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Abstract 

Mutations in the energy sector are shifting the production and distribution systems from a 

centralized to a decentralized model. Within this context, we address the economics of grid-

connected Hybrid Renewable Energy Systems (HRES) in relation with energy management strategies 

by considering taxes and economic regulation frameworks. Therefore, we propose a model to 

perform economic analysis of such HRES formulated as a MILP (Mixed Integer Linear Programming) 

model in the context of the French regulation. We test it on the case study of an integrated PV 

installation for French households’ self-consumption, comparing two household sizes: a two persons 

household with a consumption of 4000kWh/year and a five persons household consuming 8500 

kWh/year; and two solar exposures: one of 1400 h of equivalent maximum production and one of 

1060 h. The main results is that the current regulation framework for incentive calculus does not 

encourage citizens to install a maximum of PV panels as well as it does not guarantee a uniform 

development of self-consumption infrastructure. Alternatively, we propose a new regulation 

framework in order to reverse those tendencies.  
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Abbreviation Explanation 

CAPEX Capital Expenditure 

CC Composante de Comptage = Yearly count component 



CG Composante de Gestion = Yearly administration component 

CRE Commission de Régulation de l’Energie = Energy regulation commission 

CS (fixed or 

variable) 

Composante de soutirage = Yearly extraction component 

CSPE Contribution au Service Public d’Electricité = Contribution to electricity public service 

CTA Contribution Tarifaire d’Acheminement = Taxes for electricity delivery 

HRES Hybrid Renewable Energy System 

IFER Imposition Forfaitaire des Entreprises de Réseaux = Flat-rate taxation of Network company 

IRR Internal Rate of Return 

LCA Life Cycle Assessment 

MILP  Mixt-Integer Linear Programing 

NPV Net Present Value 

NREL National Renewable Energy Laboratory 

OPEX  Operational Expenditure 

PP Payback Period 

PV Photovoltaïc panel 

TURPE Tarifs d’Utilisation des Réseaux Public de distribution d’Electricité = Rate for usage of public 

network of electricity distribution 

TCFE Taxes sur la Consommation Finale d’Electricité = Electricity final consumption taxes 

 

1 Introduction 

The current global warming due to anthropic activities is indisputable (Cook et al., 2013). Grubler and 

al. (2018) recommend to improve energy efficiency to reach the objective of 1.5°C increase of the 

planet, established by the COP21 (Paris). Therefore, transformations in the energy sector are 

mandatory, especially by increasing renewable energies’ share in energy mix. This evolution fosters 

changes such as switching from a centralized to a decentralized model of the energy sector in 

developed countries. Indeed, the electricity network in most developed countries can be qualified as 

centralized, since a small number of big power plants produces electricity dispatched toward the final 

consumer through a large distribution grid. On the contrary, a decentralized model stands for 

multiple small power plants installed nearby consumption sites, which are most likely resilient 

especially when large failure occurs since the production facilities are multiple. 

Therefore, developing techniques to design Hybrid Renewable Energy Systems (HRES) is an important 

task for facing future energy challenges. A HRES is a synergy system combining conventional and 



renewable energy sources as well as storage systems if needed. A HRES can be used in different ways 

illustrated on Figure 1. HRES can be designed for:  

1. Producing electricity entirely injected into the grid (case 1 Figure 1). This case is typically 

encountered from a centralized perspective. 

2. Meeting the electricity demand of consumers isolated from the electricity grid (case 2 Figure 

1). An undersized HRES or a curtailing electricity production are necessary, as energy surplus 

is not allowed (when more energy is produced than needed). Besides, one needs a backup 

systems, like diesel generator, in case of energy shortage (energy produced is less than 

energy needs) 

3. Meeting the electricity demand of consumers connected to the electricity grid (case 3 Figure 

1). In this case, the HRES supplies the consumer in priority. The grid connection is used as a 

backup in case of energy shortage as well as an evacuation in case of energy surplus. 

(PLEASE INSERT FIGURE 1) 

 

The three cases are different regarding the coupling of the supply side and the demand side. In case 

1, the grid acts as an infinite reservoir of energy into which all the electricity supplied by the HRES is 

injected. On the contrary, for cases 2 and 3, demand side and supply side are coupled. Indeed, the 

supply must deliver exactly the demand, so that no blackout happens. While it has been observed 

that the electricity demand can be related to many determinants, either socio-economic such as 



poverty, household income, age, etc. (Brounen et al. 2012; Besagni and Borgarello, 2018) or 

structural and geographical ones such as building size, climate, sunshine…  (Filippini and Pachauri, 

2004; Longhi, 2015), our contribution can only handle them through three input parameters, namely 

the electricity demand curve, the sunshine per year and the tariffs and taxes. These later are 

considered at their standard rate but they could be adapted to cases backed by some specific social 

policy, for instance subsidies for low-income families.  

In case 2 of Figure 1 storage can be needed to balance renewables production. In Roth et al., (2019) 

we have proposed a flexible meta-model architecture of HRES has been proposed and it was further 

specified for the grass root design of a stand-alone HRES for a factory in tropical island. We have then 

shown that investment costs in electric storage jeopardized economic viability of HRES systems. 

Alternatively, thermal storage could be used instead (Lund et al., 2018). Indeed, the HRES model that 

we use is currently designed for electricity production but it could be expanded to include heating 

devices and then balance electricity and heating supply with relevant demands as coupling both is a 

major incentive for renewable energy development and system integration (Lund et al., 2018). 

Another key aspect that challenges HRES implementation is the regulation framework. Tackling this 

issue is fundamental since designing HRES without taking into account local regulations  might 

shatter the economic viability of the HRES in operation.  

In this paper, we perform an economic analysis of HRES. Section 2 shows how literature has 

accounted for economic regulation framework in grid-connected HRES design. The heterogeneity of 

the proposed methods and their incompleteness under the light of the French complex regulations 

are discussed, with a particular emphasis on the inclusion or not of taxes. In section 3, a generic 

economic assessment model for a grid-connected HRES as in Figure 1 is developed. Building upon the 

literature proposals while taking into account taxes, it is deemed suitable for many countries. Section 

4 describes how the model is specified as a Mixed-Integer Linear Programming (MILP) problem for 

the French tariffs and tax regulation on self-consumption. Finally, in section 5, the MILP optimization 



model is solved for the case study of French households willing to implement energy production 

devices, such as photovoltaic panels for self-consumption. This approach consists in estimating how 

the actual regulation framework encourage people to install self-consumption facilities in their 

house, and to propose alternative if not. In this paper, a focus is done on the French context but the 

approach is generic and can be used in other context. 

2 Literature overview  

When designing HRES, two main questions have to be answered: how to produce electricity and how 

much does it cost? 

Regarding the production issue, it comes to the design of HRES in general, including grid-connected 

ones; and many studies can be found in the literature. Most of the time, HRES design requires the 

use of optimization techniques. In the category of heuristic optimization techniques, one finds 

studies using Genetic Algorithm (GA) (Guinot et al., 2013), Particle Swarm Optimization (PSO) 

(Mohamed et al., 2017), Cukoo Search (CS) (Nadjemi et al., 2017) or fuzzy logic (Giallanza et al., 

2018). The strength of these techniques is the possibility to model accurately the non-linear 

behaviour of some physical elements of HRES such as batteries, converter, fuel cell, etc…  However, 

they can be time consuming to implement and solve, they are often sensitive to penalty functions 

and they usually give under-optimal results compared to deterministic optimization. Hence, other 

faster optimization techniques have been investigated such as MILP like in Atia and Yamada, 2016a; 

Rigo-Mariani et al., 2017; Scheubel et al., 2017. To some extent, MILP models are inaccurate due to 

the linear modelling they involve, but it is acceptable in the case of grassroots design as we have 

shown in Roth et al. (2019). In both categories of optimization techniques that we cited, one can 

perform mono-objective or multi-objective studies (Eriksson and Gray, 2019). We notice that some 

studies take into account the environmental impact of the designed solutions (Saedpanah et al., 

2020; Theodosiou et al., 2015); a concern we will take care of in section 5. In addition to these 

models, Sinha and Chandel, (2014) reviewed existing ready-to-use software for designing HRES. The 



widely used software is ‘HOMER pro’ developed by the National Renewable Energy Laboratory 

(NREL) in USA and used in Fodhil et al. (2019) for the optimization of a PV-diesel-battery HRES in 

Algeria. It is connected to several popular databases for technical aspects, consumption data or 

meteorology, which offers a user-friendly experience. Other in-house tools compete with HOMER, 

like in (Prabatha et al., 2019) where a new software based on a combinatory ranking method is 

proposed. Nevertheless, these approaches, including HOMER, do not implement optimization 

capability so, resulting solutions are likely to be under-optimal.  

When focusing on the economic analysis of grid-connected HRES, four aspects need to be modelled: 

infrastructure costs with the so-called Capital expenditure (CAPEX) and Operational expenditure 

(OPEX), tariff of the energy sold to the grid, tariff of the energy bought from the grid, and important 

as well, taxes applicable to energy bought and sold to the grid. Obviously, papers addressing the first 

aspect have also to address the other ones but they only do so partially. For instance, Islam (2018) 

used HOMER to assess technically and economically the capability of HRES to supply office building in 

the south of France. They consider a fixed price of 0.18€/kWh for the energy bought from the grid to 

supply building consumption and a fixed price of 0.1018€/kWh for the energy sold to the grid. Yet, in 

many countries, including France, energy is bought from the grid at a variable price, depending on 

hours (peak, off-peak hours) and season (winter or summer) when consumption occurs; and energy 

sold to the grid must comply with a complex regulation framework that cannot be handle with a 

fixed price only. While French regulation is one of the most complex, as we’ll show later, there are 

also simpler regulations elsewhere. In some countries using fixed prices for both selling and 

purchasing electricity are suitable in the economic model applicable in Algeria (Nadjemi et al., 2017). 

