
HAL Id: hal-02650472
https://hal.science/hal-02650472v3

Submitted on 11 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lower and upper bounds for deterministic convergecast
with labeling schemes

Gewu Bu, Zvi Lotker, Maria Potop-Butucaru, Mikaël Rabie

To cite this version:
Gewu Bu, Zvi Lotker, Maria Potop-Butucaru, Mikaël Rabie. Lower and upper bounds for deter-
ministic convergecast with labeling schemes. Theoretical Computer Science, 2023, 952, pp.113775.
�10.1016/j.tcs.2023.113775�. �hal-02650472v3�

https://hal.science/hal-02650472v3
https://hal.archives-ouvertes.fr

Lower and Upper bounds for Deterministic

Convergecast with Labeling Schemes

Gewu Bu1a, Zvi Lotkerb, Maria Potop-Butucaruc, Mikaël Rabied

a
University Clermont Auvergne, LIMOS, gewu.bu@uca.fr, France

b
Bar Ilan University, Ramat-Gan, zvilo@bgu.ac.il, Israel

c
Sorbonne University, LIP6, maria.potop-butucaru@lip6.fr, France

d
University Paris Cite, IRIF, mikael.rabie@irif.fr, France

Abstract

In wireless networks, broadcast and convergecast are the two most used com-
munication primitives. Broadcast instructs a specific sink (or root) node to
send a message to each node in the network. Convergecast instructs each
node in the network to send a message to the sink. Due to the collision,
without labels, deterministic convergecast is impossible even in a three-node
network. Therefore, networking solutions for convergecast are based on prob-
abilistic approaches or use underlying probabilistic medium access protocols
such as CSMA/CA or CSMA/CD.

In this paper, we focus on deterministic convergecast algorithms enhanced
with labeling schemes for wireless networks in collision-presence environment.
We investigate two communication modes: half-duplex (nodes either trans-
mit or receive but not both at the same time) and full-duplex (nodes can
transmit and receive data at the same time). For these two modes we in-
vestigate lower and upper bounds for the time and size of labeling. Even
though broadcast and convergecast are similar, we prove that, contrary to
broadcast, deterministic convergecast cannot be solved with short labels for
some topologies. That is, !(log(”)) bits are necessary to solve deterministi-
cally convergecast where ” is the maximal degree of a node in the network.
We also prove that !(n) communication time slots are required, where n is
the size of network. We provide solutions that are optimal in terms of time
(transmission rounds), and by far, the closest to the lower bound in terms of
space (message size) for arbitrary scenarios.

1This work has been realized while the author was with LIP6, Sorbonne University.

Preprint submitted to Theoretical Computer Science A January 24, 2023

Keywords: Convergecast, Collision-present communication, Labeling
schemes
2000 MSC: 05C40, 05C10, 05C12, 68W15, 94C15

1. Introduction

Convergecast and Broadcast are basic communication primitives widely
used in wireless networks. In broadcast, one source node needs to send its
message to all the other nodes in the network. We say that the broadcast
succeeded if at the end of the broadcast, all the non-source nodes in the net-
work received successfully at least once the target message sent by the source
node. On the other hand, for the convergecast, each node in the network has
its unique message that needs to be sent to one special node, called the Sink.
The convergecast is a success if at the end of the process, the sink node re-
ceived successfully at least one message sent from each of other nodes in the
network. The convergecast strategies are widely used in sensor networks for
collecting critical data from a target area. In many applications, nodes that
need to communicate with the sink might not be able to maintain a direct
connection with it. Therefore, in many situations the communication with
the sink has to be multi-hop. In practice, the overlapping among wireless
signals sent simultaneously into the same wireless channel might occur dur-
ing the transmission. It is di#cult to distinguish overlapping signals at the
receiver node if these overlapping signals use the same carrier frequency. We
call this situation collision.

Our research focuses on deterministic distributed convergecast in multi-
hop wireless networks subject to collisions. The purpose of the algorithm is to
coordinate and to schedule when and how nodes send and forward messages
in the network to finally achieve e#ciently the convergecast. Note that, in
reality, even if the receiver experienced a collision during the signal decoding,
the receiver still has a chance to recover correctly the interfered target signal
among all the interference signals. This chance strongly depends on the
reception strength and modulation mode of receiving signal, which are hard
parameters to be ensured. If a message sent by a node entered in collision
with other transmissions, without additional re-transmission mechanism, the
message will be permanently lost. It follows that the convergecast process
failed. An e#cient deterministic convergecast algorithm therefore should
completely avoid any collision instead of letting receiver nodes try again
their luck.

2

One of the first to investigate the convergecast problem in wireless net-
work from both theoretical and practical aspects, [1], considers the setting
where each sensor node in the network has a single message to be sent to the
sink. The authors target to find the optimal-time (minimal-time) schedul-
ing to achieve the message gathering at the sink. The problem is referred
as minimum information gathering time problem. In [1] the authors prove
that even in centralized settings this problem is NP-Complete on general
topologies. In [1] and [2] the authors propose similar centralized converge-
cast algorithms that finish in at most 3n→ 3 rounds, where n is the number
of nodes. The proposed solutions work only for line and tree topology net-
works. Distributed convergecast algorithms are proposed in [3] and [4]. The
proposed algorithms achieve the theoretical lower bound for line and tree
topologies: max(3nk → 3, n) rounds, where nk is the number of nodes in the
longest branch of the tree. For general graphs the proposed algorithms need
at most 3n→2 rounds. However, the price of decentralization is important in
this solution: nodes need to store their IDs, the ID of the branch they belong
to and the number of nodes in this branch. Moreover, to avoid collisions, a
collision resolution mechanism is proposed: by passing an additional infor-
mation exchanging phase among nodes, each node needs to store an n ↑ n

collision table. Instead of requiring additional exchanging phase to create
and store the collision table, our proposition needs only O(log(n)) bits of
additional information to achieve the convergecast.

On another line of research, multi-channel-based convergecast was inves-
tigated in [5, 6, 7]. By using di$erent communication channel/frequency, a
receiver node can successfully receive up to k message simultaneously, where
k is the number of usable channels. The best results to date in multi-channel
settings is only for line networks: the lower bound of convergecast is 2n→ 1
by using ↓n/2↔ channels. In this work we are interested in general network
topologies and single channel transmissions.

Similar to the minimum information gathering time problem, the mini-
mum data aggregation time problem in wireless networks has been investi-
gated in [8, 9]. In data aggregation problem nodes can aggregate multiple
received messages into a new message and send only the new message instead
of old ones to reduce the chance of collisions. In [8] the authors propose the
best to date centralized algorithm that takes at most 12R + ω → 11 rounds,
where R is the radius of the network and ω is the maximum degree of the net-
work. In [9] the authors proposed distributed algorithms that take at most
2n rounds for line networks, 3n+k rounds for general networks with n nodes

3

and k branches. However the solution proposed in [9] needs an additional
collision avoidance mechanism similar to the one proposed in [4].

