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Abstract

We study the long-time behavior of localized solutions to linear or semilinear parabolic
equations in the whole space Rn, where n ≥ 2, assuming that the diffusion matrix depends on
the space variable x and has a finite limit along any ray as |x| → ∞. Under suitable smallness
conditions in the nonlinear case, we prove convergence to a self-similar solution whose profile
is entirely determined by the asymptotic diffusion matrix. Examples are given which show
that the profile can be a rather general Gaussian-like function, and that the approach to
the self-similar solution can be arbitrarily slow depending on the continuity and coercivity
properties of the asymptotic matrix. The proof of our results relies on appropriate energy
estimates for the diffusion equation in self-similar variables. The new ingredient consists in
estimating not only the difference w between the solution and the self-similar profile, but
also an antiderivative W obtained by solving a linear elliptic problem which involves w as
a source term. Hence, a good part of our analysis is devoted to the study of linear elliptic
equations whose coefficients are homogeneous of degree zero.

1 Introduction

We consider semilinear parabolic equations of the form

∂tu(x, t) = div
(

A(x)∇u(x, t)
)

+N(u(x, t)) , x ∈ R
n , t > 0 , (1.1)

which describe the evolution of a scalar quantity u(x, t) ∈ R under the action of inhomogeneous
diffusion and nonlinear self-interaction. We assume that the diffusion matrix A(x) in (1.1) is
symmetric, Lipschitz continuous as a function of x ∈ R

n, and satisfies the following uniform
ellipticity condition : there exist positive constants λ1, λ2 such that

λ1|ξ|2 ≤
(

A(x)ξ, ξ) ≤ λ2|ξ|2 , for all x ∈ R
n and all ξ ∈ R

n , (1.2)

where (·, ·) denotes the Euclidean scalar product in R
n. As for the nonlinearity, we suppose that

N is globally Lipschitz, that N(0) = 0, and that N(u) = O(|u|σ) as u→ 0 for some σ > 1+2/n.
Our goal is to investigate the long-time behavior of all solutions of (1.1) starting from sufficiently
small and localized initial data.

Even in the linear case where N = 0, it is necessary to make further assumptions on the
diffusion matrix A(x) to obtain accurate results on the long-time behavior of solutions of (1.1).
In fact, two classical situations are well understood : the asymptotically flat case, and the periodic
case. More precisely, if A(x) converges to the identity matrix as |x| → ∞, it is possible to show
that all solutions of the diffusion equation ∂tu = div(A(x)∇u) in L1(Rn) behave asymptotically
like the solutions of the heat equation ∂tu = ∆u with the same initial data, see e.g. [11]. On
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the other hand, if A(x) is a periodic function of x with respect to a lattice of Rn, the relevant
asymptotic equation is ∂tu = div(Ā∇u), where Ā ∈ Mn(R) is a homogenized matrix which
is determined by solving an elliptic problem in a cell of the lattice [12]. These results can be
extended to a class of semilinear equations as well [10, 11, 12].

In this paper, we consider a different situation which is apparently less studied in the liter-
ature : we assume that the diffusion matrix A(x) has radial limits at infinity in all directions.
This means that, for all x ∈ R

n, the following limit exists :

A∞(x) := lim
r→+∞

A(rx) . (1.3)

It is clear that the limiting matrix A∞(x) is symmetric, homogeneous of degree zero with respect
to x ∈ R

n, and uniformly elliptic in the sense of (1.2). We also suppose that the restriction of
A∞ to the unit sphere S

n−1 ⊂ R
n is Lipschitz continuous, and that the limit in (1.3) is reached

uniformly on S
n−1 at some rate ν > 0 :

sup
x∈Rn

|x|ν ‖A(x)−A∞(x)‖ < ∞ . (1.4)

Following [31, 14], to investigate the long-time behavior of solutions to (1.1), we introduce
forward self-similar variables defined by y = x/

√
1 + t and τ = log(1 + t). More precisely, we

look for solutions of (1.1) in the form

u(x, t) =
1

(1 + t)n/2
v
( x√

1 + t
, log(1 + t)

)

, x ∈ R
n , t ≥ 0 . (1.5)