Hernández et al. (2019) and Cucchiella et al., (2015) also used fixed prices for Spain and Italy 

respectively, but it is questionable since other studies use variable prices for these countries 

(Gonzalez et al., 2015; González et al., 2018). Variable prices for energy bought to the grid are used 

for Malaysia (Subramani et al., 2019) but with no possibility to sold energy to the grid. A mix of fixed 

and variable prices are applicable in Shangaï (Liao et al., 2019) and with restrictions in France (Rigo-



Mariani, 2014). Among these works, not even one considers taxes in their economic analysis, which is 

a strong simplification in the economic model of self-consumption. Hence, we propose below a 

generic model for the economic analysis of grid-connected HRES to gather all these strategies in one. 

3 Generic model for economic analysis of grid-connected HRES 

In order to assess the economic viability of grid-connected HRES we propose a generic model based 

on the Net Present Value (𝑁𝑃𝑉) of the system: 

 𝑁𝑃𝑉 = 𝐶𝐴𝑃𝐸𝑋𝑡𝑜𝑡 − 𝐺𝑟𝑎𝑛𝑡 + ∑
𝑂𝑃𝐸𝑋𝑡𝑜𝑡(𝑛)−𝐺𝑎𝑖𝑛𝑡𝑜𝑡(𝑛)

(1+𝑖)𝑛
𝑁
𝑛=1  (1) 

𝑁𝑃𝑉 quantifies the balance between the investment in the HRES infrastructure (capital and 

operational expenditures) and the money earned for running the HRES over 𝑁 years. 𝑛 is the index of 

the current year and 𝑖 is the discount rate. 𝐺𝑟𝑎𝑛𝑡 is the grant for investment, which can account for 

subsidies given to producers for their investment in renewable installation, like in France. 𝐺𝑟𝑎𝑛𝑡 = 0 

If the local regulation gives no subsidies.  

We define 𝐶𝐴𝑃𝐸𝑋𝑡𝑜𝑡 as the sum of the capital expenditures of each element: 

 𝐶𝐴𝑃𝐸𝑋𝑡𝑜𝑡 = ∑ 𝐶𝐴𝑃𝐸𝑋𝐸𝑙𝑒𝑚𝐿𝑖𝑠𝑡{𝑗}
𝑁𝑏𝐸𝑙𝑒𝑚
𝑗=1  (2) 

Where 𝑁𝑏𝐸𝑙𝑒𝑚 is the number of elements in a list, denoted 𝐸𝑙𝑒𝑚𝐿𝑖𝑠𝑡{}, that contains all HRES’ 

elements’ name. An element is a wind turbine, a diesel generator, a battery storage, a PV, a junction, 

…. (Roth et al., 2019). 

The 𝑂𝑃𝐸𝑋𝑡𝑜𝑡 is a vector of 𝑁 elements giving the sum of operational expenditures of each element 

for every years:  

 ∀𝑛 ∈ ⟦1;𝑁⟧, 𝑂𝑃𝐸𝑋𝑡𝑜𝑡(n) = ∑ 𝑂𝑃𝐸𝑋𝐸𝑙𝑒𝑚𝐿𝑖𝑠𝑡{𝑗}(𝑛)𝑁𝑏𝐸𝑙𝑒𝑚
𝑗=1  (3) 

𝐺𝑎𝑖𝑛𝑡𝑜𝑡(𝑛) is a vector of 𝑁 elements representing the money earned from selling energy to the grid 

(𝐺𝑎𝑖𝑛𝑠𝑜𝑙𝑑𝑁𝑅𝐽(𝑛)) and the saved money on the electricity bill (𝐺𝑎𝑖𝑛𝑜𝑛𝐸𝑙𝑒𝑐𝐵𝑖𝑙𝑙(𝑛)): 



 ∀𝑛 ∈ ⟦1;𝑁⟧, 𝐺𝑎𝑖𝑛𝑡𝑜𝑡(𝑛) = 𝐺𝑎𝑖𝑛𝑠𝑜𝑙𝑑𝑁𝑅𝐽(𝑛) + 𝐺𝑎𝑖𝑛𝑜𝑛𝐸𝑙𝑒𝑐𝐵𝑖𝑙𝑙(𝑛) (4) 

𝐺𝑎𝑖𝑛𝑠𝑜𝑙𝑑𝑁𝑅𝐽(𝑛) is a vector of 𝑁 elements composed of the raw gain on sold energy 

(𝑅𝑎𝑤𝐺𝑎𝑖𝑛𝑠𝑜𝑙𝑑𝑁𝑅𝐽(𝑛)) and the taxes (𝑇𝑎𝑥𝑒𝑠𝑠𝑜𝑙𝑑𝑁𝑅𝐽(𝑛)) : 

 ∀𝑛 ∈ ⟦1;𝑁⟧, 𝐺𝑎𝑖𝑛𝑠𝑜𝑙𝑑𝑁𝑅𝐽(𝑛) = 𝑅𝑎𝑤𝐺𝑎𝑖𝑛𝑠𝑜𝑙𝑑𝑁𝑅𝐽(𝑛) − 𝑇𝑎𝑥𝑒𝑠𝑠𝑜𝑙𝑑𝑁𝑅𝐽(𝑛) (5) 

𝐺𝑎𝑖𝑛𝑜𝑛𝐸𝑙𝑒𝑐𝐵𝑖𝑙𝑙(𝑛) is a vector of 𝑁 elements and is the difference between the electricity bill without 

the HRES (𝐸𝑙𝑒𝑐𝐵𝑖𝑙𝑙𝑟𝑒𝑓(𝑛)) and the one with the HRES (𝐸𝑙𝑒𝑐𝐵𝑖𝑙𝑙𝑛𝑒𝑤(𝑛)). Note that ∀𝑛 ∈ ⟦1;𝑁⟧,

𝐸𝑙𝑒𝑐𝐵𝑖𝑙𝑙𝑟𝑒𝑓(𝑛) > 𝐸𝑙𝑒𝑐𝐵𝑖𝑙𝑙𝑛𝑒𝑤(𝑛) since the HRES energy production goes in priority to the 

consumer, which reduces the amount of energy taken from the grid, thus lowering the electricity bill. 

Therefore, we have: 

 ∀𝑛 ∈ ⟦1;𝑁⟧, 𝐺𝑎𝑖𝑛𝑜𝑛𝐸𝑙𝑒𝑐𝐵𝑖𝑙𝑙(𝑛) = 𝐸𝑙𝑒𝑐𝐵𝑖𝑙𝑙𝑟𝑒𝑓(𝑛) − 𝐸𝑙𝑒𝑐𝐵𝑖𝑙𝑙𝑛𝑒𝑤(𝑛) (6) 

𝐸𝑙𝑒𝑐𝐵𝑖𝑙𝑙𝑟𝑒𝑓(𝑛) values are an input given by the model user. 𝐸𝑙𝑒𝑐𝐵𝑖𝑙𝑙𝑛𝑒𝑤(𝑛) is the sum of a fixed 

part (𝐹𝑖𝑥𝑒𝑑𝑝𝑎𝑟𝑡(𝑛)), usually for the subscription of the electricity contract, and a variable part which 

is a function of the hourly consumption (𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑝𝑎𝑟𝑡(𝑛)) and taxes (𝑇𝑎𝑥𝑒𝑠𝑜𝑛𝐸𝑙𝑒𝑐𝐵𝑖𝑙𝑙(𝑛)) : 

 ∀𝑛 ∈ ⟦1;𝑁⟧, 𝐸𝑙𝑒𝑐𝐵𝑖𝑙𝑙𝑛𝑒𝑤(𝑛) = 𝐹𝑖𝑥𝑒𝑑𝑝𝑎𝑟𝑡(𝑛) + 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑝𝑎𝑟𝑡(𝑛) + 𝑇𝑎𝑥𝑒𝑠𝑜𝑛𝐸𝑙𝑒𝑐𝐵𝑖𝑙𝑙(𝑛) (7) 

In the following section, we use this generic model for the economic assessment of grid-connected 

HRES in the context of the 2017 French regulation on self-consumption. 

4 MILP model for self-consumption French regulation 

4.1 The French context 

In 2017, for the first time in Europe, the French government promulgated a aw allowing energy self-

consumption as cases 2 and 3 in Figure 1. We consider two kinds of self-consumption:  

- Individual self-consumption: the electricity consumer is the owner of electricity production 

infrastructure and consume its own production of electricity. 



- Collective self-consumption: a group of electricity consumers consumes and buys electricity 

to a local electricity production infrastructure owner.  

Each of the two cases is subjected to a specific regulation. In this paper, we only focus on individual 

self-consumption since the collective case depends on other aspects, such as governance that cannot 

be taken into account in our proposed mathematical model. 

French regulation is not straightforward since tariffs, taxes and grants are calculated through a 

stepwise waterfall of “if… then… else” conditions. The government established tariffs, taxes and 

grants structures for the energy sold to and bought from the grid in the context of self-consumption 

as shown on Figure 2.  

(PLEASE INSERT FIGURE 2) 

 

There are five taxes:  

- Tarifs d’Utilisation des Réseaux Publics de distribution d’Electricité (TURPE) : it covers costs 

handle by the national electricity distributor. 

- Contribution Tarifaire d’Acheminement (CTA): it covers costs generated by electricity 

transport. 

- Taxes sur la Consommation Finale d’Electricité  (TCFE) : it concerns the local tax system. 



- Contribution au Service Public d’Electricité (CSPE): this tax helps funding public service duty of 

ENEDIS (formerly EDF, which was the historic national electricity supplier), namely the 

obligation to buy renewable energy to producer at fix prices.  

- Imposition Forfaitaire sur les Entreprises de Réseaux (IFER): it taxes electricty producers. 

This regulation structure can be modelled as a MILP problem since it is stepwise and linear with 

respect to the production and the energy management of the HRES. As far as we know such a MILP-

implemented approach has never been proposed in the literature for the full regulation structure, 

but for Rigo-Mariani (2014) in an earlier simplified version. In the next two subsections, we detail the 

MILP formulation of Figure 2 tariffs and taxes structure of the energy sold to the grid and of the 

energy bought from the grid respectively. 

