N
N

N

HAL

open science

Efficient Greedy Geographical Non-Planar Routing with
Reactive Deflection
Fabrice Theoleyre, Eryk Schiller, Andrzej Duda

» To cite this version:

Fabrice Theoleyre, Eryk Schiller, Andrzej Duda. Efficient Greedy Geographical Non-Planar Routing
with Reactive Deflection. ICC 2009 - 2009 IEEE International Conference on Communications, Jun

2009, Dresden, Germany. pp.1-5, 10.1109/ICC.2009.5198972 . hal-02650657

HAL Id: hal-02650657
https://hal.science/hal-02650657
Submitted on 29 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02650657
https://hal.archives-ouvertes.fr

Efficient Greedy Geographical Non-Planar Routing
with Reactive Deflection

Fabrice Theoleyre, Eryk Schiller, and Andrzej Duda
Grenoble Informatics Laboratory
CNRS and Grenoble-INP, France
Email: {firstname.lastname} @imag.fr

Abstract—We present a novel geographical routing scheme
for spontaneous wireless mesh networks. Greedy geographical
routing has many advantages, but suffers from packet losses
occurring at the border of voids. In this paper, we propose a
flexible greedy routing scheme that can be adapted to any variant
of geographical routing and works for any connectivity graph,
not necessarily Unit Disk Graphs. The idea is to reactively detect
voids, backtrack packets, and propagate information on blocked
sectors to reduce packet loss. We also propose an extrapolating
algorithm to reduce the latency of void discovery and to limit
route stretch. Performance evaluation via simulation shows that
our modified greedy routing avoids most of packet losses.

Index Terms—greedy geographical routing, detection of voids,
packets deflection, wireless mesh networks

I. INTRODUCTION

We consider wireless mesh networks composed of a large
number of wireless routers providing connectivity to mobile
nodes. They begin to emerge in some regions to provide cheap
network connectivity to a community of end users. Usually
they grow in a spontaneous way when users or operators add
more routers to increase capacity and coverage.

We assume that mesh routers benefit from abundant re-
sources, may only move, quit, or join occasionally, so that
the topology of a typical mesh network stays fairly stable.
The organization of mesh networks needs to be autonomic,
because unlike the current Internet, they cannot rely on highly
skilled personnel for configuring, connecting, and running
mesh routers. Spontaneous growth of such networks may result
in a dense and unplanned topology with some uncovered areas.

Unlike traditional approaches, geographical routing presents
interesting properties for spontaneous wireless mesh networks:
it does not require any information on the global topology
since a node choses the next hop among its neighboring
routers on the basis of the destination location. Consequently,
the routing scheme is scalable, because it only involves local
decisions. Geographical routing is simple, because it does not
require routing tables so that there is no overhead for their
creation and maintenance. Joining the network is also simple,
because a new mesh router only needs an address based on its
geographical position. Such addresses can be obtained from
a dedicated device (e.g. GPS) or with methods for deriving

This work was partially supported by the European Commission project
WIP under contract 2740, the French Ministry of Research project AIRNET
under contract ANR-05-RNRT-012-01 and ARESA under contract ANR-05-
RNRT-01703.

consistent location addresses [1], [2]. The most familiar variant
of geographical routing is greedy forwarding in which a node
forwards a packet to the neighbor closest to the destination
[3], [4]. Greedy forwarding guarantees loop-free operation,
but packets may be dropped at blocked nodes that have only
neighbors in the backward direction. Blocked nodes appear at
some places near uncovered areas (voids) or close to obstacles.
Our main contribution is to propose a new greedy routing
that correctly deals with voids. First, we define a new mech-
anism to reactively detect voids and surround them, which
significantly reduces packet loss. The information of detected
voids propagates backwards so that subsequent packets to the
same direction benefit from this reactive detection. Second,
we propose a mechanism in which voids deviate packets and
shorten the length of a route compared to classical approaches.
Our routing scheme works in any network topology indepen-
dently of whether it corresponds to a planar graph or not.
We start by describing the related work on geographical
routing in Section II. Section III presents the details of the
proposed new greedy routing protocol. Then, we evaluate its
performance via simulation in Section IV and conclude. The
reader can read [5] for a more complete version of this article.

