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Abstract—The MAC layer for multihop wireless networks has drawn
considerable research attention in the last few years. We focus here on
the wireless multihop networks with a convergecast traffic pattern: the
whole traffic is destined to a sink/gateway. We propose first to select a
k-tree core, i.e. a sub-tree of the shortest paths to the sink containing
exactly k-leaves. In particular, these k-tree core nodes are chosen
among the nodes that must forward most traffic. We design C-MAC, an
optimized MAC layer for this kind of topology. C-MAC is derived from the
CSMA-CA like approaches and consists in giving a larger priority to the
k-tree core nodes. Moreover, a proper coordination among the k-tree
core nodes permits to limit collisions among them. Simulation results
show that organizing the transmissions in C-MAC permits to achieve a
much larger throughput than the original IEEE 802.11-like protocol it is
based on. This simple solution can be adapted to most CSMA-CA like
protocols, and is particularly relevant for WSN or WMN in which traffic is
mostly destined to the sink/gateway.

MAC layer; convergecast traffic; k-tree core; CSMA-CA;
route-aware MAC

1 INTRODUCTION

Multihop wireless networks are currently very popular and
have been receiving a large attention of the research com-
munity. More specifically, many of these networks present
a convergecast traffic pattern: all the packets are either
destined or sent by the same entity.

Wireless Mesh Networks permit to offer a wireless con-
nectivity while connecting only a subset of the Access Points
to the wired Internet. Often, all the traffic passes through
these gateways. Besides, Wireless Sensor Networks permit
to instrument distributively an environment for house au-
tomation, smart buildings, sustainable development, etc.
These networks are also often convergecast by nature: mea-
surements are collected distributively by the sink.

The IEEE 802.11 technology has gained wide popularity
when deployed in the infrastructure mode with an Ac-
cess Point providing untethered connectivity to nomadic
devices. The CSMA-CA mechanism has largely proven its
efficiency to distribute the bandwidth among the stations in
this kind of networks. With such a probabilistic approach,
neither the number of packets nor the number of stations

has to be fixed a priori. Moreover, the exponential backoff
mechanisms allows the network to cope with a fluctuating
number of contenders: the transmission probability will be
self-adjusted. Indeed, if a collision occurs, the contention
window is automatically doubled so that the traffic pressure
is reduced.

However, there is a lot of evidence that the 802.11
MAC layer is not suitable for multihop wireless networks:
the performance of packet forwarding over multiple hops
quickly degrades with the number of hops due to channel
contention and spatial problems such as hidden, exposed,
masked, and blocked nodes [1], [2], [3]. In particular, the
chain topology is very common in multihop: packets have
to be forwarded toward the destination. However, collisions
among the different forwarders can occur, degrading the
end-to-end performances. MAC layers that adopt a similar
approach in WSN (e.g. IEEE 802.15.4) suffer from the same
drawbacks when the load approaches the network capacity.
Besides, the nodes close to the gateway/sink have often
more packets to forward, and a bottleneck quickly appears
around it [4].

On the opposite side, TDMA scheme permits a fine
scheduling and limits bandwidth wastage. However, it re-
quires a very tight synchronization and does not cope with
variations: TDMA slots are assigned in advance, even when
the traffic load changes frequently. Besides, to compute an
acceptable scheduling while enabling radio reuse requires a
complete knowledge of the radio environment: the sched-
uler must know the sets of links that interfere with each
other. Consequently, one can adopt e.g. a centralized sched-
uler with SINR constraints [5] or a distributed slot assign-
ment scheme with an a priori knowledge of interferences [6].
However, to measure the level of interferences among radio
links is a complicated task in multihop networks, which
requires to measure atomically the interferences [7].

We propose here to adopt an innovative solution, mixing
the assets of both approaches. In C-MAC (Convergecast-
MAC), most nodes execute the classical CSMA-CA algo-
rithm to transmit their packets. Oppositely, we organize
the transmissions of the most-constrained nodes. Instead of

mailto:theoleyre@unistra.fr


adopting a TDMA scheme which would require a global
synchronization, we propose distributed MAC reservations,
gateway-oriented: control frames that reserve the medium
propagate from the gateway to the borders of the network,
through the most constrained nodes.

This approach has the following promising assets:

• C-MAC extends the NAV of IEEE 802.11 by just in-
troducing a new type of control frame. It is inter-
operable with the classical IEEE 802.11;

• it operates without any synchronization requirement;
• we jointly optimize routing and MAC by construct-

ing a structure to collect the traffic: a k-tree core;
• we present a multichannel variant to multiplex trans-

missions across different channels. This feature limits
greatly the number of collisions.

2 PRELIMINARIES

We focus in this article on multihop wireless networks
with a convergecast traffic pattern: one single node, i.e. the
gateway, is either the source or the destination of each packet
transmission. If the network comprises several gateways,
we will consider individually each gateway and all its
associated nodes, i.e. we will neglect the impact of nodes
with frequent gateway changes. Moreover, we will focus
here on the MAC layer: the optimal gateway selection, the
encapsulation scheme, etc. are out of the scope of this article.

2.1 IEEE 802.11 Behavior
IEEE 802.11 is widely deployed to provide a wireless access
in hotspots. The CSMA-CA technique it implements is effi-
cient to share the bandwidth among an unknown number of
stations. Thus, we will shortly describe the basic functions
of CSMA-CA protocol, and more particularly of IEEE 802.11
[8], on which we based the protocol presented here.

In IEEE 802.11, each transmitter chooses a random back-
off comprised between 0 and the contention window value
(CW)1. If the medium is idle for more than DIFS time, it
starts to decrement the backoff. As soon as the medium
is detected busy, the backoff is paused and it will be re-
decremented when the medium becomes idle (still after
the DIFS time). When the backoff is null, the node starts
to transmit its data frame. The receiver decodes the data
frame, waits for SIFS and sends an acknowledgement. If the
source receives an ack, it considers the frame was correctly
received. Else, it estimates a collision occurred: it doubles
the contention window so that the backoff will probably be
larger for the next retransmission. This exponential back-
off helps to cope with a variable number of transmitters.
Finally, when a node has correctly transmitted a frame, it
reinitializes the contention window to the minimum value.
This approach helps to converge to an accurate Contention
Window value.

