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We present a novel geographical routing scheme for spontaneous wireless mesh networks. Greedy geographical routing has many advantages, but suffers from packet losses occurring at the border of voids. In this paper, we propose a flexible greedy routing scheme that can be adapted to any variant of geographical routing and works for any connectivity graph, not necessarily Unit Disk Graphs. The idea is to reactively detect voids, backtrack packets, and propagate information on blocked sectors to reduce packet loss. We also propose an extrapolating algorithm to reduce the latency of void discovery and to limit route stretch. Performance evaluation via simulation shows that our modified greedy routing avoids most of packet losses.

I. INTRODUCTION

We consider wireless mesh networks composed of a large number of wireless routers providing connectivity to mobile nodes. They begin to emerge in some regions to provide cheap network connectivity to a community of end users. Usually they grow in a spontaneous way when users or operators add more routers to increase capacity and coverage.

We assume that mesh routers benefit from abundant resources, may only move, quit, or join occasionally, so that the topology of a typical mesh network stays fairly stable. The organization of mesh networks needs to be autonomic, because unlike the current Internet, they cannot rely on highly skilled personnel for configuring, connecting, and running mesh routers. Spontaneous growth of such networks may result in a dense and unplanned topology with some uncovered areas.

Unlike traditional approaches, geographical routing presents interesting properties for spontaneous wireless mesh networks: it does not require any information on the global topology since a node choses the next hop among its neighboring routers on the basis of the destination location. Consequently, the routing scheme is scalable, because it only involves local decisions. Geographical routing is simple, because it does not require routing tables so that there is no overhead for their creation and maintenance. Joining the network is also simple, because a new mesh router only needs an address based on its geographical position. Such addresses can be obtained from a dedicated device (e.g. GPS) or with methods for deriving This work was partially supported by the European Commission project WIP under contract 2740, the French Ministry of Research project AIRNET under contract ANR-05-RNRT-012-01 and ARESA under contract ANR-05-RNRT-01703. consistent location addresses [START_REF] Capkun | Gps-free positioning in mobile ad hoc networks[END_REF], [START_REF] Rao | Geographic routing without location information[END_REF]. The most familiar variant of geographical routing is greedy forwarding in which a node forwards a packet to the neighbor closest to the destination [START_REF] Bose | Routing with guaranteed delivery in ad hoc wireless networks[END_REF], [START_REF] Karp | Greedy perimeter stateless routing for wireless networks[END_REF]. Greedy forwarding guarantees loop-free operation, but packets may be dropped at blocked nodes that have only neighbors in the backward direction. Blocked nodes appear at some places near uncovered areas (voids) or close to obstacles.

Our main contribution is to propose a new greedy routing that correctly deals with voids. First, we define a new mechanism to reactively detect voids and surround them, which significantly reduces packet loss. The information of detected voids propagates backwards so that subsequent packets to the same direction benefit from this reactive detection. Second, we propose a mechanism in which voids deviate packets and shorten the length of a route compared to classical approaches. Our routing scheme works in any network topology independently of whether it corresponds to a planar graph or not.

We start by describing the related work on geographical routing in Section II. Section III presents the details of the proposed new greedy routing protocol. Then, we evaluate its performance via simulation in Section IV and conclude. The reader can read [START_REF] Theoleyre | Efficient greedy geographical non-planar routing with reactive deflection[END_REF] for a more complete version of this article.

II. RELATED WORK

Geographic information can largely reduce complexity of routing in spontaneous mesh networks. The most simple and widely used protocol is greedy geographic routing [START_REF] Bose | Routing with guaranteed delivery in ad hoc wireless networks[END_REF], [START_REF] Carlsson | Non-euclidian geographic routing in wireless networks[END_REF], [START_REF] He | A novel geographic routing algorithm for ad hoc networks based on localized delaunay triangulation[END_REF], [START_REF] Casari | Efficient non planar routing around dead-ends in sparse topologies using random forwarding[END_REF]: when a node receives a packet, it uses the following forwarding rule:

"forward the packet to the node with the best improvement". Improvement is usually defined with respect to the distance towards the destination. Since improvement is not negative, there is no routing loop and the algorithm is scalable because the decision is local.

We assume that the nodes either have a dedicated localization device (e.g. GPS) or are able to estimate their positions distributively (e.g. [START_REF] Capkun | Gps-free positioning in mobile ad hoc networks[END_REF], [START_REF] Niculescu | Ad hoc positioning system (APS) using AOA[END_REF] that use respectively triangulation and angle of arrival). A pragmatic approach to this problem is to assume that a subset of mesh routers know their exact positions via GPS devices and other nodes can compute their positions with respect to its neighbors [START_REF] Bulusu | Adaptive beacon placement[END_REF].