In the current work we investigate the gathering of information (converge-
cast) without aggregation in multi-hop general networks where each node is
enhanced with labels. Labels are additional information used in order to avoid
collisions. Each node is enhanced with a pre-computed label that instructs
it when to send/receive or sleep.

Labeling is an interesting mechanism that was used for decades in dis-
tributed algorithms to reduce the computational complexity. The basic idea
of labeling is to allocate labels (i.e., pieces of information computed o%ine) to
the nodes of a network in order to advise nodes in taking some decisions. Via
the pre-allocated labels nodes can be assigned to specific behaviors during
the online execution of the distributed algorithm. Labeling schemes proved
themselves as an e#cient mechanism to improve algorithms e#ciency and
even bypass impossibility results. Labeling schemes have been designed in
[10, 11, 12] to compute network size, the parent-child relationship and the ge-
ographic distance between nodes in the network, respectively. It has been also
used in [13, 14, 15] in order to improve the e#ciency of Minimum Spanning
Tree, Leader Election and Topology Recognition algorithms, respectively.
Furthermore, [16, 17] exploit labeling to improve the existing solutions for
network exploration by a robot/agent moving in the network. Generally
speaking, the utilisation of labels implies to use additional memory space to
store allocated labels in each node.

Ellen et. al [18] designed the first deterministic distributed broadcast
primitives enhanced with constant labels for multi-hop wireless networks sub-
ject to collisions, and [19] improved its complexity. Labels are used in both
works as a scheduling mechanism in order to avoid collisions. Using this
model, [20] introduced a network topology recognition using labels of size
O(log”), in O(D”+min(”2

, n)) rounds. In the current work, we are inter-
ested in the information gathering (convergecast) problem in environments
with collisions. Even though convergecast with labeling has been investi-
gated previously in [20] (only for tree topology) the authors did not address
the collisions problem. Compared with broadcast, convergecast is more chal-
lenging: in broadcast, only one source node starts the transmission and the
other nodes receive and forward it. The convergecast has a higher number
of transmissions to schedule and therefore a higher number of potential col-
lisions may occur during the algorithm execution. The latest article can be
used to produce a convergecast with short labels, however its time complexity

4

can be high, in particular in graphs where n = O(”2).

1.1. Our contributions

We address for the first time the deterministic convergecast problem with
labeling schemes in arbitrary networks subject to collisions. We propose lower
and upper bounds in terms of time and labeling complexity for two commu-
nication models: half-duplex (nodes cannot send and receive simultaneously)
and full-duplex (nodes can send and receive simultaneously).

First, we prove the existence of a network of n > 4 nodes where 3n → 6
and 2n → 4 rounds are necessary to deterministically solve convergecast in
half-duplex and full-duplex, respectively, and at least log(”→2) bits of labels
are needed, where ” is the largest degree of the network. Furthermore, we
propose a deterministic convergecast algorithm for a network of n nodes in
half-duplex model that needs 3n → 3 rounds and uses labels of size log(n →
1)+2 bits. In the case of full-duplex we propose a deterministic convergecast
algorithm that needs 2n → 2 rounds and labels of size 2 log(n → 1) + 1 bits.
Our results are summarized in Table 1. Notice that our lower bounds are
more precise than !(n) and !(log”), as we even provide the constant factor.

Our algorithms work by sending, as messages, only the messages needed
by the sink from each node in the network. Moreover, we do not concatenate
them. Considering the communication space, i.e. the size of the messages
sent by the nodes in the network, our algorithms are closest to optimal in
arbitrary scenarios. Each node sends its initial message following a shortest
path from itself to the sink. From this observation, we are optimal in the
number of sent messages if each node can transmit at most a single message
in each round.

Table 1: Lower and upper bounds for deterministic convergecast with labeling
Half-Duplex Full-Duplex

Time Complexity Labeling Size Time Complexity Labeling Size
Our propositions 3n→ 3 log(n→ 1) + 2 2n→ 2 2 log(n→ 1) + 1
(Upper Bound)
Clique topology n→ 1 log n→ 1 n→ 1 log n→ 1
(Lower Bound)
Line topology 3n→ 6 0 2n→ 4 0
(Lower Bound)

General topology with n > 4 3n→ 6 log(”→ 2) 2n→ 4 log(”→ 2)
(Lower Bound)

5

2. System model

We represent the network by a connected graph G = (V,E), where V

represents the nodes of G and E represents its undirected bidirectional edges
(a pair of nodes, denoted as e(i, j)). For any node v ↗ V , if e(u, v) ↗ E,
we say that v is in the communication range of u. We consider wireless
transmissions. That is, when a node sends a message, this message will
be transmitted as a wireless signal into a shared wireless channel. All nodes
within the wireless communication range (i.e., graph neighbors) of the sender
can receive this transmission.

We distinguish a node in the network, called the sink. The convergecast
consists in allowing each node in the network to transmit a message to the
sink. Each node has a First In First Out (FIFO) message bu$er initially
containing only the message the node wants to transmit to the sink. Note
that the sink has no message initially in its bu$er.

We consider that the nodes use a synchronized clock. We will study two
communication modes: Half-duplex (sending and receiving messages cannot
be done simultaneously) and Full-duplex (nodes are allowed to send and re-
ceive in the same time slot). In Full-duplex mode, we assume that there
is some self-interference cancellation mechanism, as this should be a neces-
sary requirement for communications in this model [21]. Figure 1 shows the
comparison between half-duplex and full-duplex modes.

Figure 1: Half-duplex and Full-duplex communication

In Figure 1, nodes u and v each have a message to send to the other. In
half-duplex mode, when u sends the message at time t0, node v can receive
the message. After that, node v can send its message to node u. In full-
duplex mode, node u and v can send their messages simultaneously to each
other at time t0.

6

In the Half-duplex mode, in each time slot, each node can be in one of
the following three di$erent states: 1) Listen 2) Send and 3) Sleep. A node
in state Sleep turns itself o$ temporarily (i.e., it does not listen nor send
any message). Nodes in state Send will take out the first message from their
bu$er (if there is any) and send it through the wireless channel to all of its
neighbors. A node in state Listen will listen to the channel and wait for
incoming messages.

In the Full-duplex mode, in each time slot, in addition to the three previous
states, nodes can also be in state S&L. State S&L represents a node that
transmits a message from its bu$er and can also listen if one of its neighbors
is sending a message during the same time slot.

