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We present five major reasons why semiconductor exciton, that is, a correlated electron-hole pair
in a bulk, quantum well, or quantum wire, is conceptually different from a pair in a quantum dot:
(1) the origin of pair binding, (2) the interaction with additional carriers, (3) the quantum nature
of the pair, (4) the coupling to photon, and (5) the photon-absorption mechanism. Due to these
differences, we should refrain from calling an electron-hole pair in a quantum dot an exciton, as
commonly done; we propose to call it a duo. Within the same frame of chamber musics, we likewise
propose to call three and four carriers in a dot, a trio and a quatuor, instead of a trion and a
biexciton.

The impressive progress of growth techniques over the
past decades has allowed making very high-quality low-
dimensional semiconductor structures — quantum wells,
quantum wires and quantum dots — opening new av-
enues of research and innumerable applications in opto-
electronics and spintronics ready for quantum informa-
tion technologies1–3. As a direct consequence of quan-
tum confinement, the elementary semiconductor excita-
tions can reach very large binding energies, making the
field of so-called “excitonics” a promising research area4.
While the concept of exciton is meaningful when spatial
confinement is along one (quantum wells) or two (quan-
tum wires) dimensions, we here show that the picture of a
bound electron-hole pair as an exciton breaks down when
the three spatial dimensions are confined (quantum dots).
This is why, instead of calling an electron-hole pair in a
quantum dot (QD) an exciton, as we do for other struc-
tures, we should use another terminology. This problem
is more than just about semantics; the physical under-
standing is totally different as to the pair interacting with
additional carriers and coupling to photons, and the pos-
sibility of photon absorption.

Elementary excitation in undoped semiconductors con-
sists in removing an electron from the valence band and
bringing it to the empty conduction band, the energy
associated with this excitation being of the order of the
band gap. The full valence band with an empty state
behaves for most physical effects as a single particle with
a positive mass and a positive charge, that we call hole.
Repeated Coulomb attraction between this valence hole
and the conduction electron leads to a correlated pair
state called exciton, with bound and unbound levels,
very much like a hydrogen atom5. As Coulomb inter-
action conserves momentum, the electron-hole pairs that
enter this repeated attraction have a constant momentum
ke+kh = Q, which corresponds to the exciton center-of-
mass momentum. The exciton also has a quantum index
ν that differentiates its bound and unbound levels. So,

the exciton creation operator B†
Q,ν ends up reading in

terms of electron and hole creation operators (a†ke
, b†kh

)

as

B†
Q,ν =

∑

ke,kh

a†ke
b†kh
〈ke,kh|Q, ν〉 . (1)

The pair prefactor differs from zero for ke + kh = Q. To
grasp the consequences of having the exciton in a bound
state, we can introduce the pair relative-motion momen-
tum p, which for electron and hole masses (me,mh),
is such that ke = p + γeQ and kh = −p + γhQ with
γe = 1 − γh = me/(me +mh). This reduces the exciton
creation operator to

B†
Q,ν =

∑

p

B†
Q,p〈p|ν〉 (2)

with B†
Q,p = a†p+γeQ

b†−p+γhQ
. Bound exciton states have

a relative-motion wave function 〈r|ν〉 very localized in
real space, or equivalently very extended in momentum
space. The opposite holds for extended states. The spa-
tial extension aX of a bound-state exciton is determined
by the competition between the electron-hole Coulomb
attraction e2/ǫscaX where ǫsc is the semiconductor di-
electric constant, and the kinetic energy cost ~2/2µXa2X
to localize the electron and hole within a distance aX
from each other, µ−1