IEEE 802.11 is robust to collisions and performs well
in cellular networks. [9] studied the optimal contention
window value to almost avoid all collisions. However,
IEEE 802.11 performs quite poorly in multihop [1]. Thus, we
aim here at optimizing the IEEE 802.11 approach in networks
with a convergecast traffic pattern.

1. More precisely, backoff ∈ [0..2CW − 1]
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Fig. 1. Tree structure of C-MAC (here a 3-tree core)

3 C-MAC GENERAL DESCRIPTION

We are convinced that jointly optimizing the routing and
MAC layers seems a promising way for convergecast wire-
less networks. Since all the traffic is destined or generated by
the gateway, we can self-organize the transmissions to avoid
the classical bottleneck around the gateway.

C-MAC uses a reservation-oriented mechanism: a node
becomes privileged during a small duration. We will dis-
tribute this privilege mode only to most constrained nodes
so that no pair of nodes privileged simultaneously are
interfering with each other.

We focus on convergecast networks, in which the routes
form a tree rooted at the gateway. Thus, C-MAC uses this
tree to distribute the privilege modes: it sends a token, which
is forwarded hop by hop toward the leaves. When a node
receives the token, it becomes privileged during a short
time.

We consider now the example illustrated in figure 1.
Each node chooses as parent the next hop toward the gate-
way, which forms a spanning tree, rooted at the gateway.
Besides, we selected in this example 3 different branches,
starting from the gateway. Each branch is linear: a node has
only one child, except the gateway. Only the nodes of these
branches can become privileged after receiving the token.
When it has finished to transmit its data frames, the node
will then forward the token to its child, toward the leaves.

If the gateway sufficiently inter-spaces the tokens it gen-
erates, we can avoid interferences among privileged nodes.
Indeed, the previous token will have been forwarded suffi-
ciently far to avoid collisions.

4 TREE CONSTRUCTION

C-MAC aims at enabling the most constrained nodes to gain
a privileged access to the radio medium while limiting
interferences. Thus, a token can be forwarded only to one
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node, i.e. along one single branch. Moreover, only the nodes
part of the tree will be able to gain a special access to the
medium. Consequently, we would like to obtain a tree with
the following characteristics:

• to limit interferences among and inside the branches,
they should be as linear as possible (i.e. we should
avoid zigzag);

• we should bound the number of branches in order to
limit the time a branch has to wait before receiving
the next token;

• we want to minimize the distance of normal nodes to
the tree, i.e. the packets should be forwarded mostly
by the nodes that can become privileged.

The k-tree core structure was originally introduced in
[10] and is particularly convenient for our purpose. Intu-
itively, the k-tree core proposes to extract from a tree the k
leaves that minimize the average distance from a node to
the closest k-tree node.

More formally, l(T ) denotes the number of leaves in the
tree T and d(A,B) denotes the distance in hops between
nodes A and B. We also define the distance from one node
N to a set S as the distance from N to the closest node in S :

d(N,S) = minM∈S (d(N,M)) (1)

If KT is a set of k-tree core nodes associated to the tree
T , the following definition holds:

KT ⊂ T (2)
l(KT ) = k (3)

Objective : min
∑
N∈T

d(N,KT ) (4)

[10] proposes a centralized algorithm to select a k-tree
core from any tree topology. The nodes report to the root
of the tree the most convenient leaves. Intuitively, we must
select the best k branches to form the k-tree core. To achieve
this objective, each node computes a metric representing
the suitability to select its branch (from it to the best leaf).
This metric is computed from the leaves to the root. When
the root obtained all the metrics from its children, the
best branch can be selected. Eventually, this process can
be repeated k times although some optimizations exist to
reduce the convergence delay.

We will now explain how we construct such a k-tree core
for C-MAC.

4.1 Approach

In existing approaches, the k-tree core is selected when the
graph is already a tree. We adopt consequently the following
heuristic:

1) We construct first the tree of shortest paths towards
the gateway. The k-tree core aims at minimizing the
distance to the tree. Thus, a node chooses preferen-
tially as parent the node with the largest subtree size
if several candidates are available. Intuitively, if this
node is chosen as a k-tree node, it will save more
hops for normal nodes;

2) We select then the k leaves that minimize the aver-
age distance to the k-tree core. Besides, we force the
root to be part of the final k-tree core.

We will now detail the construction process.

4.2 Tree Construction

Algorithm 1: Self-stabilizing Tree construction

1 /* My parent */
2 myParent←∅ ;
3 /* The subtree size of my parent */
4 myParentStSize←0 ;
5 /* My sequence number */
6 mySeqnum←0 ;
7 /* My distance to the root/gateway */
8 myDist←MAX;

9 while hello received do
10 /* Extract info from hello */
11 h id, h stSize, h seqnum, h dist

←extractInfo(hello);

12 /* To detect tree disconnections */
13 if myParent = h id then
14 mySeqnum←h seqnum;

15 /* Tree is disconnected: seqnum did
not change for ∆seqnumseconds */

16 if noChange(mySeqnum, ∆seqnum) then
17 myParent←∅;
18 myDist←MAX;

19 /* To keep shortest routes to the
gateway */

20 if (h dist + 1 < myDist) or
21 (h dist ≤ myDist and h stSize > myParentStSize)

then
22 myParent←h id;
23 myDist←h dist + 1;
24 myParentStSize←h stSize;

We first construct a self-stabilizing tree as described in al-
gorithm 1. All control information is piggybacked in hello
packets. In particular, the gateway sends its hellos with
a strictly increasing sequence number. A node propagates
the largest sequence number received from its parent. In
this way, we are able to detect tree disconnections when
the sequence number does not increase for a sufficiently
long time (∆seqnum seconds). In this case, a node just re-
initializes its parent and its distance to the gateway.

Besides, a node changes its parent when a neighbor
announces a smaller distance to the gateway. The node just
switches its parent and updates both its sequence number
and distance to the gateway.