Note that the change of variables (1.5) reduces to identity at initial time, so that u(x, 0) = v(x, 0).
The new function v(y, τ) satisfies the rescaled equation

∂τv = div
(

A
(

yeτ/2
)

∇v
)

+
1

2
y · ∇v + n

2
v +N (τ, v) , y ∈ R

n , τ > 0 , (1.6)

where
N (τ, v) = e(1+

n
2
)τ N

(

e−nτ/2v
)

. (1.7)

Equation (1.6) is non-autonomous, but has (at least formally) a well-defined limit as τ → +∞.
Indeed, using (1.3) and the assumption that N(u) = O(|u|σ) as u → 0 for some σ > 1 + 2/n,
we arrive at the limiting equation

∂τv = div
(

A∞(y)∇v
)

+
1

2
y · ∇v + n

2
v , y ∈ R

n , τ > 0 . (1.8)

In what follows we denote by L the differential operator in the right-hand side of (1.8).

Our main results show that, under appropriate assumptions, the solutions of (1.6) indeed
converge to solutions of (1.8) as τ → ∞, so that the long-time asymptotics are determined by
the linear equation (1.8). We first observe that the limiting equation has a unique steady state :

Proposition 1.1. There exists a unique solution ϕ ∈ H1(Rn) ∩ L1(Rn) of the elliptic equation

Lϕ(y) ≡ div
(

A∞(y)∇ϕ(y)
)

+
1

2
y · ∇ϕ(y) +

n

2
ϕ(y) = 0 , y ∈ R

n , (1.9)

satisfying the normalization condition
∫

Rn ϕ(y) dy = 1. Moreover ϕ is Hölder continuous, and
there exists a constant C ≥ 1 such that

C−1 e−C|y|2 ≤ ϕ(y) ≤ C e−|y|2/C , for all y ∈ R
n . (1.10)
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Remark 1.2. If we suppose that A∞(y) = 1 (the identity matrix), or more generally that
A∞(y)y = y for all y ∈ R

n, the “principal eigenfunction” ϕ defined in Proposition 1.1 is given
by the explicit formula ϕ(y) = (4π)−n/2 e−|y|2/4. In contrast, we show in Remark 3.11 below
that, if B(y) is a symmetric matrix that is homogeneous of degree zero and uniformly elliptic, the
Gaussian-like function ϕ(y) = exp

(

−1
4(B(y)y, y)

)

satisfies (1.9) for some appropriate choice of
the limiting matrix A∞, provided the oscillations of B(y) are not too rapid. This indicates that
the profile ϕ given by Proposition 1.1 can be a pretty general function satisfying the Gaussian
bounds (1.10).

We next consider solutions of (1.6) in the weighted L2 space

L2(m) =
{

v ∈ L2
loc(R

n)
∣

∣

∣
‖v‖L2(m) <∞

}

, ‖v‖2L2(m) =

∫

Rn

(1 + |y|2)m|v(y)|2 dy , (1.11)

which was used in a similar context in [15]. The parameter m ∈ R specifies the behavior of
the solutions at infinity. In particular, we observe that L2(m) →֒ L1(Rn) when m > n/2, as a
consequence of Hölder’s inequality.

We are now ready to state our main result in the linear case where N = 0.

Theorem 1.3. (Asymptotics in the linear case)
Assume that n ≥ 2 and that the diffusion matrix A(x) satisfies hypotheses (1.2)–(1.4). For all
m > n/2 and all initial data v0 ∈ L2(m), the rescaled equation (1.6) with N = 0 has a unique
global solution v ∈ C0([0,+∞), L2(m)) such that v(0) = v0. Moreover, for any µ satisfying

0 < µ <
1

2
min

(

m− n

2
, ν , β

)

, (1.12)

where ν > 0 is as in (1.4) and β ∈ (0, 1] is the exponent in (1.16) below, there exists a positive
constant C (independent of v0) such that

‖v(·, τ) − αϕ‖L2(m) ≤ C ‖v0‖L2(m) e
−µτ , for all τ ≥ 0 , (1.13)

where α =
∫

Rn v0(y) dy and ϕ is given by Proposition 1.1.