X = m−1
e +m−1

h being the electron-
hole relative-motion mass. Balance between these two
energies leads to

aX ∝
~
2ǫsc

e2µX
, (3)

which is the physical scale for the distance at which the
electron stays to the hole as a result of this competition,
that is, when there is at least one spatial dimension along
which the carriers can move arbitrarily far away from
each other.
The situation is essentially the same when one spa-

tial dimension is confined, as for quantum wells. The
component of the carrier momentum along the confined
direction is no more quantized in 2π/L as for a size-L
bulk sample, but has a far larger quantization scale, in
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2π/ℓ, where ℓ is the quantum well width. The major
effect of a ℓ value small compared to aX is to split the
bulk exciton ground state. It also increases the exciton
binding energy due to the reduction in charge screening,
up to four times the bulk value1, with a Bohr radius con-
sequently twice smaller, as mathematically obtained for
two-dimensional systems, that is, for ℓ = 0.
The situation is more delicate when two spatial di-

mensions are confined, as for quantum wires, because if
we shrink these two dimensions to zero, the Schrödinger
equation becomes singular, with a binding energy that
goes to infinity. So, the finite value of the pair binding
energy strongly depends on the wire cross section. Here
also, the spatial extension of the ground-state exciton re-
sults from a competition between Coulomb attraction,
that keeps the electron close to the hole, and localization
energy, but the wire confinement plays a significant role
in the resulting extension6.
The effect of confinement is even more dramatic when

the three spatial dimensions are confined, as for quantum
dots. Carriers are forced to be in a dot by the potential
barriers, regardless of their Coulomb energy, even when
there is a strong repulsion between same-charge carriers.
So, in a QD, the pair extension is controlled by the dot
confinement7,8. This has been substantially discussed in
the case of semiconductor microcrystals9–12, or interface
islands as a result of the thickness fluctuations of one
monolayer in a quantum well13, and more recently in III-
V self-assembled QDs14.
In the following, we will restrict to QDs in the strong

confinement regime. In this regime, the very first fun-
damental difference between an electron-hole pair in a
QD and a pair in a crystal is the binding mechanism:
confinement for a dot and Coulomb attraction for all the
other cases that have at least one spatial dimension along
which electron and hole can move far away. Just for this
reason, an electron-hole pair in a dot should not be called
an exciton. We propose to call it a dot duo, or just a duo.
Of course, these different binding mechanisms go along

with other fundamental differences that altogether con-
stitute even stronger supports for us to refrain from call-
ing an electron-hole pair in all sample geometries an ex-
citon. Let us discuss four other important differences: (i)
the interaction with additional carriers, (ii) the quantum
nature of the pair, (iii) the coupling to photon, (iv) the
photon-absorption mechanism.
(i) Interaction with additional carriers

The electric dipole induced by an electron-hole pair
bound into an exciton can attract a free charge, that is,
an electron or a hole, or the dipole of another exciton.
Yet, in this attraction, the quantum nature of the parti-
cles enters into play through the fact that a bound state
can result from this attraction, provided that the spins of
the same carrier species are different—which fundamen-
tally originates from the Pauli exclusion principle.
As electrostatic forces come from Coulomb interaction,

the spatial extension of the resulting multi-particle bound
state also scales as aX , but with a prefactor smaller than

1 because the exciton is globally charge neutral. More-
over, for these bound states to be determined through
the competition between Coulomb attraction and local-
ization energy, one spatial dimension at least has to be
free of confinement, as for bulks, quantum wells, and
quantum wires. These geometries have positively or neg-
atively charged trions, (ehh, eeh), or neutral biexcitons
(eehh); their energies are lower than the energy of a free
exciton plus a free carrier or a free exciton—otherwise
these carriers would not stay close to each other15. This
has been experimentally shown in the case of quantum
wells16,17.
For QDs, the principal force that brings the carriers

together is not the Coulomb attraction but the barrier
potential. As a result, the carriers can be constraint to
stay at a distance small compared to the trion or biex-
citon spatial extension; in this case, there is no funda-
mental reason for two duos in a dot to have an energy
lower than twice the energy of one duo in a dot. And ac-
tually, “unbound biexcitons” have been experimentally
observed18. It also is interesting to note that an electron
can lower its energy by being in a dot already hosting a
duo, whereas a hole added to such a dot would increase
its energy19. This sign change in “binding energy” physi-
cally comes from the fact that the electron and hole wave
functions leak out of the dot differently: while infinite
barriers force the carriers to be inside the dot whatever
their mass, the carriers have a non-zero probability to
be outside the dot when the barriers are finite, and this
probability depends on the carrier mass. In usual III-V
heterostructures, the barrier height for electron is con-
sidered twice as large as the one for hole. Still, due to its
much smaller mass, the electron leaks out of the dot more
than the hole (see appendix). This makes the (overall
neutral) duo positively charged inside the dot and nega-
tively charged outside, which explains why an additional
electron gains energy by being in a dot having a duo20,
while this costs energy to a hole21. Although the spectro-
scopic signature of differently charged complexes is very
sensitive to the quantum dot shape, composition, and in-
duced strain, this general trend stays valid for standard
self-assembled InAs/GaAs quantum dots19–21.
So, just as an electron-hole pair in a dot should not be

