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1 Introduction

To the best of our knowledge, the first attempts to investigate equilibrium problems
started with the paper of Blum and Oettli [9]. Equilibrium problems provide a frame-
work to handle broad classes of problems arising in different areas such as opti-
mization, variational inequalities, fixed point theory, Nash equilibria and some oth-
ers, Motivated by these applications, many authors have been increasingly interested
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in studying conditions for the existence of solutions for equilibrium problems. Also,
there exists a large literature about existence involving convexity assumptions on the
constraint set and the bifunction, see for instance [7, 11, 12, 16, 25–27, 29] and their
references therein.The main concepts used generally in these problems involve the
famous minimax inequality due to Ky Fan [22] or the Brézis-Browder-Stampacchia
result [10], while other authors used an important lemma, strongly related to general-
ized monotonicity concepts, due again to Ky Fan [28].

Most of the results concerning existence of equilibrium problems without any con-
vexity assumptions, use Ekeland’s variational principle, see [1, 6]. Indeed, this princi-
ple or its equivalents (see [30]) is a key tool in the theory of variational analysis. This
principle uses the completeness of the space as well as the lower semicontinuity of
the function under consideration. It permits to establish the existence of approximate
solutions of minimization problems.

Our main interest concerns quasi-equilibrium problems, that is equilibrium prob-
lems with a constraint set depending on the current point. This problem has gained
more and more attention, perhaps because it models generalized Nash equilibrium
problems, which in turn models a large number of real life problems, see e.g. [21] and
its references therein. Recent works on the existence of solutions for this kind of prob-
lem involving convexity assumptions are given in [4, 14, 17–19]. In [13] an existence
result was provided for quasi-equilibrium problems, without any convexity condition,
via Ekeland’s variational principle.

It is our aim in this contribution to move away from lower semicontinuity by using
a weaker notion called transfer lower continuity which was introduced in the frame-
work of mathematical analysis for generalizations of the Weierstrass and maximum
theorems and briefly studied by Tian and Zhou [32].

The rest of the paper is organized in five main sections. The next section is devoted
to the concept of transfer lower continuity, while in section 3 we establish, for non
necessarily lower semicontinuous functions, an Ekeland-type theorem which involves
the lower semicontinuous regularization of the given functional. We show that this
theorem is equivalent to a theorem by Bianchi et al [6] established for equilibrium
problems.

Section 4 is concerned with new existence results of equilibria and quasi-equilibria,
while the main result of section 5 is Theorem 13 that guarantees the existence of a so-
lution to a system of quasi-equilibrium problems in complete metric spaces.

2 Definitions, notation and preliminaries results

In this section we introduce and remind tools that will be useful throughout the paper
and we will use standard notations and terminology from real analysis.
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Given a nonempty subset C of a topological space X , a function h : C→ R is said
to be lower semicontinuous1 (lsc for short) if, for each x ∈C and each λ ∈R such that
h(x)> λ , there exists a neighbourhood Vx of x such that h(x′)> λ , for all x′ ∈Vx∩C.

Tian and Zhou ( [32] ) introduced a weaker notion of lower semicontinuity that
they called transfer lower continuity. More precisely, h is transfer lower continuous
(tlc, for short) if, for each x,y ∈ C such that h(x) > h(y), there exist y′ ∈ C and Vx a
neighbourhood of x such that h(x′)> h(y′), for all x′ ∈Vx∩C.

Given h and λ ∈ R, we denote by Epi h and Sh(λ ) the epigraph and the lower
sub-level set at level λ of h, respectively, i.e.,

Epi h := {(x,λ ) ∈C×R : h(x)≤ λ} and Sh(λ ) := {x ∈C : h(x)≤ λ}.

It is well known that a function is lsc if and only if Epi h is closed in C×R or equiva-
lently, if and only if Sh(λ ) is closed in C, for all λ ∈ R, see for instance [15].

We will write Sh(x) instead of Sh(h(x)) in order to simplify the notation. Thanks
to [32, Lemma 1 and Remark 7] a function h is tlc if and only if⋂

x∈C

Sh(x) =
⋂
x∈C

Sh(x),

where Sh(x) is the closure of Sh(x) in C.

Note that contrary to lower semicontinuity, transfer lower continuity is not closed
under addition as the following simple example shows.

Example 2.1 Let h,g : R→ R be two functions defined as

h(x) :=


x+1, x < 0

2, x = 0
x+3, x > 0

and g(x) :=−x.