A node can only be in one state during a time slot and it may change its
state in the next time slot. Note that we assume that nodes need a whole
time slot for sending or receiving completely one message. We also assume
that the message propagation time is negligible. More formally, if a node v

in state Send or S&L sends a message at the beginning of a time slot, its
neighbors in state Listen or S&L will receive the message by the end of the
time slot.

To receive a message successfully in a time slot, a node needs to be in
state Listen or S&L and exactly one of its neighbors sends a message (mean-
ing having a non-empty bu$er and be in state Send or S&L). If multiple
neighbors are sending simultaneously a message in that time slot, a conflict
occurs, and no message is received (and the content of the messages sent
might be lost forever, if no more nodes have it in their bu$er).

Figure 2 shows an example of the transmission process.
In the context of convergecast, the sink node should receive in a finite

bounded time all the messages sent by every other node. We propose two
labeling-based convergecast algorithms for half-duplex and full-duplex com-
munication modes. Using pre-computed additional information o%ine, the
labels, each node therefore extrapolates at what time it should wake up, send
and receive messages without creating collisions during the online execution.

We want to work with the minimal hypothesis on the nodes of the graph,
to allow to have an algorithm that would also work in stronger variants.
Hence, we suppose that the nodes are anonymous, and that there is no node
numbering. A node is only aware of whether it is or is not the sink node.

For the pre-processing of the labels, we use a centralized algorithm.
Through labels, nodes know when they need to wake up and participate
in message propagation. One of the goals is to minimize the size of the

7

Figure 2: Initially, each non-sink node has a message in its bu!er. At time t0, nodes are
in di!erent states: node 4 in Send, node 2 in S&L, nodes 3 and 5 in Listen and nodes 1
and 6 in Sleep. Nodes 2 and 4 begin to send their messages by taking them out from their
bu!ers and send the message to all nodes in its transmission range. At time t1, nodes 2
and 5 receive the message from node 4. Nodes 1 and 6 are sleeping, they therefore don’t
receive any message. However two messages from node 2 and node 4 arrive at node 3
simultaneously. A collision occurs therefore at the node 3.

largest label provided to a node.

3. Lower Bounds

Lemma 1. Any deterministic algorithm that solves the convergecast problem
on a path takes at least 3n→6 time slots in the Half-duplex Model and 2n→4
time slots in the Full-duplex Model.

Proof. Consider the network where nodes form a path rt = u1, u2, . . . , un,
where rt is the sink node. We know that, ↘i > 1, the node ui needs to
transmit the information of the nodes ui, ui+1 . . . un, as the topology is a
path. As a node can only transmit one message in a time slot, the node ui

will need n→ i+1 time slots to transmit its information and the information
of the nodes after itself in the path. When a node ui successfully transmits
information to ui→1, node ui→1 must be listening, meaning that node ui→2

cannot transmit during that period (otherwise, there would be a conflict in
ui→1).

Hence, when node u4 transmits n → 3 times, node u2 cannot perform
any of its n → 1 necessary transmissions. As those 2n → 4 communications
need to happen, and none can happen at the same time, we get the second
lower bound. If nodes cannot transmit and receive at the same time, node
u3 transmits n→ 2 times, listens n→ 3 times. Moreover, it must sleep when

8

node u2 successfully transmits n → 1 times, as it cannot transmit to u2 (as
u2 is already transmitting and cannot be listening) and cannot receive from
u4 (as there would be collisions as both u2 and u4 are neighbors of u3). This
gives the first lower bound.

Lemma 2. Any deterministic algorithm that solves the convergecast problem
on a clique needs labels of size at least log(n→ 1) for some of the nodes.

Proof. Consider a clique network where all nodes except the sink cannot be
di$erentiated. After getting labels, two non-sink nodes can be di$erentiated
if and only if they have two di$erent labels.

Let’s suppose we have two nodes with the same label. Each time they
Listen during the same time slot, if a single message comes (i.e., there is
no interference), it is the same message, as it means that a single node
of the clique is transmitting. Hence, no symmetry can be broken between
those two nodes, as they have the same starting state and their history of
received information will be the same. Therefore, they will always Transmit
at the same time. When it happens, no node can get their message, as
they are connected to those two nodes, and the messages will collide. By
contradiction, it means that each label of the non-sink nodes must be unique.

We need n→1 di$erent labels for each non-sink node to be able to perform
a convergecast on a clique. Hence, we need at least log(n→ 1) bits.

Remark 1. Note that in that case, the maximal degree of the graph ” is
equal to n → 1. This leaves, as an open question, for general networks, if
labels of size log n are needed, or if a size of log” is enough.

In this lemma, the absence of identifiers is crucial, as unique identifiers
means that each pair of nodes can be di!erentiated. In the particular case
of the clique with unique identifiers, there is a solution for the convergecast
without labels: the sink node listens in each time slot, and a non-sink node
with identifier k transmits its own information at time slot k. The converge-
cast will finish in K time slots, where K is the maximal identifier given to a
node in the clique.

Theorem 1. There exists a network topology of size n > 4 in which the
convergecast needs at least 3n → 6 time slots in the half-duplex mode and
2n→4 time slots in the full-duplex mode. Moreover, the labels must be of size
at least log(”→ 2).

9

Proof. The sink node rt is connected to a path of length two rt → u1 → u2.
The node u2 is in a clique with the remaining n → 3 nodes. Using the same
arguments we used in Lemma 1, we know that u2 will need 3n→ 6 time slots
in the half-duplex mode and 2n → 4 time slots in the full-duplex-mode to
receive and transmit the information of node in the clique. Moreover, in the
clique, by following the same proof of Lemma 2, we know that log(n→2→1) =
log(n→ 3) = log(”→ 2) bits are needed for the labels.

4. Convergecast in Half-duplex Mode

4.1. Labels for Half-duplex communication mode
We recall that in the half-duplex communication mode nodes cannot

transmit and receive in the same time slot. To ease the reading of our algo-
rithm, we consider that time is divided in rounds and each round is divided
in three time slots (numbered from 0 to 2). We represent the time T as
T =< Tr : Ts > where Tr represents the current round and Ts the current
slot in the round Tr. For example, time T =< 2 : 0 > represents time slot
0 of round 2. Basically, time T =< Tr : Ts > corresponds to the time slot
3Tr + Ts. See Figure 3 for a detailed illustration.

Figure 3: Time model

In Figure 3, time is modeled as Tr and Ts. The time pointed by the red
frame is the second time slot of the round 2: T =< 2 : 1 >.

For the convergecast in half-duplex mode, each node v ↗ V starts in
state Sleep and gets a pre-computed label in format < yv : hv > at the
beginning of the convergecast algorithm. The first part of the label, y ↗ N,
represents the round indicator when v has to wake up. The second part of
label, h ↗ {0, 1, 2}, guides the actions (i.e., Listen, Send or Sleep) that v

should take when it wakes up. When it wakes up, it will repeat indefinitely
one after the other the actions Send, Sleep, Listen (the first action being
decided by hv).

