Lynda Ait Oubelli
email: lynda.ait-oubelli@onera.fr

Aït Ameur

Béatrice Larzul
email: beatrice.larzul@cnes.fr

Finding conservative schema evolutions by analysing API changes

Keywords: models evolution, data model transformation, data models comparison (Bi-simulation), graphs, labelled transition system

Because verification and validation are important activities in model driven engineering (MDE), verifying interfaces preservation is considered an interesting step to understand the evolution of data models by analyzing their interfaces. The interfaces defined on a data model can be used to define model evolution correctness using observational semantics. In this paper, we propose an approach that supports rigorous analysis, verification and validation of behavioral re-factoring. Our work addresses the problem of data model evolution in a formal modelling and verification setting. We focus on data conservation in the specific context of space engineering, where data models may involve thousands of concepts, relationships and each concept has a number of fields or attributes and each relationship has a number of properties.

I. Introduction

Because project stakeholders require an easy and safe (behaviour-preserving) technique to update modelbased applications, several approaches based on formal methods have been proposed [START_REF] Ferdjoukh | Instantiation of meta-models constrained with ocl: a csp approach[END_REF]- [START_REF] Narayanan | Using semantic anchoring to verify behavior preservation in graph transformations[END_REF]. This work gave rise to several formal comparison approaches [START_REF] Oliveira | Equivalence checking for comparing user interfaces[END_REF]- [START_REF] Chebieb | A formal model for plastic human computer interfaces[END_REF]. In this paper, we propose an approach that supports analysis of models behavior preservation after re-factoring. It consists in checking that the APIs (Application Programming Interfaces) of a source data model still hold on the target data model. To address the problem of data model evolution, we have identified three requirements.

Accessibility. Access to model concepts shall be preserved after model refactoring i.e. source model getters DOI reference number: 10.18293/SEKE2019-132 or setters shall be preserved. Accessibility requirement becomes a path problem in a graph.

Cardinalities. The cardinalities defining the extensions of the relationships between source model concepts (specifying the allowed number or range of instances) shall be preserved after model refactoring.

Knowledge. In order to strengthen concepts evolution, a knowledge base can be associated to the refactoring process to define possible knowledge equivalences or relationships between model concepts. Ontologies are good candidates for such knowledge bases [START_REF] Euzenat | Ontology matching[END_REF].

This paper deals with the accessibility requirement. It particularly focuses on the models produced in space engineering. This paper is organized as follows. Section 2 overviews related work. The proposed approach to handle model evolution and data migration is presented in Section 3. Basic definitions are presented in Section 4. Section 5 summarizes our results, overviews our experiments and positions our approach with respect to the state of the art. Finally, section 6 concludes and provides future work.

II. Related work

The problem of model refactoring has been addressed by several authors with different perspectives.

Application Programming Interfaces (API). They offer operators to process model concepts by encapsulating modelling details. [START_REF] Khatchadourian | Defaultification refactoring: A tool for automatically converting java methods to default[END_REF] proposed two categories of application interfaces: external and internal ones. External APIs are designed by library maintainers for clients usage while internal ones are used by the library code itself. To automatically collect refactoring operations between two APIs versions, [START_REF] Khatchadourian | Defaultification refactoring: A tool for automatically converting java methods to default[END_REF] uses the RefFinder tool, which identifies up to different 52 refactoring types between two API versions. The identified refactoring types are structural, only detectable by mechanical transformations. However, [START_REF] Kula | An empirical study on the impact of refactoring activities on evolving clientused apis[END_REF] observes that APIs breaking changes are not involved in refactorings. In this case, an application built with an older version of the component API, may fail under a new component API version. When the problem is visible, the application fails to compile or to link. Moreover, it may succeed to compile but its behaviour may be altered [START_REF] Dig | How do apis evolve? a story of refactoring[END_REF].

Refactoring. Refactoring-based migration tools are discussed in [START_REF] Henkel | Catchup! capturing and replaying refactorings to support api evolution[END_REF] where the research CatchUp tool is used to update applications. It uses refactorings descriptions to help application developers migrate their applications to a new version. It aims to update applications by recording and playing back the refactorings. Only few refactorings have full records and replay support. According to [START_REF] Dig | How do apis evolve? a story of refactoring[END_REF], refactoring at model level is inherently more challenging due to difficulties in assessing the potential impact on structural and behavioral features of the software system. Data models comparison. Authors in [START_REF] Chebieb | A formal model for plastic human computer interfaces[END_REF] address the problem of user interface (UI) evolution. They focus on the user interface behaviour preservation and study the design process of a user interface resulting from the evolution of a former user interface due to the introduction of new devices and/or new interaction capabilities. Interface behaviors are described by labelled transition systems (LTS) and comparison is handled by bi-simulation of LTS. Furthermore, [START_REF] Oliveira | Equivalence checking for comparing user interfaces[END_REF] describe how user interfaces equivalence, with respect to their interaction capabilities and appearance, can be measured. The UI divergences are highlighted, and the possibility of leaving these divergences out of the analysis is provided.