called an exciton but a duo, we suggest to call three or
four carriers in a dot, not a trion or a biexciton, but a
trio or a quatuor.
(ii) Quantum nature of the electron-hole pair
Being made of fermion pairs, excitons are bosonic

particles22. More precisely, they are composite bosons, as
seen from their commutation relations, which for exciton
eigenstate i = (Qi, νi), read as

[

Bm, B†
i

]

−
= δmi −Dmi , (4)

[

B†
i , B

†
j

]

−
= 0 . (5)

The fermionic components of the exciton appear
through theDmi operator. This operator gives zero when
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acting on vacuum, while acting on other excitons, it gen-
erates fermion exchanges that the excitons have between
them in the absence of Coulomb processes, through the
so-called Pauli scatterings λ

(

n j
m i

)

defined as

[

Dmi, B
†
j

]

−
=

∑

n

(

λ
(

n j
m i

)

+ (i←→ j)
)

B†
n . (6)

The Pauli exclusion principle between the exciton com-
ponents also appears in Eq. (5), but in a more subtle way.

From this equation, we readily get (B†
0)

2 6= 0, while for

fermions, we would have (a†0)
2 = 0. This is why N ex-

citons can condense in a state close to (B†
0)

N |v〉, while
free electrons or free holes form a Fermi sea. Still, the
Pauli exclusion principle shows up through the norm of

the (B†
0)

N |v〉 state as

〈v|BN
0 B†N

0 |v〉 = N !FN . (7)

The FN factor decreases when N increases, from F1 = 1
to FN = 0 for N larger than the number of p states mak-
ing the exciton. To understand it, we can say that, due

to Pauli blocking, a B†
0 exciton added to the one-exciton

state B†
0|v〉 finds one fermion pair state occupied by the

first exciton. And so on, when more excitons are added.
So, excitons can be piled up in the same state, up to a
critical amount, above which their fermionic components
show up in a dramatic way by canceling the state norm.
The situation is totally different for a dot duo. When

the confinement is strong, the carrier states in a dot have
a large energy separation, each energy level being at most
occupied by two carriers with different spins – or spin-
like indices in the case of holes. As a result, the creation
operator of a duo having a well-defined energy is not a
sum of fermion pair states as in the case of excitons, but a
single fermion pair characterized by the dot level indices

B†
ne,nh

= a†ne
b†nh

. (8)

As a direct consequence, the product of two creation op-
erators for the same duo is equal to zero, (B†

ne,nh
)2 = 0.

This shows that an exciton behaves as a boson when
the number of excitons is small compared to the number
of fermion pairs that make it, while a duo, which cor-
responds to one fermion pair only, behaves as a fermion
from the very first one.
(iii) Coupling to photon
A photon corresponds to a plane wave with momen-

tum Q along its propagation direction. It moreover is
characterized by a transverse vector associated with its
polarization. The photon momentum and polarization
are a priori conserved in the coupled electronic state.
This conservation is easy to achieve for bulk semicon-

ductors. Indeed, the elementary excitations coupled to
photons correspond to electron-hole pairs (ke,kh) which,
due to Coulomb attraction, can form bound excitons with
center-of-mass momentum K = ke + kh and relative-
motion index ν. Conservation of the photon momen-
tum imposes the plane-wave photon Q to transform into