10

4.2. Convergecast Algorithm for Half-Duplex

Algorithm 1 indicates the actions a node should take at a specific time
T =< Tr : Ts > based on its label < y : h >.

Algorithm 1 Convergecast algorithm executed by node v with label < yv :
hv > at time T =< Tr : Ts >

if Tr ≃ yv then

if Ts == hv mod 3 then

node v switches to state Send.
else if Ts == (hv + 1) mod 3 then

node v switches to state Sleep.
else if Ts == (hv + 2) mod 3 then

node v switches to state Listen.
else

node v stays in state Sleep.

Figure 4 represents a network with six nodes V = {a, b, c, d, e, f}, each
node with its own label < y : h >. Figure 5 shows the state transition
of nodes according to Algorithm 1 while Figure 4, shows the path followed
by the transmission of messages during the convergecast process. Note that
nodes take di$erent actions (send, listen or sleep) at di$erent time slots.
According to the y part of their labels, we identify four sets of nodes:

• Nodes in group {a, b, e}, wake up at round 0 and begin to propagate
their messages following the path e ⇐ b ⇐ a to the sink (a). This path
is marked in red in Figure 4.

• Node {f}, wakes up at round 1 and sends its message using the path
f ⇐ b ⇐ a to the sink, marked in yellow in Figure 4.

• Node {c}, wakes up in round 3 and sends its message directly to the
sink. The path is marked in green in Figure 4.

• Node {d}, wakes up in round 4 and sends its message directly to the
sink. The path is marked in purple in Figure 4.

Figure 5 shows the actions for each node in each time slot as per Algorithm
1. S, L, T represent the states Sleep, Listen and Send respectively (T stands
for Transmit). States L and T in red represent an e$ective transmission. For
example at time < 0 : 0 >, node e is in state Send and node b is in state

11

Figure 4: Execution of Algorithm 1

Listen. Since they are directly connected (see Figure 4), the message from
e can be received by node b. L in green means that the node is in state
Listen, but there is no incoming message to be received. For example at
time < 0 : 2 >, node e is in state Listen. However, there is no neighbor of
e in state Send. Hence, e has nothing to receive. State T in green means
that node can Send, but it has no message to send. For example at time
< 1 : 0 >, node e is in state Send. However, e has already sent its message
to b at time < 0 : 0 >.

Figure 5: State transitions for a network with 6 nodes according to Algorithm 1

12

4.3. Labels Allocation for Half-duplex mode

The label < yv : hv > of node v has two parts: yv and hv. These two
parts of the label will be computed by Algorithms 2 and 3, respectively.
The first part of the label, y, is computed by Algorithm 3 that performs a
Depth-First-Search (DFS) exploration of nodes starting with the sink node.
Algorithm 2 computes for each node the second part of the label, h, based
on the shortest path distance of each node to the sink: we suppose we have
a vector D which records for each node its distance to the sink (it can be
computed, for example, by a Breadth-First-Search (BFS) strategy).

Algorithm 2 h allocation for Half-duplex mode
%Input: connected graph G(V,E) and rt ↗ V (the sink node).
%Ouptut: Vector H (H[v] corresponds to the second label < → : hv >

%of node v).
Compute D[1...n] %↘v ↗ V,D[v] is the distance from v to rt

for Each node v ↗ V do

Node v gets its hv label: H[v] ⇒ 2→D[v] mod 3

4.4. Correctness of Convergecast for Half-duplex mode

Now we prove the correctness of Algorithm 1. Firstly, we introduce some
notations and definitions.

Definition 1 (Level). The level of a node v, denoted L(v), is the shortest
distance from v to the sink node. In our algorithms, L(v) will be stored in
the vector D, that can be computed by a Breadth-First-Search algorithm.

Definition 2 (Round). The round of a node v is denoted y(v), or yv. In our
algorithms, y(v) will be stored in the vector Y , and is computed by Algorithm
3.

Definition 3 (Neighbors). The neighbors of a node v, denoted N(v), is the
set of nodes u such as e(u, v) ↗ E.

Definition 4 (Parent Nodes). The parents of a node v is the set of nodes
{u ↗ N(v) : (L(v)→ L(u) = 1)}.

Definition 5 (Direct Child Nodes). The direct children of a node v, denoted
C(v), is the set of nodes {u ↗ N(v) : (L(u)→ L(v) = 1)}.

13

Algorithm 3 y allocation algorithm for Half-duplex
%Input: Connected graph G(V,E) and rt ↗ V (the sink node).
%Ouptut: Vector Y (Y [v] corresponds to the first label < yv : → > of
%node v).
Compute D[1...n] %↘v ↗ V,D[v] is the distance from v to rt

Vt ⇒ ⇑, Vs ⇒ ⇑
CPOP ⇒ 0, CLPOP ⇒ 0
S ⇒ ⇑ %S is a LIFO stack
PUSH rt into S.
x ⇒ rt

Vt ⇒ {rt}
while S ⇓= ⇑ do

POP one node v from S.
Y [v] ⇒ CLPOP →D[x]
CPOP ⇒ CPOP + 1
Vs ⇒ Vs ⇔ {v}
if N(v) \ Vt ⇓= ⇑ then

PUSH each node from C(v) \ Vt into S

%C(v) is explained in Definition 5
Vt ⇒ Vt ⇔ C(v)

else %Nothing to PUSH, we note as a PUSH-NULL
CLPOP ⇒ CPOP

x ⇒ q, where q is the last element in S (i.e., next to be popped).
Vs ⇒ ⇑

Definition 6 (Direct Dominating Child Nodes). The direct dominating chil-
dren of a node v, denoted DDC(v), is the subset of C(v) with a bigger first
part of a label than v’s, i.e., {u ↗ C(v) : y(u) ≃ y(v)}.

Definition 7 (Indirect Dominating Child Nodes). The indirect dominating
children of a node v, denoted IDC(v), is the transitive closure of the direct
dominating children of v. More formally, if we have IDC1(v) = DDC(v) and
IDCi+1(v) = IDCi(v)

⋃
u↑IDCi(v)

DDC(u), we have the existence of some iv

such that, ↘i ≃ iv, IDCi(v) = IDCiv(v) (this is clear as the set is increasing
and bounded by |V |). We have IDC(v) = IDCiv(v).

Remark 2. By construction of Algorithm 1 and the fact that the time slot
of a node is given according to its distance to the source node modulo 3, we
have the following direct observations:

14

• The state of a node v will change following the cycle Transmit ⇐
Sleep ⇐ Listen ⇐ Transmit ⇐ Sleep ⇐ Listen. . .

