (1d)

where u= u(x, t)∈R3, ω =ω(x, t)∈R3 and π = π (x, t) denote the unknown velocity
of the fluid, the micro-rotational velocity of the fluid particles and the unknown scalar
pressure of the fluid at the point (x, t) ∈ R3× (0,T ), respectively, while u0,ω0 are
given initial data satisfying ∇ ·u = 0 in the sense of distributions.

This model for micropolar fluid flows proposed by Eringen [6] enables to consider
some physical phenomena that cannot be treated by the classical Navier-Stokes equa-
tions for the viscous incompressible fluids, such as for example, the motion of animal
blood, muddy fluids, liquid crystals and dilute aqueous polymer solutions, colloidal
suspensions, etc.

When the micro-rotation effects are neglected or ω = 0, (1) reduces to the in-
compressible Navier-Stokes equations, and it is well known that regularity criteria
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E-mail: sgala793@gmail.com
Maria Alessandra Ragusa ORCID 0000-0001-6611-6370
Dipartimento di Matematica e Informatica, Università di Catania and RUDN University, 6 Miklukho -
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for weak solution to the fluid dynamical models attracts more and more attention.
Velocity or vorticity or pressure blow-up criteria for Navier-Stokes equations, mi-
cropolar fluid equations and magnetohydrodynamics (MHD) equations and so on (see
e.g., [1–4, 7–10, 15–17] and the references therein) attracted during the last years the
attention of many researchers.

As for the pressure criterion, let us first recall some results on pressure regularity
of Navier-Stokes equations. In [14], He and Gala proved regularity of weak solutions
under the condition ∫ T

0
‖π(·, t)‖2

Ḃ−1
∞,∞

dt < ∞. (2)

Here and thereafter, Ḃ−1
∞,∞ stands for the homogeneous Besov space, (for the definition

see e.g. [14] and [13]). Later on, Guo and Gala [13] refined the condition (2) to

∫ T

0

‖π(·, t)‖2
Ḃ−1

∞,∞

1+ log
(

e+‖π(·, t)‖Ḃ−1
∞,∞

) dt < ∞. (3)

Motivated by the paper of Guo and Gala [13], the aim of this paper is to give a
new regularity criterion for weak solutions to the 3D micropolar fluid flows in terms
of the pressure in critical Besov spaces.

1 Main result

Let us start by stating the main result of this note.

Theorem 1.1 Let T > 0 and (u0,ω0) ∈ L2(R3)∩L4(R3) with ∇ ·u0 = 0 in the sense
of distributions. Assume that (u,ω) is a weak solution to the 3D micropolar fluid flows
(1) on (0,T ). If the pressure π satisfies the following condition :

∫ T

0

‖π(·, t)‖2
Ḃ−1

∞,∞(
e+ log

(
e+‖π(·, t)‖Ḃ−1

∞,∞

))
log
(

e+ log
(

e+‖π(·, t)‖Ḃ−1
∞,∞

)) dt < ∞, (4)

then (u,ω) is regular on (0,T ], i.e., (u,ω) ∈C∞(R3× (0,T ]).

Remark 1.1 This result provides a new information concerning the question of the
regularity of weak solutions to the micropolar fluid equations and extends those of [14]
and [13]. In particular, the double-logarithm estimate (4) is sharper than any other
results [13, 14].

Before stating our result, let us recall what we mean by a weak solution.

Definition 1.1 ( [16]) Let (u0,ω0) ∈ L2
(
R3
)

and suppose that ∇ ·u0 = 0. A measur-
able function (u(x, t),ω(x, t)) is called a weak solution to the 3D micropolar flows
equations (1) on (0,T ) if (u,ω) satisfies three properties :

(1) (u,ω) ∈ L∞
(
(0,T ) ;L2

(
R3
))
∩L2

(
(0,T ) ;H1

(
R3
))

for all T > 0;
(2) (u(x, t),ω(x, t)) verifies (1) in the sense of distribution;
(3) For all 0≤ t ≤ T it holds :

‖u(·, t)‖2
L2 +‖ω(·, t)‖2

L2 +2
∫ t

0
(‖∇u(·,τ)‖2

L2 +‖∇ω(·,τ)‖2
L2 +‖∇ ·ω(·,τ)‖2

L2)dτ

≤ ‖u0‖2
L2 +‖ω0‖2

L2 ,
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By a strong solution we mean a weak solution (u,ω) such that

(u,ω) ∈ L∞
(
(0,T ) ;H1 (R3))∩L2 ((0,T ) ;H2 (R3)) .