Several neighbors may announce the same distance to
the gateway. In this case, a node chooses as parent the node
which announces the largest subtree size. This will optimize
later the k-tree core.
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Each node updates its subtree-size when it receives an
hello from one of its children: a node simply sums up the
cardinalities of the subtrees of its children.

The reader can note that the tree will be correctly main-
tained, even if one radio link or one node disappears: each
node will monitor the tree connectivity and it will choose
another parent if a starvation in the sequence number is
observed.

The worst case corresponds to a linear topology: during
one hello packet period, only one node is added to the
tree. We denote by D the network diameter, and by n the
number of nodes. The time complexity of algorithm 1 is
O(D) = O(n).

4.3 K-tree Core Selection

We elect the k-tree core as highlighted in algorithm 2.
Similarly to [10], we use the concept of savings. The k-tree-
core must be chosen to minimize the average distance to
the closest node of the core. saving(leaf, root) represents
the number of hops saved if the path (leaf, root) is a core
compared to the average distance to the root. A larger
saving means that we should choose the path (leaf, root):
it will minimize the number of transmissions exterior to the
core.

Let’s consider the example illustrated in figure 2 to
explain intuitively how to compute savings. When A has to
compute its saving value, it extracts the savings of its chil-
dren B and C . Let’s imagine that B has the largest saving.
A will update its own saving to the sum of saving(B, root)
and the size of the subtree rooted at A. Intuitively, if A
is chosen in the core, all its descendants will save one
transmission through the link (A,D).

The reader can consequently remark that this saving
value as introduced in [10] can be computed distributively.

In parallel, each node reports in its hellos the k best
savings to select the best k leaves. More precisely, the
savings are computed as follows (algo 2):

1) A node N orders all the savings announced by its
children;

2) The largest saving value is updated taking into
account the fact that N will become part of the k-
tree core;

Algorithm 2: k-Tree Core savings computation

1 /* The list of my savings */
2 mySavingList←∅ ;

3 while hello is received do

4 /* Extract info from hello */
5 childId, savingList←extractInfo(hello);

6 /* Replace the savings of this child
in my neighborhood table */

7 if IsChild(childId) then
8 flushSavings(childId);
9 for saving ∈ savingList do

10 mySavingList←mySavingList ∪ {childId,
saving };

11 /* Extract the savings to export:
order them, and update the best
one with what I would save by
myself */

12 orderBySavings(mySavingList);
13 savingExport←mySavingList[0] + mySubTreeSize;
14 for i ∈ [0..k − 1] do
15 savingExport←savingExport ∪ mySavingList

[i];

3) N piggybacks in its hellos this new value accom-
panied with the k−1 other largest values, forwarded
as is.

The savings are correctly computed, according to
lemma 3.3 [11].

The root (i.e. the gateway) has to be part of the k-tree core
since it will forward all the traffic in up/download. Thus, it
initiates the creation of k branches by selecting the k largest
savings values among its children. The root associates to
each branch a branch id and the associated neighbor
id. This information is piggybacked in hellos: each node
verifies if it has been selected by its parent. If this is the
case, it extracts the corresponding branch ids. Then, it
chooses the ith largest saving value for the ith branch for
which it has been selected. The corresponding children are
announced and they prolongate the branches in the same
way.

Savings are reported from the leaves to the root while
elected k-tree nodes are reported in the inverse direction.
In the worst case, the tree depth (denoted T ) is equal to the
number of nodes (n). Thus, the time complexity for comput-
ing savings and electing k-tree nodes is in O(T ) = O(n).

Figure 3 illustrates a k-tree core with 3 branches. Thus,
each node reports the 3 largest savings. The leaves (e.g.
nodes B or F ) report a unique saving of 1 (themselves). On
the contrary, G has several children. It reports the largest
saving (from H) incremented y its subtree size (7 + 6) and
the 2 other savings from K and M without modification.
Finally, the root A is able to select the 3 largest savings to
create the branches. In particular, node G is chosen twice
since it announces 2 of the largest savings. The k-tree core
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is then propagated, each node selecting its children. In
particular, G has been selected for 2 different branches and
has to select the two largest savings (i.e. corresponding to
nodes H and K).

4.4 Properties
We can remark that the algorithm is deterministic but relies
on unreliable transmissions. For instance, a node may have
two neighbors, closer to the root and with the same subtree
cardinality. In that case, unreliability for hello transmis-
sions will conduct the node to choose pseudo-randomly one
of these nodes as parent.

5 C-MAC MECHANISMS

We propose here to use the tree constructed previously to
regulate the transmissions in the network: we focus on the
k-tree core nodes since they will carry, by construction, most
of the traffic. In particular, we give them a privileged access
to the medium. A reservation mechanism, propagated by
the gateway, limits interferences among these constrained
nodes.

5.1 Normal Nodes
Any node which is not part of the k-tree core executes the
normal CSMA-CA algorithms, as in IEEE 802.11. Thus, it has
to wait a DIFS before decrementing its backoff. It may either
use a RTS-CTS to limit the hidden terminal problem if the
frames are long or directly transmit them.

We adopt also the exponential backoff algorithm of
IEEE 802.11 to cope with different densities. The contention
window is doubled upon a collision to reduce the collision’s
probability.

5.2 Medium Access for Privileged Nodes
The most-constrained nodes become iteratively privileged:
they have the largest priority to transmit their frames. Since
we control the number of nodes privileged simultaneously,
we can grant an immediate medium access without con-
tention to these nodes.

To be compatible with IEEE 802.11, we re-use the
PIFS value, dedicated originally to the Point-Coordination-
Function of IEEE 802.11 when the Access Point polls the
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stations. Thus, a privileged nodes has only to wait for PIFS
after it detects the medium is free. Since all the other nodes
have to wait for DIFS, the privileged node will always win
for the contention. Besides, the privileged node will not
break a transmission since PIFS is superior to SIFS: it will
wait the current exchange among another pair of nodes is
finished.