It is not hard to observe that both functions are transfer lower continuous. However,
h+g fails to be transfer lower continuous. Indeed, the sum function is given by

(h+g)(x) =


1, x < 0
2, x = 0
3, x > 0

whose graph is represented in Figure 1.
From Figure 1 the function h+g is not transfer lower continuous at 0.

Given a nonempty subset C of a topological space X and a function h : C→R, we
consider the minimization problem:

Find x ∈C such that h(x)≤ h(y), for all y ∈C.

1 Introduced by R. Baire, see [31] and the references therein.



4 John Cotrina et al.
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Fig. 1 graph of h+g

We denote by argminC h the solution set of the minimization problem associated to h
and C. It is important to notice that

argmin
C

h =
⋂
x∈C

Sh(x) =
⋂

λ>α

Sh(λ ), (1)

where α = infx∈C h(x). Additionally,⋂
x∈C

Sh(x) =
⋂

λ>α

Sh(λ ). (2)

The following result is an extension of the celebrated Weierstrass theorem.

Theorem 2.1 ( [32, Theorem 2]) Let C be a compact and nonempty subset of a topo-
logical space X, and h : C→R be a function. Then, the set argminC h is nonempty and
compact if and only if h is tlc.

Given a nonempty subset C of a topological space X , it is a basic fact from real
analysis that every function h : C→R (not necessarily lsc) admits a lower semicontin-
uous regularization h : C→R∪{−∞} defined by Epi h := Epi h, the closure in C×R,
or equivalently by h̄(x) = liminfy→x h(y) = supU infy∈U h(y), where U runs over all
neighbourhoods of x.

It is well known that for any x ∈C and any λ ∈ R

(i) h(x) = inf{λ ∈ R : x ∈ Sλ (h)};
(ii) h(x)≤ h(x);

(iii) Sh(x)⊂ Sh(x);
(iv) Sh(λ ) =

⋂
µ>λ Sh(µ);

We will say that a lower semicontinuous regularization is well-defined if it is real
valued, that means h(x) > −∞, for all x ∈ C, or in other words, if h admits a lsc
minorant.

We present now some basic results on transfer lower continuity and on lower semi-
continuity regularization.
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Proposition 2.1 Let C be a nonempty subset of a topological space X and h : C→ R
be a function. If h is tlc, then its lower semicontinuous regularization is well-defined.

Proof. It is enough to consider the case when h is not bounded below. Then, for
each x ∈ C there exists y ∈ C such that h(x) > h(y). Since h is tlc there exist Vx a
neighbourhood of x and y′ ∈ C such that h(x′) > h(y′), for all x′ ∈ Vx, which in turn
implies h(x)≥ h(y′). Therefore, h is well-defined. ut

Proposition 2.2 Let C be a nonempty subset of a topological space X and h : C→ R
be a function. Then, the following holds

inf
x∈C

h(x) = inf
x∈C

h(x).

Proof. It is clear that infx∈C h(x)≥ infx∈C h(x). If we suppose that

inf
x∈C

h(x)> inf
x∈C

h(x),

then, there exists x0 ∈C such that h(x0) < infx∈C h(x). Thus, there exists λ ∈ R such
that λ < infx∈C h(x) and x0 ∈ Sh(λ ). Now, for each Vx0 neighbourhood of x0 there
exists x′ ∈Vx0 ∩Sh(λ ), so h(x′)≤ λ , which is a contradiction. ut

Proposition 2.3 Let C be a nonempty subset of a topological space X and h : C→ R
be a function. Then argminC h = argminC h if and only if h is tlc.

Proof. Since Sh(x)⊂ Sh(x), for all x ∈C, by (1) we have⋂
x∈C

Sh(x)⊂
⋂
x∈C

Sh(x) = argmin
C

h = argmin
C

h =
⋂
x∈C

Sh(x).

Hence, h is transfer lower continuous.
Conversely, by (2) we have

⋂
x∈C

Sh(x) =
⋂

λ>α

Sh(λ ) =
⋂

λ>α

⋂
µ>λ

Sh(µ)

=
⋂

λ>α

Sh(λ ) =
⋂
x∈C

Sh(x),

where α = infx∈C h(x). The result follows from (1) and the transfer lower continuity
of h. ut

The following example shows that transfer lower continuity is essential in the
previous result.