• Nodes in the same level L(v) of v are in the same state that v; nodes
in level L(v)→ 1 are in one state before in terms of the state changing
cycle; nodes in level L(v)+1 are in one state later in terms of the state
changing cycle explained above.

Lemma 3. Messages sent from a node v can only be received by the parent
nodes of v.

Proof. According to Remark 2, when a node v is in state Send, nodes in
C(v) are in state Sleep; the parent nodes of v are in state Listen. Others
neighbors of v who are in the same level of v are in state Send. The message
sent from v can therefore only be received by its parent nodes.

Definition 8. The Direct Parent of a node v, denoted P (v), is the last node
that was popped by Algorithm 3 before v was pushed. We can notice that
L(p) = L(v) → 1 and e(v, p) ↗ E, hence P (v) is one of the parent nodes of
v. Moreover, as the y value is given first to the parent node, we have the
property that v ↗ DDC(P (v)). In the following proofs, if we talk about the
parent (singular) node of v, it is implicitly P (v).

Definition 9. The set of Ancestors of a node v is the transitive closure of
its parents, to which we add v itself (i.e., v is its own ancestor). We say that
u is an ancestor of v if it belongs to this set. P i(v) is the ancestor number i

of v.

Lemma 4. At any point in Algorithm 3, x is an ancestor of v. Vs represents
the direct path from x to v. More precisely, we have Vs =

⋃
0↓i<|Vs|

P
i(v) and

x = P
|Vs|→1(v).

Proof. By contradiction, let v0 be the first node popped such that this prop-
erty is false. It means that we did not do a PUSH-NULL right before, as
otherwise Vs = {v0}. Let u be the previous node to have been popped. We
have, by the choice of v0, that Vs\{v0} =

⋃
0↓i<|Vs|→1

P
i(u). As we did not do a

PUSH-NULL right before, it actually means that v0 has been pushed in the
previous step (as it is the last element to have been added in the LIFO, and
at least one element was added), when we were handling u. Hence, v0 is a

15

direct child of u: u = P (v0). Moreover, the property of the Lemma was true
for u, by the choice of v0. Hence, x = P

|Vs|→2(u) = P
|Vs|→1(v). This leads to

a contradiction.

Lemma 5. In Algorithm 3, when we put the instruction setting the value for
the round y(v) to CLPOP →D[x], we have y(v) = CPOP → L(v).

Proof. The Lemma is true if we did a PUSH-NULL right before popping v.
Let’s suppose that we did not do a PUSH-NULL right before. The value

given to y(v) only depends on when the POP of x happened. When we set
y(v), Vs contains exactly the nodes that were popped between the POP of x
(included) and v (excluded). By Lemma 4, we have that x = P

|Vs|→1(P (v)) =
P

|Vs|(v), meaning that L(x) = L(v) → |Vs|. (|Vs| \ {x}) ⇔ {v} represents the
exact set of nodes that were popped since the last time CLPOP was set to a
value. Hence, we get that CLPOP = CPOP → |Vs|. This leads to the expected
result: y(v) = CLPOP → L(x) = CPOP → L(v).

Lemma 6. In Algorithm 3, when we pop a node v, we PUSH immediately
the set of its Direct Dominating Children. Moreover, when we pop a node
v, we will PUSH exactly the set of its Indirect Dominating Children before
pushing any other nodes.

Proof. First, we can notice by direct induction that the nodes in the LIFO

S are ordered according to their distance to the root, or level. Indeed, each
time we push a set of nodes at the end of S, they all have the same level
(being 1+ the level of the last node that was popped).

The subset of nodes of C(v) that are pushed after the popping of v are
the nodes that were not pushed before. As we have just set the y value of
v and we can notice that CLPOP is never decreasing, the y value given to
those nodes will be greater or equal to the one given to v. Hence, the nodes
pushed after the popping of v are included in DDC(v).

Let’s consider a node u ↗ C(v) that was popped before v. Let CPOPv

(resp. CPOPu) be the value of CPOP when the node v (resp. u) was popped.
According to Lemma 5, we have y(v) = CPOPv → L(v) and y(u) = CPOPu →
L(u). As u is a child of v, L(u) = L(v) + 1. As v was popped after u,
CPOPu < CPOPv . Hence, y(u) = CPOPu → L(u) = CPOPu → L(v) → 1 <

CPOPv → L(v)→ 1 < y(v)→ 1 < y(v). We deduce that u ⇓↗ DDC(v).
We conclude that when we pop a node v, we PUSH immediatelyDDC(v).

16

By direct induction, as S is a LIFO, when we pop a node v, we will
PUSH exactly the set of its Indirect Dominating Children before pushing
any other nodes.

Lemma 7. Let v1 and v2 two nodes that were PUSHED one after another
in the LIFO, after the POP of the same node v. We have y(v2) = y(v1) +
|IDC(v1)|+ 1.

Proof. By following Lemma 6, we know that after the POP of v1, the next
nodes to be pushed are IDC(v1). All nodes that will be pushed while we
are popping nodes from IDC(v1) are in IDC(v1), by definition of IDC(v1).
It means that after the POP of all nodes in IDC(v1), the next one to be
popped was the next one on the stack right after v1 was popped, which is
v2. As both v1 and v2 have v as their parent, L(v1) = L(v2). Hence, we get
y(v2) = y(v1) + |IDC(v1)|+ 1.

Lemma 8. When a node v wakes up, it will transmit its information and the
information of its indirect dominating children consecutively, during rounds
[y(v), y(v) + |IDC(v)|]. Moreover, the information will be transmitted in
order of POP of those nodes.

Proof. Let’s prove it by induction on the built tree. We first need to prove it
for a node without any children, and then prove that if it is true for all the
children of v, then it is true for v.

Case IDC(v) = ⇑: As v wakes up in round y(v), it will transmit its
input when it will be in state Send in this round.

Case IDC(v) ⇓= ⇑: Let C(n) = {v1, . . . , vk} be the children of v ordered
according to when they were pushed in the stack. By induction, we have, ↘i ↖
k, that when vi wakes up, it will transmit its information and the information
of its indirect children consecutively, during rounds [y(vi), y(vi)+ |IDC(vi)|].

Out of Lemma 5, we know that y(v1) = y(v) (as v1 is the next node to be
popped after v, and it is one level bellow). Out of Lemma 7, we know that
↘i < k, y(vi+1) = y(vi) + |IDC(vi)| + 1. Hence, we deduce that there will
not be any conflict in the transmissions of the information from each child
of v to v. Moreover, it will start in the round y(v1) = y(v) where v woke
up, up until y(vk) + |IDC(vk)| = y(v) +

∑
i<k

(|IDC(vi)|+ 1) + |IDC(vk)| =

y(v) + |C(v)|→ 1 +
∑
i↓k

|IDC(vi)| = y(v) + |IDC(v)|→ 1.