Our previous work [START_REF] Ait-Oubelli | A scalable model based approach for data model evolution: Application to space missions data models[END_REF] proposes an intrusive approach to manage model evolution based on structural differences. It results in a set of evolution operators from source to target models. Models are inspected to identify a set of differences and may produce false positives/false negatives.

In this paper, we propose a non-intrusive approach to handle model evolution. Instead of using a syntactical approach, we rely on API preservation. We consider that a data model evolution is correct if the source data model API is preserved in the target one. The approach is based on path access preservation and graph bi-simulation [START_REF] Milner | Communication and concurrency[END_REF].

III. Handling model evolution and data migration: our approach

In order to handle the semantic data changes involved in the development and exploitation of complex systems in a critical application domain like space engineering, we need to design a rigorous protocol to control the semantic model evolution and data migration.

The approach we propose to compare a source and a target data model relies on 4 steps. Each step manipulates graphs to handle modelling language's semantic evolution. Fig. 1 depicts the defined approach.

• Step 1. Data models refactoring (interpretation).

It identifies, in each data model, the concepts altered by the evolution. Two input data models will be compared according to these shared identified concepts. According to the latter, both source and target data models are interpreted into a shared model. We use labelled directed graphs (LDG) as ground shared model. Two LDG are produced for source (LDG s) and target (LDG t).

IV. Formalisation of our approach

For the accessibility requirement identified in section I, and according to step 1, we define LDG as the unified ground model in which data models are transposed.

A. A formal model for checking data model evolution

In the following, C, attr and Bt denote the set of data model concepts (classes, entities, etc.) of attributes and of basic types (Boolean, Integer, etc.). Each node represents a concept and its attributes. • E ⊆ V ×label×V is a set of directed edges denoting the relations between the concepts.

For any e = (v s , l, v t) ∈ E, v s and v t represent the source and target node of edge e.

Node v = (c, {(a 1 , t 1), . . . , (a n , t n)}) ∈ C × P(attr × Bt) defines
• c as a concept (class, entity, relation, etc.), with • {(a 1 , t 1), . . . , (a n , t n)} as a set of typed attributes. We have considered (l) as a label ⊆ {isa, re f s, haspart, parto f, re f, cast, prop} the set of relations for: inheritance is_a, aggregation refs, composition haspart, reflexive composition partof, references between concepts ref, casting cast and association property prop. Other relations may be studied for other analyzed data modelling language.

Definition 2: A labelled transition system lts is a structure lts = (S , s0, T, →) where S is a finite of states, s0 ∈ S is an initial state, T denotes a set of labels and → ⊆ S × T × S is a transition relation. The specific label τ ∈ T denotes empty label used to model internal actions, i.e., non observable actions in our approach. We note LT S as the set of lts and T * as the set of all possible sequences built on labels of T [START_REF] Milner | Communication and concurrency[END_REF].

LTS is the projection of graph LDG on each concept, i.e. each graph ldg has many lts with different initial states corresponding to different concepts.

Step1. Interpretation

Interpretation is the process that produces a graph g ∈ LDG from a conceptual model cm ∈ CM where CM is a set of conceptual models like UML, Entity-Relation (ER), XIF 1 .

We denote CM Int -→ LDG and g = Int(cm) the function that describes this process. Each concept (e.g. a class for UML diagrams, an entity for ER, an element for an XIF data model) resp. each concept relation (e.g. inheritance, class association, an entity relation) of cm is interpreted by a node resp. by an edge in the graph g.

Step2. Projection

Projection is the process that produces a set LT S = {lts_1, • • • lts_n} of lts ⊆ LT S from a graph ldg = (V, E) ∈ LDG where n correspponds to the number of nodes in g. We denote LDG Pro j -→ LT S and LT S = Pro j(g) the function that describes this process. The following transformation rules for projection define a lts. Nodes of V = C × P(attr × Bt). For each node v = (c, {(a 1 , t 1), . . . , (a n , t n)}) ∈ C × P(attr × Bt) in g,