Let’s focus on the example described in figure 4. We
assume that two nodes S1 and S2 are backlogged (i.e.
they have a large buffer of data to transmit). When S1

becomes privileged, it just has to wait PIFS before gaining
the medium access. It will eventually send several data
frames before finishing to be privileged, waiting every time
PIFS. When S1 is not privileged anymore, it is authorized to
transmit any data frame. Thus, S2 will be able to sense an
idle medium during DIFS and its backoff: it will then trans-
mit its data frame. Such a mechanism is efficient because
we choose the most-constrained nodes to be privileged.
Other nodes have less traffic to forward and we do not need
to regulate their transmissions: the IEEE 802.11 mechanism
works well.

The reader can note that C-MAC can profitably ac-
knowledge data in bursts when a node is privileged. D1

would send an ack only after receiving the second data
frame. However, we did not implement this option for
the performance evaluation to have a fair comparison with
IEEE 802.11.

5.3 Privilege Forwarding

C-MAC regulates the medium access by focusing only on
most-constrained nodes. These constrained nodes can be-
come privileged to have an exclusive access to the medium.
However, we must limit interferences among nodes becom-
ing privileged simultaneously. Besides, we argue a TDMA-
like approach presents too strong limitations compared to
CSMA-CA approaches. Firstly, it requires a fine grained
synchronization and a guard time has to be reserved to
avoid collisions among the different slots. Besides, the
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scheduling should be derived from the contention graph,
which is usually not trivial to compute. A TDMA-like ap-
proach presents also a low flexibility: the scheduling has to
be entirely recomputed when the traffic or the conditions
vary. Finally, we aim at keeping the compatibility with the
classical IEEE 802.11 approach.

Thus, we will use the convergecast nature of the net-
work: the gateway is the root and can distribute the band-
width to its neighbors, and more specifically to its neighbor-
ing branches. Thus, we chose to use a new control frame we
call Clear-To-Receive (CTR). This CTR acts as a token
to become privileged and should reserve the medium for
the newly privileged node. Consequently, the CTR acts like
the Clear To Send of IEEE 802.11: destination has only
to wait for PIFS before transmitting its data frame. Using
PIFS instead of SIFS permits to limit collisions with on-
going transmissions while having a larger priority than
other nodes (using DIFS). When the gateway sends a CTR, it
will gain access to the medium and will not release it when
its neighbor become privileged: the medium is not idle for
a duration equal or longer than DIFS.

Besides, this CTR acts as token and is forwarded along
the branches of the k-tree core. A node has to forward
the CTR when it remained privileged for a duration longer
than Tslot. Thus, each CTR constitutes a kind of wave. Each
wave propagates along a branch and dies when it reaches
the leaves of the k-tree core. If the gateway inter-spaces
sufficiently the CTR it generates for each branch, it can avoid
the interferences. Thus, a gateway generates a new CTR for
another branch when the other one is estimated CTRhop

apart (i.e. it has to wait CTRhop ∗ Tslot).
Let’s focus on the example in figure 5. We reported the

subset of nodes in fig. 1 that interests us in this example. We
assume that the gateway generates a new CTR for a different
branch every 2 slots. In this case, the CTR is forwarded along
the first branch, and the sink generates a new CTR after C
ends its privileged slot. We did not represent the ack for a
sake of clarity.

Two k-tree core nodes can be privileged simultaneously
if they are sufficiently far from each other (more than 2
hops). For instance, D and G can transmit their data frames
to their parent without collision.

We represented possible concurrent transmissions from
non k-tree nodes on the lower part of the figure. A priv-
ileged node maintains the reservations made by the CTR:
all the frames are interspaced by either PIFS or SIFS. Thus,
a normal transmission can take place if no other privileged
transmission already reserved the medium. For instance, the
node 5 can send a data frame to its parent 4 during the
privileged slot of B without collision: no signal is sensed
since B is assumed to be out of interference range.

Transmissions are unreliable although a packet loss is
very prejudicial for CTR: the whole privileged slot is condi-
tioned by the correct reception of this packet. Thus, a CTR
must be acknowledged by:

• a data packet from the destination: the next hop
has data packets and starts its transmission because
it has received the CTR;

• a CTR: if the next hop has no data to transmit, it for-
wards without delay the CTR to its own child. Thus,
this implicitly acknowledges the previous transmis-
sion.

Collisions may occur between different k-tree nodes if
CTRhops is too small or if two interfering k-tree nodes are
privileged simultaneously. These repeated collisions would
also create hello packet losses, triggering tree and k-tree
core reconfigurations. Meanwhile, a k-tree node implements
a classical retransmission strategy: it tries to retransmit its
packets long retry times, as in IEEE 802.11. During the
first short retry retransmissions, the k-tree node trans-
mits directly after PIFS, and for the last retransmissions,
it chooses a random backoff after having waited PIFS: we
would solve contention among k-tree core nodes. If this is
not sufficient, the node drops the packet (either a CTR or a
data packet) and consider that the privileged slot is lost.
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Thus, one of the two competing k-tree nodes will win and
keep the privilege token/slot. We limit unfairness because
the retransmission mechanism is based on a pseudo-random
strategy.

5.4 CTR self-adaptation
The reader can note that the gateway can regulate the band-
width assigned to each branch. Indeed, it can fix a different
Tslot value for each branch, reserving de facto a different
bandwidth for each of them. However, we let an adaptive
algorithm fixing dynamically these values to a future work.

In the same way, the gateway could be able to test
different values for the CTRhops parameter. After having
measured the achievable throughput, the gateway could be
able to adjust dynamically the value. In particular, when the
CTRhops is too small, many collisions would occur between
k-tree nodes during their privileged time. These collisions
will negatively impact the throughput, and CTRhops would
be re-increased. The AIAD (Additive-Increase Additive-
Decrease) method could be particularly interesting to find
dynamically the optimal value.

5.5 Upload/Download Transmissions
In a convergecast network, the traffic can follow two di-
rections: in upload (from the nodes to the root) and in
download (from the root to the nodes). C-MAC can deal with
both cases.

Obviously, non-k tree nodes follow the classical
IEEE 802.11 approach. Thus, they are able to transmit to
their parent and children in a similar manner, without any
specificity.