Remark 1.4. In terms of the original variables, the convergence result (1.13) implies in par-
ticular that, in the linear case N = 0, the solution u(x, t) of (1.1) with initial data u0 ∈ L2(m)
satisfies

∫

Rn

∣

∣

∣
u(x, t) − α

(1 + t)n/2
ϕ
( x√

1 + t

)
∣

∣

∣
dx = O(t−µ) , as t→ +∞ , (1.14)

where α =
∫

Rn u0(x) dx. Using parabolic regularity, it is possible to prove convergence in higher
Lp norms too, as in [11].

Remark 1.5. Theorem 1.3 holds true in all space dimensions n ≥ 1, but the proof we propose
only works for n ≥ 2 and depends on n in a nontrivial way. In fact, as we shall see in Section 4
below, the number of energy functionals we need increases with n, so that our method becomes
cumbersome in high dimensions. For simplicity we concentrate on the most relevant cases n = 2
and n = 3, for which we provide a complete proof, but we also give a pretty detailed sketch of
the argument when 4 ≤ n ≤ 7, see Section 4.5. On the other hand, the one-dimensional case,
which is substantially simpler for several reasons, is completely solved in our previous work [14],
where damped hyperbolic equations are also considered. In many respects, the present paper
can be viewed as a (rather nontrivial) extension of the method of [14] to higher dimensions.
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Before considering semilinear equations, we comment on the formula (1.12) for the conver-
gence rate µ, which is quite instructive. We first recall that, for any measurable matrix A(x)
satisfying the ellipticity conditions (1.2), the solutions of the linear equation ∂tu = div

(

A∇u
)

with localized initial data satisfy ‖u(·, t)‖L∞ = O(t−n/2) as t→ +∞, see for instance [13]. The
purpose of Theorem 1.3 is to exhibit the leading-order term in the asymptotic expansion of
u(x, t), and to estimate the rate µ at which the leading term is approached by the solutions.
As can be seen from the simple example of the heat equation, where A = 1, the convergence
rate µ depends on how fast the initial data decay as |x| → ∞. More precisely, it is known in
that example that Theorem 1.3 holds for any µ ≤ 1/2 such that 2µ < m − n

2 [15]. This result
is sharp and the constraints on µ are determined by the spectral properties of the differential
operator L in (1.8), considered as acting on the weighted space L2(m). If m > n/2, so that
L2(m) →֒ L1(Rn), the origin λ = 0 is a simple isolated eigenvalue, with Gaussian eigenfunction
ϕ as in Remark 1.2. The convergence rate µ is determined by the spectral gap between the origin
and the rest of the spectrum of L, see Figure 1 in Section 3.

In more general situations, the convergence rate µ obviously depends on how fast the limits
in (1.3) are reached. This effect can be studied using the techniques of [11] if we assume that
A(x) = 1 + B(x), where ‖B(x)‖ = O(|x|−ν) as |x| → ∞. In that case, the solutions of the
linear equation ∂tu = div

(

A∇u
)

in L2(m) behave asymptotically like the solutions of the heat
equation ∂tu = ∆u with the same initial data, but the convergence rate in (1.13) or (1.14) is
further constrained by the relation µ ≤ ν/2, which appears to be sharp. As can be expected,
we thus have µ→ 0 as ν → 0.

Finally, it is important to realize that the convergence rate µ also depends on the properties of
the limiting matrix A∞(x) itself, and cannot be arbitrarily large even if A = A∞ and m≫ n/2.
We have already seen that µ ≤ 1/2 when A∞ = 1, due to the presence of an isolated eigenvalue
λ = −1/2 in the spectrum of L if m > 1+n/2, see Figure 1. For a more general matrix A∞(x),
the principal eigenvalue of the corresponding operator L is fixed at the origin, as asserted by
Proposition 1.1, but the next eigenvalue can be pretty arbitrary, and this determines the width
of the spectral gap. In Section 3.2, we study an instructive example for which

A∞(x) = b1+ (1− b)
x⊗ x

|x|2 , (1.15)

where b > 0 is a free parameter. In that case, we can compute explicitly all eigenvalues and
eigenfunctions of the linear operator L in (1.8), and we observe that the spectral gap shrinks to
zero as b→ 0, see Figure 2.