It is well known that strong solutions are regular (say, classical) and unique in the class
of weak solutions.

In order to prove Theorem 1.1, we first establish some estimates between pres-
sure and velocity. Taking div and ∇div to both sides of the micropolar fluid flows for
smooth solution (u,π), separately, we get the well-known pressure-velocity relation
in R3, given by

π = (−∆)−1
3

∑
i, j=1

∂ 2

∂xi∂x j
(uiu j) and ∇π = (−∆)−1

3

∑
i, j=1

∂ 2

∂xi∂x j
(∇(uiu j)).

Then, the Calderón-Zygmund inequality implies that for any 1 < α <+∞ :

‖π‖Lα ≤C‖u‖2
L2α and ‖∇π‖Lα ≤C‖|u|∇u‖Lα . (5)

2 Proof of Theorem 1.1

Now we are in the position to prove Theorem 1.1. Firstly, by means of the local exis-
tence result, which is similar to the one used in the theory of Navier-Stokes equations
(refer to Giga [12], see also Dong et al. [5]), and the standard local solution extension
technique, equation (1) with (u0,ω0) ∈ L2(R3)∩ L4(R3) admits a unique L4-strong
solution (u,ω) on a maximal time interval. For the simplicity notation, we may sup-
pose that the maximal time interval is [0,T ). Thus, in order to prove Theorem 1.1, it
remains to show that

lim
t→T

(‖u(t)‖4 +‖w(t)‖4)< ∞.

This will lead to a contradiction to the estimates to be derived below.

Proof Before going into the proof, we recall the following inequality established in
[11] (see also [13]):

‖ f‖2
L4 ≤C‖ f‖ ·

B
−1

∞,∞

‖∇ f‖L2 . (6)

Testing (1a) by u |u|2 and using (1c), we get

1
4

d
dt
‖u‖4

L4 +‖|u|∇u‖2
L2 +

1
2

∥∥∥∇ |u|2
∥∥∥2

L2

=
∫
R3
(∇×ω) ·u |u|2 dx−

∫
R3
(u ·∇π)|u|2dx

=
∫
R3

ω[∇× (u |u|2)]dx+
∫
R3

πu ·∇|u|2dx (7)

Testing (1b) by ω |ω|2, and using (1c) infers that

1
4

d
dt
‖ω‖4

L4 +‖|ω|∇ ·ω‖2
L2 +

1
2

∥∥∥∇ |ω|2
∥∥∥2

L2

=
∫
R3
(∇×u) ·ω |ω|2 dx−2‖ω‖4

L4

=
∫
R3

u[∇× (ω |ω|2)dx−2‖ω‖4
L4 , (8)
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where we have used the following identities due to the divergence free property of the
velocity field u: ∫

R3
(u ·∇)u ·u |u|2 dx = 0 =

∫
R3
(u ·∇)ω ·ω |ω|2 dx.

Summing up (7) and (8), it follows that

1
4

d
dt
(‖u‖4

L4 +‖ω‖4
L4)+‖|u|∇u‖2

L2 +
1
2

∥∥∥∇ |u|2
∥∥∥2

L2
+‖|ω|∇ ·ω‖2

L2 +
1
2

∥∥∥∇ |ω|2
∥∥∥2

L2

=
∫
R3

ω[∇× (u |u|2)]dx+
∫
R3

u[∇× (ω |ω|2)dx−2‖ω‖4
L4 −

∫
R3
(u ·∇π)|u|2dx. (9)

Using the Hölder inequality and the Young inequality and integrating by parts, we
derive the estimate of the first three terms on the right-hand side of (9) as follows:∫

R3
ω[∇× (u |u|2)]dx+

∫
R3

u[∇× (ω |ω|2)dx−2‖ω‖4
L4

≤ ‖u‖L4 ‖ω‖L4 (‖|u||∇u‖L2 +‖|ω||∇ω‖L2)−2‖ω‖4
L4

≤ ‖|u||∇u‖2
L2 +‖|ω||∇ω‖2

L2 +C‖u‖4
L4 . (10)

To estimate the last term of the right-hand side of (9), we have after integrating by
parts and employing the Hölder inequality and the Young inequality,∣∣∣∣∫R3

