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This paper deals with the existence of solutions to equilibrium and quasiequilibrium problems without any convexity assumption. Coverage includes some equivalences to the Ekeland variational principle for bifunctions and basic facts about transfer lower continuity. An application is given to systems of quasi-equilibrium problems.

Introduction

To the best of our knowledge, the first appearance of equilibrium problems as we understand them now is due to Muu and Oettli [START_REF] Muu | Convergence of an adaptive penalty scheme for finding constrained equilibria[END_REF] and it was further developed by Blum and Oettli [START_REF] Blum | From optimization and variational inequalities to equilibrium problems[END_REF]. They are conceptually connected to Ky Fan's minimax inequality [START_REF] Fan | A minimax inequality and applications[END_REF] which goes back to the equality result of von Neumann [START_REF] Von Neumann | Zur theorie der gesellschaftsspiele[END_REF].

Definitions, Notation and Preliminaries Results

In this section we introduce and remind tools that will be useful throughout the paper and we will use standard notations and terminology from real analysis.

Given a nonempty subset C of a topological space X, a function h : C → R is said to be lower semicontinuous 1 (lsc for short) if, for each x ∈ C and each λ ∈ R such that h(x) > λ , there exists a neighbourhood V x of x such that h(x ) > λ , for all x ∈ V x ∩C.

Tian and Zhou ( [START_REF] Tian | Transfer continuities, generalizations of the Weierstrass and maximum theorems: a full characterization[END_REF] ) introduced the notion of transfer lower continuity (tls, for short). We say that f is tlc if for each x, y ∈ C such that h(x) > h(y), there exist y ∈ C and V x a neighbourhood of x such that h(x ) > h(y ), for all x ∈ V x ∩ C. Trivially, lsc implies tlc.

Given h and λ ∈ R, we denote by Epi h and S h (λ ) the epigraph and the lower sub-level set at level λ of h, respectively, i.e., Epi h := {(x, λ ) ∈ C × R : h(x) ≤ λ } and S h (λ ) := {x ∈ C : h(x) ≤ λ }.

It is well known that a function is lsc if and only if Epi h is closed in C × R or equivalently, if and only if S h (λ ) is closed in C, for all λ ∈ R, see for instance [START_REF] Choquet | Cours d'analyse. Tome II: Topologie. Espaces topologiques et espaces métriques. Fonctions numériques. Espaces vectoriels topologiques[END_REF].

We will write S h (x) instead of S h (h(x)) in order to simplify the notation. Thanks to [27, Lemma 1 

and Remark 7] a function h is tlc if and only if

x∈C S h (x) = x∈C S h (x), (1) 
where S h (x) is the closure of S h (x) in C.

Note that contrary to lower semicontinuity, transfer lower continuity is not closed under addition as the following simple example shows. It is not hard to observe that both functions are transfer lower continuous. However, h + g fails to be transfer lower continuous. Indeed, the sum function is given by

(h + g)(x) =    1, x < 0 2, x = 0 3, x > 0
whose graph is represented in Figure 1.

From Figure 1 the function h + g is not transfer lower continuous at 0. Given a nonempty subset C of a topological space X and a function h : C → R, we consider the minimization problem:

Find x ∈ C such that h(x) ≤ h(y), for all y ∈ C.
We denote by argmin C h the solution set of the minimization problem associated to h and C, i.e., argmin

C h = {x ∈ C : such that h(x) = inf C h}. It is important to notice that argmin C h = x∈C S h (x) = λ >α S h (λ ), (2) 
where

α = inf x∈C h(x). Additionally, If argmin C h = / 0, then x∈C S h (x) = λ >α S h (λ ). (3) 
The following result is an extension of the celebrated Weierstrass theorem.

Theorem 2.1 ( [27, Theorem 2]) Let C be a compact and nonempty subset of a topological space X, and h : C → R be a function. Then, the set argmin C h is nonempty and compact if and only if h is tlc.

Given a nonempty subset C of a topological space X, it is a basic fact from real analysis that every function h : C → R (not necessarily lsc) admits a lower semicontinuous regularization h : C → R ∪ {-∞} defined by Epi h := Epi h, the closure in C × R, or equivalently by h(x) = lim inf y→x h(y) = sup U inf y∈U h(y), where U runs over all neighbourhoods of x.