The main drawback of greedy geographical routing is packet loss at blocked nodes near voids or obstacles. A node must drop a packet when the improvement associated with any of its neighbors is negative (cf. figure 1). In face routing the left-hand rule [START_REF] Karp | Greedy perimeter stateless routing for wireless networks[END_REF] tries to go around a void, but it requires the connectivity graph of nodes to be planar. Relative Neighborhood Graphs can yield planar graphs for Unit Disk Graphs (UDG) [START_REF] Cartigny | Localized LMST and RNG based minimum-energy broadcast protocols in ad hoc networks[END_REF], but in real wireless environments, the conditions for obtaining planar graphs are not satisfied due to asymmetric links and not circular radio coverage [START_REF] Kim | Lazy cross-link removal for geographic routing[END_REF]. To the best of our knowledge, there is no efficient and localized planarization algorithm proposed for a general connectivity graph. A possible solution to this problem is the following method: a border node initiates local flooding to find the next hop closer to the destination [START_REF] Stojmenovic | Loop-free hybrid single path flooding routing algorithms with guaranteed delivery for wireless networks[END_REF]. However, it results in long delays and significant overhead. Fotopoulou et al. [START_REF] Fotopoulou-Prigipa | GCRP: Geographic virtual circuit routing protocol for ad hoc networks[END_REF] propose to adapt this method to establish and maintain a virtual circuit. Funke et al. [START_REF] Funke | Topological hole detection in wireless sensor networks and its applications[END_REF] propose an algorithm inspired by topological geometry to discover the void limits, i.e. the border nodes by creating isosets. However, this method does not work for non UDG since isosets are not rings in general connectivity graphs.

We propose here a generic method to deal with voids by backtracking packets and discovering blocked areas near voids: deflection routing deviates packets outside them. Thus, the algorithm presented here is perfectly supplementary to existing methods: deflection improves greedy routing by trying to surround voids and any other technique presented above can be used when a void is reached.

III. REACTIVE DEFLECTION

Geographical routing is attractive for mesh networks, but suffers from two main drawbacks: blocked nodes can drop many packets and the route length may drastically increase when a surrounding mechanism tries to deviate a packet around a void (e.g. the left-hand rule in UDG). In this paper, we assume a general connectivity graph and propose to reactively detect blocked nodes and locally advertise blocked sectors to avoid packet losses. Such a technique is efficient in any type of networks and graphs since it does not assume any particular graph property.

Detection of blocked nodes can be done in a proactive way: locally flood information to detect voids. For example, we can discover the topology of the wireless mesh to detect elementary cycles in which no other node is located inside the ring. The location of nodes helps to surround voids. However, such an approach requires a complete knowledge of the mesh topology and is computationally intensive. In opposition to this approach, we have chosen a reactive method: a node becomes blocked with respect to a given destination when it cannot forward a packet to any neighbor closer to the destination. Hence, the part of the network not concerned by forwarding this packet does not generate any control traffic so that this approach is more scalable.

Let us first adopt the following notation: In our approach, a node chooses a neighbor closer to the destination and not blocked for this direction. If a node fails to forward a packet to a given destination, it will consider itself as blocked for this direction. It will advertise backwards a list of blocked directions so that its neighbors will not choose it as a next hop for these directions. If several non blocked neighbors exist, the forwarder chooses the neighbor closest to the destination, i.e. with the best improvement.

For advertising blocked directions, we propose to use the notion of blocked sectors: a node N advertises that it is blocked for any destination that falls in sector S (N, angle min , angle max , dist min ). Let us consider the topology illustrated in Figure 2. Node n 1 wants to forward a packet to destination d and it discovers that it is blocked for this destination since no neighbor exists in this direction. Thus, it backwards the packet to s with its two blocked sectors. Based on this information, s marks n 1 as blocked and forwards the packet to another neighbor closer to d (node n 2 in this case).

To limit the overhead, a node tries to merge all its blocked sectors before advertising them. It can only merge overlapping sectors having the same minimal distances (within some tolerance ∆ d ). Otherwise, the merged blocked sector may include nodes that are reachable-consider for instance the topology of figure 2: if node p merges sectors C and C , node p 1 may appear in the blocked sector. Thus, it would become unreachable from p 2 . Clearly, we must avoid such a merging. Only sectors with the same d min will be merged : tolerance ∆ d allows some merging of sectors with approximately equal minimal distances.