• the concept c ∈ C defines a state c ∈ S • each type t i ∈ Bt defines a state t i ∈ S • each attribute a i defines a transition (c, a i , t i) ∈→ Edges of E ⊆ V × label × V. Each edge e = (v s , l, v t)
∈ E where v s = (c s , {(a s1 , t s1), . . . , (a sn , t sn)}) and v t = (c t , {(a t1 , t t1), . . . , (a tn , t tn)}) defines a transition (c s , l, c t) ∈ →. Initial states for each lts. Finally, each node v i ∈ V of the graph g = (V, E) defines the initial state of lts i ∈ {lts 1 , • • • lts n }. The projection results in a set of labelled transition systems associated to any data model. Therefore, analysis techniques defined for labelled transition systems can be applied. In particular, our approach uses lts comparison techniques based on the definition of a simulation relationship.

lts as a model for APIs

An api in a set of API is made of operations op i like getters, setters, testers etc. to respectively access, modify or query concepts or attributes of a data model. We note api = {op 1 , • • • , op m } ∈ API.

For a given lts ∈ LT S , we say that an api ∈ API of a given concept c is valid if and only if for each operation op i ∈ api there exists a path, starting from the initial state corresponding to the concept c, which accesses each input and output concepts used by any op i ∈ api. We say that lts satisfies the api API and note lts | = a api.

This definition can be extended to the APIs of any concept in a graph g = Int(cm) resulting from the interpretation of a conceptual model cm. We say that a set Api ⊆ API of APIs defined on g is satisfied if and only if for each api ∈ API there exists a lts i ∈ Pro j(ldg) such that lts i | = a api. We note g | = g Api.

Step 3. LT S comparison

Let g s and g t be two ldg. Let lts s ∈ Pro j(g s) and lts t ∈ Pro j(g t) be two lts with an initial state associated to the same concept c and api an API defined on the lts s on the concept c.

We say that api is preserved on lts t if and only if lts t simulate lts s (written as lts t ∼ lts s). Informally, all the paths in lts s are also paths in lts t i.e. api is still satisfied in lts t . Formally, we write

lts t | = a api ⇐⇒ lts t ∼ lts s ∧ lts s | = a api
Step4. Data conservation Let g s and g t be two ldg and Api a set of API defined on g s such that g s | = g Api. We say that a set Api of APIs is preserved on g t if and only if for all api ∈ Api such that ∃ lts s ∈ pro j(g s) ∧ lts s | = a api there exists a lts t ∈ pro j(g t) such that lts t ∼ lts s ∧ lts s | = a api. Formally, we write

g t | = g Api ⇐⇒ ∀api ∈ Api, ∃ lts s ∈ pro j(g s), ∃ lts t ∈ Pro j(g t).
such that lts s | = a api ∧ lts t ∼ lts s Definition 3: Finally, we say that a conceptual model cm t is a correct evolution of a conceptual model cm s with respect to a set Api of APIs if and only if

g s = Int(cm s) | = g Api =⇒ g t = Int(cm t) | = g Api
Once the conceptual model cm t is proved to be a correct evolution of cm s , instances can be migrated. The APIs of the source conceptual model are used to rebuild the instances in the target data model. Some of the produced instances may be partially valued in case cm t is richer than the source data model.

B. Example

Below, we apply the defined methodology on the example of a conceptual UML class diagram depicted on Figure 2. The objective is to check if the class diagram on the right hand side of Figure 2 is a correct evolution of the one on the left hand side.

Step2. Projection

We project the source and target ldg to labelled transition systems. Since three nodes are identified at the ldg level, we obtain three lts for both source and target ldg as shown on Figure 3 for the model on the left hand side of Figure 2. The initial state of each lts is one of the three nodes of the associated ldg.

Step 3. LT S comparison

In this case study, strong equivalence is not ensured. However, each target lts weakly simulates the corresponding source lts. One may notice that the opposite does not hold.

Step4. Data conservation

For data migration, we can assert that the obtained ldg and lts are conform to Definition 3. The functions of the APIs can be used for data migration.

V. Case Studies

Our approach has been deployed in the space engineering domain. We have studied several case studies with complex data models. In this section, we review the case of the Microscope data model. The Microscope space mission aims at testing the universality of free fall, for the first time in space [START_REF] Baghi | Gaussian regression and power spectral density estimation with missing data: The microscope space mission as a case study[END_REF]. In the following, we consider an extract of the data model used to parameterize the telemetry processing and especially to combine two telemetries.

Step1. Interpretation

As shown in Figure 4, it was decided to refactor the data model by replacing two attributes by two composition relationships towards a new class, called AbstractData. The original attributes signal1 and signal2 are factorized into a class SessionData, inheriting from AbstractData and owning a signal attribute of type Signal. This way, end-users can combine two telemetries with a known signal or not. Thus, we can identify the following evolutions:

• a new abstract class named AbstractData is added;

Step2. Projection

As shown in Figure 5, we project the source and target LDG to one source lts lts s and one target lts lts t . As the Signals concept is the only concept that exists in both sides, the initial state of each lts is Signals.