Example 2.2 Let h : R→ R be the function defined as

h(x) :=
{
|x|, x 6= 0
1, x = 1

Clearly the lower semicontinuous regularization of h is h :R→R defined as h(x)= |x|.
Figure 2 shows the graphs of h and its regularization h, respectively.

Moreover,
argmin

R
h = /0 and argmin

R
h = {0}.
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Fig. 2 graphs of h and h

Proposition 2.4 Let C be a nonempty subset of a topological space X and h : C→ R
be a tlc function. If there exists x ∈C such that

h(x)≤ h(y), for all y ∈C;

then x ∈ argminC h.

Proof. Since h is tlc, its lower semicontinuous regularization h is well-defined, due to
Proposition 2.1. Now, it is clear that Epi (h)⊂C×

[
h(x),+∞

[
. Thus, we deduce that

x ∈ argminC h. The result follows from Proposition 2.3. ut

Example 2.2 shows that the transfer lower semi-continuity can not be dropped in
the previous result.

Now, we recall some definitions for bifunctions. Given a topological space X and
C ⊂ X , a bifunction f : C×C→ R is said:

– to have the triangle inequality property on C if, for all x,y,z ∈ C the following
holds

f (x,y)≤ f (x,z)+ f (z,y);

– to be cyclically monotone on C if, for all n ∈ N and all x0,x1, . . . ,xn ∈C the fol-
lowing holds ,

n∑
i=0

f (xi,xi+1)≤ 0,

with xn+1 = x0;
– to be monotone on C if, for all x,y ∈C the following holds

f (x,y)+ f (y,x)≤ 0;

– to be pseudo-monotone on C if, for all x,y ∈C the following implication holds

f (x,y)≥ 0 =⇒ f (y,x)≤ 0;
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The concept of cyclic monotonicity for bifunctions appeared first in [6]. Many
authors studied its properties, see for instance [2, 13, 24]. Recently in [13, 23] the
authors used cyclic monotonicity in order to solve equilibrium and quasi-equilibrium
problems.

It is clear that cyclic monotonicity implies monotonicity which in turn implies
pseudo-monotonicity. Important instances of these kinds of bifunctions are given be-
low.

Example 2.3 Let C be a nonempty subset of a topological space X and let h : C→
R be a function with a well-defined lower semicontinuous regularization. Consider
bifunctions g, f : C×C→ R defined as

g(x,y) := h(y)−h(x) and f (x,y) := h(y)−h(x). (3)

It is clear that f is cyclically monotone and g satisfies the triangular inequality prop-
erty. Moreover, the following inequality holds: g≥ f 2.

Given a bifunction f : C×C→R, we consider the bifunction f̂ : C×C→R given
by

f̂ (x,y) :=− f (y,x).

Due to [6, Remark 2.2], we note that if f verifies the triangle inequality property,
then f̂ is cyclically monotone. By [24, Proposition 5.1] cyclic monotonicity of f̂ is
equivalent to the existence of a function h : C→ R such that

f̂ (x,y)≤ h(y)−h(x), ∀x,y ∈C.

Moreover, it is not difficult to check that

f (x,y)≥ h(y)−h(x)≥ f̂ (x,y).

Additionally, if f is monotone, then f (x,y) = h(y)−h(x), for all x,y ∈C. Hence, f is
cyclically monotone.

The following result says that there is a strong relationship between monotonicity
and pseudo-monotonicity.

Proposition 2.5 Let C be a nonempty subset of a topological space X and f : C×C→
R be a bifunction. Then, f is pseudo-monotone if and only if there are bifunctions
f1, f2 : C×C→ R satisfying

f (x,y) = f1(x,y) f2(x,y), (4)

where f1 is strictly positive and f2 is monotone.

2 By g≥ f we mean that g(x,y)≥ f (x,y) for all x,y ∈C.
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Proof. Assume that f is pseudo-monotone. We denote by D the subset of C where f
vanishes. Define bifunctions f1, f2 : C×C→ R by

f1(x,y) :=
{

1, (x,y) ∈ D
| f (x,y)|, otherwise and f2(x,y) := sign( f (x,y)).