4.2 Tariffs and taxes structure of energy sold to the grid 

As shown in equation (5) the money earned from selling electricity to the grid is modelled as follow: 

∀𝑛 ∈ ⟦1;𝑁⟧, 𝐺𝑎𝑖𝑛𝑠𝑜𝑙𝑑𝑁𝑅𝐽(𝑛) = 𝑅𝑎𝑤𝐺𝑎𝑖𝑛𝑠𝑜𝑙𝑑𝑁𝑅𝐽(𝑛) − 𝑇𝑎𝑥𝑒𝑠𝑠𝑜𝑙𝑑𝑁𝑅𝐽(𝑛) 

First of all, let’s consider the 𝑅𝑎𝑤𝐺𝑎𝑖𝑛𝑠𝑜𝑙𝑑𝑁𝑅𝐽(𝑛) which refers to Figure 2a, while 𝑇𝑎𝑥𝑒𝑠𝑠𝑜𝑙𝑑𝑁𝑅𝐽(𝑛) 

refer to Figure 2b). 

4.2.1 Model of the raw gain on the sold energy 

The Commission de Régulation de l’Energie (CRE) (Energy Regulation Commission) is a French 

institution that is in charge of fixing the prices of electricity and gas. The CRE has defined the price of 

electricity sold to the grid by decree in May, 9th, 2017 as well as grant for investment, as a function of 

of rated power (𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟) into five classes indexed by k.  

𝑅𝑎𝑤𝐺𝑎𝑖𝑛𝑠𝑜𝑙𝑑𝑁𝑅𝐽(𝑛) is calculated as:  

 ∀𝑛 ∈ ⟦1;𝑁⟧, ∀𝑘 ∈ ⟦1;5⟧, 𝑅𝑎𝑤𝐺𝑎𝑖𝑛𝑠𝑜𝑙𝑑𝑁𝑅𝐽(𝑛) = 𝐸𝑠𝑙𝑑,𝑡𝑜𝑡(𝑛). 𝑇𝑎𝑟𝑖𝑓𝑓𝑘  



where 𝐸𝑠𝑙𝑑,𝑡𝑜𝑡(𝑛) is the total amount of energy sold to the grid during the year 𝑛 and 𝑇𝑎𝑟𝑖𝑓𝑓𝑘 the k-

class tariff corresponding to the rated power of the HRES. But, in the HRES design problem, 𝐸𝑠𝑙𝑑,𝑡𝑜𝑡(𝑛) 

will be a variable as well as 𝑇𝑎𝑟𝑖𝑓𝑓𝑘 since it is function of 𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟 which is also a variable,  

according to the stepwise waterfall structure (Figure 2a). So, we need to linearize the calculation of 

𝑅𝑎𝑤𝐺𝑎𝑖𝑛𝑠𝑜𝑙𝑑𝑁𝑅𝐽(𝑛) as:  

 ∀𝑛 ∈ ⟦1;𝑁⟧, 𝑅𝑎𝑤𝐺𝑎𝑖𝑛𝑠𝑜𝑙𝑑𝑁𝑅𝐽(𝑛) = ∑ 𝑇𝑎𝑟𝑖𝑓𝑓𝑘. 𝐸𝑠𝑙𝑑,𝑡𝑜𝑡
𝑘4

𝑘=1 (𝑛) (8) 

Where 𝑇𝑎𝑟𝑖𝑓𝑓𝑘 gives the tariff corresponding to the category 𝑘 and 𝐸𝑠𝑙𝑑,𝑡𝑜𝑡
𝑘  is a vector storing 

variables about the energy sold to the grid at tariff 𝑘.  

We use a set of binary values 𝑧𝑠𝑙𝑑,𝑘  to ensure that 𝐸𝑠𝑙𝑑,𝑡𝑜𝑡
𝑘 (𝑛) = 0 (and 𝑧𝑠𝑙𝑑,𝑘 = 0) when 𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟 

is not in the category 𝑘 and 𝐸𝑠𝑙𝑑,𝑡𝑜𝑡
𝑘 (𝑛) = 𝐸𝑠𝑙𝑑,𝑡𝑜𝑡(𝑛) (and 𝑧𝑠𝑙𝑑,𝑘 = 1) otherwise. Here is now the way 

to determine 𝑧𝑠𝑙𝑑,𝑘 and 𝐸𝑠𝑙𝑑,𝑡𝑜𝑡
𝑘 (𝑛). Let’s denote the rated power threshold of the k tariff class by 

𝑅𝑎𝑡𝑒𝑑𝑝𝑤𝑟𝐿𝑖𝑚,𝑘. In order to determine their value we first need to find which tariff k concerns the 

current 𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟: 

 ∀𝑘 ∈ ⟦1;3⟧ 𝑃𝑠𝑙𝑑,𝑘+ − 𝑃𝑠𝑙𝑑,𝑘− = 𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟 − 𝑅𝑎𝑡𝑒𝑑𝑝𝑤𝑟𝐿𝑖𝑚,𝑘 (9) 

 ∀𝑘 ∈ ⟦1;3⟧ 0 ≤ 𝑃𝑠𝑙𝑑,𝑘+ ≤ (1 − 𝑦𝑠𝑙𝑑,𝑘). 𝐵𝑖𝑔𝑀1 (10) 

 ∀𝑘 ∈ ⟦1;3⟧ 0 ≤ 𝑃𝑠𝑙𝑑,𝑘− ≤ 𝑦𝑠𝑙𝑑,𝑘 . 𝐵𝑖𝑔𝑀1 (11) 

With 𝑃𝑠𝑙𝑑,𝑘+ ∈ ℝ3+, 𝑃𝑠𝑙𝑑,𝑘− ∈ ℝ3+, 𝑦𝑠𝑙𝑑,𝑘 ∈ {0,1} and 𝐵𝑖𝑔𝑀1 a big positive value. Thus, if 

𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟 > 𝑅𝑎𝑡𝑒𝑑𝑝𝑤𝑟𝐿𝑖𝑚,𝑘 then 𝑦𝑠𝑙𝑑,𝑘 = 0, 𝑃𝑠𝑙𝑑,𝑘− = 0 and 𝑃𝑠𝑙𝑑,𝑘+ ≠ 0. On the contrary if 

𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟 < 𝑅𝑎𝑡𝑒𝑑𝑝𝑤𝑟𝐿𝑖𝑚,𝑘 then 𝑦𝑠𝑙𝑑,𝑘 = 1, 𝑃𝑠𝑙𝑑,𝑘− ≠ 0 and 𝑃𝑠𝑙𝑑,𝑘+ = 0. When Ratedpower =

RatedpwrLim,k,  ysld,k can be equal to either 0 or 1. One sets ysld,k = 1 as a default value, so that 

Ratedpower is set in the category k. Then, we determine the value of 𝑧𝑠𝑙𝑑,𝑘: 

 𝑧𝑠𝑙𝑑,1 = 𝑦𝑠𝑙𝑑,1 (12) 

 ∀𝑘 ∈ ⟦2;3⟧ 𝑧𝑠𝑙𝑑,𝑘 = 𝑦𝑠𝑙𝑑,𝑘 − 𝑦𝑠𝑙𝑑,𝑘−1 (13) 



 𝑧𝑠𝑙𝑑,4 = 1 − 𝑦𝑠𝑙𝑑,𝑘 (14) 

Finally, we obtain the value of 𝐸𝑠𝑙𝑑,𝑡𝑜𝑡
𝑘 (𝑛): 

 ∀𝑘 ∈ ⟦1;4⟧, ∀𝑛 ∈ ⟦1;𝑁⟧, 0 ≤ 𝐸𝑠𝑙𝑑,𝑡𝑜𝑡
𝑘 (𝑛) ≤  𝑧𝑠𝑙𝑑,𝑘. 𝐵𝑖𝑔𝑀2 (15) 

 ∀𝑘 ∈ ⟦1;4⟧, ∀𝑛 ∈ ⟦1;𝑁⟧, 𝐸𝑠𝑙𝑑,𝑡𝑜𝑡
𝑘 (𝑛) ≤ 𝐸𝑠𝑙𝑑,𝑡𝑜𝑡(𝑛) (16) 

 ∀𝑘 ∈ ⟦1;4⟧, ∀𝑛 ∈ ⟦1;𝑁⟧, 𝐸𝑠𝑙𝑑,𝑡𝑜𝑡(𝑛) − 𝐵𝑖𝑔𝑀2. (1 − 𝑧𝑠𝑙𝑑,𝑘) ≤  𝐸𝑠𝑙𝑑,𝑡𝑜𝑡
𝑘 (𝑛) (17) 

With 𝐵𝑖𝑔𝑀2 a big positive value.  