Hence, after all has been transmitted to v, it will need one more round
to finish to transmit everything to its parent. It will use, as expected, the

17

interval [y(v), y(v)+ |IDC(v)|] to transmit all the information from itself and
its indirect children.

Remark 3. For each node, its message is sent to its parent, who sends it
to its own parent, and so on until it reaches the sink. The message is not
received by any other nodes. As the path of parents form a shortest path
from the node to the sink, the message is sent a minimal number of times. It
implies that this algorithm is optimal in the number of sent messages, if we
do not allow message concatenation.

Theorem 2. Algorithm 1 finishes the convergecast in round n→1 (or 3n→3
time slots) without collision. The size of label needs log(n→ 1) + 2 bits.

Proof. This is direct by applying Lemma 8 to the sink node rt, as length of
its interval is y(rt) + |IDC(rt)| = |V | → 1 = n → 1. For the size of label,
as algorithm runs n→ 1 rounds and each round need 3 time slots. A size of
log(n→ 1) + log(3) < log(n→ 1) + 2 is needed.

5. Convergecast in Full-duplex Mode

5.1. Labels for Full-duplex communication mode

The basic idea of our algorithm for full-duplex is the same that with half-
duplex: nodes forward their messages though di$erent transmission path up
to the sink without any collision. In each round, only a transmission path
is active and messages will be sent to the sink. The only di$erence between
half-duplex and full-duplex is that in each round, half-duplex case separates
the time into 3 time slots and full-duplex case separates the time into 2 time
slots.

In full-duplex mode, time T =< Tr : Ts > is always represented by two
parts: the big time round indicator Tr and the small time slot indicator
Ts. The small time indicator Ts takes value from {0,1} instead of {0,1,2}
(half-duplex).

As in the half-duplex mode, each node v ↗ V receives pre-computed labels
at the beginning of the convergecast algorithm. However in full-duplex mode,
the label consists of three parts: < yv : hv : zv >. The first part of the label,
yv ↗ {0, 1, 2, 3, 4...}, represents the round when v wakes up. The third part
of the label, zv ↗ {0, 1, 2, 3, 4...}, represents how many rounds the node will
stay awake after it wakes up. The second part of the label, hv ↗ {0, 1, 2, 3},

18

allows a node to know in which state it should be when it wakes up in round
yv. This label also allows to extrapolate how v changes its state when it
is active. We have four possible states (we add S&L to the previous ones,
for nodes that both Transmit and Listen during the round). During the
execution, each node will cycle between two states, either Listen and Send,
or Sleep and S&L.

5.2. Convergecast Algorithm for Full-Duplex

Algorithm 4 gives the actions taken by each node at a specific time T =<

Tr : Ts > depending on its labels < y : h : z >. Figure 6 and Figure 7 show
an execution example of Algorithm 4.

Algorithm 4 Convergecast algorithm executed at each node v with label
< y : h : z > for Full-duplex

for each time T =< Tr : Ts > do

if y ↖ Tr ↖ y + z → 1 then

if Ts == 0 then

if h == 0 then

node v switches to state Listen.
else if h == 1 then

node v switches to state S&L.
else if h == 2 then

node v switches to state Send.
else if h == 3 then

node v switches to state Sleep.

else if Ts == 1 then

if h == 0 then

node v switches to state Send.
else if h == 1 then

node v switches to state Sleep.
else if h == 2 then

node v switches to state Listen.
else if h == 3 then

node v switches to state S&L.
else

node v stays in state Sleep.

In Figure 6 is represented a network with seven nodes V = {a, b, c, d, e, f, g},
each node has its own label < y : h : z >. By using Algorithm 4, nodes will

19

have to execute di$erent actions (Send, Listen, S&L or Sleep) at di$erent
time slots. Following their label, the seven nodes will be separated into four
groups, according to the y field of their labels:

• Nodes in the group {a, b, e, g} wake up at round 0 and begin to prop-
agate their messages following the path g ⇐ e ⇐ b ⇐ a to the sink,
marked on red in the figure. Node g wakes up only for 1 round. e wakes
up for 2 rounds, b for 4 rounds and a for 6 rounds.

• Node {f} wakes up at round 2 and sends its message by passing the
path f ⇐ b ⇐ a to the sink, marked on yellow in the figure. f wakes
up for only 1 round.

• Node {c} wakes up at round 4 and it sends its message directly to the
sink, marked on green in the figure. c wakes up for only 1 round.

• Node {d} wakes up at round 5 and sends its message directly to the
sink, marked on purple in the figure. d wakes up for only 1 round.

Figure 6: Visualization of Algorithm 4

Figure 7 shows in details the actions for each node in each time slot.
S, L, T and S&L represent the states Sleep, Listen, Send and S&L respec-
tively. The states L and T in red mean that a transmission happens. L or
T in green means that the node is in state Listen or Send, but there is no
incoming message to be received or it has no message to send.

In this scenario, the sink has six messages to receive. From the figure,
during each round from round 0 to round 5, the sink node a has always

20

one e$ective Listen, that means at the end of round 5, the sink has already
received six messages. As each message comes initially from a di$erent node,
the convergecast therefore succeeds in six rounds.

Figure 7: Detailed actions for each node while executing Algorithm 4

5.3. Labels Allocation for Full-duplex mode

We explain now how do we compute the labels for each node in the graph.
The a$ectation of y and h are similar to the one in the half-duplex mode.
Algorithm 5 shows how we compute the value of h for each node according
to their distance to rt (stored in a vector D). The first part of the label, y,
of each node is computed by Algorithm 3 without modification.

Algorithm 5 h allocation for Full-duplex mode
%Input: Connected graph G(V,E) and rt ↗ V (the sink node).
%Ouptut: Vector H (H[v] corresponds to the second label < → : hv : → >

%of node v).
Compute D[1...n] %↘v ↗ V,D[v] is the distance from v to rt

for Each node v ↗ V do

Node v gets its hv label: H[v] ⇒ D[v] mod 4

The third part of the label, z, of each node is computed by a simple
recursive algorithm which needs a pre-computed result from the modified

21

version of Algorithm 3. We therefore propose Algorithm 6 to compute y

(using a similar idea as in Algorithm 3) and the result needed by z: the
table Zp contains, for each node v, the set of its direct dominating children
DDC(v).