II. RELATED WORK

Geographic information can largely reduce complexity of
routing in spontaneous mesh networks. The most simple and
widely used protocol is greedy geographic routing [3], [6],
[7]1, [8]: when a node receives a packet, it uses the following
forwarding rule:

“forward the packet to the node with the best im-
provement”.

Improvement is usually defined with respect to the distance
towards the destination. Since improvement is not negative,
there is no routing loop and the algorithm is scalable because
the decision is local.

We assume that the nodes either have a dedicated localiza-
tion device (e.g. GPS) or are able to estimate their positions
distributively (e.g. [1], [9] that use respectively triangulation
and angle of arrival). A pragmatic approach to this problem
is to assume that a subset of mesh routers know their exact
positions via GPS devices and other nodes can compute their
positions with respect to its neighbors [10].

The main drawback of greedy geographical routing is packet
loss at blocked nodes near voids or obstacles. A node must

@ blocked node ' blocked sector 8V0id

Fig. 1. Blocked nodes in greedy geographical routing.

drop a packet when the improvement associated with any
of its neighbors is negative (cf. figure 1). In face routing
the left-hand rule [4] tries to go around a void, but it re-
quires the connectivity graph of nodes to be planar. Relative
Neighborhood Graphs can yield planar graphs for Unit Disk
Graphs (UDG) [11], but in real wireless environments, the
conditions for obtaining planar graphs are not satisfied due
to asymmetric links and not circular radio coverage [12]. To
the best of our knowledge, there is no efficient and localized
planarization algorithm proposed for a general connectivity
graph. A possible solution to this problem is the following
method: a border node initiates local flooding to find the next
hop closer to the destination [13]. However, it results in long
delays and significant overhead. Fotopoulou et al. [14] propose
to adapt this method to establish and maintain a virfual circuit.
Funke et al. [15] propose an algorithm inspired by topological
geometry to discover the void limits, i.e. the border nodes by
creating isosets. However, this method does not work for non
UDG since isosets are not rings in general connectivity graphs.

We propose here a generic method to deal with voids
by backtracking packets and discovering blocked areas near
voids: deflection routing deviates packets outside them. Thus,
the algorithm presented here is perfectly supplementary to
existing methods: deflection improves greedy routing by trying
to surround voids and any other technique presented above can
be used when a void is reached.

III. REACTIVE DEFLECTION

Geographical routing is attractive for mesh networks, but
suffers from two main drawbacks: blocked nodes can drop
many packets and the route length may drastically increase
when a surrounding mechanism tries to deviate a packet
around a void (e.g. the left-hand rule in UDG). In this
paper, we assume a general connectivity graph and propose to
reactively detect blocked nodes and locally advertise blocked
sectors to avoid packet losses. Such a technique is efficient in
any type of networks and graphs since it does not assume any
particular graph property.

Detection of blocked nodes can be done in a proactive
way: locally flood information to detect voids. For example,
we can discover the topology of the wireless mesh to detect
elementary cycles in which no other node is located inside the
ring. The location of nodes helps to surround voids. However,
such an approach requires a complete knowledge of the mesh
topology and is computationally intensive.

\ Sector C' Sector B

Sector C\,

SectorA \a

. neighbor with at least . failed destination
one blocked sector

) ‘\\ blocked sector
. observed node Q void Y

Fig. 2. Examples of blocked nodes and blocked sectors.

In opposition to this approach, we have chosen a reactive
method: a node becomes blocked with respect to a given
destination when it cannot forward a packet to any neighbor
closer to the destination. Hence, the part of the network not
concerned by forwarding this packet does not generate any
control traffic so that this approach is more scalable.