4.2.2 Model of the grants on the sold energy 

We define the grant for investment as follow: 

 𝐺𝑟𝑎𝑛𝑡𝑠𝑙𝑑 = ∑ 𝐺𝑟𝑎𝑛𝑡𝑠𝑙𝑑
𝑘 . 𝑧𝑠𝑙𝑑,𝑘

4
𝑘=1  (18) 

4.2.3 Model of the taxes on the sold energy 

Now, let’s consider the 𝑇𝑎𝑥𝑒𝑠𝑠𝑜𝑙𝑑𝑁𝑅𝐽(𝑛). When selling energy to the grid, producers need to pay the 

so-called taxes Imposition Forfaitaire sur les Entreprises de Réseaux (IFER) proportionnal to 

𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟 : 

 𝐼𝐹𝐸𝑅 =  𝐼𝐹𝐸𝑅𝑐𝑜𝑠𝑡 ∗ 0.8 ∗ 𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟 (19) 

 but there exists a tax exemption below a threshold of rated power (denoted 𝑅𝑎𝑡𝑒𝑑𝑝𝑤𝑟𝐿𝑖𝑚,𝐼𝐹𝐸𝑅) and 

also above a limit of self-consumption (denoted 𝐸𝑠𝑙𝑓𝑐𝑠𝑚𝑑,𝑡𝑜𝑡). In order to linearize the first condition 

on rated power, we define 𝑦𝐼𝐹𝐸𝑅,1 ∈ {0,1} a binary that indicates the position of 𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟 with 

respect to 𝑅𝑎𝑡𝑒𝑑𝑝𝑤𝑟𝐿𝑖𝑚,𝐼𝐹𝐸𝑅. We define it such as if 𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟 ≤ 𝑅𝑎𝑡𝑒𝑑𝑝𝑤𝑟𝐿𝑖𝑚,𝐼𝐹𝐸𝑅 𝑘𝑊 then 

𝑦𝐼𝐹𝐸𝑅,1 = 0 and if 𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟 ≥ 𝑅𝑎𝑡𝑒𝑑𝑝𝑤𝑟𝐿𝑖𝑚,𝐼𝐹𝐸𝑅 𝑘𝑊 then 𝑦𝐼𝐹𝐸𝑅,1 = 1: 

 𝑃𝐼𝐹𝐸𝑅1+ − 𝑃𝐼𝐹𝐸𝑅1− = 𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟 − 𝑅𝑎𝑡𝑒𝑑𝑝𝑤𝑟𝐿𝑖𝑚,𝐼𝐹𝐸𝑅 (20) 

 0 ≤ 𝑃𝐼𝐹𝐸𝑅1+ ≤ (1 − 𝑦𝐼𝐹𝐸𝑅1). 𝐵𝑖𝑔𝑀3 (21) 



 0 ≤ 𝑃𝐼𝐹𝐸𝑅1− ≤ 𝑦𝐼𝐹𝐸𝑅1. 𝐵𝑖𝑔𝑀3 (22)  

With 𝑃𝐼𝐹𝐸𝑅1+ ∈ ℝ+, 𝑃𝐼𝐹𝐸𝑅1− ∈ ℝ+ and 𝐵𝑖𝑔𝑀3 a big positive value.  

To linearize the second condition on the self-consumed energy, we name 𝑦𝐼𝐹𝐸𝑅,2(𝑛) ∈ {0,1} a vector 

of 𝑁 binaries that indicates the position of the total amount of energy produced during the year 𝑛 

(denoted 𝐸𝑝𝑟𝑜𝑑,𝑡𝑜𝑡) by the energy self-consumed during the year (𝐸𝑠𝑙𝑓𝑐𝑠𝑚𝑑,𝑡𝑜𝑡). Thus, ∀𝑛 ∈

⟦1;𝑁⟧, 𝐸𝑝𝑟𝑜𝑑,𝑡𝑜𝑡(𝑛) ≥ 𝐸𝑠𝑙𝑓𝑐𝑠𝑚𝑑,𝑡𝑜𝑡(𝑛) and if 𝐸𝑝𝑟𝑜𝑑,𝑡𝑜𝑡 > 𝐸𝑠𝑙𝑓𝑐𝑠𝑚𝑑,𝑡𝑜𝑡 then 𝑦𝐼𝐹𝐸𝑅,2 = 1 whereas if 

𝐸𝑝𝑟𝑜𝑑,𝑡𝑜𝑡 = 𝐸𝑠𝑙𝑓𝑐𝑠𝑚𝑑,𝑡𝑜𝑡 then 𝑦𝐼𝐹𝐸𝑅,2 = 0: 

 ∀𝑛 ∈ ⟦1;𝑁⟧ 𝑃𝐼𝐹𝐸𝑅2+(n) − 𝑃𝐼𝐹𝐸𝑅2−(n) = 𝐸𝑝𝑟𝑜𝑑,𝑡𝑜𝑡(𝑛) − 𝐸𝑠𝑙𝑓𝑐𝑠𝑚𝑑,𝑡𝑜𝑡(𝑛) (23) 

 ∀𝑛 ∈ ⟦1;𝑁⟧ 0 ≤ 𝑃𝐼𝐹𝐸𝑅2+(𝑛) ≤ 𝑦𝐼𝐹𝐸𝑅2(𝑛). 𝐵𝑖𝑔𝑀4 (24) 

 ∀𝑛 ∈ ⟦1;𝑁⟧ 0 ≤ 𝑃𝐼𝐹𝐸𝑅2−(𝑛) ≤ (1 − 𝑦𝐼𝐹𝐸𝑅2(𝑛)). 𝐵𝑖𝑔𝑀4 (25)  

 ∀𝑛 ∈ ⟦1;𝑁⟧ 0 ≤ 𝑦𝐼𝐹𝐸𝑅2(𝑛) ≤ 𝐸𝑝𝑟𝑜𝑑,𝑡𝑜𝑡(𝑛) − 𝐸𝑠𝑙𝑓𝑐𝑠𝑚𝑑,𝑡𝑜𝑡(𝑛) (26) 

In order to determine whether the producer is subject to IFER, we need to linearize the product of 

𝑦𝐼𝐹𝐸𝑅1 and 𝑦𝐼𝐹𝐸𝑅2 and collect the value in 𝑧𝐼𝐹𝐸𝑅(𝑛) ∈ {0,1} a vector of 𝑁 binaries: 

 ∀𝑛 ∈ ⟦1;𝑁⟧ 0 ≤ 𝑧𝐼𝐹𝐸𝑅(𝑛) ≤ 𝑦𝐼𝐹𝐸𝑅1 (27) 

 ∀𝑛 ∈ ⟦1;𝑁⟧ 0 ≤ 𝑧𝐼𝐹𝐸𝑅(𝑛) ≤ 𝑦𝐼𝐹𝐸𝑅2(𝑛) (28) 

 ∀𝑛 ∈ ⟦1;𝑁⟧ 𝑦𝐼𝐹𝐸𝑅1 + 𝑦𝐼𝐹𝐸𝑅2(𝑛) − 1 ≤ 𝑧𝐼𝐹𝐸𝑅(𝑛) (29) 

Finally, we define the values of 𝑇𝑎𝑥𝑒𝑠𝑠𝑜𝑙𝑑𝑁𝑅𝐽 as the linearization of the product of 𝑧𝐼𝐹𝐸𝑅 by 𝐼𝐹𝐸𝑅: 

 ∀𝑛 ∈ ⟦1;𝑁⟧, 0 ≤ 𝑇𝑎𝑥𝑒𝑠𝑠𝑜𝑙𝑑𝑁𝑅𝐽(𝑛) ≤ 𝑧𝐼𝐹𝐸𝑅(𝑛). 𝐵𝑖𝑔𝑀5 (30) 

 ∀𝑛 ∈ ⟦1;𝑁⟧, 𝑇𝑎𝑥𝑒𝑠𝑠𝑜𝑙𝑑𝑁𝑅𝐽(𝑛) ≤  𝐼𝐹𝐸𝑅𝑐𝑜𝑠𝑡 ∗ 0.8 ∗ 𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟 (31) 

 ∀𝑛 ∈ ⟦1;𝑁⟧,   𝐼𝐹𝐸𝑅𝑐𝑜𝑠𝑡 ∗ 0.8 ∗ 𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟 − (1 − 𝑧𝐼𝐹𝐸𝑅(𝑛)). 𝐵𝑖𝑔𝑀5 ≤ 𝑇𝑎𝑥𝑒𝑠𝑠𝑜𝑙𝑑𝑁𝑅𝐽(𝑛)(32) 



4.3 Tariffs and taxes structure of energy bought from the grid 

In this section, we specify the model of the electricity bill (equation (7)) in the self-consumption 

French context: 

∀𝑛 ∈ ⟦1;𝑁⟧, 𝐸𝑙𝑒𝑐𝐵𝑖𝑙𝑙𝑛𝑒𝑤(𝑛) = 𝐹𝑖𝑥𝑒𝑑𝑝𝑎𝑟𝑡 + 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑝𝑎𝑟𝑡(𝑛) + 𝑇𝑎𝑥𝑒𝑠𝑜𝑛𝐸𝑙𝑒𝑐𝐵𝑖𝑙𝑙(𝑛) 

The fixed part (𝐹𝑖𝑥𝑒𝑑𝑝𝑎𝑟𝑡(𝑛)) is given by the subscription fee of the electricity contract with the 

supplier. Besides, this fee usually includes some taxes that need to be retrieve in order to put it in 

variable𝑇𝑎𝑥𝑒𝑠𝑜𝑛𝐸𝑙𝑒𝑐𝐵𝑖𝑙𝑙(𝑛). We will detail these taxes in the case study. 

The variable part of the electricity bill  (𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑝𝑎𝑟𝑡(𝑛)) depends on the hourly consumption. In 

France, the price of the consumed electricity also depends on time slots (usually peak hours and off-

peak hours for households). The contract between a consumer and a supplier stipulates the time 

slots and the corresponding prices. Again some taxes are included in these prices, so in the case 

study we will specify it and added to the 𝑇𝑎𝑥𝑒𝑠𝑜𝑛𝐸𝑙𝑒𝑐𝐵𝑖𝑙𝑙. To calculate 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑝𝑎𝑟𝑡(𝑛) we need to 

multiply the time series of electricity prices by the time series of the electricity demand: 

 ∀𝑛 ∈ ⟦1;𝑁⟧, 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑝𝑎𝑟𝑡(𝑛) = ∑ 𝐸𝑐𝑠𝑚𝑑(𝑡). 𝑃𝑟𝑖𝑐𝑒𝑐𝑠𝑚𝑑(𝑡)𝐻.𝑛
𝑡=𝐻.(𝑛−1)+1  (33) 

With 𝐻 the number of time step in a year, 𝐸𝑐𝑠𝑚𝑑 ∈ ℝ𝑛𝐻+ a vector of 𝐻. 𝑁 elements giving the 

consumed energy and 𝑃𝑟𝑖𝑐𝑒𝑐𝑠𝑚𝑑 ∈ ℝ𝑛𝐻+ a vector of 𝐻. 𝑁 elements representing the price of the 

consumed energy. 