Algorithm 6 y and table Zp allocation algorithm for Full-duplex

%Input: Connected graph G(V,E) and rt ↗ V (the sink node).
%Ouptut: Vectors Y (Y [v] corresponds to the first label < yv : → : → >

% of node v).
Compute D[1...n] %↘v ↗ V,D[v] is the distance from v to rt

↘v ↗ V, Zp(v) ⇒ ⇑ %Zp(v) will store v’s DDC nodes
Vt ⇒ ⇑, Vs ⇒ ⇑
CPOP ⇒ 0, CLPOP ⇒ 0
S ⇒ ⇑ %S is a LIFO stack
PUSH rt into S.
x ⇒ rt

Y [rt] ⇒ 0
Vt ⇒ {rt}
while S ⇓= ⇑ do

POP one node v from S.
Y [v] ⇒ CLPOP →D[x]
CPOP ⇒ CPOP + 1
Vs ⇒ Vs ⇔ {v}
if N(v) \ Vt ⇓= ⇑ then

PUSH each node from C(v) \ Vt into S

Zp[v] ⇒ each node from C(v) \ Vt

Vt ⇒ Vt ⇔ C(v)
else %Nothing to PUSH, we note as a PUSH-NULL

Zp[v] ⇒ NULL

CLPOP ⇒ CPOP

x ⇒ q, where q is the next node in S is going to be popped.
Vs ⇒ ⇑

From the sets in Zp, we can now compute the labels z of each node. As
zv corresponds to the number of rounds of activity of a node v, we want this
value to correspond to the number of messages that v needs to transmit:
its own and the ones of its indirect dominating children (|IDC(n) + 1|, see
Definition 7). We propose Algorithm 7 to compute, in Z, the z label of each
node. It computes the values recursively using the fact that we are working

22

on a tree.

Algorithm 7 z allocation algorithm for Full-duplex
%Input: Connected graph G(V,E) and rt ↗ V (the sink node).
%Ouptut: Vectors Z (Z[v] corresponds to the last label < → : → : zv >

% of node v).
Compute Zp[V] with Algorithm 6.
for Each v ↗ V do

Z[v]= recu(v) - 1.

recu(v){
if Zp[v] = NULL then

return 1
else

return 1 +
∑

recu(k), ↘k ↗ Zp[v]

}

5.4. Correctness of Convergecast Algorithm for Full-duplex

We keep the same notations from Definition 1 to 7 for the full-duplex
case. We then propose Remark 4:

Remark 4. By construction of Algorithm 4 and the fact that the time slot
of a node is given according to its distance to the source node modulo 2, we
have the following direct observations:

• State of a node n will, depending on its h value, change following the
cycle Send ⇐ Listen ⇐ Send ⇐ Listen . . . or the cycle Sleep ⇐
S&L ⇐ Sleep ⇐ S&L. . .

• If we follow a descending path of active nodes, their states will follow the
second cycle Listen ⇐ S&L ⇐ Send ⇐ Sleep ⇐ Listen ⇐ S&L ⇐
Send ⇐ Sleep. . .

• Nodes in the same level L(n) of n are in the same state of n; nodes
in level L(n) → 1 are in the state before according to the second cycle;
nodes in level L(n) + 1 are in the state after according to the second
cycle.

23

As in the Half-duplex mode, we keep active only one path of nodes to the
sink during each round. Moreover, we are aiming to have more nodes active
for message transmission in the same path at the same round in Full-duplex
mode.

Note that the additional labeling part z is needed to identify the round
where a node needs to go back to sleep. Lemma 9 shows how to comput z
and Lemma 10 and Remark 5 how crucial this label is for our algorithm.

In the following, we show how label z guarantees the correctness of Lemma
3 and the correctness of Algorithm 4.

Lemma 9. Regarding Algorithms 6 and 7, the z value of node v satisfies
z(v) = |IDC(v)|+ 1.

Proof. In Algorithm 6, for each v, we put in Zp[v] the set of its direct dom-
inating children DDC(v) (see Definition 6). By induction of the induced
subtree, we can prove that the function recu(v) always finishes, and com-
putes exactly |IDC(v)|+ 1.

• In the case of a leaf, Zp[leaf] = ⇑, and recu(leaf) = 1 = |IDC(leaf)|+
1.

• Let’s assume that recu finishes and provides the right answer for all
the children of a node v. Then, it finishes for the node v. Moreover,
we have:
recu(v) = 1 +

∑
u↑C(v)

recu(u)

= 1 +
∑

u↑C(v)

(|IDC(v)|+ 1)

= 1 + |C(v)|+
∑

u↑C(v)

|IDC(v)|

By definition of the indirect children, we have IDC(v) = C(v) ⇔∑
u↑C(v)

IDC(u), with this union being disjoint (as we are on a tree).

Hence, |IDC(v)| = |C(v)| +
∑

u↑C(v)

IDC(u). This permits to conclude

the induction.

Regarding the Remark 4 and Lemma 9, we can propose Lemma 10 which
is similar to the Lemma 3 in the Half-duplex case.

24

Lemma 10. Messages sent from a node v can only be received by the parent
nodes of v.

Proof. According to Remark 4, when a node v is in state Send, nodes in C(v)
are in state Sleep; the parent nodes of v are in state S&L. Other neighbors
of v who are in the same level of v are in state Send. In this case, the message
sent from v can therefore only be received by its parents.

When the node v is in state S&L, nodes in C(v) are in state Send; the
parent nodes of v are in state Listen. Other neighbors of v who are in the
same level of v are in state S&L. The message sent by v, for now, might
be received by its parents and also some of its neighbors in the same level.
According to Lemma 7, two nodes in the same level v and u will be pushed
at the same time into the LIFO in Algorithm 3 (or 6). Let’s suppose that v
is pushed first. We know that u and v will wake up in di$erent rounds: node
u will wake up at least |IDC(v)|+1 rounds after v (cf. Lemma 7). As v has
z(v) = |IDC(v)|+ 1, it will wake up at round y(v) and go to sleep at round
y(v)+|IDC(v)|. However u will wake up at round y(u) ≃ y(v)+|IDC(v)|+1.
That means that when v is transmitting, u will still be asleep. Moreover,
when u wakes up, v will have already finished its transmissions and will be
back in a sleeping state. Therefore when v is in state S&L, the message sent
by v can only be received by its parents.

Remark 5. This Lemma justifies the need to have the labels z for our algo-
rithm: without the knowledge of when a node needs to go back to sleep, it will
not know when its children will have finished their transmissions and when
received transmissions are actually coming from their siblings. Some conflict
might then occur when two connected siblings are both in state S&L.

Note that we do not change the rounds in which each node transmits its
information and the information from its children, compared to the Half-
Duplex mode. Hence, Lemma 8 also applies here with the same arguments.

Theorem 3. Algorithm 4 finishes the convergecast in round n→1 (or 2n→2
time slots) without collision. The size of label needs 2 log(n→ 1) + 1 bits.

Proof. The proof works like before, as we still have the fact here that in
each round where a node is active, it transmits once, and its parent p is
listening and is active when it happens. We needs hence n → 1 rounds for
finishing convergecast. As labels consists h and y for representing the round,
plus 1 bits of z for 2 time slots of each round, we get the size of label at
2 log(n→ 1) + 1 bits.