It is clear that f1 is strictly positive. We affirm that f2 is monotone. Indeed, for each
x,y ∈ C we have f2(x,y) ∈ {−1,0,1}. So, if f2(x,y) = −1, then it is obvious that
f2(x,y)+ f2(y,x)≤ 0. If f2(x,y) = 0 then f (x,y) = 0, which in turn implies f (y,x)≤
0 due the pseudo-monotonicity of f . Thus, f2(y,x) ∈ {−1,0} and this allows us to
conclude that f2(x,y)+ f2(y,x)≤ 0. Finally, if f2(x,y)= 1, that means f (x,y)> 0, then
again by pseudo-monotonicity of f we have f (y,x)< 0, in other words f2(y,x) =−1.
Hence, f2(x,y)+ f2(y,x) = 0.

The converse is not difficult to check. ut

Remark 2.1 In a similar way to [8, Theorem 2.1], let C be a subset of a topological
space X , and let f : C×C→ R be a bifunction. If f and f̂ both are pseudo-monotone
on C, then for all x,y ∈C the following equivalence holds

f (x,y) = 0 ⇐⇒ f̂ (x,y) = 0.

Hence, (x,y) is an element of the set D, where f vanishes, if and only if (y,x) ∈ D. In
other words, D is symmetric.

However, contrary to [8, Theorem 2.1] , the converse does not hold, even if we
assume the continuity of f . Indeed, consider the bifunction f : R×R→ R defined as

f (x,y) := (y− x)2.

Clearly, f is continuous. Moreover, f (x,y) = 0 if and only if y = x, which in turn is
equivalent to f (y,x) = 0. But, the bifunction f is not pseudo-monotone, due to the fact
that f (1,0) = f (0,1) = 1.

As a direct consequence of the result above, we have the following corollary,
which was inspired from [5, Theorem 1.4] for maps in the setting of finite dimen-
sional spaces.

Corollary 2.1 Let C be a subset of a topological space X and f : C×C → R be
a bifunction. Then, f , f̂ are pseudo-monotone if and only if there are bifunctions
f1, f2 : C×C→ R such that f1 is strictly positive and f2, f̂2 are monotone, satisfying
(4).

3 The Ekeland variational principle

We begin this section recalling the celebrated Ekeland variational principle and then
its extension to equilibrium problems.

Theorem 3.1 (The Ekeland variational principle [20]) Let C be a nonempty closed
subset of the complete metric space (X ,d), and h : C→ R be a lsc function bounded
from below. For every ε > 0, and for any x0 ∈C, there exists x̂ ∈C such that
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h(x̂)+ εd(x0, x̂)≤ h(x0), and
h(x)+ εd(x, x̂)> h(x̂), for all x ∈C \{x̂}.

Theorem 3.2 ( [6, Theorem 2.1] and [1, Theorem 2.2]) Let C be a nonempty closed
subset of a complete metric space (X ,d) and f : C×C→ R be a bifunction. Assume
that the following conditions hold

(i) f is bounded from below and lsc with respect to its second argument;
(ii) f (x,x) = 0, for all x ∈C;

(iii) f satisfies the triangle inequality property.

Then, for all ε > 0 and all x0 ∈C, there exists x̂ ∈C such that

f (x0, x̂)+ εd(x0, x̂)≤ 0,
f (x̂,x)+ εd(x, x̂)> 0 for every x ∈C \{x̂}.

Let us restate Theorem 3.1 in terms of lower semicontinuous regularizations.

Theorem 3.3 Let C be a nonempty closed subset of the complete metric space (X ,d),
and h : C→R be a function bounded from below. For every ε > 0, and for any x0 ∈C,
there exists x̂ ∈C such that

h(x̂)+ εd(x0, x̂)≤ h(x0), and
h(x)+ εd(x, x̂)> h(x̂), for all x ∈C \{x̂}.

For the sake of completeness, we give a self-contained proof of Theorem 3.3 which
mimics the proof of Ekeland’s Theorem.

Proof. Since h is bounded from below, its lsc regularization h is well-defined. Without
loss of generality we consider ε = 1. Denote by H(x) the set

H(x) := {y ∈C : h(y)+d(y,x)≤ h(x)}.

Since the distance is continuous and h is lsc, the set H(x) is closed, for every x ∈C.
Moreover, x ∈ H(x). For each y ∈ H(x) and any z ∈ H(y), it is easy to verify that
z∈H(x). Hence y∈H(x) implies H(y)⊂H(x). Define r(x) := infz∈H(x) h(z). For each
z ∈ H(x) we have h(z)+ d(z,x) ≤ h(x), which in turn implies d(x,z) ≤ h(x)− r(x).
So, for any z1,z2 ∈ H(x)

d(z1,z2)≤ d(z1,x)+d(x,z2)≤ 2(h(x)− r(x)).