It is well known that for any x ∈ C and any λ ∈ R

(i) h(x) = inf{λ ∈ R : x ∈ S λ (h)}; (ii) h(x) ≤ h(x); (iii) S h (x) ⊂ S h (x); (iv) S h (λ ) = µ>λ S h (µ);
We will say that a lower semicontinuous regularization is well-defined if it is real valued, that means h(x) > -∞, for all x ∈ C, or in other words, if h admits a lsc minorant.

We present now some basic results on transfer lower continuity and on lower semicontinuous regularizations.

Proposition 2.1 Let C be a nonempty subset of a topological space X and h : C → R be a function. If h is tlc, then its lower semicontinuous regularization is well-defined.

Proof It is enough to consider the case when h is not bounded from below. Then, for each x ∈ C there exists y ∈ C such that h(x) > h(y). Since h is tlc there exist V x a neighbourhood of x and y ∈ C such that h(x ) > h(y ), for all x ∈ V x , which in turn implies h(x) ≥ h(y ). Therefore, h is well-defined. Proposition 2.2 Let C be a nonempty subset of a topological space X and h : C → R be a function. Then, the following holds

inf x∈C h(x) = inf x∈C h(x). Proof It is clear that inf x∈C h(x) ≥ inf x∈C h(x). If we suppose that inf x∈C h(x) > inf x∈C h(x),
then, there exists x 0 ∈ C such that h(x 0 ) < inf x∈C h(x). Thus, there exists λ ∈ R such that λ < inf x∈C h(x) and x 0 ∈ S h (λ ). Now, for each V x 0 neighbourhood of x 0 there exists x ∈ V x 0 ∩ S h (λ ), so h(x ) ≤ λ , which is a contradiction. Proposition 2.3 Let C be a nonempty subset of a topological space X and h : C → R be a function. If argmin C h = argmin C h, then h is tlc. The converse holds, provided that argmin C h = / 0.

Proof Since S h (x) ⊂ S h (x), for all x ∈ C, by (2) we have

x∈C S h (x) ⊂ x∈C S h (x) = argmin C h = argmin C h = x∈C S h (x).
Hence, h is transfer lower continuous. Conversely, by (3) we have

x∈C S h (x) = λ >α S h (λ ) = λ >α   µ>λ S h (µ)   = λ >α S h (λ ) = x∈C S h (x),
where α = inf x∈C h(x). The result follows from (2) and the transfer lower continuity of h.

The following example shows that the converse of the previous result is not true in general.

Example 2.2 Let C = Q + , and h : C → R be defined as

h(x) :=    0, x = 0 1 q , x = p q
with p, q ∈ N coprime .

Since S h (0) = {0} and 0 ∈ S h (x), for all x ∈ C, we can deduce that h is tlc. Moreover, argmin C h = {0}. On the other hand, the lower semicontinuous regularization of h is the constant function h(x) = 0, and this implies argmin C h = C. Now, we recall some definitions for bifunctions. Given a topological space X and C ⊂ X, a bifunction f : C ×C → R is said:

It is clear that argmin

C h = argmin C h
to have the triangle inequality property on C if, for all x, y, z ∈ C the following holds f (x, y) ≤ f (x, z) + f (z, y);

to be cyclically monotone on C if, for all n ∈ N and all x 0 , x 1 , . . . , x n ∈ C the following holds ,

n i=0 f (x i , x i+1 ) ≤ 0, with x n+1 = x 0 ; -to be monotone on C if, for all x, y ∈ C the following holds f (x, y) + f (y, x) ≤ 0; -to be pseudo-monotone on C if, for all x, y ∈ C the following implication holds f (x, y) ≥ 0 =⇒ f (y, x) ≤ 0;
The concept of cyclic monotonicity for bifunctions appeared first in [START_REF] Bianchi | Existence of equilibria via Ekeland's principle[END_REF]. Many authors studied its properties, see for instance [START_REF] Castellani | Ekeland's principle for cyclically monotone equilibrium problems[END_REF][START_REF] Hadjisavvas | Maximal monotonicity of bifunctions[END_REF][START_REF] Alizadeh | On cyclic and n-cyclic monotonicity of bifunctions[END_REF]. Recently in [START_REF] Castellani | Ekeland's principle for cyclically monotone equilibrium problems[END_REF][START_REF] Giuli | Cyclically monotone equilibrium problems and Ekeland's principle[END_REF] the authors used cyclic monotonicity in order to solve equilibrium and quasi-equilibrium problems.