For k-tree nodes, C-MAC operates in the following man-
ner:
upload: this case is illustrated in fig. 5. Just after having

received the CTR from its parent, a node transmits all
its buffered packets to its parent;

download: this case is illustrated in fig. 6. When node B
receives a CTR, it can transmit its packets to C . If
necessary, B can use an RTS/CTS to avoid the hidden
terminal problem: neighbors of node C may not be
aware of the existence of a privileged slot. This reserva-
tion is then active for the whole burst. In our case, node
B mixes download (to C) and upload (to A) directions
in the same privileged slot. When a k-tree node has

to forward a packet to a normal node, it uses the non
privileged mode: these transmissions are not part of
the k-tree core. For instance, B will send a data packet
to the node 2 using the normal CSMA-CA mode after
having chosen a random backoff (with the usual DIFS).

To avoid unfairness, a k-tree node has to share equally the
bandwidth between the up and download directions: a node
should forward roughly as much traffic as it receives.

5.6 Forwarding Delay

For non-k tree nodes, packets are forwarded according to
the classical CSMA-CA mechanism. Thus, the delay remains
unchanged compared to IEEE 802.11.

On the contrary, k-tree nodes can only forward packets
after having received a CTR. To avoid any synchronization
requirement, each k-tree node forwards its CTR to its child.
In other words, we create a kind of precedence along the
tree. Thus, the forwarding delay is different according to
the direction in the k-tree:
download: the privileged slots are directly consecutive. Thus,

a node has to wait at most Tslot (i.e. the end of its slot)
before forwarding the data packets.
For instance, the node B receives its packets in the
privileged slot of A and forwards them to C just after
that (fig. 6);

upload: we face an inverse situation. A node receives the
data packets from one child just after having for-
warded to it the CTR. Thus, it has to wait for the
next CTR from its parent. Thus, it has to wait exactly
CTRhops ∗ privileged duration ∗ nb branches.

This buffering delay in upload also exists when a k-
tree node receives a data packet from its children not
present in the k-tree core. In particular, each k-tree node will
buffer all the data packets received between two CTR (i.e.
CTRhops ∗privileged duration∗nb branches seconds). As
a side effect, C-MAC is consequently efficient to aggregate
the data packets from its children.

The reader can also remark that the the data packets of
non-k tree and k-tree nodes can be aggregated in the same
manner. When a node receives packets from one k-tree child,
it waits for the next CTR before forwarding them. This gives
the occasion to receive the other packets from its other non-
k tree children. In figure 5, data packets from 2 and D can
be aggregated for the next transmissions of C .
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5.7 Multichannel Extension

Although C-MAC was not conceived for this specific pur-
pose, it can be very easily adapted to work in a multichannel
environment. Indeed, all the transmissions use by default
a common channel (e.g. channel 0) while transmissions of
privileged nodes can use different orthogonal channels. If
strictly more than 2 channels are available, different chan-
nels are used for different branches: CTR can be generated
safely more frequently. The gateway mentions the channel
id used for the privileged transmissions directly in the CTR.

More precisely, the CTR are transmitted over the com-
mon channel. Let’s focus on the example described in fig-
ure 7. The node A forwards the token by sending a CTR.
It will automatically switch to the privileged channel to
receive frames. The node B first acknowledges the CTR by
a CTR-ACK and then switch to the reserved channel for
sending its data frames. The data frame exchange takes
place on this interference-free channel. Thus, the node B
can use safely SIFS for all its transmissions since it is
alone to transmit. Besides, each node maintains a Network
Allocation Vector (NAV) per channel as highlighted in fig-
ure 7. In this example, the node C is aware of the ongoing
transmission and will send its data frame to A only when
the reservation elapsed, i.e. it extracted the Tslot value from
the CTR.

Since the CTR can suffer from collisions or bad transmis-
sions, the source of the CTR may retransmit it after switch-
ing back to the common channel. The CTR retransmission
process is identical to the single-channel case. This mecha-
nism maximizes the probability that the token is correctly
forwarded along the branches.

The reader can note that the performances of C-MAC will
not improve for more than CTRhop + 1 channels. Indeed,
the gateway may act as a bottleneck since it is blocked
for the whole Tslot duration after sending a CTR (i.e. it
cannot transmit simultaneously two CTR on two different
channels). Moreover, a new CTR can be safely generated on
the same channel when the other one is CTRhop apart. With
the additional common channel, this gives the aforemen-
tioned limit. However, we could cope with this particular
situation by having multi-radio gateways. This would relax
this constraint.

6 INTEGRATION

We will now describe how C-MAC can efficiently cohabit
with the other protocols present in the multihop network.

6.1 MAC Layer Independency

Although we used IEEE 802.11 to explain the C-MAC ap-
proach, the philosophy of C-MAC can be implemented with
many other CSMA-CA approaches. Exhaustivity is impossi-
ble, but we will here describe how C-MAC can cohabit with
various solutions in Wireless Sensor and Mesh Networks.

Busy Tones can be used to limit the hidden terminal
problem [12]. They permit to notify the transmissions in the
vicinity. C-MAC can be easily adapted to use for instance
busy tones in reception and/or emission.

In WSN, we can also add a preamble [13] before each
transmission to wait for the destination to wake up. For k-
tree node, a preamble is required to transmit the CTR or
a data packet to one child. Then, other packets can be
transmitted without preamble since the destination will wait
for the end of the privileged slot.

C-MAC would also be useful when only short preambles
are used, such as in Single Channel Polling (SCP) [14]. To
reduce power consumption, nodes agree on a schedule to
wake-up synchronously: shorter preambles are sufficient
to cope with clock drifts. However, the nodes may have
buffered packets when they slept. This would lead to a
traffic storm when all nodes wake-up. C-MAC could be
implemented when all the nodes are awake to regulate the
transmissions, during the active period.

6.2 Energy Consumption

C-MAC was not designed to save energy but rather to
optimize the network capacity. Thus, it consumes similar
energy as other CSMA-CA protocols. However, C-MAC can
be easily adapted to be integrated with other solutions
saving energy in WSN.