The example (1.15) is already considered in classical papers by Meyers [25] and Serrin [29],
where uniqueness and regularity properties are studied for the solutions of the linear elliptic
equation − div

(

A∞(x)∇u
)

= f in R
n. It turns out that this equation plays a crucial role in our

analysis because, as we shall see in Section 4, the convergence result (1.13) is obtained using
energy estimates not only for the difference w = v − αϕ, but also for the “antiderivative” W
defined by − div

(

A∞(x)∇W
)

= w. It is important to keep in mind that the matrix A∞(x),
being homogeneous of degree zero, is not smooth at the origin unless it is constant. So we do
not expect that the solutions of the elliptic equation above are smooth, even if f is, but the
celebrated De Giorgi-Nash theory asserts that all weak solutions in H1

loc(R
n) are at least Hölder

continuous with exponent β, for some β ∈ (0, 1). This exponent is the third quantity that
appears in the formula (1.12) for the convergence rate. Consequently, Theorem 1.3 draws an
original connection between the regularity properties of the elliptic problem and the long-time
behavior of the solutions of the evolution equation.

To study the elliptic problem, we consider the associated Green function G(x, y), which is
uniquely defined at least if n ≥ 3. For the reasons mentioned above, that function is Hölder
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continuous with exponent β, but not more regular unless A∞ is constant. However, using the
assumption that A∞ is homogeneous of degree zero and Lipschitz outside the origin, it is possible
to establish the following gradient estimate

|∇xG(x, y)| ≤ C

(

1

|x− y|n−1
+

1

|x|1−β |x− y|n−2+β

)

, x 6= y , x 6= 0 , (1.16)

where the second term in the right-hand side describes the precise nature of the singularity at
the origin. As is well known, the Green function of the Laplace operator satisfies (1.16) with
β = 1, but for nonconstant homogeneous matrices A∞(x) we have β < 1 in general. Estimate
(1.16) is apparently new and plays an important role in our analysis of the elliptic problem,
hence in the proof of Theorem 1.3.

Although we only considered linear equations so far, the techniques we use in the proof
of Theorem 1.3 are genuinely nonlinear, and were originally developed to handle semilinear
problems, see [31, 14]. To illustrate the scope of our method, we also treat the full equation
(1.1) with a nonlinearity N that is “irrelevant” for the long-time asymptotics of small and
localized solutions, according to the terminology introduced in [5]. For simplicity, we make here
rather strong assumptions on N , which could be relaxed at expense of using additional energy
functionals in the proof. We suppose that there exist two constants C > 0 and σ > 1+2/n such
that

∣

∣N(u)
∣

∣ ≤ C|u|σ and
∣

∣N(u)−N(ũ)
∣

∣ ≤ C|u− ũ| , for all u, ũ ∈ R . (1.17)

Our second main result is the following :

Theorem 1.6. (Asymptotics in the semilinear case)
Assume that n ≥ 2 and the diffusion matrix A(x) satisfies hypotheses (1.2)–(1.4), and that
conditions (1.17) are fulfilled by the nonlinearity N . Given any m > n/2, there exist a positive
constant ǫ0 such that, for all initial data v0 ∈ L2(m) with ‖v0‖L2(m) ≤ ǫ0, the rescaled equation
(1.6) has a unique global solution v ∈ C0([0,+∞), L2(m)) such that v(0) = v0. Moreover, there
exists some α∗ ∈ R and, for all µ satisfying

0 < µ <
1

2
min

(

m− n

2
, ν , β , 2η

)

, where η =
n

2

(

σ − 1
)

− 1 , (1.18)

there exists a positive constant C (independent of v0) such that

‖v(·, τ) − α∗ϕ‖L2(m) ≤ C ‖v0‖L2(m) e
−µτ , for all τ ≥ 0 , (1.19)

where ϕ is given by Proposition 1.1.

Remark 1.7. The integral of u is not preserved under the nonlinear evolution defined by (1.1),
and this explains why there is no formula for the asymptotic mass α∗ in Theorem 1.6. However,
the proof shows that α∗ =

∫

Rn v0 dy +O(‖v0‖σL2(m)), where σ is as in (1.17). It is important to

observe that the convergence rate µ in (1.18) is also affected by the nonlinearity, through the
value of the parameter σ. In particular µ converges to zero as σ approaches from above the
critical value 1 + 2/n, and no convergence at all is expected if σ ≤ 1 + 2/n.