In the French regulation, there are four taxes that consumers need to pay on their electricity bill: 

𝐶𝑇𝐴,  𝑇𝐶𝐹𝐸, 𝑇𝑈𝑅𝑃𝐸 and 𝐶𝑆𝑃𝐸 and. The 𝐶𝑇𝐴 tax is fixed and the three others are described in the 

following sections. 

4.3.1 TURPE tax model 

The TURPE tax is updated regularly by the CRE institution. As we focus on households, we will model 

the TURPE for low voltage consumers (less than 250 V) (ENEDIS, 2017). TURPE is composed of three 



fixed elements: 𝐶𝐺, 𝐶𝐶, 𝐶𝑆𝑓𝑖𝑥𝑒𝑑. They are parameters and are defined by the grid operator (ENEDIS, 

2017) and one variable element: 𝐶𝑆𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 . Thus: 

 ∀𝑛 ∈ ⟦1;𝑁⟧ 𝑇𝑈𝑅𝑃𝐸(𝑛) = 𝐶𝐺 + 𝐶𝐶 + 𝐶𝑆𝑓𝑖𝑥𝑒 + 𝐶𝑆𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒(𝑛) (34) 

Regarding high voltage consumers, there are other fixed and variable elements. Some of them 

cannot be linearized. But, since they depend on the energy management and not on the design of 

the HRES, they can be set as parameters of the model. 

𝐶𝑆𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒(𝑛) ∈ ℝ𝑛+ and is defined as: 

 ∀𝑛 ∈ ⟦1;𝑁⟧ 𝐶𝑆𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒(𝑛) = ∑ 𝑐𝑜𝑒𝑓𝑐
𝑠. 𝐸𝑐𝑠𝑚𝑑,𝑡𝑜𝑡

𝑠 (𝑛)𝑁𝑏𝑇𝑠𝑙𝑜𝑡
𝑠=1  (35) 

Where 𝑁𝑏𝑇𝑠𝑙𝑜𝑡 is the number of time slots stipulated in the electricity contract, 𝑠 is the index of the 

current time slot, 𝑐𝑜𝑒𝑓𝑐
𝑠 are coefficient for each time period and are defined in (ENEDIS, 2017), 

𝐸𝑐𝑠𝑚𝑑,𝑡𝑜𝑡
𝑠  is the energy consumed during each time slot 𝑠. 

4.3.2 CSPE tax model  

In the context of self-consumption, if the rated power of the HRES is under a limit (denoted 

𝑅𝑎𝑡𝑒𝑑𝑝𝑤𝑟𝐿𝑖𝑚,𝐶𝑆𝑃𝐸) or if the total energy produced by the HRES is inferior to 𝐸𝑝𝑟𝑜𝑑𝑇𝑜𝑡𝐿𝑖𝑚,𝐶𝑆𝑃𝐸 then 

the consumer only pays the CSPE tax on the energy bought from the grid (𝐸𝑏𝑔ℎ𝑡,𝑡𝑜𝑡). Else, the CSPE 

tax is payed at the rate 𝐶𝑜𝑠𝑡𝑐𝑠𝑝𝑒 on the total energy consumed (𝐸𝑐𝑠𝑚𝑑,𝑡𝑜𝑡) (the one taken from the 

grid plus the one produced thank to the HRES). We linearize this two-level condition in the same way 

we linearized the one on IFER: 

  𝑃𝐶𝑆𝑃𝐸1+ − 𝑃𝐶𝑆𝑃𝐸1− = 𝑅𝑎𝑡𝑒𝑑𝑝𝑤𝑟𝐿𝑖𝑚,𝐶𝑆𝑃𝐸 − 𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟 (36) 

 0 ≤ 𝑃𝐶𝑆𝑃𝐸1+ ≤ 𝑦𝐶𝑆𝑃𝐸1. 𝐵𝑖𝑔𝑀6 (37) 

 0 ≤ 𝑃𝐶𝑆𝑃𝐸1− ≤ (1 − 𝑦𝐶𝑆𝑃𝐸1). 𝐵𝑖𝑔𝑀6 (38)  



With 𝑃𝐶𝑆𝑃𝐸1+ ∈ ℝ+, 𝑃𝐶𝑆𝑃𝐸1− ∈ ℝ+, 𝑦𝐶𝑆𝑃𝐸1 ∈ {0,1} and 𝐵𝑖𝑔𝑀6 a big positive value. When 

𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟 ≤ 𝑅𝑎𝑡𝑒𝑑𝑝𝑤𝑟𝐿𝑖𝑚,𝐶𝑆𝑃𝐸 then 𝑦𝐶𝑆𝑃𝐸1 = 1 and when 𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟 ≥ 𝑅𝑎𝑡𝑒𝑑𝑝𝑤𝑟𝐿𝑖𝑚,𝐶𝑆𝑃𝐸 then 

𝑦𝐶𝑆𝑃𝐸1 = 0. Therefore, 𝑦𝐶𝑆𝑃𝐸1 gives the value of the first condition. Then: 

 ∀𝑛 ∈ ⟦1;𝑁⟧,  𝑃𝐶𝑆𝑃𝐸2+(𝑛) − 𝑃𝐶𝑆𝑃𝐸2−(𝑛) = 𝐸𝑝𝑟𝑜𝑑𝑇𝑜𝑡𝐿𝑖𝑚,𝐶𝑆𝑃𝐸 − 𝐸𝑝𝑟𝑜𝑑,𝑡𝑜𝑡(𝑛) (39) 

 ∀𝑛 ∈ ⟦1;𝑁⟧, 0 ≤ 𝑃𝐶𝑆𝑃𝐸2+(𝑛) ≤ 𝑦𝐶𝑆𝑃𝐸2. 𝐵𝑖𝑔𝑀7 (40) 

 ∀𝑛 ∈ ⟦1;𝑁⟧, 0 ≤ 𝑃𝐶𝑆𝑃𝐸2−(𝑛) ≤ (1 − 𝑦𝐶𝑆𝑃𝐸2). 𝐵𝑖𝑔𝑀7 (41)  

With 𝑃𝐶𝑆𝑃𝐸2+ ∈ ℝ𝑛+, 𝑃𝐶𝑆𝑃𝐸2− ∈ ℝ𝑛+, 𝑦𝐶𝑆𝑃𝐸2 ∈ {0,1} and 𝐵𝑖𝑔𝑀7 a big positive value. When 

𝐸𝑝𝑟𝑜𝑑,𝑡𝑜𝑡(𝑛) ≤ 𝐸𝑝𝑟𝑜𝑑𝑇𝑜𝑡𝐿𝑖𝑚,𝐶𝑆𝑃𝐸 then 𝑦𝐶𝑆𝑃𝐸2 = 1 and when 𝐸𝑝𝑟𝑜𝑑,𝑡𝑜𝑡(𝑛) ≥ 𝐸𝑝𝑟𝑜𝑑𝑇𝑜𝑡𝐿𝑖𝑚,𝐶𝑆𝑃𝐸 then 

𝑦𝐶𝑆𝑃𝐸2 = 0. Therefore, 𝑦𝐶𝑆𝑃𝐸2 give the value of the second condition. 

To collect the value of the two-level condition in the vector of 𝑁 binaries 𝑧𝐶𝑆𝑃𝐸(𝑛), we need to 

linearize the product of 𝑦𝐶𝑆𝑃𝐸1 by 𝑦𝐶𝑆𝑃𝐸2 : 

 ∀𝑛 ∈ ⟦1;𝑁⟧ 0 ≤ 𝑧𝐶𝑆𝑃𝐸(𝑛) ≤ 1 − 𝑦𝐶𝑆𝑃𝐸1(𝑛) (42) 

 ∀𝑛 ∈ ⟦1;𝑁⟧ 0 ≤ 𝑧𝐶𝑆𝑃𝐸(𝑛) ≤ 1 − 𝑦𝐶𝑆𝑃𝐸2(𝑛) (43) 

 ∀𝑛 ∈ ⟦1;𝑁⟧ 1 − 𝑦𝐶𝑆𝑃𝐸1(𝑛) + 1 − 𝑦𝐶𝑆𝑃𝐸2(𝑛) − 1 ≤ 𝑧𝐶𝑆𝑃𝐸(𝑛) (44) 

If 𝑦𝐶𝑆𝑃𝐸1 = 0 or 𝑦𝐶𝑆𝑃𝐸2 = 0, then  𝑧𝐶𝑆𝑃𝐸 = 0. 

We define the value of the 𝐶𝑆𝑃𝐸 as: 

 ∀𝑛 ∈ ⟦1;𝑁⟧, 𝐶𝑆𝑃𝐸(𝑛) = 𝐶𝑆𝑃𝐸𝑡𝑚𝑝1(𝑛) + 𝐶𝑆𝑃𝐸𝑡𝑚𝑝2(𝑛) (45) 

Where 𝐶𝑆𝑃𝐸𝑡𝑚𝑝1 ∈ ℝ𝑛+ = 𝐶𝑜𝑠𝑡𝑐𝑠𝑝𝑒. 𝐸𝑏𝑔ℎ𝑡,𝑡𝑜𝑡 and 𝐶𝑆𝑃𝐸𝑡𝑚𝑝2 ∈ ℝ𝑛+ = 𝐶𝑜𝑠𝑡𝑐𝑠𝑝𝑒. 𝐸𝑐𝑠𝑚𝑑,𝑡𝑜𝑡: 

 ∀𝑛 ∈ ⟦1;𝑁⟧, 0 ≤ 𝐶𝑆𝑃𝐸𝑡𝑚𝑝1(𝑛) ≤ (1 − 𝑧
𝐶𝑆𝑃𝐸

(𝑛)). 𝐵𝑖𝑔𝑀8 (46) 

 ∀𝑛 ∈ ⟦1;𝑁⟧, 𝐶𝑆𝑃𝐸𝑡𝑚𝑝1(𝑛) ≤ 𝐶𝑜𝑠𝑡𝐶𝑆𝑃𝐸 . 𝐸𝑏𝑔ℎ𝑡,𝑡𝑜𝑡(𝑛) (47) 