Thus the diameter diam(H(x)) of H(x) satisfies:

diam(H(x))≤ 2(h(x)− r(x)).

For x0 ∈C, there exists x1 ∈ H(x0) such that

h(x1)≤ r(x0)+
1
2
.

Now, for this x1 there exists x2 ∈ H(x1) such that

h(x2)≤ r(x1)+
1
22 .
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Inductively, we define a sequence {xn} of points in C such that xn+1 ∈ H(xn) and

h(xn+1)≤ r(xn)+
1

2n+1 . (5)

On the other hand, we note that

r(xn+1) = inf
z∈H(xn+1)

h(z)≥ inf
z∈H(xn)

h(z) = r(xn). (6)

Combining (6) and (5) we obtain

r(xn)≤ r(xn+1)≤ h(xn+1)≤ r(xn)+
1

2n+1 .

Therefore, diam(H(xn+1)) ≤ 2(h(xn+1)− r(xn+1)) ≤
1
2n , for all n ∈ N. As a conse-

quence we deduce that ⋂
n∈N

H(xn) = {x̂}.

Since x̂ ∈H(x0), we have h(x̂)+d(x̂,x0)≤ h(x0)≤ h(x0). Moreover x̂ ∈H(xn) for all
n ∈ N and since H(x̂)⊂ H(xn) we deduce that H(x̂) = {x̂}. As a result,

x /∈ H(x̂) if and only if x 6= x̂.

Therefore, for any x ∈C \{x̂},

h(x̂)< h(x)+d(x, x̂)≤ h(x)+d(x, x̂).

This completes the proof. ut

The next theorem shows that the previous results are equivalent.

Theorem 3.4 Theorems 3.1 through 3.3 are equivalent.

Proof. Theorem 3.1⇐⇒ Theorem 3.2.
It is clear that Theorem 3.2 implies Theorem 3.1. Reciprocally, for each ε > 0

and x0 ∈ C, Ekeland’s variational principle applied to the function f (x0, ·) gives the
existence of x̂ ∈C such that

f (x0, x̂)≤ f (x0,x0)− εd(x0, x̂) and (7)

f (x0,x)> f (x0, x̂)− εd(x̂,x), ∀x ∈C \{x̂}. (8)

Since f vanishes on the diagonal of C×C, inequality (7) reduces to

f (x0, x̂)+ εd(x0, x̂)≤ 0.

On the other hand, according to the triangle inequality property we have f (x0,x) ≤
f (x0, x̂)+ f (x̂,x). Thus, inequality (8) reduces to

f (x̂,x)+ εd(x̂,x)> 0, ∀x ∈C \{x̂}.

For the equivalence of Theorem 3.1 and Theorem 3.3, we show both implications.
The first implication follows from h ≤ h and by applying Theorem 3.1 to h. The

converse follows from the fact that h = h. ut
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As a direct consequence of Theorem 3.2 we have the following corollary.

Corollary 3.1 Let C be a nonempty closed subset of a complete metric space (X ,d)
and f : C×C→R be a bifunction. Assume that there exists a bifunction g : C×C→R
such that:

(i) f ≥ g;
(ii) g is bounded from below and lsc with respect to its second argument;

(iii) g vanishes on the diagonal of C×C;
(iv) g satisfies the triangle inequality property.

Then, for all ε > 0, and all x0 ∈C, there exists x̂ ∈C such that

g(x0, x̂)+ εd(x0, x̂)≤ 0, and
f (x̂,x)+ εd(x, x̂)> 0, for every x ∈C \{x̂}.

The conclusion of Corollary 3.1 is similar to the one in [13, Theorem 2.4], where
instead of supposing that g satisfies the triangle inequality property, the authors con-
sidered g defined as in (3).

4 New existence results of equilibria and quasi-equilibria

We begin this section with recalling the definitions of equilibrium and Minty equilib-
rium problems, respectively.

4.1 Equilibrium problems

Let C be a nonempty subset of a topological space X and f : C×C→ R, be a given
bifunction. We denote by EP( f ,C) the solution set of the equilibrium problem, intro-
duced by Blum and Oettli in [9],

Find x ∈C such that f (x,y)≥ 0, for all y ∈C. (9)

In a similar way, MEP( f ,C) denotes the solution set of the so-called Minty equi-
librium problem

Find x ∈C such that f (y,x)≤ 0, for all y ∈C. (10)

Clearly, they satisfy

EP( f ,C) = MEP( f̂ ,C) and EP( f̂ ,C) = MEP( f ,C).