Let us first adopt the following notation:

o d(A, B): the Euclidean distance between the geographical
coordinates of nodes A and B

o Z(AB, AC): the oriented angle between two coordinates
of nodes (A, B) and (A, C) (by convention, we denote

by Z(AB) the normalized angle /(((1)> ,AB))

e S(S,,B,dmin): the sector of node S composed of
all nodes N such that « </(SN)< B and such that
d(37 N) Z dnmln

In our approach, a node chooses a neighbor closer to the
destination and not blocked for this direction. If a node fails to
forward a packet to a given destination, it will consider itself
as blocked for this direction. It will advertise backwards a
list of blocked directions so that its neighbors will not choose
it as a next hop for these directions. If several non blocked
neighbors exist, the forwarder chooses the neighbor closest to
the destination, i.e. with the best improvement.

For advertising blocked directions, we propose to use
the notion of blocked sectors: a node N advertises that
it is blocked for any destination that falls in sector
S (N, anglemin, anglemaz, distymin). Let us consider the
topology illustrated in Figure 2. Node n; wants to forward
a packet to destination d and it discovers that it is blocked
for this destination since no neighbor exists in this direction.
Thus, it backwards the packet to s with its two blocked sectors.
Based on this information, s marks n as blocked and forwards
the packet to another neighbor closer to d (node ns in this
case).

To limit the overhead, a node tries to merge all its blocked
sectors before advertising them. It can only merge overlapping
sectors having the same minimal distances (within some
tolerance Ag). Otherwise, the merged blocked sector may
include nodes that are reachable—consider for instance the

topology of figure 2: if node p merges sectors C' and C’, node
p1 may appear in the blocked sector. Thus, it would become
unreachable from p,. Clearly, we must avoid such a merging.
Only sectors with the same d,,;, will be merged : tolerance
Ay allows some merging of sectors with approximately equal
minimal distances.

More formally, node N executes Algorithm 1. Procedure
ReactiveDe flection() finds the next hop for forwarding a
packet to destination D: the next hop must be closer to the
destination and must be unblocked for D. If it does not
return any node, it means that node N becomes blocked for
destination D (variable BLOCKED(N,D) becomes true). Thus,
node N updates its blocked sectors and sends the packet
backwards to the previous hop with its list of blocked sectors
piggybacked onto the packet. This scheme is loop-free: when
a node sends a packet backwards, the receiver will update its
blocked sectors and it cannot choose the same next hop for
subsequent packets, because Algorithm 1 does not forward
packets to blocked nodes.

Algorithm 1 ReactiveDeflection(N—D)

1: next + 0
2: for all n € Neighbors do
3 if d(n,D) < d(N,D) and !'BLOCKED(n,D) and
d(n, D) < d(next, D) then
next < n
end if
end for

if next = () then
Blocked(N,D) < true
next < previous_hop

9: end if

10: return next

® Nk

In networks with non UDG topologies, when a node does
not have any neighbor closer to the destination, it is blocked.
Such a border node has to discover a virfual next hop in a
larger vicinity[3], [14]. A border node can for example flood
at a fixed distance to discover a node closer to the destination.
However, the packets still keep on being forwarded until they
reach these blocked nodes, even if the packets must after that
turn back to surround a void.

Note that when we reduce packet loss with the previously
described algorithm, we also reduce in the long term the
route length. Indeed, the nodes around the void discover
that they have blocked sectors. When they propagate the
information about blocked sectors, nodes with all blocked
neighbors also become blocked for this destination. Finally,
each node discovers a blocked area and forwards packets
outside this area. However, we need several useless packet
transmissions and backtracking before the network converges,
and blocked sectors are correctly constructed. We propose a
mechanism to accelerate the convergence of this propagation
process by extrapolating the location of a blocked area.

We propose to detect the border of a void based on only
local neighborhood knowledge. We will show that even if a
node has only local knowledge, i.e. about nodes at a limited
distance, voids can be efficiently surrounded. When a node

destination

source

‘Border node with blocked sector

Source with forbidden sector void

. (the extrapolated blocked area)

Fig. 3. Method for locally detecting the border of a void.

must transmit a packet backwards, it locally floods an hello
packet containing the list of its neighbors and blocked sectors
in a k hop scope.