It is clear that cyclic monotonicity implies monotonicity which in turn implies pseudo-monotonicity. Important instances of these kinds of bifunctions are given below.

Example 2.4 Let C be a nonempty subset of a topological space X and h : C → R be a function with a well-defined lower semicontinuous regularization. Let us consider two bifunctions g, f : C ×C → R defined as

g(x, y) := h(y) -h(x) and f (x, y) := h(y) -h(x). (4) 
Clearly, f is cyclically monotone and g satisfies the triangular inequality property. Moreover, the following inequality holds: g ≥ f , that means g(x, y) ≥ f (x, y), for all x, y ∈ C.

Given a bifunction f : C ×C → R, we consider the bifunction f :

C ×C → R given by f (x, y) := -f (y, x).
Due to [16, Remark 2.2], we note that if f verifies the triangle inequality property, then f is cyclically monotone. By [33, Proposition 5.1] cyclic monotonicity of f is equivalent to the existence of a function h :

C → R such that f (x, y) ≤ h(y) -h(x), ∀x, y ∈ C.
For such a function, it is not difficult to check that

f (x, y) ≥ h(y) -h(x) ≥ f (x, y).
Additionally, if f is monotone, then f (x, y) = h(y)h(x), for all x, y ∈ C. Hence, f is cyclically monotone.

The following result says that there is a strong relationship between monotonicity and pseudo-monotonicity. Proposition 2.5 Let C be a subset of a topological space X and f :

C × C → R be a bifunction from C × C into R. Then, f is pseudo-monotone if and only if there are bifunctions f 1 , f 2 : C ×C → R satisfying f (x, y) = f 1 (x, y) f 2 (x, y), (5) 
where f 1 is strictly positive and f 2 is monotone.

Proof Assume that f is pseudo-monotone. We denote by D the subset of C ×C where f vanishes. Define bifunctions

f 1 , f 2 : C ×C → R by f 1 (x, y) := 1, (x, y) ∈ D | f (x, y)|, otherwise and f 2 (x, y) := sign ( f (x, y)).
It is clear that f 1 is strictly positive. We affirm that f 2 is monotone. Indeed, for each x, y ∈ C we have

f 2 (x, y) ∈ {-1, 0, 1}. So, if f 2 (x, y) = -1, then it is obvious that f 2 (x, y) + f 2 (y, x) ≤ 0. If f 2 (
x, y) = 0 then f (x, y) = 0, which in turn implies f (y, x) ≤ 0 due the pseudo-monotonicity of f . Thus, f 2 (y, x) ∈ {-1, 0} and this allows us to conclude that f 2 (x, y)+ f 2 (y, x) ≤ 0. Finally, if f 2 (x, y) = 1, that means f (x, y) > 0, then again by pseudo-monotonicity of f we have f (y, x) < 0, in other words

f 2 (y, x) = -1. Hence, f 2 (x, y) + f 2 (y, x) = 0.
The converse is not difficult to prove.

Remark 2.1 In a similar way to [36, Theorem 2.1], let C be a subset of a topological space X, and let f : C ×C → R be a bifunction. If f and f are both pseudo-monotone on C, then for all x, y ∈ C the following equivalence holds

f (x, y) = 0 ⇐⇒ f (x, y) = 0.
Hence, (x, y) is an element of the set D, where f vanishes, if and only if (y, x) ∈ D. In other words, D is symmetric. However, contrary to [36, Theorem 2.1] , the converse does not hold, even if we assume the continuity of f . Indeed, consider the bifunction f : R × R → R defined as

f (x, y) := (y -x) 2 . Clearly, f is continuous. Moreover, f (x, y) = 0 if and only if y = x, which in turn is equivalent to f (y, x) = 0. But, the bifunction f is not pseudo-monotone, due to the fact that f (1, 0) = f (0, 1) = 1.
As a direct consequence of the result above, we have the following corollary, which was inspired from [START_REF] Bianchi | On pseudomonotone maps T for which -T is also pseudomonotone[END_REF]Theorem 1.4] for maps in the setting of finite dimensional spaces.

Corollary 2.1 Let C be a subset of a topological space X and f : C × C → R be a bifunction. Then, f , f are pseudo-monotone if and only if there are bifunctions f 1 , f 2 : C ×C → R such that f 1 is strictly positive and f 2 , f2 are monotone, satisfying (5).

The Ekeland Variational Principle

We begin this section recalling the celebrated Ekeland variational principle and then its extension to equilibrium problems.