More formally, node N executes Algorithm 1. Procedure ReactiveDef lection() finds the next hop for forwarding a packet to destination D: the next hop must be closer to the destination and must be unblocked for D. If it does not return any node, it means that node N becomes blocked for destination D (variable BLOCKED(N,D) becomes true). Thus, node N updates its blocked sectors and sends the packet backwards to the previous hop with its list of blocked sectors piggybacked onto the packet. This scheme is loop-free: when a node sends a packet backwards, the receiver will update its blocked sectors and it cannot choose the same next hop for subsequent packets, because Algorithm 1 does not forward packets to blocked nodes. In networks with non UDG topologies, when a node does not have any neighbor closer to the destination, it is blocked. Such a border node has to discover a virtual next hop in a larger vicinity [START_REF] Bose | Routing with guaranteed delivery in ad hoc wireless networks[END_REF], [START_REF] Fotopoulou-Prigipa | GCRP: Geographic virtual circuit routing protocol for ad hoc networks[END_REF]. A border node can for example flood at a fixed distance to discover a node closer to the destination. However, the packets still keep on being forwarded until they reach these blocked nodes, even if the packets must after that turn back to surround a void.

Note that when we reduce packet loss with the previously described algorithm, we also reduce in the long term the route length. Indeed, the nodes around the void discover that they have blocked sectors. When they propagate the information about blocked sectors, nodes with all blocked neighbors also become blocked for this destination. Finally, each node discovers a blocked area and forwards packets outside this area. However, we need several useless packet transmissions and backtracking before the network converges, and blocked sectors are correctly constructed. We propose a mechanism to accelerate the convergence of this propagation process by extrapolating the location of a blocked area.

We propose to detect the border of a void based on only local neighborhood knowledge. We will show that even if a node has only local knowledge, i.e. about nodes at a limited distance, voids can be efficiently surrounded. When a node must transmit a packet backwards, it locally floods an hello packet containing the list of its neighbors and blocked sectors in a k hop scope.

To detect the border of a void, node N first searches for the blocked k-neighbor closest to the direction of the destination D, i.e. minimizing angle ∠((N, D), (N, BN )) for all blocked nodes BN . Then, N constructs the Maximum Connected Set of blocked nodes that contains BN : it adds BN to this set, and recursively adds all its blocked neighbors. Finally, N computes the forbidden sector that spans the maximum connected setit extrapolates the blocked area.

Figure 3 illustrates void detection with the knowledge of the 3-neighborhood topology. First, the source node detects if it knows a node with a blocked direction and takes the closest one to the direction of the destination. In the example the blocked node is B. Then, the source constructs the connected set of blocked nodes that includes node B: it obtains set {A, B, C, D}. Obviously, node F is not present in the set since it is not connected to A via other blocked nodes. In the same way, border node H is not in set {A, B, C, D}, because it is 2 hops away: it is border to another void. Finally, we obtain the forbidden sector for the destination. We can note that node E is not blocked since it can choose node F when A is blocked: E will never be blocked for the direction.

Algorithm 2 presents the modified protocol. Function ISIN-FORBIDDENSECTOR computes the forbidden sector and returns TRUE, if the node is located inside this sector. Function CLOSERTOSECTORLIMITS(P,Q) returns TRUE, if P is closer than Q to the forbidden sector limits.

In other words, if some next hops exist and do not lie in the computed forbidden sector, we choose the best one. Otherwise, if all possible next hops are in this forbidden sector, we choose the node closest to the limits of the forbidden sector. With this modified routing scheme, we forward packets outside the forbidden sector, because a void appears as something repellent to packets by creating forbidden sectors in a distributed manner while keeping routing loop-free. 

IV. PERFORMANCE EVALUATION

We generated random meshes of 1000 nodes with two models: UDG [START_REF] Clark | Unit disks graphs[END_REF] and what we call a proxi-graph (a graph based on proximity). In a proxi-graph, each node chooses a radio range following a Gaussian distribution centered at 1 with standard deviation Std depending on the radio range (here, Std = 25% • (radio -range)). The proxi-graph owns a rectangular central void of size two fifth of the simulation disk radius. Besides, we discard disconnected topologies and use a disk simulation area to reduce border effects. Data traffic consists of 1,000 flows of 10 packets each from a random source to a random destination. A node advertises its neighborhood and blocked sectors 3 hops far since it achieves the best performances, as highlighted below. We evaluated the properties of routing itself: we assume ideal radio and MAC layers, i.e. packets do not experience any loss due to channel or MAC behavior to only test routing properties. We also simulated this protocol with ns2 to take into account more realistic radio conditions, but do not report here these results because of lack of space. The reader can refer to [START_REF] Theoleyre | Efficient greedy geographical non-planar routing with reactive deflection[END_REF] for a more exhaustive view of all the results.

We compare our routing algorithm with greedy geographic routing to quantify the reduction of packet loss: a node chooses the neighbor closest to the destination (other variants that minimize the angle difference, or the hop length do not exhibit better results). We measured packet losses (the proportion of packets sent by a source that never reach the destination), route length (the average route length in hops for the delivered packets), and stretch factor (the average ratio of the route length for a packet and the length of the shortest route for the associated source/destination pair). We plot the average values and the associated 95% confidence intervals.