To detect the border of a void, node NN first searches for the
blocked k-neighbor closest to the direction of the destination
D, i.e. minimizing angle Z((N, D), (N, BN)) for all blocked
nodes BN. Then, N constructs the Maximum Connected Set
of blocked nodes that contains BN: it adds BN to this set, and
recursively adds all its blocked neighbors. Finally, N computes
the forbidden sector that spans the maximum connected set—
it extrapolates the blocked area.

Figure 3 illustrates void detection with the knowledge of
the 3-neighborhood topology. First, the source node detects if
it knows a node with a blocked direction and takes the closest
one to the direction of the destination. In the example the
blocked node is B. Then, the source constructs the connected
set of blocked nodes that includes node B: it obtains set
{A, B,C, D}. Obviously, node F is not present in the set
since it is not connected to A via other blocked nodes. In the
same way, border node H is not in set {A, B, C, D}, because
it is 2 hops away: it is border to another void. Finally, we
obtain the forbidden sector for the destination. We can note
that node E is not blocked since it can choose node F' when
A is blocked: E will never be blocked for the direction.

Algorithm 2 presents the modified protocol. Function ISIN-
FORBIDDENSECTOR computes the forbidden sector and re-
turns TRUE, if the node is located inside this sector. Function
CLOSERTOSECTORLIMITS(P,Q) returns TRUE, if P is closer
than @ to the forbidden sector limits.

In other words, if some next hops exist and do not lie in the
computed forbidden sector, we choose the best one. Otherwise,
if all possible next hops are in this forbidden sector, we choose
the node closest to the limits of the forbidden sector. With this
modified routing scheme, we forward packets outside the for-
bidden sector, because a void appears as something repellent to
packets by creating forbidden sectors in a distributed manner
while keeping routing loop-free.

Algorithm 2 ModifiedReactiveDeflection(D,ForbiddenSector)

1: next + 0

2: for all n € Neighbors do

3. if d(n,D) < d(S, D) and !BLOCKED(n,D) then

4: if ISINFORBIDDENSECTOR(n) and { ISINFORBID-
DENSECTOR(next) or d(n, D) < d(next, D) } then

5: next <—n

6: else if ISINFORBIDDENSECTOR(next) and ISIN-
FORBIDDENSECTOR(n) and CLOSERTOSECTOR-
LIMITS(n,next) then

next <—n
: end if
9: end if
10: end for

11: if next = () then

12: Blocked(N,D) < true
next < previous_hop

13: end if

14: return next

IV. PERFORMANCE EVALUATION

We generated random meshes of 1000 nodes with two
models: UDG [16] and what we call a proxi-graph (a graph
based on proximity). In a proxi-graph, each node chooses a
radio range following a Gaussian distribution centered at 1
with standard deviation Std depending on the radio range
(here, Std = 25% - (radio — range)). The proxi-graph owns
a rectangular central void of size two fifth of the simulation
disk radius. Besides, we discard disconnected topologies and
use a disk simulation area to reduce border effects. Data
traffic consists of 1,000 flows of 10 packets each from a
random source to a random destination. A node advertises its
neighborhood and blocked sectors 3 hops far since it achieves
the best performances, as highlighted below. We evaluated the
properties of routing itself: we assume ideal radio and MAC
layers, i.e. packets do not experience any loss due to channel
or MAC behavior to only test routing properties. We also
simulated this protocol with ns2 to take into account more
realistic radio conditions, but do not report here these results
because of lack of space. The reader can refer to [5] for a
more exhaustive view of all the results.

We compare our routing algorithm with greedy geographic
routing to quantify the reduction of packet loss: a node chooses
the neighbor closest to the destination (other variants that
minimize the angle difference, or the hop length do not exhibit
better results). We measured packet losses (the proportion of
packets sent by a source that never reach the destination),
route length (the average route length in hops for the delivered
packets), and stretch factor (the average ratio of the route
length for a packet and the length of the shortest route for
the associated source/destination pair). We plot the average
values and the associated 95% confidence intervals.