Theorem 3.1 (The Ekeland variational principle [START_REF] Ekeland | On the variational principle[END_REF]) Let C be a nonempty closed subset of the complete metric space (X, d), and h : C → R be a lsc function bounded from below. For every ε > 0, and for any x 0 ∈ C, there exists x ∈ C such that h( x) + εd(x 0 , x) ≤ h(x 0 ), and h(x) + εd(x, x) > h( x), for all x ∈ C \ { x}. Theorem 3.2 ( [16, Theorem 2.1] and [17, Theorem 2.2]) Let C be a nonempty closed subset of a complete metric space (X, d) and f : C × C → R be a bifunction. Assume that the following conditions hold (i) f is bounded from below and lsc with respect to its second argument; (ii) f (x, x) = 0, for all x ∈ C; (iii) f satisfies the triangle inequality property.

Then, for all ε > 0 and all x 0 ∈ C, there exists x ∈ C such that

f (x 0 , x) + εd(x 0 , x) ≤ 0, f ( x, x) + εd(x, x) > 0 for every x ∈ C \ { x}.
Let us restate Theorem 3.1 in terms of lower semicontinuous regularizations. Theorem 3.3 Let C be a nonempty closed subset of the complete metric space (X, d), and h : C → R be a function bounded from below. For every ε > 0, and for any x 0 ∈ C, there exists x ∈ C such that h( x) + εd(x 0 , x) ≤ h(x 0 ), and h(x) + εd(x, x) > h( x), for all x ∈ C \ { x}.

For the sake of completeness, we give a self-contained proof of Theorem 3.3 which mimics the proof of Ekeland's Theorem.

Proof Since h is bounded from below, its lsc regularization h is well-defined. Without loss of generality we consider ε = 1. Denote by H(x) the set

H(x) := {y ∈ C : h(y) + d(y, x) ≤ h(x)}.
Since the distance is continuous and h is lsc, the set H(x) is closed, for every x ∈ C. Moreover, x ∈ H(x). For each y ∈ H(x) and any z ∈ H(y), it is easy to verify that z ∈ H(x). Hence y ∈ H(x) implies H(y) ⊂ H(x). Define r(x) := inf z∈H(x) h(z). For each z ∈ H(x) we have h(z) + d(z, x) ≤ h(x), which in turn implies d(x, z) ≤ h(x)r(x). So, for any

z 1 , z 2 ∈ H(x) d(z 1 , z 2 ) ≤ d(z 1 , x) + d(x, z 2 ) ≤ 2(h(x) -r(x)).
Thus the diameter diam(H(x)) of H(x) satisfies:

diam(H(x)) ≤ 2(h(x) -r(x)). For x 0 ∈ C, there exists x 1 ∈ H(x 0 ) such that h(x 1 ) ≤ r(x 0 ) + 1 2 .
Now, for this x 1 there exists

x 2 ∈ H(x 1 ) such that h(x 2 ) ≤ r(x 1 ) + 1 2 2 .
Inductively, we define a sequence {x n } of points in C such that x n+1 ∈ H(x n ) and

h(x n+1 ) ≤ r(x n ) + 1 2 n+1 . (6) 
On the other hand, we note that

r(x n+1 ) = inf z∈H(x n+1 ) h(z) ≥ inf z∈H(x n ) h(z) = r(x n ). (7) 
Combining ( 7) and ( 6) we obtain

r(x n ) ≤ r(x n+1 ) ≤ h(x n+1 ) ≤ r(x n ) + 1 2 n+1 . Therefore, diam(H(x n+1 )) ≤ 2(h(x n+1 ) -r(x n+1 )) ≤ 1 2 n , for all n ∈ N. As a conse- quence we deduce that n∈N H(x n ) = { x}. Since x ∈ H(x 0 ), we have h( x) + d( x, x 0 ) ≤ h(x 0 ) ≤ h(x 0 ). Moreover x ∈ H(x n ) for all n ∈ N and since H( x) ⊂ H(x n ) we deduce that H( x) = { x}. As a result, x / ∈ H( x) if and only if x = x.
Therefore, for any

x ∈ C \ { x}, h( x) < h(x) + d(x, x) ≤ h(x) + d(x, x).
This completes the proof.