As highlighted previously, C-MAC can be adapted to
work with various other MAC layers. In particular, the
preamble sampling techniques permit to save energy effi-
ciently.

In the same way, topology control solutions permit to
choose the most accurate neighbors. By choosing to use the
most economical radio links, the network can save energy
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TABLE 1
Simulation parameters – default values

Bit rate 11Mbps
Packet reception threshold -86dBm
Transmit power 5mW
Frequency 5Ghz (5180→5805)
RTS/CTS inactive
Packet size 128 bytes
Privileged duration 5ms
CTR inter-spacing 3 hops
Number of branches for the k-tree core 5

globally. Thus, C-MAC can perfectly be executed after a
topology control algorithm has been executed. In this way,
C-MAC would use efficient radio links.

Finally, C-MAC could also use a metric based on energy to
choose the radio links in the tree. In that way, C-MAC would
use only most thrifty transmissions.

7 PERFORMANCE EVALUATION

We have simulated C-MAC in OPNET with the parameters
presented in Table 1.

We have compared the performance of our proposal with
the standard IEEE 802.11 DCF, one representative CSMA-
CA protocol. We conjecture that the mechanisms of C-
MAC could be adapted to any CSMA-CA approach, when
the traffic to forward is large (e.g. when nodes wake up
simultaneously to transmit data frames after a long sleeping
duration or after having detected an event).

We did not compare C-MAC with a TDMA-like approach
since such a solution would require a global synchroniza-
tion. Besides, an efficient conflict-free scheduling algorithm
must be implemented to organize the transmissions. This
approach would require to know a priori the conflict-graph
which is practically a difficult problem. However, we plan to
experiment in the future C-MAC and compare it in realistic
conditions to a TDMA-like approach, adopting for instance
the approach described in [15].

We first evaluate the impact of the parameter’s values in
C-MAC in a grid network of 7x7 nodes, the sink being lo-
cated at the center of the simulation area. Then, we focused
on random circular topologies of nodes to generalize these
results. Data traffic consists of several constant-bitrate (CBR)
flows, their rate being represented in the figures below as
the offered load in packet per second (pps). Each node trans-
mits a CBR to the central sink, to represent a convergecast
traffic pattern. We focus on the upload direction since the
download direction offers less constraints in fairness and
delay with C-MAC.

We have averaged the results presented below over
several different simulation runs and have plotted the 95%
confidence intervals. We have run simulations with and
without the RTS/CTS option and obtained results that are
not significantly different, so we have decided not to repre-
sent them in the figures.

We have evaluated the performance of three MAC layers
according to three metrics:

1) End-to-end delay: the delay between packet genera-
tion and its reception by the final destination;
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Fig. 8. Regular grid of 49 nodes, 13 pps – impact of the number of
branches in the k-tree core

2) Aggregated throughput: the volume of all received
data in the network per unit time in Mbps;

3) Jain index defined as:

(
∑n

i=1 Xi)
2

n
∑n

i=1 X
2
i

, (5)

where Xi is the throughput obtained by flow i,
measures throughput fairness of different flows in
the network. A low Jain index means poor fairness;

4) Overhead: the ratio of the volume of control and data
packets transmitted per node and the volume of
data packets received by the sink. The volume is
measured either in number of packets or in bits.

7.1 Tuning C-MAC Parameters
First, we measured the influence of the number of branches
in the k-tree core (i.e. the k value) for a grid of 49 nodes. We
chose an offered load of 13 pps so that the network operates
in saturation: all the generated packets cannot be delivered
to the sink. We are consequently able to study the impact of
the C-MAC parameters in saturated mode.

Figure 8(a) illustrates the throughput for different k
values. When the k-tree has one single branch (i.e. it is a
core), the throughput is minimal: C-MAC does not achieve to
balance the load in the network, and some data packets are
dropped. On the contrary, more branches permit to forward
more packets while avoiding collisions. However, it also
increases the delay (fig. 8(b)). Indeed, the sink generates a
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Fig. 9. Regular grid of 49 nodes, 13 pps – impact of the privileged
duration (i.e. time before a CTR is forwarded)

new CTR iteratively for each branch. When a branch has just
forwarded a CTR, it has to wait for the sink to send a new
CTR for all the other branches. On average, a k-tree core
node has to wait longer before having again the right to be
privileged. We consider that 5 branches constitutes a good
trade-off for the delay and throughput.

Then, we measured the influence of the privileged du-
ration, i.e. the time between a k-tree core node receives a
CTR and it has to forward it (fig. 9). A k-tree core node has
the right to send its data frame to its parent only during
this privileged duration. If this duration is too small, the
overhead for forwarding the CTR becomes large. If this dura-
tion is long, the end-to-end delay increases. The throughput
reaches a maximum when the privileged duration is around
5ms (fig. 9(a)). In the same way, the end-to-end delay reaches
a minimum for the same values (fig. 9(b)). Moreover, C-
MAC is relatively insensitive to a small variation for this
duration (the graphs are in log-scale). We verified also that
5ms constitutes the best privileged duration for other non-
grid networks.

Finally, we measured the influence of the CTR inter-
spacing, the time separating two consecutive CTR generated
by the sink (fig 10). The CTR inter-spacing is represented in
hops (the sink has to wait CTRhops ∗Tslot before generating
a new CTR). If the sink generates too frequently new CTR,
they will surely collide with each other: data packets will be
retransmitted, having a negative impact on the throughput
(fig 10(a)). On the contrary, if CTR are more than 6 hops
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Fig. 10. Regular grid of 49 nodes, 13 pps – impact of the CTR interspac-
ing (hops that separate two consecutive CTR generated by the sink)

apart, bandwidth is wasted, and the throughput decreases.
Besides, we should maintain CTRhops as low as possible
since it has a negative impact on the delay (fig 10(b)): it
increases the buffering delay, as described in section 5.6. In
consequence, we consider that a CTR interspacing of 3 hops
constitutes a good trade-off.