Remark 1.8. As in the linear case, our strategy to prove Theorem 1.6 becomes complicated in
large space dimensions. For simplicity we provide a complete proof only if n = 2, or if n = 3 and
µ < 1/4. The other cases can be treated using the hierarchy of energy functionals introduced in
Section 4.5.
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The rest of this paper is organized as follows. In Section 2, we study in some detail the elliptic
equation − div

(

A∞∇u
)

= f under the assumption that the matrix A∞(x) is homogeneous of
degree zero and uniformly elliptic. In particular, we derive estimates for the associated Green
function, and we apply them to bound the solution u in terms of the data f in weighted L2

spaces. In this process we use a general result on integral operators with homogeneous kernels,
which is essentially due to Karapetiants and Samko [19]. In Section 3, we investigate the spectral
properties of the linear operator defined by the right-hand side of (1.8); in particular, we prove
Proposition 1.1 and we establish a few additional properties of the principal eigenfunction ϕ.
We also study in detail the particular case where the matrix A∞ is given by (1.15). Section 4
is devoted to the proof of Theorem 1.3, using weighted energy estimates for the perturbation
w = v−αϕ. As was already mentioned, the main original idea is to introduce the “antiderivative”
W , which is defined as the solution of the elliptic equation − div

(

A∞∇W
)

= w. It turns out
that weighted L2 estimates for both W and w are sufficient to establish the convergence result
(1.13) if n = 2, or if n = 3 and µ < 1/4, whereas additional energy functionals are needed in the
other cases. The same strategy works in the nonlinear case too, under suitable assumptions on
the function N , and the details are worked out in Section 5. The final Section 6 is an appendix
where a few auxiliary results are collected for easy reference.

Acknowledgements. This project started more than 15 years ago, but was left aside for a
long time due to other priorities. Paradoxically, the untimely demise of Geneviève Raugel in
spring 2019 gave a new impetus to the subject. The authors are indebted to Marius Paicu for
his active participation at the early stage of this project, and to Emmanuel Russ for constant
help on many technical questions. All three authors were supported by the project ISDEEC
ANR-16-CE40-0013 of the French Ministry of Higher Education, Research and Innovation.

2 The diffusion operator with homogeneous coefficients

In this section, we study the elliptic operator H on L2(Rn) formally defined by

Hu = − div
(

A∞(x)∇u
)

, u ∈ L2(Rn) , (2.1)

where the matrix-valued coefficient A∞(x) satisfies the following assumptions :

1) The n×n matrix A∞(x) is symmetric for all x ∈ R
n, and the operator H is uniformly elliptic

in the sense of (1.2);

2) The map A∞ : Rn → Mn(R) is homogeneous of degree zero : A∞(λx) = A∞(x) for all x ∈ R
n

and all λ > 0;

3) The restriction of A∞ to the unit sphere S
n−1 ⊂ R

n is a Lipschitz continuous function.

Elliptic operators of the form (2.1) are of course well known, and were extensively studied
in the literature, see for instance [7, 16]. For the reader’s convenience we recall here a few
basic properties, paying special attention to the homogeneity assumption 2), which will play an
important role in our analysis. As a consequence of homogeneity, the function x 7→ A∞(x) is
necessarily discontinuous at x = 0, unless it is identically constant. Moreover, in view of 2) and
3), there exists a constant C > 0 such that ‖A∞(x)‖ ≤ C for all x ∈ R

n and

‖∇A∞(x)‖ ≤ C

|x| , for all x ∈ R
n \ {0} . (2.2)
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2.1 Definition and domain

To give a rigorous definition of the operator H, the easiest way is to consider the corresponding
quadratic form and to use the classical representation theorem, see e.g. [20, Section VI.2]. Let
B be the bilinear form on L2(Rn) defined by D(B) = H1(Rn) and

B(u1, u2) =

∫

Rn

(

A∞(x)∇u1(x),∇u2(x)
)

dx , u1, u2 ∈ D(B) .