A. Performance for Unit Disk Graphs

We first measure the route length obtained for deflection
routing with different values of the k-neighborhood with

Gréedy Routin‘g —
Deflection —=
Deflection with void extrapolation

Packet loss ratio (in %)

—

o — - L L L
5 10 15 20 25 30
Density (average number of neighbors)
(a) Packet loss ratio
1.8 — T T T —
f] Greedy Routing —=—
e 17 U1 Reactive Deflection Routing —= |
=3 o " 4 Optimized Reactive Deflection Routing ———
c
2 16t «
0]
5
© 15+ 1
(0]
<
= 14r J
° &
g 13} i 1
8
S 12} 1
9 \
»oo11t o]
1
5 10 15 20 25 30

Density (average number of neighbors)

(b) Stretch factor

Fig. 4. Performances under different routing schemes for UDG.

density of 8 neighbors per node in Unit Disk Graphs. For
densities of (1,2,3,4,5) neighbors, we obtain route lengths of
respectively (33.6, 33, 32.7, 33.2, 33.6) hops. Thus, we chose
k = 3 since it provides an accurate route length and limits the
overhead. Besides, for large k& values, deflection routing tends
to overestimate the size of voids and increase the route length.

Then, the following experiment shows (fig. 4(a)) that packet
loss for greedy routing decreases with the increase of density:
probability of having a large area without any node decreases
so that voids are less probable to appear. However, more than
70% of packets are lost for low density. On the contrary,
the proposed routing scheme lowers packet loss: almost no
packet is lost (less than 4%) when density exceeds a small
threshold (8 neighbors per node). Thus, nodes reroute less
packets by means of reactive discovery so that the overhead
is lower and delay improved. We can also notice that route
length optimization has no impact on delivery ratio.

We have also measured the route length stretch factor
(fig. 4(b)). Greedy routing drops many packets when voids
exist. Moreover, the packet drop probability is larger when
the destination is farther. Since the route length is only
measured for delivered packets, a poor delivery ratio creates
mechanically a lower average route length. We can observe

Greed)} Routing ——
Deflection —
0.8 Deflection with void extrapolation
< .
£
S 06 1
g
2
2 04t]
(0]
X
[}
©
a
0.2 r]
~
o L L B co— e
5 10 15 20 25 30 35
Density (average number of neighbors)
(a) Packet loss ratio
40 ‘ —
Greedy Routing ——
Reactive Deflection Routing —=
35 Optimized Reactive Deflection Routing —— 1
<
£ 30 { 1
c :
@ \
L 25+ 1
>
o \,
o 20 | 8
©
e
z 15°¢ W d
10 + /“\\\: 1
5 ‘ ‘ ‘ ‘ ‘
5 10 15 20 25 30 35

Density (average number of neighbors)

(b) Route length

Fig. 5. Performances under different routing schemes for a proxi-graph with
one central void.

that our optimized algorithm succeeds in slightly reducing
the route length. More importantly, route length optimization
results in deviating packets from voids and decreasing the
load on the void’s borders. The stretch factor is larger for
low density since more voids are present and packets must be
deflected and backtracked more often. The reader can note that
greedy routing forwards one packet until it reaches a blocked
node: this increases the load on these block nodes, even if
they implement a void bypassing. Finally, the route length is
reduced only for very low densities with the optimized version
of deflection routing since blocked sectors interpolating is
working only when voids are sufficiently large. Moreover, we
could over-estimate the forbidden sector by adding a guarding
angle around the blocked nodes: we would reduce the route
length, but increase packet drops since we would over-estimate
the presence of voids.