The next theorem shows that the previous results are equivalent. It is clear that Theorem 3.2 implies Theorem 3.1. Reciprocally, for each ε > 0 and x 0 ∈ C, Ekeland's variational principle applied to the function f (x 0 , •) gives the existence of x ∈ C such that f (x 0 , x) ≤ f (x 0 , x 0 )εd(x 0 , x) and ( 8)

f (x 0 , x) > f (x 0 , x) -εd( x, x), ∀x ∈ C \ { x}. (9) 
Since f vanishes on the diagonal of C ×C, inequality (8) reduces to f (x 0 , x) + εd(x 0 , x) ≤ 0.

On the other hand, according to the triangle inequality property we have f (x 0 , x) ≤ f (x 0 , x) + f ( x, x). Thus, inequality (9) reduces to

f ( x, x) + εd( x, x) > 0, ∀x ∈ C \ { x}.
For the equivalence of Theorem 3.1 and Theorem 3.3, we show that both implications are true.

The first implication follows from h ≤ h and by applying Theorem 3.1 to h. The converse follows by applying Theorem 3.3 to the lsc function h, and by remarking that h = h.

As a direct consequence of Theorem 3.2 we have the following corollary. Corollary 3.1 Let C be a nonempty closed subset of a complete metric space (X, d) and f : C ×C → R be a bifunction. Assume that there exists a bifunction g : C ×C → R such that:

(i) f ≥ g;
(ii) g is bounded from below and lsc with respect to its second argument;

(iii) g vanishes on the diagonal of C ×C; (iv) g satisfies the triangle inequality property.

Then, for all ε > 0, and all x 0 ∈ C, there exists x ∈ C such that g(x 0 , x) + εd(x 0 , x) ≤ 0, and f ( x, x) + εd(x, x) > 0, for every x ∈ C \ { x}.

The conclusion of Corollary 3.1 is similar to the one in [START_REF] Castellani | Ekeland's principle for cyclically monotone equilibrium problems[END_REF]Theorem 2.4], where instead of supposing that g satisfies the triangle inequality property, the authors considered g defined as in (4).

New Existence Results of Equilibria and Quasi-Equilibria

We begin this section by recalling the definitions of equilibrium and Minty equilibrium problems, respectively.

Equilibrium Problems

Let C be a nonempty subset of a topological space X and f : C × C → R, be a given bifunction. We denote by EP( f ,C) the solution set of the equilibrium problem, introduced by Blum and Oettli in [START_REF] Blum | From optimization and variational inequalities to equilibrium problems[END_REF], Find x ∈ C such that f (x, y) ≥ 0, for all y ∈ C.

(

) 10 
In a similar way, MEP( f ,C) denotes the solution set of the so-called Minty equilibrium problem

Find x ∈ C such that f (y, x) ≤ 0, for all y ∈ C. (11) 
Clearly, they satisfy

EP( f ,C) = MEP( f ,C) and EP( f ,C) = MEP( f ,C).
Provided that f (x, y) ≥ h(y)h(x) for some function h : C → R, which implies that f is cyclically monotone, we may observe that

MEP( f ,C) ⊂ argmin C h ⊂ EP( f ,C). ( 12 
)
Moreover, if f is pseudo-monotone, then the above inclusions are actually equalities. Proof From Theorem 2.1, the set argmin C h is nonempty. The result follows from [START_REF] Castellani | Refinements of existence results for relaxed quasimonotone equilibrium problems[END_REF].

The previous result was given in [START_REF] Castellani | Ekeland's principle for cyclically monotone equilibrium problems[END_REF]Theorem 3.4], but instead of considering the transfer lower continuity of h, the authors assumed lower semicontinuity.

Example 4.1 Let h : [0, 2] → R be defined as h(x) :=    x, 0 ≤ x < 1 2, x = 1 x + 2, 1 < x ≤ 2
Its graph is shown in Figure 2. Clearly, h is not lsc. However, it is tlc. Indeed, since S(x) = [0, x], for any x ∈ [0, 2], relation [START_REF] Muu | Convergence of an adaptive penalty scheme for finding constrained equilibria[END_REF] 

implies that h is tlc. As the interval [0, 2] is a compact set, for any bifunction f : [0, 2] × [0, 2] → R, which satisfies f (x, y) ≥ h(y) -h(x), the set EP( f , [0, 2]
) is nonempty, due to Theorem 4.1. It is important to notice that we cannot apply [START_REF] Castellani | Ekeland's principle for cyclically monotone equilibrium problems[END_REF]Theorem 3.4]. Moreover, it is important to note that Theorem 4.1 is not a consequence of [START_REF] Al-Homidan | Vectorial form of ekeland variational principle with applications to vector equilibrium problems[END_REF]Theorem 4.1], due to the lack of any continuity assumption for f . As a direct consequence we have the following corollary, which is a generalization of [START_REF] Giuli | Cyclically monotone equilibrium problems and Ekeland's principle[END_REF]Theorem 3.1].