 ∀𝑛 ∈ ⟦1;𝑁⟧, 𝐶𝑜𝑠𝑡𝐶𝑆𝑃𝐸 . 𝐸𝑏𝑔ℎ𝑡,𝑡𝑜𝑡(𝑛) − 𝐵𝑖𝑔𝑀8. 𝑧𝑐𝑠𝑝𝑒(𝑛) ≤  𝐶𝑆𝑃𝐸𝑡𝑚𝑝1(𝑛) (48) 



 ∀𝑛 ∈ ⟦1;𝑁⟧, 0 ≤ 𝐶𝑆𝑃𝐸𝑡𝑚𝑝2(𝑛) ≤ 𝑧𝐶𝑆𝑃𝐸(𝑛). 𝐵𝑖𝑔𝑀8 (49) 

 ∀𝑛 ∈ ⟦1;𝑁⟧, 𝐶𝑆𝑃𝐸𝑡𝑚𝑝2(𝑛) ≤ 𝐶𝑜𝑠𝑡𝐶𝑆𝑃𝐸 . 𝐸𝑐𝑠𝑚𝑑,𝑡𝑜𝑡(𝑛). 𝑑𝑡 (50) 

 ∀𝑛 ∈ ⟦1;𝑁⟧, 𝐶𝑜𝑠𝑡𝐶𝑆𝑃𝐸 . 𝐸𝑐𝑠𝑚𝑑,𝑡𝑜𝑡(𝑛) − 𝐵𝑖𝑔𝑀8. 𝑧𝑐𝑠𝑝𝑒(𝑛) ≤  𝐶𝑆𝑃𝐸𝑡𝑚𝑝2(𝑛) (51) 

4.3.3 TCFE tax model 

The 𝑇𝐶𝐹𝐸 tax is used to subsidize local administrations. It is composed of two parts, one for the 

town and one for the French department (equivalent to a county): 

 ∀𝑛 ∈ ⟦1;𝑁⟧ 𝑇𝐶𝐹𝐸(𝑛) = 𝑇𝐶𝐶𝐹𝐸𝑐𝑜𝑒𝑓 . 𝐸𝑏𝑔ℎ𝑡,𝑡𝑜𝑡(𝑛) + 𝑇𝐷𝐶𝐹𝐸𝑐𝑜𝑒𝑓 . 𝐸𝑏𝑔ℎ𝑡,𝑡𝑜𝑡(𝑛) (52) 

Where 𝑇𝐶𝐶𝐹𝐸𝑐𝑜𝑒𝑓 and 𝑇𝐷𝐶𝐹𝐸𝑐𝑜𝑒𝑓 are parameters of the problem that are set by the French 

government1. For big consumers that must subscribe to a contract above 𝑇𝐶𝐹𝐸𝑙𝑖𝑚, they are 

exonerated from 𝑇𝐶𝐹𝐸. 

In the next section, we will use the generic model as well as the MILP model to assess the economic 

viability of HRES in the context of French households. 

5 Case study presentation 

Figure 3 displays a scheme of the self-consumption infrastructures composed of photovoltaic panels 

on the house roof to supply the household electricity consumption. The HRES is made of a single 

element, aggregating the PV and the inverter. 

(PLEASE INSERT FIGURE 3) 
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One can remarks that no storage capacity are included in this HRES under study. Like others, we have 

previously stressed out the current exaggerated investment cost of battery storage that makes their 

use unprofitable nowadays (Roth et al., 2019). Hence, we have disregarded any storage here in order 

to focus discussions on self-consumption regulation framework. When electricity production is below 

the household electricity demand, the household buys electricity to the electricity supplier; when 

electricity production exceeds the consumption, the extra production can be sold to the electricity 

buyer or curtailed. Being encouraged by the 2017 regulation in France, self-consumption 

infrastructures are likely to multiply. Nevertheless, it is worth questioning whether it enables a 

reduction of French households environmental impact and whether the current grant for installation 

is encouraging citizens to install a maximum of rated power for their self-consumption installations 

and where is it needed. Hence, to perform this case study, we will consider four scenarios, mixing 

various localization and exposure: one favourable - the city of Carcassonne in the South of France 

with South exposure and one unfavourable – the city of Ruch on the middle of the West coast with a 

West exposure. The Carcassonne time series represents 1400 hours of equivalent maximum 

production while the one of Ruch represents 1060 hours. According to SOLARGIS map (SOLARGIS, 

2019) this later value is also representative of the energy potential available in 900 km north of 

Carcassonne, with a south exposure. 

We will also consider two kinds of households: one of 2 persons with a consumption of 4000 

kWh/year and one of 5 persons with a consumption of 8500 kWh/year.  

Below we explain the various parameters of the model and the objective function used in the MILP 

problem. 

5.1 Time model 

The time step is one hour and is denoted by 𝑑𝑡 = 1 ℎ. The time horizon is therefore 𝐻 = 8760 ℎ =

1 𝑦𝑒𝑎𝑟. Thus, the current time denoted 𝑡 lies between 1 ≤ 𝑡 ≤ 8760. The calculus is done over the 



8760 time steps and results are replicated over 𝑁 = 20 𝑦𝑒𝑎𝑟𝑠 which corresponds to the PV lifetime. 

Hence, the current year denoted 𝑛 is in between 1 ≤ 𝑛 ≤ 20. 

5.2 PV and inverter 

The PV production is modelled as follow: 

 ∀𝑡 ∈ ⟦1;𝑛𝐻⟧, 𝑃𝑝𝑟𝑜𝑑,𝑃𝑉(𝑡) = (𝑁𝑏𝑃𝑉 . 𝑃𝑢𝑛𝑖𝑡,𝑃𝑉(𝑡) − 𝑃𝑐𝑢𝑟𝑡,𝑃𝑉(𝑡)). 𝐸𝑓𝑓𝑖𝑛𝑣 (53) 

With 𝑃𝑝𝑟𝑜𝑑,𝑃𝑉 ∈ ℝ𝑛𝐻+ a variable of the problem that refer to the time series of the power delivered 

by the HRES. 𝑃𝑢𝑛𝑖𝑡,𝑃𝑉 is the time series of the production of one PV and it is a parameter of the 

problem. The unit time series are obtained thanks to the software PVsyst (PVsyst, 2019) for the two 

aforementioned localization in the incline plan of the rooftop (18°), with 1400 hr for Carcasonne and 

1060 hr for Ruch. 𝐸𝑓𝑓𝑖𝑛𝑣 is the inverter’s energy efficiency which is consider as constant and equal to 

94%. 𝑁𝑏𝑃𝑉 ∈ ℕ is the number of PV to install, it is a variable of the problem. Finally, 𝑃𝑐𝑢𝑟𝑡 ∈ ℝ𝑛𝐻+ is 

the curtailment of the production, it is also a variable of the problem and cannot exceed the 

production: 

 ∀𝑡 ∈ ⟦1;𝑛𝐻⟧, 0 ≤ 𝑃𝑐𝑢𝑟𝑡,𝑃𝑉(𝑡) ≤ 𝑃𝑝𝑟𝑜𝑑,𝑃𝑉(𝑡) (54) 

The total amount of energy produced by year is: 

 ∀𝑛 ∈ ⟦1;𝑁⟧, 𝐸𝑝𝑟𝑜𝑑𝑇𝑜𝑡,𝑃𝑉(𝑛) = ∑ 𝑃𝑝𝑟𝑜𝑑,𝑃𝑉(𝑡)𝑛.𝐻
𝑡=𝐻.(𝑛−1)+1 . 𝑑𝑡 (55) 

Finally, the number of installed PV is in between 0 and a maximum denoted 𝑁𝑏𝑚𝑎𝑥,𝑃𝑉: 

 0 ≤ 𝑁𝑏𝑃𝑉 ≤ 𝑁𝑏𝑚𝑎𝑥𝑃𝑉 (56) 

5.3 Electricity consumer  

ENEDIS, the French electricity supplier, publishes each year annual time series of load coefficients 

with 30 min time steps2. These time series are given for several categories of consumers (residential, 

professional, high and low voltage…). By multiplying these time series by the annual consumption of 
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the two households considered and by dividing each time step by the sum of all the coefficients of 

the time series, we obtain a load curve typical for each household. In this case study, we will consider 

the load coefficients time series labelled “RES11_BASE” which correspond to a residential consumer 

of more than 6 kVA.  

5.4 Electricity buyer 

The electricity buyer purchases electricity to the producer and then acts a an electricity supplier to 

sell it to consumers. 

The model of the electricity buyer is given by equations from 8 to 32. Table 1 gives the different tariff 

and grants affected to the k class of rated power. 

Table 1. Electricity sold to the grid prices 

Index k Rated power class  Tariff [c€/kWh]  Grant [€/kWp] 

1 𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟 ≤ 3𝑘𝑊 10 400 

2 3 𝑘𝑊 < 𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟 ≤ 9 𝑘𝑊 10 300 

3 9 𝑘𝑊 < 𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟 ≤ 36 𝑘𝑊 6 200 

4 36 𝑘𝑊 < 𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟 ≤ 100 𝑘𝑊 6 100 

5 100 𝑘𝑊 < 𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟  CRE call for bids or electricity markets 0 

 

According to Table 1, under 100 kW of rated power, the tariff is 10 c€/kWh until 9 kW and 6 c€/kWh 

until 100 kW. Above 100 kW the producer must participate to a call for bids of the CRE institution to 

get a tariff or to sell its production on electricity markets. Usually, the producer will try to obtain a 

tariff from CRE above the expected mean price of electricity markets in order to make more profits. 

This process of biddings is difficult to model in a MILP formulation and we do not model it. Moreover, 

the case study will focus on households, therefore the rated power of producing installations will be 

under 100 kW most of the time. Therefore, we will focus only on the first four rated power groups.  

Table 2 gives the parameters of IFER tax. 