B. Performance for a proxi-graph with one rectangular void

We have evaluated packet loss rate in a proxi-graph with one
central void (fig. 5(a)). We can see that packet loss increases

more probable. Moreover, since the graph is not UDG, a node
may choose a next hop in a greedy way although it does not
have any neighbor in the direction of the destination. Thus,
to increase density it is not sufficient to surround voids. We
can remark that with our algorithms we significantly reduce
packet loss ratio.

Finally, we have measured the route length (fig. 5(b)). We
can remark the same trend as for UDG and for a proxi-graph
with a void. Obviously, the route length is longer, because
packets have to surround the rectangular void.

V. CONCLUSION

We have proposed a scheme for greedy geographical rout-
ing with reactive defect detection. The idea is to reactively
detect blocked nodes and propagate the defect information
by computing a set of blocked sectors. To reduce the route
length and accelerate void detection in dense mesh networks,
we have also proposed a method to extrapolate void location.
Simulation results show packet loss as well as the route length
decrease compared to greedy routing.

REFERENCES

[1] S. Capkun, M. Hamdi, and J.-P. Hubaux, “Gps-free positioning in mobile
ad hoc networks,” Cluster Computing, vol. 5, no. 2, pp. 157-167, April
2002.

[2] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica,
“Geographic routing without location information,” in MOBICOM. San
Diego, USA: ACM, September 2003.

[3] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia., “Routing with
guaranteed delivery in ad hoc wireless networks.” in DIAL’M. Seattle,
USA: ACM, 1999, pp. 48-55.

[4] B. Karp and H. T. Kung, “Greedy perimeter stateless routing for wireless
networks,” in MOBICOM. Boston, USA: ACM, August 2000.

[5] F. Theoleyre, E. Schiller, and A. Duda, “Efficient greedy geographical
non-planar routing with reactive deflection,” Grenoble Informatics Lab-
oratory, http://hal.archives-ouvertes.fr/hal-00363811, Res. Rep., 2009.

[6] N. Carlsson and D. L. Eager, “Non-euclidian geographic routing in
wireless networks,” Ad Hoc Networks, vol. 5, no. 7, pp. 1173-1193,
September 2007.

[7]1 P. He, J. Li, and L. Zhou, “A novel geographic routing algorithm for
ad hoc networks based on localized delaunay triangulation,” in AINA.
Viena, Austria: IEEE, April 2006.

[8] P. Casari, M. Nati, C. Petrioli, and M. Zorzi, “Efficient non planar rout-
ing around dead-ends in sparse topologies using random forwarding,”
in ICC. Glasgow, UK: IEEE, June 2007.

[9] D. Niculescu and B. Nath, “Ad hoc positioning system (APS) using
AOA,” in INFOCOM. San Francisco, USA: IEEE, 2003.

[10] N. Bulusu, J. Heidemann, and D. Estrin, “Adaptive beacon placement,”
in ICDCS. Phoenix, USA: IEEE, April 2001.

[11] J. Cartigny, F. Ingelrest, D. Simplot-Ryl, and I. Stojmenovic, “Localized
LMST and RNG based minimum-energy broadcast protocols in ad hoc
networks,” Ad Hoc Networks, vol. 3, no. 1, pp. 1-16, January 2005.

[12] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker, “Lazy cross-link
removal for geographic routing,” in Sensys. ACM, 2006.

[13] I Stojmenovic and X. Lin, “Loop-free hybrid single path flooding
routing algorithms with guaranteed delivery for wireless networks,”
IEEE Trans. on Parallel and Distributed Systems, vol. 12, no. 10, pp.
1-10, October 2001.

[14] S. Fotopoulou-Prigipa and B. McDonald, “GCRP: Geographic virtual
circuit routing protocol for ad hoc networks,” in MASS. Fort Lauderdale,
USA: IEEE, October 2004.

[15] S. Funke, “Topological hole detection in wireless sensor networks and its
applications,” in DIALM-POMC. Cologne, Germany: ACM, September
2005, pp. 44-53.

[16] B. N. Clark, C. J. Colburn, and D. S. Johnson, “Unit disks graphs,”

a 5 VoI o0, pp-105= ;D D O-