Corollary 4.1 Let C be a compact and nonempty subset of a topological space X, and f : C ×C → R be a bifunction. If there exists a tlc function h : C → R with f (x, y) ≤ h(y)h(x), for all x, y ∈ C; then, the set MEP( f ,C) is nonempty.

Quasi-Equilibrium Problems

Given a subset C of a complete metric space (X, d), a bifunction f : C × C → R and a set-valued mapping K : C ⇒ C, we denote by QEP( f , K) the solution set of the so-called quasi-equilibrium problem:

Find x ∈ C such that x ∈ K(x) ∧ f (x, y) ≥ 0, for all y ∈ K(x). (13) 
Lemma 4.1 Let C be a nonempty closed subset of a complete metric space (X, d), K : C ⇒ C be a set-valued mapping and h : C → R be a function bounded from below. We assume that for every ε > 0, and for any x 0 ∈ C the following implication holds: for all x ∈ C h(x) + εd(x, x 0 ) ≤ h(x 0 ) =⇒ ∃y ∈ K(x), h(y) + εd(x, y) ≤ h(x).

Then, there exists x ∈ Fix(K)2 satisfying h( x) + εd(x 0 , x) ≤ h(x 0 ), and h(x) + εd(x, x) > h( x), for all x ∈ C \ { x}.

Proof By Theorem 3.3, for each ε > 0 and x 0 , there exists x ∈ C such that h( x) + εd(x 0 , x) ≤ h(x 0 ), and

h(x) + εd(x, x) > h( x), for all x ∈ C \ { x}.
It is enough to show that x is a fixed point of K. From the first inequality and the assumed implication, there exists y ∈ K( x) such that h(y) + εd( x, y) ≤ h( x).

Supposing y = x leads to a contradiction with the second inequality, and therefore, we derive that y = x ∈ K( x).

Given f and K, we notice that if there exists a function h :

C → R such that f (x, y) ≥ h(y) -h(x) (in other words, f is cyclically monotone), then argmin C h ∩ Fix(K) ⊂ QEP( f , K). (14) 
The following result is an extension of [START_REF] Castellani | Ekeland's principle for cyclically monotone equilibrium problems[END_REF]Theorem 3.11].

Theorem 4.2 Let C be a nonempty closed subset of a complete metric space (X, d), let K : C ⇒ C be a set-valued mapping, and let f : C ×C → R be a bifunction. Let us assume that the following conditions hold.

(i) Fix(K) is compact and nonempty;

(ii) there exists a bounded from below function h :

C → R such that argmin C h = argmin C h and f (x, y) ≥ h(y) -h(x), for all x, y ∈ C.
Suppose that for each ε > 0 and each x 0 ∈ X the following implication holds: for all

x ∈ C h(x) + εd(x, x 0 ) ≤ h(x 0 ) =⇒ ∃y ∈ K(x), h(y) + εd(x, y) ≤ h(x).
Then, the set QEP( f , K) is nonempty.

Proof Fix x 0 ∈ C. By Lemma 4.1, for each n ∈ N, there exists x n ∈ Fix(K) such that

h(x) + 1 n d(x, x n ) ≥ h(x n ), for all x ∈ C.
Since Fix(K) is compact, without loss of generality, we can assume that (x n ) n∈N converges to x ∈ Fix(K). We claim that x ∈ argmin C h. Indeed, as the distance function is continuous and h is lsc, we have h(x) ≥ h( x), for all x ∈ C.

By Proposition 2.4, x ∈ argmin C h. The result follows from [START_REF] Fan | A generalization of Tychonoff's fixed point theorem[END_REF].

It is important to note that the previous result is not a consequence of [START_REF] Al-Homidan | Vectorial form of ekeland variational principle with applications to vector equilibrium problems[END_REF]Theorem 4.3], because neither h is lower semicontinouous, nor K is upper semicontinuous. As a direct consequence of Theorem 4.2 we derive the following.

Corollary 4.2 Let C be a nonempty closed subset of a complete metric space (X, d), K : C ⇒ C be a set-valued mapping, and let h : C → R be a function. Let us assume that the following conditions hold.