25

6. Conclusions

Our work is the first study of deterministic convergecast problem with
labeling schemes in wireless arbitrary networks subject to collisions. We
consider two communication modes, depending on whether nodes can send
and listen simultaneously or not. For both models of communication we were
interested in time and labels lower and upper bounds. We proved that in
arbitrary networks, !(n) rounds are necessary to deterministically solve con-
vergecast and at least log(”) bits are necessary. Furthermore, we proposed a
deterministic convergecast algorithm in half-duplex model that needs 3n→ 3
rounds and uses labels of size log(n → 1) + 1 bits. In the case of full-duplex
communication mode we proposed a deterministic convergecast algorithm
that needs 2n → 2 rounds and labels of size 2 log(n → 1) + 2 bits. Our al-
gorithm limits the messages to be the input each node needs to send to the
sink. Moreover, we do not use any message concatenation. In this setting,
our algorithm is optimal in the number of messages transmitted during the
convergecast.

Our work opens several interesting research directions. First, we leave as
an open question if there exists an algorithm that is optimal in the number
of rounds that uses labels of size O(log”), which would match the lower
bound. We believe that by increasing the number of transmitted messages,
it is possible, by applying for example methods from [20]. Second, to improve
by n the number of time slots in the full-duplex mode, we are doubling the
size of the labels, as our algorithm needs that nodes know for how long they
have to be awake. Is this increase in label sizes necessary? A possible ex-
tension of our study is to investigate labeling-based convergecast algorithms
for Gabriel-graphs: if a node transmits, its neighborhood at some distance
cannot listen from anyone else without collision. We can also see how getting
several communication channels (leading to less collisions) influences the con-
vergecast question. Furthermore, we plan to investigate in the same settings
the data aggregation problem. Another interesting open research direction
is to investigate the power of labeling schemes in dynamic settings such as
time varying graphs models [22].

References

[1] H. Choi, J. Wang, E. A. Hughes, Scheduling for information gathering
on sensor network, Wireless Networks 15 (2009) 127–140.

26

[2] H.-W. Tsai, T.-S. Chen, Minimal time and conflict-free schedule for
convergecast in wireless sensor networks, in: 2008 IEEE International
Conference on Communications, IEEE, 2008, pp. 2808–2812.

[3] S. Gandham, Y. Zhang, Q. Huang, Distributed minimal time con-
vergecast scheduling in wireless sensor networks, in: 26th IEEE In-
ternational Conference on Distributed Computing Systems (ICDCS’06),
IEEE, 2006, pp. 50–50.

[4] S. Gandham, Y. Zhang, Q. Huang, Distributed time-optimal scheduling
for convergecast in wireless sensor networks, Computer Networks 52
(2008) 610–629.

[5] O. D. Incel, A. Ghosh, B. Krishnamachari, K. Chintalapudi, Fast data
collection in tree-based wireless sensor networks, IEEE Transactions on
Mobile computing 11 (2011) 86–99.

[6] I. Rhee, A. Warrier, M. Aia, J. Min, M. L. Sichitiu, Z-mac: a hybrid mac
for wireless sensor networks, IEEE/ACM Transactions On Networking
16 (2008) 511–524.

[7] W.-Z. Song, F. Yuan, R. LaHusen, Time-optimum packet scheduling
for many-to-one routing in wireless sensor networks, in: 2006 IEEE
International Conference on Mobile Ad Hoc and Sensor Systems, IEEE,
2006, pp. 81–90.

[8] T. D. Nguyen, V. Zalyubovskiy, H. Choo, E#cient time latency of data
aggregation based on neighboring dominators in wsns, in: 2011 IEEE
Global Telecommunications Conference - GLOBECOM 2011, 2011, pp.
1–6.

[9] Y. Zhang, S. Gandham, Q. Huang, Distributed minimal time converge-
cast scheduling for small or sparse data sources, in: 28th IEEE Inter-
national Real-Time Systems Symposium (RTSS 2007), IEEE, 2007, pp.
301–310.

[10] S. Abiteboul, H. Kaplan, T. Milo, Compact labeling schemes for ances-
tor queries, in: Proceedings of the twelfth annual ACM-SIAM sympo-
sium on Discrete algorithms, Society for Industrial and Applied Mathe-
matics, 2001, pp. 547–556.

27

[11] C. Gavoille, D. Peleg, S. Pérennes, R. Raz, Distance labeling in graphs,
Journal of Algorithms 53 (2004) 85–112.

[12] B. Gorain, A. Pelc, Finding the size of a radio network with short labels,
in: Proceedings of the 19th International Conference on Distributed
Computing and Networking, ACM, 2018, p. 10.

[13] P. Fraigniaud, A. Korman, E. Lebhar, Local mst computation with
short advice, Theory of Computing Systems 47 (2010) 920–933.

[14] C. Glacet, A. Miller, A. Pelc, Time vs. information tradeo$s for leader
election in anonymous trees, ACM Transactions on Algorithms (TALG)
13 (2017) 31.

[15] B. Gorain, A. Pelc, Short labeling schemes for topology recognition
in wireless tree networks, in: International Colloquium on Structural
Information and Communication Complexity, Springer, 2017, pp. 37–52.

[16] R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, D. Peleg, Label-
guided graph exploration by a finite automaton, ACM Transactions on
Algorithms (TALG) 4 (2008) 42.

[17] P. Fraigniaud, D. Ilcinkas, A. Pelc, Tree exploration with advice, Infor-
mation and Computation 206 (2008) 1276–1287.

[18] F. Ellen, B. Gorain, A. Miller, A. Pelc, Constant-length labeling schemes
for deterministic radio broadcast, ACM Transactions on Parallel Com-
puting 8 (2021) 1–17.

[19] F. Ellen, S. Gilbert, Constant-length labelling schemes for faster deter-
ministic radio broadcast, in: Proceedings of the 32nd ACM Symposium
on Parallelism in Algorithms and Architectures, 2020, pp. 213–222.

[20] A. Gańczorz, T. Jurdziński, M. Lewko, A. Pelc, Deterministic size dis-
covery and topology recognition in radio networks with short labels, in:
Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms
and Architectures, 2021, pp. 432–434.

[21] H. Shenggang, A. G. Guo, Z. Shiqing, Co-frequency and co-time full
duplex terminal for receiving and transmitting signal using common
antenna and communication method thereof, 2017. US Patent App.
15/327,034.

28

[22] A. Casteigts, P. Flocchini, W. Quattrociocchi, N. Santoro, Time-varying
graphs and dynamic networks, Int. J. Parallel Emergent Distributed
Syst. 27 (2012) 387–408.

29