7.2 Grid Network
We first evaluated the robustness of the algorithm electing
the k-tree core. In a grid network, the optimal assignment
would use shortest paths toward the sink and balance the
load among the different branches. Thus, we compared the
performance of C-MAC with the distributed algorithm we
presented in section 4 and with a centralized static k-tree
core (we chose statically the k-tree core as represented in
figure 11(a)).

We first reported the throughput of C-MAC and
IEEE 802.11 in figure 12(a). IEEE 802.11 uses the tree to route
packets toward the gateway. Since IEEE 802.11 is not route-
aware, its performances are not impacted when it uses a
static or a dynamic routing tree. Besides, we can remark that
the throughput of C-MAC is the same for the centralized and
our distributed k-tree core construction. Thus, our algorithm
seems robust. Finally, we can remark that C-MAC uses the
same routes as IEEE 802.11 but optimizes the throughput by
reducing the number of collisions and by giving a privileged
access to k-tree core nodes. C-MAC achieves a gain of almost
100% for the throughput.
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Fig. 11. k-tree core election in a grid of 49 nodes

Then, we measured the delay (fig. 12(b)). When CBR
flows are small, C-MAC achieves larger delays than
IEEE 802.11: a node in the k-tree core that receives a packet
has to wait for a CTR before being authorized to forward it.
However, the collisions in IEEE 802.11 quickly increase the
congestion when the network is more heavily loaded. Thus,
C-MAC achieves quickly better delays than IEEE 802.11. We
can also remark that the delays are similar whatever the
k-tree core algorithm we used (either static or distributed).

We plotted the Jain index in figure 12(c). IEEE 802.11
quickly saturates and drops many packets, in priority from
sources far from the sinks: the route length being larger,
these packets have a larger chance to be dropped by a for-
warder. On the other side, C-MAC achieves a good fairness
for larger loads. Obviously, when the network saturates, the
packets through shorter routes have a larger probability to
be delivered, and the fairness index decreases.

Finally, we measured the overhead in bits for both
C-MAC and IEEE 802.11 (fig. 12(d)). We can remark that
the overheads are similar for low traffic values: the CTR
generated by C-MAC are negligible. In the same way, the
additional bits inserted byC-MAC in the hello packets
have a very limited impact on the global overhead. For a
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Fig. 13. Circular Random Network of 60 nodes with a convergecast
traffic and an average degree of 8

large traffic, long flows suffer from collisions, decreasing the
packet delivery ratio. Thus, both protocols generate more
packets to deliver the same number of data packets to the
sink. Mechanically, the global overhead increases.

7.3 Random Convergecast Networks

We compared the performance of C-MAC and IEEE 802.11 in
a random network (fig. 13): 60 nodes are randomly located
in a circular area while maintaining an average degree of 8.
Besides, the sink is located in the center of the simulation
area to limit side effects. We keep on using the default
values as mentioned in table 1. We can remark that C-
MAC supports a larger throughput than IEEE 802.11. While
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Fig. 14. Circular Random Network of 60 nodes – CBR of 20pps

some packets begin to be dropped with IEEE 802.11 when
each source generates more than 12 pps, C-MAC achieves
to transmit almost 17 pps without loss (the gain superior
to 40%). When the load increases further, C-MAC keeps on
delivering more packets than IEEE 802.11. When the network
has only a small amount of packets to forward, IEEE 802.11
presents a lower delay: k-tree core nodes need to wait for
CTR in C-MAC, increasing the delay. However, when the
network begins to be congested, C-MAC achieves a smaller
delay than IEEE 802.11: it succeeds to regulate the traffic
and limits retransmissions and collisions. Finally, the reader
can verify that C-MAC presents always a better fairness than
IEEE 802.11, whatever the traffic conditions are.

We also measured the impact of the density (fig. 14): we
adjust the simulation area to increase the average degree.
Each source generates 20 pps so that congestion begins
to appear in the network. We discard topologies that are
disconnected. When the density is low, the throughput
decreases: routes are longer and some nodes become discon-
nected because they only have unreliable links with their
neighbors. C-MAC outperforms IEEE 802.11 for small and
average densities. When the network is almost single hop,
the throughput is maximum, and IEEE 802.11 and C-MAC
perform in a similar manner: the k-tree core is very limited
and almost all the nodes transmit their packets directly to
the sink, without CTR. The gain over IEEE 802.11 is equal to
40% for smallest densities and to 16% for medium densities
(av. degree of 15). Finally, C-MAC and IEEE 802.11 achieve a
similar delay since we are in saturated mode (fig. 14(b)).
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Finally, we measured the overhead for these topologies
(fig. 15). Firstly, we can remark that C-MAC and IEEE 802.11
achieve more or less the same overhead for a low and a very
large traffic (fig. 15(a)). We can remark that for a very low
traffic, C-MAC generates slightly more control packets than
IEEE 802.11: in this case the CTR overhead is not enough
mutualized and its cost is not negligible. However, the over-
head is not sensitive in this case since the network capacity
is not reached. For CBR flows of about 30 to 50 pps, C-MAC
is more efficient than IEEE 802.11 to deliver packets to the
sink/root. This decreases the average number of data and
control packets generated for each delivered data packet.

We also plotted the repartition of the overhead for CBR
flows of 20 pps to have a more detailed view of the origin
of control packets (fig. 15(b)). We can remark that hello
packets and CTR-END are negligible. We have also a small
amount of CTR packets for C-MAC (below the ack). Besides,
data constitute the vast majority of transmissions, with the
associated acks. We can conclude that C-MAC presents an
acceptable overhead. We also verified we obtained the same
type of result when we measured the number of packets
without taking into account the packet sizes.

7.4 Multichannel Feature

We evaluated in figure 16 the multichannel feature of C-
MAC. When more than 1 channel is available, the channel
0 is used by default while the other channels are used
for the k-tree nodes that become privileged. When C-MAC
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Fig. 16. Regular grid of 49 nodes with a convergecast traffic – multichan-
nel extension

operates with more than 2 channels, the sink will alternate
the channels it uses for the different branches of the k-tree
core. Thus, the sink can generate CTR more frequently, and
thus increases the network capacity.