Table 2. Values of the electricity buyer parameters 

Parameter Value 

𝑅𝑎𝑡𝑒𝑑𝑝𝑤𝑟𝐿𝑖𝑚,𝐼𝐹𝐸𝑅  100 kW 

𝐼𝐹𝐸𝑅𝑐𝑜𝑠𝑡  7400 €/MWh 

 

5.5 Electricity supplier 

The model of the electricity supplier is the one given from equations 33 to 52. The annual electricity 

reference bill 𝐸𝑙𝑒𝑐𝐵𝑖𝑙𝑙𝑟𝑒𝑓 is of 874 € for the 2 persons households and of 1662 € for the 5 persons 

households. The subscribed power for the grid connexion is 9 kVA for both households. The tariff 

structure of the consumed energy depends on the considered time slot: off-peak period (from 3 to 6 

AM, from 1 to 3 PM and at 9 PM) or peak period (from 10 PM to 2 AM, from 7 AM to 12 AM and 

from 4 PM to 8 PM). The price of consumed energy (𝑃𝑟𝑖𝑐𝑒𝑐𝑠𝑚𝑑) is fixed by the decree of October, 4th, 

2018. For our households, it is of 0.1579 €/kWh in peak period and 0.1228 €/kWh in off-peak period. 

These prices include the variable part of the TURPE given by the 𝑐𝑜𝑒𝑓𝑐
𝑠 introduced in the equation 

(35). The 𝑐𝑜𝑒𝑓𝑐
𝑠 values are given by (ENEDIS, 2017): in peak periods it equals 3.89 c€/kWh and in off-

peak periods it is of 2.38 c€/kWh. Thus, 𝑃𝑟𝑖𝑐𝑒𝑐𝑠𝑚𝑑 equals 0.119€/kWh in peak periods and 0.099 

€/kWh in off-peak periods. Otherwise, the decree of October, 4th, 2018 also defines the subscription 

rate at 151.34 €/year which includes the fixed TURPE part ( 𝑇𝑈𝑅𝑃𝐸𝑓𝑖𝑥𝑒𝑑 = 𝐶𝐺 + 𝐶𝐶 + 𝐶𝑆𝑓𝑖𝑥𝑒 

=  16.56 +  19.80 + 61.65 = 97.92 values from (ENEDIS, 2017)). So, the subscription is of 

53.42€/year without the TURPE. Table 3 recall all the value of the parameters of the electricity 

supplier. 

Table 3. Values of the electricity supplier parameters 

Parameter Value Unit 

𝐹𝑖𝑥𝑒𝑑𝑝𝑎𝑟𝑡  53.42 [€/year] 

𝐶𝐺 16.56 [€/year] 

𝐶𝐶 19.80 [€/year] 

𝐶𝑆𝑓𝑖𝑥𝑒  61.56  [€/year] 

𝐶𝐴𝐶𝑆 0 [€/year] 



𝑇𝐶𝐶𝐹𝐸𝑐𝑜𝑒𝑓  8.5 [€/MWh] 

𝑇𝐷𝐶𝐹𝐸𝑐𝑜𝑒𝑓  4 [€/MWh] 

𝐶𝑇𝐴 26.48 [€/year] 

𝑅𝑎𝑡𝑒𝑑𝑝𝑤𝑟𝐿𝑖𝑚,𝐶𝑆𝑃𝐸  100 [kWp] 

𝐸𝑝𝑟𝑜𝑑𝑇𝑜𝑡𝐿𝑖𝑚,𝐶𝑆𝑃𝐸  240 [GWh] 

𝐶𝑜𝑠𝑡𝐶𝑆𝑃𝐸  22.5 [€/MWh] 

𝑇𝐶𝐹𝐸𝑙𝑖𝑚  250 kVA 

 

5.6 Objective function and economic assessment 

The generic model presented in section 3.1 is used to assess the economic viability of the four 

scenarios of the case study: a household of 2 persons in Ruch, a household of 5 persons in Ruch, a 

household of 2 persons in Carcassonne, a household of 5 persons in Carcassonne. The objective 

function is defined by the maximisation of the function in equation (1): 

 𝑓𝑜𝑏𝑗 = 𝑚𝑎𝑥 (𝑁𝑃𝑉) = 𝑚𝑎𝑥 (𝐶𝐴𝑃𝐸𝑋𝑡𝑜𝑡 − 𝐺𝑟𝑎𝑛𝑡𝑠𝑙𝑑 + ∑
𝑂𝑃𝐸𝑋𝑡𝑜𝑡(𝑛)−𝐺𝑎𝑖𝑛𝑡𝑜𝑡(𝑛)

(1+𝑖)𝑛
𝑁
𝑛=1 ) (57) 

With the discount rate 𝑖 = 7% 

Regarding equation (2) and (3) only one HRES element, namely the PV element, is considered in the 

case study since the PV CAPEX and OPEX include the one of the inverter. Thus: 

 𝐶𝐴𝑃𝐸𝑋𝑡𝑜𝑡 = 𝐶𝐴𝑃𝐸𝑋𝑃𝑉 = 0.8 ∗ 𝑅𝑎𝑡𝑒𝑑𝑝𝑜𝑤𝑒𝑟 (58) 

 𝑂𝑃𝐸𝑋𝑡𝑜𝑡 = 𝑂𝑃𝐸𝑋𝑃𝑉 = 0.03 ∗ 𝐶𝐴𝑃𝐸𝑋𝑃𝑉  (59) 

Moreover, we will use two economic indicators: 

- The Payback period (PP) which is the 𝑁 that makes NPV null. The more PP is high the less the 

project is interesting. 

- The Internal Rate of Return (IRR) which is the 𝑖 that makes NPV null. The more the difference 

between the discount rate and the IRR, the less the project bears some risk. A typical value of 

the discount rate that we will use is 7%. 



6 Results and discussion 

6.1 Environmental impact 

In order to assess the environmental impact of the infrastructure of the Figure 3, we use Life Cycle 

Assessment (LCA) results of 1 kWh produced by building integrated PV and 1 kWh produced by the 

French electrical mix. The LCA data come from the software SimaPro  (SimaPro, 2019) and the 

database EcoInvent 3 (EcoInvent, 2019) using the Impact2002+ method. Table 4 gathers the impacts 

coefficients. It is important to notice that in the EcoInvent 3 database, the LCA data for the French 

electricity mix focuses only on the electricity production and discards the building phase of the 

production facilities. In order to keep consistency, we also have to discard the building phase of PV 

from the LCA, although this phase is likely very impactful.  

Table 4. LCA coefficients for integrated to building PV and French electricity mix 

Final category Impact category PV French electricity mix 

Human health 

 

Human toxicity [kg C2H3Cl eq/kWh] 2,54E-03 1,37E-03 

Respiratory effects [kg PM%2.5 eq/kWh] 1,03E-04 8,94E-05 

Ionizing radiation [Bq C_14 eq/kWh] 1,21 79,84 

Ozone layer deplation [kg CFC-11 eq/kWh] 1,52E-08 8,81E-08 

Photochemical oxidation [kg C2H4 eq/kWh] 5,56E-05 1,90E-05 

Total de la catégorie [µPt/kWh] 12,41 12,42 

Ecosystem quality 

Aquatic ecotoxicity [kg TEG in water/kWh] 9,71 31,45 

Terrestrial ecotoxicity [kg TEG in soil/kWh] 2,66 2,92 

Aquatic acidification [kg SO2 eq/kWh] 5,40E-04 4,67E-04 

Aquatic eutrophication [kg PO4 P-lim/kWh] 5,57E-05 7,36E-06 

Terrectrial acid/nutr [kg SO2 eq/kWh] 1,47E-03 1,40E-03 

Land occupation [m2 terres arables/kWh] 1,33E-03 1,62E-03 

Total de la catégorie [µPt/kWh] 1,79 2,04 

Climate change 
Global wariming [kg CO2 eq/kWh] 6,77E-02 8,60E-02 

Total de la catégorie [µPt/kWh] 6,84 8,69 

Ressources 

Non-renewable energy  

[MJ d’énergie primaire/kWh] 
1,00 11,38 

Mineral extraction [MJ surplus/kWh] 3,67E-02 3,89E-03 

Total de la catégorie [µPt/kWh] 6,84 74,92 



TOTAL [µPt/kWh] 27,88 (-28%) 98,07 

 

From these data, one can notice that 1 kWh produced with PV or with the French electricity mix are 

equivalent regarding human health impact in the EcoInvent 3 database. Indeed, if the French 

electricity mix is more impactful on ionizing radiation impact category since the French electricity mix 

is dominated by nuclear energy, the PV production is more harmful on other impact categories of 

human health. Nevertheless, on the three other final categories the PV electricity production is more 

benign to environment as it reduces by 28% the electricity consumption environmental impact of 

French households. Therefore, the more the rated power of the PV infrastructure installed, the less 

the environmental impact will be. 

Computations are done on a computer of 8 Go of RAM and an Intel Core i5 of 7th generation 

cadenced at 2.5 GHz. We use CPLEX (IBM, 2019) to solve the problem of 227 891 variables and 

149 119 constraints. 

6.2 Profitability analysis of self-consumption 

Table 5 gathers the two economic indicators, payback period PP and internal rate of return IRR of the 

four scenarios. Notice that according to Table 1 the sold electricy price is reduced above 9 kWp 

(Kilowatt-peak) from 10 c€/kWh to 6 c€/kWh. Table 6 shows that above a rated power of 9 kWp, the 

facilities are not profitable before the PV lifetime (20 years), on the less favourable case (Ruch 

location) without the grant or for a 2-person household with the grant. Therefore, one can infer that 

when the energy potential is low, it is not interesting to install more than 9 kWp in France for self-

consumption. Even on a high energy potential spot, like Carcassonne, the PP of the 2-person 

household is above 20 years and the IRR equal or less than the discount rate of 7% for rated power 

above 9 kWp. Regarding households of 5 persons the energy consumption is higher, so economy on 

the electricity bill grows. Thus, the system is profitable even above the 9 kWp for the Ruch location 

with a grant and whatever the grant for Carcasonne.  