Provided that f (x,y) ≥ h(y)− h(x), which implies that f̂ is cyclically monotone, we
may observe that

MEP( f ,C)⊂ argmin
C

h⊂ EP( f ,C). (11)

Moreover, if f is pseudo-monotone, then the above inclusions are actually equalities.
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Remark 4.1 If the bifunction f vanishes on the diagonal of C×C, then

x ∈ EP( f ,C)⇔ x ∈ argmin
C

f (x, ·) and x ∈MEP( f ,C)⇔ x ∈ argmin
C

f̂ (x, ·).

Moreover,

EP( f ,C)⊂
⋃
x∈C

argmin
C

f (x, ·) and MEP( f ,C)⊂
⋃
y∈C

argmin
C

f̂ (y, ·).

Theorem 4.1 Let C be a compact and nonempty subset of a topological space X, and
f : C×C→ R be a bifunction. If there exists a tlc function h : C→ R with

f (x,y)≥ h(y)−h(x), for all x,y ∈C;

then, the set EP( f ,C) is nonempty.

Proof. From Theorem 2.1, the set argminC h is nonempty. The result follows from
(11). ut

The previous result was given in [13, Theorem 3.4], but instead of considering the
transfer lower continuity of h, the authors assumed lower semicontinuity.

Example 4.1 Let h : [0,2]→ R be defined as

h(x) :=


x, 0≤ x < 1
2, x = 1

x+2, 1 < x≤ 2

Its graph is shown in Figure 3.

1 2

2

4

Fig. 3 graph of h

Clearly, h is not lsc. However, it is tlc. Indeed, it follows from S(x) = [0,x], for all
x ∈ [0,2]. Since [0,2] is a compact set, for any bifunction f : [0,2]× [0,2]→R, which
satisfies

f (x,y)≥ h(y)−h(x),
the set EP( f , [0,2]) is nonempty, due to Theorem 4.1. It is important to notice that we
cannot apply [13, Theorem 3.4].
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As a direct consequence we have the following corollary, which is a generalization
of [23, Theorem 3.1].

Corollary 4.1 Let C be a compact and nonempty subset of a topological space X, and
f : C×C→ R be a bifunction. If there exists a tlc function h : C→ R with

f (x,y)≤ h(y)−h(x), for all x,y ∈C;

then, the set MEP( f ,C) is nonempty.

4.2 Quasi-equilibrium problems

Given a nonempty subset C of a complete metric space (X ,d), a bifunction f : C×C→
R and a set-valued mapping K : C ⇒ C, we denote by QEP( f ,K) the solution set of
the so-called quasi-equilibrium problem:

Find x ∈C such that x ∈ K(x) ∧ f (x,y)≥ 0, for all y ∈ K(x). (12)

Lemma 4.1 Let C be a nonempty subset of a complete metric space (X ,d), K : C ⇒C
be a set-valued mapping and h : C→R be a function bounded from below. We assume
that for every ε > 0, and for any x0 ∈C the following implication holds:

h(x)+ εd(x,x0)≤ h(x0) =⇒ ∃y ∈ K(x), h(y)+ εd(x,y)≤ h(x).

Then, there exists x̂ ∈ Fix(K)3 satisfying

h(x̂)+ εd(x0, x̂)≤ h(x0), and
h(x)+ εd(x, x̂)> h(x̂), for all x ∈C \{x̂}.

Proof. By Theorem 3.3, for each ε > 0 and x0, there exists x̂ ∈C such that

h(x̂)+ εd(x0, x̂)≤ h(x0), and
h(x)+ εd(x, x̂)> h(x̂), for all x ∈C \{x̂}.

It is enough to show that x̂ is a fixed point of K. According to the first inequality, there
exists y ∈ K(x̂) such that

h(y)+ εd(x̂,y)≤ h(x̂).

Supposing y 6= x̂ leads to a contradiction with the second inequality, and therefore, we
derive that y = x̂ ∈ K(x̂). ut

Associated to f and K, we notice that if there exists a function h : C→R such that
f (x,y)≥ h(y)−h(x) (in other words, f̂ is cyclically monotone), then

argmin
C

h∩Fix(K)⊂ QEP( f ,K). (13)

The following result is an extension of [13, Theorem 3.11] to the transfer lower
continuous case.