(i) Fix(K) is compact and nonempty;

(ii) h is a function bounded from below such that argmin C h = argmin C h.

Suppose that for each ε > 0, and each x 0 ∈ X the following implication holds: for all x ∈ C h(x) + εd(x, x 0 ) ≤ h(x 0 ) =⇒ ∃y ∈ K(x), h(y) + εd(x, y) ≤ h(x).

Then, there exists x ∈ Fix(K) such that h( x) ≤ h(x), for all x ∈ K( x).

The previous result is known as the existence of solutions to a quasi-optimization problem. Important results about the existence of solution of this kind of problem were presented in [START_REF] Aussel | Quasimonotone quasivariational inequalities: existence results and applications[END_REF]Propositions 4.2 and 4.5] and [START_REF] Cotrina | A note on quasi-equilibrium problems[END_REF]Corollary 3.2] under continuity and quasi-convexity assumptions.

5 System of Quasi-Equilibrium Problems

Let I be an index set. For each i ∈ I, we consider a complete metric space (X i , d i ), a nonempty closed subset C i of X i and a set-valued mapping K i : C i ⇒ C i . We define the set-valued mapping K : C ⇒ C by

K(x) := i∈I K i (x i ),
where C = C i and x = (x i ) i∈I . By a system of quasi-equilibrium problems we understand the problem of finding

x ∈ Fix(K) such that f i ( x, y i ) ≥ 0 for all y ∈ K( x), [START_REF] Brézis | A remark on Ky Fan's minimax principle[END_REF] where the f i :

C ×C i → R are given. It is important to see that Fix(K) = i∈I Fix(K i ).
In the particular case when for each i ∈ I, K i (x i ) = C i , for all x i ∈ C i , we obtain the known system of equilibrium problems. Theorem 5.1 For each i ∈ I, let C i be a nonempty compact subset of a topological space X i , and let each f i : C ×C i → R be a bifunction such that

f i (x, y i ) ≥ h i (y i ) -h i (x i ), ∀x, y ∈ C (16) 
holds for some transfer lower continuous function h i : C i → R that is also bounded from below. Then, the system of equilibrium problems admits at least one solution.

Proof For each i ∈ I, we apply Theorem 2.1 and obtain xi ∈ argmin C i h i . Thus, from ( 16), x = ( xi ) is a solution of the system of equilibrium problems.

Remark 5.1 Condition ( 16) is equivalent to the following: for any i from I and any positive integer m and any We denote by SEP( f i ,C i , I) the solution set of (15), when K i (x i ) = C i , for all x i ∈ C i . If I is a finite index set, as a particular case, we define the bifunction f :

x 1 , x 2 , . . . , x m ∈ C it holds m j=1 f i (x j , x i j+1 ) ≥ 0 ( 17 
C ×C → R by f (x, y) := i∈I f i (x, y i ). (18) 
The next result says that a system of equilibrium problems is equivalent to a particular equilibrium problem under suitable assumptions. Proposition 5.1 Assume that I is a finite index set and f is defined as [START_REF] Oettli | Equivalents of Ekeland's principle[END_REF]. Then SEP( f i ,C i , I) ⊂ EP( f ,C). The equality holds provided that f i (x, x i ) = 0, for all i ∈ I.

Proof Let x ∈ SEP( f i ,C i , I) and y ∈ C. For each i ∈ I, we have

f i (x, y i ) ≥ 0. Thus f (x, y) ≥ 0. Hence x ∈ EP( f ,C).
Conversely, let x ∈ EP( f ,C), i ∈ I and y i ∈ C i . We take z ∈ C such that z i = y i and z j = x j , for all j ∈ I \ {i}. So,

0 ≤ f (x, y) = j∈I f j (x, z j ) = f i (x, y i ). Therefore, x ∈ SEP( f i ,C i , I).
Given a finite index set I and for each i ∈ I, we consider a compact subset C i of a topological space and a function f i : C ×C i → R. We say that the family of functions { f i } i∈I has the transfer lower continuity property if there exists a tlc function h : C → R such that the bifunction f defined in (18) satisfies f (x, y) ≥ h(y)h(x).

(
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Remark 5.2 Two remarks are needed.