the plane wave for the exciton center of mass, that is,
K = Q. Conservation of the photon polarization im-
poses a constraint on the orbital part of the exciton rel-
ative motion. More precisely, in a semiconductor, the
upper valence states are characterized by a three-fold in-
dex λ = (x, y, z). Due to symmetry, a photon with po-
larization vector along x couples a valence electron in
a x state to a (non-degenerate) state of the conduction
band, as this state has opposite parity. Moreover, since
photons do not act on spin, the valence electron which
goes to the conduction band keeps its s = ±1/2 spin;
so, the total spin of the photocreated electron-hole pair
reduces to zero. Actually, this simple picture is mixed up
by the spin-orbit interaction which provides sizable split-
tings among the degenerate valence states. As a result,
the (3 × 2) valence states are not labeled by (λ, s) but
by quantum indices that can be conveniently taken as
(j, jz) with j = (3/2, 1/2) and −j ≤ jz ≤ j, although j
for the valence electrons is fundamentally different from
the angular momentum j of an atom, because the po-
tential felt by electrons in a lattice is not spherical but
periodic, so that angular momenta have no meaning for
them. It is possible to show that the coupling between
a circularly polarized photon η = ±1 propagating with a
momentum Q along z, and a bulk exciton characterized
by a center-of-mass momentum Q, a relative-motion in-
dex ν, an electron spin s = ±1/2 and a hole quantum
index (j, jz), reads as

22

W =
∑

Q,η

∑

ν

∑

s,j,jz

Ωη,ν;s,j,jzB
†
Q,ν;s,j,jz

αQ;η + h.c. (9)

where α† is the photon creation operator. The Ωη,ν;s,j,jz

Rabi coupling differs from zero for η = s + jz only, due
to polarization conservation.
So, a plane-wave photon Q fundamentally transforms

into a plane-wave bound exciton Q, and this Q photon
is restored by the recombination of the Q exciton.
When one spatial direction is confined, as in quantum

wells, the component of the photon momentum along this
direction cannot be conserved: an extended plane wave
then transforms into a localized state, which brings a
strong reduction of the coupling compared to its bulk
value. To mitigate this reduction, quantum wells are
commonly put at the field node of a microcavity that
enforces the photon momentum to have quantized val-
ues comparable with the components of the carrier mo-
menta perpendicular to the well23. The same occurs for
quantum wires with selected photon momenta compara-
ble with the momenta of the confined carriers24.
The situation is totally different for QDs because the

carrier momenta are confined in three spatial directions.
Discrete energy levels for small-size dots indicate strongly
confined wave functions. So, the absorption of a pho-
ton in a QD corresponds to transforming the plane-wave
photon into a strongly localized electron-hole pair state,
thereby making the resulting coupling much smaller than
for bulk exciton. The characteristics that are kept from
the absorbed photon are its energy that is adjusted to
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(a)

Q,η

Q,ν ;η

(b)

Q,η

η − s

s

FIG. 1: Coupling of a photon with momentum Q and circular
polarization η = ±1 (a) to an exciton: the emitted exciton
has the same momentum Q and polarization η; (b) to a dot
duo made of a s = ±1/2 conduction electron and a hole with
index jz = η − s: information on the photon momentum Q

is lost but information on the polarization η is kept in the
resulting pair.

the dot state we want to couple to, and the photon po-
larization.
The photon coupling to an exciton and a dot duo are

schematized in Fig. 1. The momentum Q of the photon
is lost in the case of a QD.
(iv) Photon absorption
Another major difference between an exciton and a

dot duo is the absorption mechanism. Indeed, accord-
ing to Eq. (9), a photon with momentum Q creates an
exciton with momentum Q, the same Q photon being re-
emitted when the Q exciton recombines. This repeated
photon-exciton transformation results in a mixed photon-
exciton quantum state called polariton, as first noted by
Hopfield25. So, the question one must ask concerning ex-
citon is why a photon is absorbed, that is, not re-emitted
anymore?
Actually, the momentum of the exciton coupled to the