3 Fix(K) denotes the set of fixed points of K.
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Theorem 4.2 Let C be a nonempty closed subset of a complete metric space (X ,d),
let K : C ⇒C be a set-valued mapping, and let f : C×C→R be a bifunction. Assume
that the following conditions hold.

(i) Fix(K) is compact and nonempty;
(ii) there exists a tlc function bounded below h : C→ R such that

f (x,y)≥ h(y)−h(x), for all x,y ∈C.

Suppose that for each ε > 0 and each x0 ∈ X the following implication holds:

h(x)+ εd(x,x0)≤ h(x0) =⇒ ∃y ∈ K(x), h(y)+ εd(x,y)≤ h(x).

Then, the set QEP( f ,K) is nonempty.

Proof. Fix x0 ∈C. By Lemma 4.1, for each n ∈ N, there exists xn ∈ Fix(K) such that

h(x)+
1
n

d(x,xn)≥ h(xn), for all x ∈C.

Since Fix(K) is compact, without loss of generality, we can assume that (xn)n∈N con-
verges to x̂ ∈ Fix(K). We claim that x̂ ∈ argminC h. Indeed, as the distance function is
continuous and h is lsc, we have

h(x)≥ h(x̂), for all x ∈C.

By Proposition 2.4, x̂ ∈ argminC h. The result follows from (13). ut

As a direct consequence of Theorem 4.2 we derive.

Corollary 4.2 Let C be a nonempty closed subset of a complete metric space (X ,d),
K : C ⇒C be a set-valued mapping, and let h : C→ R be a function. Assume that the
following conditions hold.

(i) Fix(K) is compact and nonempty;
(ii) h is a tlc function bounded from below.

Suppose that for each ε > 0, and each x0 ∈ X the following implication holds:

h(x)+ εd(x,x0)≤ h(x0) =⇒ ∃y ∈ K(x), h(y)+ εd(x,y)≤ h(x).

Then, there exists x̂ ∈ Fix(K) such that

h(x̂)≤ h(x), for all x ∈ K(x̂).

The previous result is known as the existence of solutions to a quasi-optimization
problem. Important results about the existence of solution of this kind of problem were
presented in [3, Propositions 4.2 and 4.5] and [18, Corollary 3.2] under continuity and
quasi-convexity assumptions.
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5 System of quasi-equilibrium problems

Let I be an index set. For each i ∈ I, we consider a complete metric space (Xi,di), a
nonempty closed subset Ci of Xi and a set-valued mapping Ki : Ci ⇒Ci. We define the
set-valued mapping K : C ⇒C by

K(x) :=
∏
i∈I

Ki(xi),

where C =
∏

Ci and x = (xi)i∈I . By a system of quasi-equilibrium problems we under-
stand the problem of finding

x̂ ∈ Fix(K) such that fi(x̂,yi)≥ 0 for all y ∈ K(x̂), (14)

where the fi : C×Ci→ R are given. It is important to see that

Fix(K) =
∏
i∈I

Fix(Ki).

When for each i ∈ I, Ki(xi) =Ci, for all xi ∈Ci, we obtain the known system of equi-
librium problems

The following result generalizes [13, Theorem 4.2], [1, Proposition 4.2] and [6,
Proposition 2].

Theorem 5.1 For each i∈ I, let Ci be a nonempty closed subset of a topological space
Xi, and let each fi : C×Ci→ R be a bifunction such that

fi(x,yi)≥ hi(yi)−hi(xi), ∀x,y ∈C (15)

holds for some transfer lower continuous function hi : Ci → R that is also bounded
from below. Then, the system of equilibrium problems admits at least a solution.

Proof. For each i ∈ I, we apply Theorem 2.1 and obtain x̂i ∈ argminCi
hi. Thus, from

(15), x̂ = (x̂i) is a solution of the system of equilibrium problems. ut

Remark 5.1 Condition (15) is equivalent to the following: for any x1,x2, . . . ,xm ∈C it
holds

m∑
j=1

fi(x j,xi
j+1)≥ 0 (16)

where xm+1 = x1. It follows from the same steps of the proof of [24, Proposition 5.1].