πu ·∇|u|2dx
∣∣∣∣ ≤ ∫R3

|π| |u|
∣∣∇|u|2∣∣dx

≤ C‖π‖2
L4 ‖u‖2

L4 +
1
4

∥∥∥∇ |u|2
∥∥∥2

L2

≤ C‖π‖Ḃ−1
∞,∞
‖∇π‖L2 ‖u‖2

L4 +
1
4

∥∥∥∇ |u|2
∥∥∥2

L2

≤ C‖π‖Ḃ−1
∞,∞
‖u‖2

L4 ‖|u|∇u‖L2 +
1
4

∥∥∥∇ |u|2
∥∥∥2

L2

≤ C‖π‖2
Ḃ−1

∞,∞
‖u‖4

L4 +
1
2
‖|u||∇u‖2

L2 +
1
4

∥∥∥∇ |u|2
∥∥∥2

L2
, (11)

and hence,

d
dt
(‖u(t)‖4

L4 +‖ω(t)‖4
L4)+‖|u|∇u‖2

L2 +
∥∥∥∇ |u|2

∥∥∥2

L2
+‖|ω|∇ ·ω‖2

L2 +‖|ω||∇ω‖2
L2

≤C(1+‖π‖2
Ḃ−1

∞,∞
)‖u‖4

L4 .

Applying the Gronwall inequality,yields

‖u(·, t)‖4
L4 +‖ω(·, t)‖4

L4

≤ (‖u0‖4
L4 +‖ω0‖4

L4)exp
(

C
∫ t

0
(1+‖π(·,τ)‖2

Ḃ−1
∞,∞

)dτ

)
.

Taking the inner product of (1a) with −∆u, (1b) with −∆ω in L2(R3), adding the
resulting equations together, and using the Gagliardo-Nirenberg inequalities:

‖∇u‖L4 ≤C‖u‖
1
5
L4 ‖∆u‖

4
5
L2 and ‖∇u‖L2 ≤C‖u‖

1
2
L2 ‖∆u‖

1
2
L2 .

we obtain,
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1
2

d
dt
(‖∇u(·, t)‖2

L2 +‖∇ω(·, t)‖2
L2)+‖∆u‖2

L2 +‖∆ω‖2
L2 +‖∇∇ ·ω‖2

L2 +2‖∇ω‖2
L2∫

R3
(u ·∇)u ·∆udx−

∫
R3
(∇×ω) ·∆udx+

∫
R3
(u ·∇)ω ·∆ωdx−

∫
R3
(∇×u) ·∆ωdx

≤ ‖u‖L4 ‖∇u‖L4 ‖∆u‖L2 +‖∇ω‖L2 ‖∆u‖L2 +‖u‖L4 ‖∇ω‖L4 ‖∆ω‖L2 +‖∇u‖L2 ‖∆ω‖L2

≤C‖u‖
6
5
L4 ‖∆u‖

9
5
L2 +‖ω‖

1
2
L2 ‖∆ω‖

1
2
L2 ‖∆u‖L2 +‖u‖L4 ‖ω‖

1
5
L4 ‖∆ω‖

9
5
L2 +‖u‖

1
2
L2 ‖∆u‖

1
2
L2 ‖∆ω‖L2

≤C‖u‖12
L4 +C‖ω‖2

L2 +C(‖u‖12
L4 +‖ω‖12

L4)+C‖u‖2
L2 +

1
2
(‖∆u‖2

L2 +‖∆ω‖2
L2)

≤C(1+‖u‖12
L4 +‖ω‖12

L4)+
1
2
(‖∆u‖2

L2 +‖∆ω‖2
L2).

This yields,

d
dt
(‖∇u(·, t)‖2

L2 +‖∇ω(·, t)‖2
L2)+‖∆u‖2

L2 +‖∆ω‖2
L2 +‖∇∇ ·ω‖2

L2 +2‖∇ω‖2
L2

≤C(1+‖u‖12
L4 +‖ω‖12

L4).