Q photon can change due to collisions with impurities,
defects or other excitons. The physical scenario is that a
photon Q should transform into an exciton Q. But if the
exciton changes its momentum from Q to Q′ on a time
scale small compared to the exciton recombination time,
the exciton which ultimately recombines has a momen-
tum Q′ different from Q and it emits a Q′ photon; so,
the Q photon is not emitted anymore. In other words,
it is lost, or absorbed. This scenario also explains why
the photon absorption can be obtained along the Fermi
golden rule26. Indeed, the Fermi golden rule is known
to be valid for transitions toward a continuum of states.
In the present problem, a Q photon is a priori coupled
not to a continuum but to a discrete state, namely, the
exciton having the same momentum Q. The fast colli-
sions suffered by this Q exciton induce a kind of contin-
uum made of Q′ exciton states, which renders the Fermi
golden rule effectively valid.
The situation is totally different in the case of a dot duo

because the photon momentum Q is totally lost in the
coupling between a photon and a dot duo (see Fig. 1).
So, the photon which is re-emitted by this duo has no
reason to be the initial photon. As a result, the initial Q
photon is lost, or absorbed.

All this shows that photon absorption is intrinsic in
the case of dot duos, while due to sample imperfections,
photon absorption for excitons is restricted to the so-
called “weak coupling” regime.
As a conclusion, we hope to have convinced the

reader that electrons and holes in a small quantum dot
deserve to be called differently from carriers in a bulk,
quantum well and quantum wire, due to severe differ-
ences in their intrinsic properties as well as their physics
when photons are involved. This is why, instead of exci-
ton, trion and biexciton which are similar objects in bulk,
quantum well and quantum wire, we propose to call them
in a dot by the musically charming names, duo, trio and
quatuor.

Appendix A: Carrier leakage from the dot

Using basic quantum mechanics, we here show that a
conduction electron confined in a small QD has a wave
function that spreads more across the potential barriers
than a heavy hole. As a consequence, the dot duo appears
as “positively” charged and behaves as an attractive cen-
ter for another electron.
We consider a carrier with mass m, trapped by a bar-

rier energy U . The lighter the carrier is, the farther it
can escape, provided that the barrier energy is not infi-
nite. To show it, we take a model QD, with dimension
d along the growth axis z much smaller than the other
two dot directions. The QD confinement imposes to the
carrier a localization energy ε essentially controlled by
(h − ε)ϕ(z) = 0, with h = −(~2/2m)∂2/∂z2 + U(z), for
U(z) = −U when −d/2 < z < d/2 and U(z) = 0 other-
wise. When written in z̄ = z/d, ε̄ = ε/(~2/2md2) and

Ū = U
2md2

~2
, (A1)

the Schrödinger equation for a carrier in the dot reduces
to

(

−
∂2

∂z̄2
− Ū θ(z̄)− ε̄

)

ϕ(z̄) = 0 , (A2)

with θ(z̄) = 1 for −1/2 < z̄ < 1/2. The probability for
the carrier to be inside the dot reads as

P
(in)

Ū
=

∫ 1/2

−1/2
dz̄ |ϕ(z̄)|2

∫∞

−∞
dz̄ |ϕ(z̄)|2

. (A3)

When Ū → ∞, the carrier is inside the QD and P
(in)

Ū

goes to 1, while when Ū → 0, there is no barrier, and
the probability to be inside the dot reduces to the dot
volume divided by the (infinite) sample volume, which
effectively is zero.
The curve of Fig. 2 shows that the probability to be

inside the dot increases with Ū , that is with mU . As a re-
sult, a heavy carrier mass can compensate a low barrier.
In the case of InAs, the heavy hole mass is ∼ 0.343m0,
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FIG. 2: Probability for the carrier with mass m to be trapped
in a flat dot of width d and potential barrier U , as a function of
dimensionless parameter Ū = U/(~2/2md2). The probability
quickly reaches 1/2 for Ū ≃ 2.

which is one order of magnitude heavier than the elec-
tron mass ∼ 0.027m0

27, where m0 is the free electron
mass. When embedded in GaAs barriers, the gap differ-
ence ∆Egap between the two semiconductors is about 1
eV. It is commonly accepted that this gap difference is
divided into 2/3 for the conduction band and 1/3 for the
valence band. So Ūe/Ūhh ≃ 2me/mhh < 1. So, due to its
small mass, the conduction electron leaks out of the QD
more than the heavy hole. This makes the dot occupied
by a duo appear as positively charged. So, an electron
gains energy by joining the dot with a duo, while a hole
loses energy by doing so.
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