We measured first the throughput (fig. 16(a)). While the
network saturates with one single channel, the multichannel
version of C-MAC supports a larger load. The gain is the
largest when we have two channels: a k-tree node that
receives a CTR becomes privileged and uses an orthogonal
channel, avoiding entirely the collisions with non k-tree
core nodes. Since CTR seldom suffer from collisions in the
control channel (channel 0), this multichannel mechanism
performs well. The reader can remark that when the number
of channels is almost the number of branches, the frequency
of CTR cannot be increased, and the throughput saturates.
Moreover, the gain is reduced because non k-tree core nodes
may start to have difficulties to send their data packets
if the receiver is a k-tree core node, deaf to transmissions
on the channel 0. We can also remark that using different
channels limits the number of retransmissions and transi-
tively the end-to-end delay (fig. 16(b)). In conclusion, C-
MAC can exploit very efficiently a collection of orthogonal
channels, multiplexing the transmissions without any need
of synchronization or multiradio nodes.

8 RELATED WORK

The MAC layer has recently received a large attention for
multihop wireless networks. IEEE 802.11 [8] is the predomi-
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nant protocol for hotspots, i.e. single hop wireless networks
for multimedia. The CSMA-CA mechanism is flexible and
particularly efficient to cope with traffic variations. How-
ever, IEEE 802.11 has been proved to perform very poorly in
multihop [1].

In wireless mesh networks, some researchers have pro-
posed to assign different channels for multi-radio mesh
nodes [16], [17], [18], [19]. [18] focuses on the routing met-
ric to construct the tree rooted at the gateway, and then
assigns a channel per link, taking into account the traffic
load. [17] starts from the gateway, assigning the channels
to the most constrained links. [19] extends it to cope with
multicast. However, these approaches require multi-radio
capable nodes and color the radio links in a centralized
manner. [16] proposes that a subset of interfaces stay static
while the other ones switch from one channel to another.
However, it works only for multiradio nodes. To the best
of our knowledge, no MAC protocol was proposed to cope
with wireless mesh nodes with one single interface, typically
adapted to the convergecast traffic pattern.

In wireless sensor networks, most approaches focused
on energy savings, like [20]. In [21], the PSM mode of
IEEE 802.11 is modified to work in WSN. In SMAC, each
node wakes up periodically and publishes this periodicity in
its hellos [22]. A node just has to know this scheduling to
know when to send the frame. Single Channel Polling (SCP)
proposes a global synchronization scheme in which all the
nodes wake up simultaneously and sense once the channel
[14]. However, contention may be large since a node wakes
up only seldom, leading to collisions and energy wastage.
[23] already jointly optimized the MAC and routing layer.
However, it focused on very low traffic conditions. Since
C-MAC could be adapted to work with CSMA-CA like
approaches, we could extend these protocols to adapt for
them the concept of privileges in C-MAC.

Other propositions adopted a TDMA-like approach
in WSN. For instance, [24], [25] computes a distributed
scheduling to assign timeslots to each node. [6] adapts the
scheduling to interferences measured by the nodes. [26] pro-
poses to adopt a multichannel approach, coloring each radio
link to avoid interferences. However, it uses a dedicated
separated low power radio for transmitting pulses.

WSN present often a convergecast traffic pattern: this
particular property can be used to optimize certain func-
tions. [27] optimizes the retransmissions when several
bursts of traffic have to arrive to a sink. [28] extends
DMAC [29], rearranging the slots attributed to each node.
[30] proposes to balance the load for the convergecast tree,
optimizing the routing and not the MAC layer as C-MAC
does. [31] focuses also on controling the data flows in the
routing layer to limit collisions.

C-MAC uses a k-tree core structure as introduced orig-
inally in [10]. [32] provides a parallelized version of the
algorithm. Then, [11], [33] extended it to provide a dis-
tributed version, adapted for routing in ad hoc networks.
They use any spanning-tree before selecting the k-tree core
while we use only shortest paths to the gateway and we try
to create straight branches that forward most traffic. Indeed,
our objective here is different since we focus on regulating
the transmissions at the MAC layer. [34] proposed to upper
bound the k-tree core diameter. [35] uses this k-tree core

for multicast. To the best of our knowledge, the k-tree
core structure was never used before for organizing the
transmissions in the MAC layer although it is particularly
adequate.

9 CONCLUSION & PERSPECTIVES

In this paper, we studied the wireless multihop networks
with a convergecast traffic pattern. We proposed to organize
the network into a k-tree core. This structure coupled with
a specific MAC protocol helps to organize the transmissions
and to reduce the collisions. By giving a different medium
access in CSMA-CA to the nodes that carry most of the
traffic, we reduce the number of collisions, which may occur
only with nodes with less traffic. Besides, C-MAC does not
need any synchronization mechanism, and is much more
flexible than a classical TDMA scheme. Finally, C-MAC is
entirely compatible with IEEE 802.11, i.e. it can cohabit
transparently with non-C-MAC enabled nodes. We have
also shown that C-MAC operates efficiently in multichannel
environments and optimizes the throughput while avoiding
the deafness problem. Simulation results demonstrated that
C-MAC with a k-tree core outperforms IEEE 802.11.

One important future research consists in validating C-
MAC in a realistic environment, but it requires to have access
to the IEEE 802.11 firmware to allow a k-tree core node to use
PIFS for its transmissions. Besides, it could be interesting
to jointly optimize the routes and the k-tree core structure.
Indeed, C-MAC optimizes the transmissions for a tree of
shortest paths. However, shortest routes could not be the
best solution for balancing the load to reduce contention. We
expect also to compare C-MAC and a TDMA-like approach
in realistic conditions. In particular, TDMA requires to know
exactly the conflict graph and needs to compute a conflict-
free scheduling. We plan to measure the impact of conflict
graph imprecisions, and to verify that C-MAC achieves sim-
ilar or better results without synchronization and without
computing a complex and less flexible scheduling. Finally,
we plan to adapt C-MAC to SCP in order to reduce the
collisions when all the nodes wake-up simultaneously. This
feature would be particularly accurate in Wireless Sensor
Networks for event detection since the traffic is mostly in
bursts in these cases.
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