(i) Let f be defined by [START_REF] Oettli | Equivalents of Ekeland's principle[END_REF], where the family { f i } i∈I has the transfer lower continuity property. Then, the bifunction f is cyclically monotone. (ii) If for each i ∈ I, the function f i is usc in its second argument, and the relation [START_REF] Mosco | Implicit variational problems and quasi variational inequalities[END_REF] holds, then the family of functions { f i } i∈I has the transfer lower continuity property. This is due to [START_REF] Castellani | Ekeland's principle for cyclically monotone equilibrium problems[END_REF]Theorem 2.16].

Below we present a result similar to Theorem 5.1.

Theorem 5.2 Assume that I is a finite index set and the family of functions { f i } i∈I has the transfer lower continuity property. If f i (x, x i ) = 0, for all x ∈ C and all i ∈ I, then the set SEP( f i ,C i , I) admits at least one element.

Proof It follows from Theorem 4.1 and Proposition 5.1.

After proving the existence of solutions to systems of equilibrium problems, we can conclude this section by turning our attention to systems of quasi-equilibrium problems. The proof of the next result follows the one in [START_REF] Castellani | Ekeland's principle for cyclically monotone equilibrium problems[END_REF]Theorem 3.11].

Theorem 5.3 For each i ∈ I, let C i be a nonempty closed subset of a complete metric space (X i , d i ), K i : C i ⇒ C i be a set-valued mapping, and let f i : C × C i → R be a function such that (16) holds for some h i : C i → R, bounded from below such that argmin C i h i = argmin C i h i . If Fix(K) is compact and, for any ε > 0, any x 0 ∈ C, and any i ∈ I the following implication holds h i (x i ) + εd i (x i , x i 0 ) ≤ h i (x i 0 ) =⇒ ∃y i ∈ K i (x i ), h i (y i ) + εd i (x i , y i ) ≤ h i (x i ), then (15) has a solution.

Proof For each i ∈ I, x 0 ∈ C, and n ∈ N, we apply Lemma 4.1 and we obtain the existence of a fixed point of K i , say xi n , such that

h i (x i ) + 1 n d i (x i , xi n ) ≥ h i ( xi n ), for all x i ∈ C i .
Since Fix(K i ) is compact, without loss of generality, assume that ( xi n ) n∈N converges to xi ∈ Fix(K i ). By continuity of d i and lower semicontinuity of h i , we have

h i (x i ) ≥ h i ( xi ), for all x i ∈ C i .
Due to Proposition 2.4, we deduce that xi ∈ argmin C i h i ,. The result follows from considering x = ( xi ) ∈ Fix(K) and ( 16).

Conclusions

Our aim in the present paper was to study the existence of equilibria and quasiequilibria, in the setting of metric spaces. We achieved this goal by using the Ekeland variational principle and by dropping usual convexity assumptions. Our results extend many results that can be found in the literature (e.g. [START_REF] Castellani | Ekeland's principle for cyclically monotone equilibrium problems[END_REF]). We also proved the existence of solutions for systems of quasi-equilibrium problems in the setting of metric spaces.

Further research could be done regarding other types of transfer continuities such as transfer weakly lower continuity and quasi transfer lower continuity (see [START_REF] Tian | Transfer continuities, generalizations of the Weierstrass and maximum theorems: a full characterization[END_REF]). Natural extension of this work to generalized Nash equilibrium problems and quasivariational inequalities could also be considered in the future.
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) where x m+1 = x 1 .

 1 It follows from the same steps of the proof of [33, Proposition 5.1].

  when h is lower semicontinuous. However, as the following example shows, the converse is not true in general.

	Example 2.3 Let C = [0, 1], and h : C → R be defined as	
	h(x) :=	x, x is a rational number, x + 1, otherwise	.
	Clearly, h is not lower semicontinuous and its lower semicontinuous regularization is
	given by h(x) = x. Moreover, argmin C h = argmin C h = {0}.	
	Proposition 2.4 Let C be a nonempty subset of a topological space X and h : C → R
	be a function such that argmin C h = argmin C h. If there exists x ∈ C such that
	h(x) ≤ h(y), for all y ∈ C;	
	then x ∈ argmin C h.		
	Proof By Proposition 2.3, h is tlc, and by Proposition 2.1 its lower semicontinuous
	regularization h is well-defined. Now, it is clear that Epi (h) ⊂ C × h(x), +∞ . Thus,
	we deduce that x ∈ argmin C h. The result follows.	

Introduced by R. Baire, see[START_REF] Penot | Semicontinuous mappings in general topology[END_REF] and the references therein.

Fix(K) denotes the set of fixed points of K.
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