Step 3. LT S comparison.

As shown in Figure 5, from the initial state Signals, all the source transitions are feasible if we cast the target signal1 and signal2 to the concept SessionData:

VI. Conclusion and Future work

Tool support: The use of the CADP 2 toolbox helps a lot. Our investigations proved that we have been able to get the diagnosis of the comparison results.

Using template transformations, we were able to transform the Microscope data models to an LDG, then to obtain an internal representation of labelled transition system in AUT (automaton) format. Finally, the simulation between the two automatons is checked, using observational equivalence relationship, thanks to the CADP BISIMULATOR module.

Results and Discussion: In this paper, we presented a semantic observational approach for treating data models evolution. The main interest of the proposed approach is the transposition of the information accessibility in a data model at a logical interface level into a path problem in a labelled directed graph. The approach proved capable to capture all evolutions of a data model into a single logical operator instead of a no-exhaustive list of evolution operators.

Finally, the proposed approach is generic, it is not defined for a single specific data modelling language. It applies to any data modelling language provided that an interpretation of each data model by a ldg (from which a set of lts is produced) is defined.

Concluding remarks: We believe that addressing the problem of model evolution based on model behavior is promising. Interfaces defined on data models are used to define model evolution correctness using observational semantics. They are also used to prove the existence or the non-existence of composite operators having the property to preserve information contained in original instances.

Relying on labelled transition systems has three potential advantages. First, the overall system is often easier to understand due to the formal and precise nature of the representation scheme. Secondly, the behavior of the system can be analyzed using labelled transition systems theory and associated techniques, which includes tools for analysis. Finally, techniques developed for the comparison of parallel programs can also be applied.

Future work: As a perspective of this approach, we expect to realize a comparative study between the proposed approach and the previous one by comparing traces found by a graph comparison algorithm to structural differences found previously in [START_REF] Ait-Oubelli | A scalable model based approach for data model evolution: Application to space missions data models[END_REF]. We also intend to extend our work to address the evolution of models in presence of cardinalities. Finally, integrating domain knowledge through the introduction of a domain 2 https://cadp.inria.fr/ ontology helps in identifying semantic equivalence at concepts levels and thus address heterogeneous models evolution.

•

 Step 2. Data models projection. For each LDG produced from Step 1, a set of labelled transition systems (LTS) with different initial states is produced. • Step 3. LT S comparison. The obtained LT S for both source and target data models are compared using a simulation relationship. Each target LTS shall simulate the corresponding source LTS. When all the source LTS are simulated by the target ones, concept access path preservation is ensured. • Step 4. Data conservation. If step 3 succeeds, source data instances conforming to source and target data models are migrated. The migration procedure is defined depending on the kind of established simulation relation of step 3: strong simulation (source data instances are reused) or weak simulation (source data instances are refactored using the API corresponding to the path identified by the simulation relation).

Fig. 1 .

 1 Fig. 1. A four steps based approach for data migration.

Fig. 2 .

 2 Fig. 2. An example of a data model evolution.

Fig. 3 .

 3 Fig. 3. Projection of a ldg to a set of lts.

Fig. 4 .

 4 Fig. 4. An extract of a data model evolution in Microscope.

 inheriting from AbstractData are added; • a new attribute named signal of type Signal is added to the class SessionData; • a new attribute named signalExt of type String is added to the class OtherData; • the types of signal1 and signal2 are changed from Signal to AbstractData. As explained previously, the source and target data models are transformed into two LDG. In the source LDG, the class Signals become one concept. In the target LDG, three new concepts appear : AbstractData, SessionData and OtherData.

Fig. 5 .

 5 Fig. 5. An extract of the projection of the ldg to a set of lts in Microscope.

 signal1 source = ((S essionData)signal1 target).signal signal2 source = ((S essionData)signal2 target).signal Thus, lts t simulates lts s since the following weak simulation binary relationship R = {< S ignals, S ignals >} exists. One may notice that the opposite is false because of the transition signalExt. Step4. Data conservation During the migration, the values of the old instances of the class Signals are preserved, through the creation of two new instances of the class SessionData, initialized with these values.

XML Interchange Format (XIF): A standard in space engineering to define space data models[START_REF] Hémery | Best-ng: a new modeler for describing the satellite's database[END_REF].

Acknowledgment

Authors would like to express their gratitude to Dr. Raquel Araujo OLIVEIRA for her comments and her constructive suggestions.