A. Performance for Unit Disk Graphs

We first measure the route length obtained for deflection routing with different values of the k-neighborhood with density of 8 neighbors per node in Unit Disk Graphs. For densities of (1,2,3,4,5) neighbors, we obtain route lengths of respectively (33. 6, 33, 32.7, 33.2, 33.6) hops. Thus, we chose k = 3 since it provides an accurate route length and limits the overhead. Besides, for large k values, deflection routing tends to overestimate the size of voids and increase the route length.

Then, the following experiment shows (fig. 4(a)) that packet loss for greedy routing decreases with the increase of density: probability of having a large area without any node decreases so that voids are less probable to appear. However, more than 70% of packets are lost for low density. On the contrary, the proposed routing scheme lowers packet loss: almost no packet is lost (less than 4%) when density exceeds a small threshold (8 neighbors per node). Thus, nodes reroute less packets by means of reactive discovery so that the overhead is lower and delay improved. We can also notice that route length optimization has no impact on delivery ratio.

We have also measured the route length stretch factor (fig. 4(b)). Greedy routing drops many packets when voids exist. Moreover, the packet drop probability is larger when the destination is farther. Since the route length is only measured for delivered packets, a poor delivery ratio creates mechanically a lower average route length. We can observe our optimized algorithm succeeds in slightly reducing the route length. More importantly, route length optimization results in deviating packets from voids and decreasing the load on the void's borders. The stretch factor is larger for low density since more voids are present and packets must be deflected and backtracked more often. The reader can note that greedy routing forwards one packet until it reaches a blocked node: this increases the load on these block nodes, even if they implement a void bypassing. Finally, the route length is reduced only for very low densities with the optimized version of deflection routing since blocked sectors interpolating is working only when voids are sufficiently large. Moreover, we could over-estimate the forbidden sector by adding a guarding angle around the blocked nodes: we would reduce the route length, but increase packet drops since we would over-estimate the presence of voids.

B. Performance for a proxi-graph with one rectangular void

We have evaluated packet loss rate in a proxi-graph with one central void (fig. 5(a)). We can see that packet loss increases compared to UDG, particularly for high density: dead-ends are more probable. Moreover, since the graph is not UDG, a node may choose a next hop in a greedy way although it does not have any neighbor in the direction of the destination. Thus, to increase density it is not sufficient to surround voids. We can remark that with our algorithms we significantly reduce packet loss ratio.

Finally, we have measured the route length (fig. 5(b)). We can remark the same trend as for UDG and for a proxi-graph with a void. Obviously, the route length is longer, because packets have to surround the rectangular void.

V. CONCLUSION

We have proposed a scheme for greedy geographical routing with reactive defect detection. The idea is to reactively detect blocked nodes and propagate the defect information by computing a set of blocked sectors. To reduce the route length and accelerate void detection in dense mesh networks, we have also proposed a method to extrapolate void location. Simulation results show packet loss as well as the route length decrease compared to greedy routing.
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 1 Fig. 1. Blocked nodes in greedy geographical routing.

Fig. 2 .

 2 Fig. 2. Examples of blocked nodes and blocked sectors.
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  d(A, B): the Euclidean distance between the geographical coordinates of nodes A and B • ∠(AB, AC): the oriented angle between two coordinates of nodes (A, B) and (A, C) (by convention, we denote by ∠(AB) the normalized angle ∠( 1 0 , AB) ) • S (S, α, β, d min ): the sector of node S composed of all nodes N such that α ≤∠(SN )≤ β and such that d(S, N ) ≥ d min
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 17 ReactiveDeflection(N→D) 1: next ← ∅ 2: for all n ∈ N eighbors do 3: if d(n, D) < d(N, D) and !BLOCKED(n,D) and d(n, D) < d(next, D) then if next = ∅ then 8: Blocked(N,D) ← true next ← previous hop 9: end if 10: return next
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 3 Fig. 3. Method for locally detecting the border of a void.
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 25611 ModifiedReactiveDeflection(D,ForbiddenSector) 1: next ← ∅ 2: for all n ∈ N eighbors do 3: if d(n, D) < d(S, D) and !BLOCKED(n,D) then 4: if !ISINFORBIDDENSECTOR(n) and { ISINFORBID-DENSECTOR(next) or d(n, D) < d(next, D) } then next else if ISINFORBIDDENSECTOR(next) and ISIN-FORBIDDENSECTOR(n) and CLOSERTOSECTOR-LIMITS(n,next) then if next = ∅ then 12: Blocked(N,D) ← true next ← previous hop 13: end if 14: return next
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 4 Fig. 4. Performances under different routing schemes for UDG.
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 5 Fig. 5. Performances under different routing schemes for a proxi-graph with one central void.