We denote by SEP( fi,Ci, I) the solution set of (14), when Ki(xi) = Ci, for all xi ∈Ci.
If I is a finite index set, as a particular case, we define the bifunction f : C×C→R by

f (x,y) :=
∑
i∈I

fi(x,yi). (17)

The next result says that a system of equilibrium problems is equivalent to a par-
ticular equilibrium problem under suitable assumptions.
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Proposition 5.1 Assume that I is a finite index set and f is defined as (17). Then
SEP( fi,Ci, I)⊂ EP( f ,C). The equality holds provided that fi(x,xi) = 0, for all i ∈ I.

Proof. Let x ∈ SEP( fi,Ci, I) and y ∈C. For each i ∈ I, we have

fi(x,yi)≥ 0.

Thus f (x,y)≥ 0. Hence x ∈ EP( f ,C).
Conversely, let x ∈ EP( f ,C), i ∈ I and yi ∈Ci. We set

y = (yi,x−i) ∈C.

So,
0≤ f (x,y) =

∑
j∈I

f j(x,y j) = fi(x,yi).

Therefore, x ∈ SEP( fi,Ci, I). ut

Given a finite index set I and for each i∈ I, we consider a subset Ci of a topological
space and a function fi : C×Ci→ R. We say that the family of functions { fi}i∈I have
the transfer lower continuity property if there exists a tlc function h : C→R such that
the bifunction f defined in (17) satisfies

f (x,y)≥ h(y)−h(x).

Remark 5.2 Two remarks are needed.

(i) The bifunction f̂ , where f is defined in (17) associated to a family of functions
with the transfer lower continuity property, is cyclically montone.

(ii) If for each i ∈ I the function fi satisfies condition (16), then the function f̂ is
cyclically monotone, where f is defined as (17). Moreover, if for each i ∈ I, the
function fi is usc in its second argument; then the family of function { fi}i∈I has
the transfer lower continuity property. This is due to [13, Theorem 2.16].

Below we present a result similar to Theorem 5.1.

Theorem 5.2 Assume that I is a finite index set and the family of functions { fi}i∈I has
the transfer lower continuity property. If fi(x,xi) = 0, for all x = (xi,x−i) ∈C and all
i ∈ I, then the set SEP( fi,Ci, I) admits at least an element.

Proof. It follows from Theorem 4.1 and Proposition 5.1. ut

The following example shows us that the previous result is not a consequence of
Theorem 5.1.

Example 5.1 Consider C1 =C2 =C both compact and nonempty subsets of R and the
functions f1, f2 : C2×C→ R defined as

f1(x1,x2,y1) := y1− x2 and f2(x1,x2,y2) := y2− x1.
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It is clear that neither f1 nor f2 satisfy condition (15). However, the bifunction f
defined in (17) is given by

f1(x1,x2,y1)+ f2(x1,x2,y2) =
2∑

i=1

yi−
2∑

i=1

xi.

Therefore, the existence of solution of the system of equilibrium problems follows
from Theorem 5.2, but not from Theorem 5.1.

Finally, using the same steps in the proof of Theorem 13 we can guarantee the
existence of solution of the system of quasi-equilibrium problems in complete metric
spaces.

Theorem 5.3 For each i ∈ I, let Ci be a nonempty closed subset of a complete metric
space (Xi,di), Ki : Ci ⇒ Ci be a set-valued mapping, and let fi : C×Ci → R be a
function such that (15) holds for some transfer lower continuous function hi : Ci→ R
that is also bounded below. If Fix(K) is compact and, for any ε > 0, any x0 ∈C, and
any i ∈ I such that the following implication holds

hi(xi)+ εdi(xi,xi
0)≤ hi(xi

0) =⇒ ∃yi ∈ Ki(xi), hi(yi)+ εdi(xi,yi)≤ hi(xi);

then there exists a solution of (14).

Proof. For each i ∈ I, x0 ∈ C, and n ∈ N, we apply Lemma 4.1 and we obtain the
existence of a fixed point of Ki, say x̂i

n, such that

hi(xi)+
1
n

di(xi, x̂i
n)≥ hi(x̂i

n), for all xi ∈Ci.

Since Fix(Ki) is compact, without loss of generality, assume that (x̂i
n)n∈N converges

to x̂i ∈ Fix(Ki). By continuity of di and lower semicontinuity of hi, we have

hi(xi)≥ hi(x̂i), for all xi ∈Ci.

We deduce x̂i ∈ argminCi
hi, due to Proposition 2.4. The result follows from consider-

ing x̂ = (x̂i) ∈ Fix(K) and (15). ut
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