Table 5. PP and IRR of the four scenario 

Rated power [kWp] 1.6 3.2 4.8 6.4 8 9.6 11.2 12.8 

Ruch 

2 persons 

Without grant  
PP [year] 10 11.5 13 14 14.5 >20 >20 >20 

IRR [%] 13 11 10 10.3 9.5 3.3 2.8 2.4 

With grant 
PP [year] 4 7.1 7.2 7.3 7.4 >20 >20 >20 

IRR [%] 28 20 19 18 17 6.7 6.1 5.5 

Ruch 

5 persons 

Without grant 
PP [year] 9 9.1 9.2 10 12 >20 >20 >20 

IRR [%] 13.9 13.7 12.7 11.9 11.2 6.6 5.9 5.3 

With grant 
PP [year] 4 5 5.5 6 6.2 12.5 14 15 

IRR [%] 29.8 23.3 21.9 20.7 19.9 10.6 9.7 9 

Carcassonne 

2 persons 

Without grant 
PP [year] 7.2 8 8 8.8 9 20 >20 >20 

IRR [%] 19 16.5 15.4 14.7 14.3 7 6.5 6.2 

With grant 
PP [year] 3 4 4.8 4.9 5 12 13 13.1 

IRR [%] 39 28 26 25 24 11 10.5 10.1 

Carcassonne 

5 persons 

Without grant 
PP [year] 6 6.1 7 7.5 7.8 13 14.5 15 

IRR [%] 21.3 19.7 18.1 17 16.3 10.1 9.4 8.8 

With grant 
PP [year] 3 3.5 4 4.2 4.5 8.5 9.5 10 

IRR [%] 43.6 32.3 29.9 28.3 27.2 14.8 13.9 13.2 

 

While profitability seems globally ok for self-consumption, the impact of the grant given once, at 

installation, requires further attention. Under 9 kWp, the grant on investment helps reduce the PP on 

every scenario. Interestingly, whatever the location, the grant is not necessary since the IRR values 

without grant are already above the reference discount rate of 7%. This comment is strikingly 

illustrated for the Carcassonne location with IRR value being never below 14.3% and reaching up to 

43.6%. It also holds to a lesser extend for the Ruch location with IRR ranging from 9.5% to 29.8%.  

Moreover, Table 5 shows that the French citizens are not encouraged to install a maximum of rated 

power thus reducing their environmental impact (see section 4.1), since the PP increases and IRR 

decreases with the rated power. In other words, the profit decreases with the rated power. A new 

environmental policy should be proposed to reverse this trend.  



6.3 A new environmental policy 

In France in 2010, the photovoltaic market for households was fast-growing thanks to the economic 

support by the government. At that time, the payback period PP was around 7 years and it was the 

decisive factor for many private persons. In 2010 the French government suddenly changed its 

economic support, which shattered the PV market. Now, with the 2017 self-consumption regulation, 

the market should recover, but according to the PP and IRR values discussed above, it appears that 

the French government budget allocated for incentives could be used more evenly in regards with 

the location and household composition and more efficiently to promote renewable energies. To 

corroborate this statement, Table 6 and Table 7 (in appendices) gather grants and gain/cost ratio for 

Ruch and Carcassonne respectively. The CAPEX, OPEX, bill saving and gain from sold energy to the 

grid are also given in appendices (Table 8). On every scenario, with or without grants, the gain/cost 

relation decreases with the rated power. In other words, the system cost increases faster than the 

gain, which explains the reason why the IRR decrease and the PP increase.  

As an alternative, we propose a new grant calculus to reverse this trend and to favour environmental 

impact reduction. We consider the PP of 7 years as a reference to encourage citizens to install self-

consumption systems. Then, we seek the necessary grant to make NPV equal to zero with 

𝑁 = 7 𝑦𝑒𝑎𝑟𝑠 and perform a linear regression: 𝑎𝑥 + 𝑏 with 𝑎 ∈ ℝ+ in c€/kWh and 𝑏 ∈ ℝ in €. Results 

are displayed in Figure 4.  

(PLEASE INSERT FIGURE 4) 



 

a) Ruch, 2 persons      b) Carcassonne, 2 persons 

 

c) Ruch, 5 persons      d) Carcassonne, 5 persons 

 

 

 

Unlike the non-monotonous current grant, the new one is always increasing with rated power (grey 

lines always go up). When changing from a 2-persons households to a 5-persons one, the grant 

decreases since the 5 persons households originally makes more profit than the 2-persons one 

(magnitude on incentive scale is lower). Similarly, the sunniest place, much more favoured in terms 

of energy potential, receives a reduced grant. Especially, in Carcassonne for low rated power (1.6 

kWp for 2 persons and 1.6 to 4.8 kWp for 5 persons) the grant is null (light grey) since the PP is under 

7 years without any grant (Table 6). Finally, it is noticeable that the grant calculus is more sensitive to 

the localisation and available sunshine than to the household composition. 

7 Conclusion 

This paper focuses on grid-connected HRES. The literature overview shows that the economic 

assessment of such HRES is incomplete and lacks genericity. Therefore, we propose a generic model 



to perform economic assessment of grid-connected systems. Then, we specify it as a MILP model in 

the context of the 2017 French regulation encouraging self-consumption. Finally, we study the case 

of two types of households – one of 2 persons and the other of 5 persons – equipped with PV panels 

and located in either Ruch (unfavourable sunshine) or Carcassonne (favourable sunshine). We have 

shown that the higher the rated power of the system, the lower the environmental impact of the 

household will be. We have also demonstrated that the current grant for investing in household PV 

does not encourage private persons to install a maximum of rated power and that it does not 

guarantee a uniform development of self-consumption infrastructure across the country. Thus, we 

propose a methodology to find the appropriate grant calculus to reverse those tendencies.  
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9 Appendices 

Table 6. Grant and gain/cost relation for Ruch 

 Rated power [kWp] 1.6 3.2 4.8 6.4 8 9.6 11.2 12.8 

Ruch 

2 persons 

Without grant  
Grant [€/kWp] 0 

Gain/Cost [%] 14.9 13.7 13.0 12.5 12.2 8.5 8.3 8.1 

Current grant  
Grant [€/kWp] 400 300 300 300 300 200 200 200 

Gain/Cost [%] 26.1 20.2 19.2 18.5 18.1 10.9 10.5 10.3 

New grant  
Grant [€/kWp] 0.278𝑥 − 148  0.366𝑥 − 404 0.598𝑥 − 931 

Gain/Cost [%] 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 

Ruch 

5 persons 

Without grant 
Grant [€/kWp] 0 

Gain/Cost [%] 15.5 15.3 14.6 14.0 13.6 10.5 10.0 9.7 

Current grant 
Grant [€/kWp] 400 300 300 300 300 200 200 200 

Gain/Cost [%] 27.2 22.7 21.6 20.7 20.0 13.3 12.8 12.3 

New grant 
Grant [€/kWp] 0.116𝑥 + 62 0.311𝑥 − 509 0.568𝑥 − 1571 

Gain/Cost [%] 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 



 

Table 7. Grant and gain/cost relation for Carcassonne 

 Rated power [kWp] 1.6 3.2 4.8 6.4 8 9.6 11.2 12.8 

Carcassonne 

2 persons 

Without grant 
Grant [€/kWp] 0 

Gain/Cost [%] 19.4 17.5 16.7 16.1 15.8 10.7 10.4 10.2 

Current grant 
Grant [€/kWp] 400 300 300 300 300 200 200 200 

Gain/Cost [%] 34 25.9 24.6 23.8 23.4 13.6 13.3 13.0 

New grant 
Grant [€/kWp] 0 0.194𝑥 − 461  0.491𝑥 − 940 

Gain/Cost [%] 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 

Carcassonne 

5 persons 

Without grant 
Grant [€/kWp] 0 

Gain/Cost [%] 21.3 20.0 18.7 17.9 17.3 12.8 12.3 11.9 

Current grant 
Grant [€/kWp] 400 300 300 300 300 200 200 200 

Gain/Cost [%] 37.5 29.6 27.7 26.4 25.6 16.3 15.6 15.1 

New grant 
Grant [€/kWp] 0 0.175𝑥 − 906 0.472𝑥 − 1752 

Gain/Cost [%] 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 

 

Table 8. CAPEX, OPEX, Gain and bill saving details 

Rated power 

[kWp] 
 1.6 3.2 4.8 6.4 8 9.6 11.2 12.8 

Ruch 

2 persons 

CAPEX [€] 1 280 2 560 3 840 5 120 6 400 7 680 8 960 10 240 

OPEX [€/year] 38.4 76.8 115 154 192 230 269 307 

Gain [€/year] 43 169 314 456 619 465 559 653 

Bill saving [€/yeat] 178 238 265 280 290 297 302 306 

Ruch 

5 persons 

CAPEX [€] 1 280 2 560 3 840 5 120 6 400 7 680 8 960 10 240 

OPEX [€/year] 38.4 76.8 115 154 192 230 269 307 

Gain [€/year] 5 81 196 328 468 368 458 549 

Bill saving [€/year] 225 376 456 506 540 565 585 600 

Carcassonne 

2 persons 

CAPEX [€] 1 280 2 560 3 840 5 120 6 400 7 680 8 960 10 240 

OPEX [€/year] 38.4 76.8 115 154 192 230 269 307 

Gain [€/year] 79 267 470 676 885 657 783 909 

Bill saving [€/year] 210 254 273 284 292 298 302 306 

Carcassonne 

5 persons 

CAPEX [€] 1 280 2 560 3 840 5 120 6 400 7 680 8 960 10 240 

OPEX [€/year] 38.4 76.8 115 154 192 230 269 307 

Gain [€/year] 16 148 327 520 720 554 677 801 

Bill saving [€/year] 302 448 509 544 568 586 600 611 



 

 