Integrating the above inequality over (0, t), we have

‖∇u(t)‖2
L2 +‖∇ω(t)‖2

L2 +
∫ t

0
(‖∆u(τ)‖2

L2 +‖∆ω(τ)‖2
L2 +‖∇∇ ·ω(τ)‖2

L2

+2‖∇ω(τ)‖2
L2)dτ

≤ ‖∇u0‖2
L2 +‖∇ω0‖2

L2 +C
∫ t

0
(1+‖u(τ)‖12

L4 +‖ω(τ)‖12
L4)dτ. (12)

On the other hand, combining a Sobolev embedding theorem Ḣ1(R3) ↪→ L6(R3), (12)
and (5), we obtain that

e+‖π(·, t)‖L3 ≤ e+C‖u(·, t)‖2
L6 ≤ e+C‖∇u(·, t)‖2

L2

≤ e+C(‖∇u0‖2
L2 +‖∇ω0‖2

L2)+C
∫ t

0
(1+‖u(·,τ)‖12

L4)dτ

≤ e+C(‖∇u0‖2
L2 +‖∇ω0‖2

L2)+C(e+ t) sup
0≤τ≤t

(1+‖u(·,τ)‖12
L4)

≤ C
(

e+‖∇u0‖2
L2 +‖∇ω0‖2

L2

)
(e+ t) sup

0≤τ≤t
(1+‖u(·,τ)‖12

L4)

≤ C0(e+ t)exp
(

C
∫ t

0
(1+‖π(·,τ)‖2

Ḃ−1
∞,∞

)dτ

)
, (13)

where the constant C0 =C(e,‖∇u0‖L2 ,‖∇ω0‖L2 ,‖u0‖L4 ,‖ω0‖L4). Using the fact that
L3(R3)⊂ Ḃ−1

∞,∞(R3), it follows that

e+‖π(·, t)‖L3 ≤C(e+ t)exp
(

C
∫ t

0
(1+‖π(·,τ)‖2

Ḃ−1
∞,∞

)dτ

)
(14)

Now, taking the logarithm on both sides of (14), we can conclude that

log(e+‖π(·, t)‖L3)≤ log(C(e+ t))+C
∫ t

0
(1+‖π(·,τ)‖2

Ḃ−1
∞,∞

)dτ. (15)

For simplicity, set
Z (t) = log(e+‖π(·, t)‖L3),

E (t) = log(C(e+ t))+C
∫ t

0
(1+‖∇π(·,τ)‖2

Ḃ−1
∞,∞

)dτ, (16)
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with E (0) = log(Ce). Then, the above inequality (15) implies that

0 < Z (t)≤ E (t)

from which we easily get

(e+Z (t)) log(e+Z (t))≤ (e+E (t)) log(e+E (t)).

On the other hand, we have

d
dt

log(e+E (t)) =
1

e+E (t)

(
1

e+ t
+C(1+‖∇π(·, t)‖2

Ḃ−1
∞,∞

)

)

≤ 1
e2 +C

1+‖∇π(·, t)‖2
Ḃ−1

∞,∞

e+E (t)

=
1
e2 +C

1+‖∇π(·, t)‖2
Ḃ−1

∞,∞

(e+E (t)) ln(e+E (t))
log(e+E (t))

≤ 1
e2 +C

1+‖∇π(·, t)‖2
Ḃ−1

∞,∞

(e+Z (t)) ln(e+Z (t))
log(e+E (t))

Applying the Gronwall inequality to log(e+E (t)), we find

log(e+E (t))

≤ log(e+E (0))exp

 T
e2 +C

∫ t

0

1+‖∇π(·,τ)‖2
Ḃ−1

∞,∞

(e+Z (τ)) log(e+Z (τ))
dτ

 ,

and equivalently

e+E (t)≤ (e+E (0))
exp

 T
e2 +C

∫ t
0

1+‖∇π(·,τ)‖2
Ḃ−1

∞,∞
(e+Z (τ)) log(e+Z (τ))

dτ


Using the fact that L3(R3)⊂ Ḃ−1

∞,∞(R3), it follows from (16) that

t∫
0

‖π(·,τ)‖Ḃ−1
∞,∞

dτ ≤C
t∫

0

‖π(·,τ)‖L3 dτ

≤ (e+E (0))
exp

 T
e2 +

1
C
∫ t

0

1+‖π(·,τ)‖2
Ḃ−1

∞,∞
(e+Z (τ)) log(e+Z (τ))

dτ


< ∞. (17)

Hence by virtue of (12) and (17), we conclude that

(u,ω) ∈ L∞
(
(0,T ) ;H1(R3)

)
∩L2 ((0,T ) ;H2(R3)

)
,

which completes the proof of Theorem 1.1.
ut
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