Under our assumptions on the matrix A∞(x), it is easily verified that the form B is symmetric,
closed, and nonnegative. Applying the representation theorem, we thus obtain :

Proposition 2.1. There exists a (unique) nonnegative selfadjoint operator H : D(H) → L2(Rn)
such that D(H) ⊂ D(B) and B(u1, u2) = (Hu1, u2) for all u1 ∈ D(H) and all u2 ∈ D(B). In
addition D(H) = {u ∈ H1(Rn) | div(A∞∇u) ∈ L2(Rn)} where the divergence is understood in
the sense of distributions.

If H has constant coefficients, namely if the matrix A∞ does not depend on x, it is clear
that D(H) = H2(Rn). However, this is not true in the general case, as can be seen from the
example of the Meyers-Serrin matrix (1.15) where D(H) contains functions u that are not H2

in a neighborhood of the origin, see Section 3.2. As a matter of fact, it does not seem obvious
to determine exactly the domain D(H) under our assumptions on the diffusion matrix A∞, but
the following (elementary) observations can nevertheless be made.

Remarks 2.2. (On the domain of H)

1. Since A∞ is Lipschitz outside the origin, the elliptic regularity theory [16, Section 8.4] asserts
that D(H) ⊂ H1(Rn) ∩H2(Rn \Br) for any r > 0, where Br = {x ∈ R

n | |x| ≤ r}.
2. If n ≥ 3, then D(H) ⊃ H2(Rn). Indeed, if u ∈ H2(Rn), we have by Leibniz’s rule

Hu = −
n
∑

i,j=1

(

A∞(x)ij∂
2
xixj

u+ ∂xi(A∞(x)ij)∂xju
)

.

The first term in the right-hand side obviously belongs to L2(Rn), and so does the second one
due to estimate (2.2) and Hardy’s inequality

∥

∥

∥

v

|x|
∥

∥

∥

L2(Rn)
≤ 2

n− 2
‖∇v‖L2(Rn) , v ∈ H1(Rn) , n ≥ 3 , (2.3)

see e.g. [28, Section 2.1]. Thus Hu ∈ L2(Rn), hence u ∈ D(H).

3. If n ≥ 3 and A∞(x) = 1 + ǫB(x), where B is homogeneous of degree zero and Lipschitz
continuous on the sphere Sn−1, then D(H) = H2(Rn) for all sufficiently small ǫ ∈ R. Indeed, in
that case, the argument above shows thatH is a small perturbation of −∆ in L(H2(Rn), L2(Rn)),
the space of bounded linear maps from H2(Rn) into L2(Rn). Since 1−∆ ∈ L(H2(Rn), L2(Rn))
is invertible, the same property remains true for 1+H if ǫ is sufficiently small, and this implies
that D(H) = H2(Rn).

2.2 Semigroup and fundamental solution

We next consider the evolution equation ∂tu+Hu = 0, namely the linear diffusion equation

∂tu(x, t) = div
(

A∞(x)∇u(x, t)
)

, x ∈ R
n , t > 0 , (2.4)
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which is the analogue of (1.8) in the original variables. Since the operator H is selfadjoint and
nonnegative, it is well known that −H generates an analytic semigroup e−tH in L2(Rn) which
satisfies the contraction property ‖e−tHu‖L2 ≤ ‖u‖L2 for all t ≥ 0, see e.g. [27, Chapter 1]. In
particular, the Cauchy problem for equation (2.4) is well posed for all initial data u0 ∈ L2(Rn),
the solution being u(t) = e−tHu0 for all t ≥ 0.

On the other hand, using the fact that the matrix A∞ satisfies the uniform ellipticity condi-
tion (1.2), one can show that the semigroup generated by −H is hypercontractive [7, Section 2],
which means that e−Ht is a bounded operator from L2(Rn) to L∞(Rn) for any t > 0, and also
from L1(Rn) to L2(Rn) by duality. By the semigroup property, it follows that e−Ht is also a
bounded operator from L1(Rn) to L∞(Rn), and this implies that there exists a unique integral
kernel Γ(x, y, t) such that, for any u ∈ L1(Rn) or L2(Rn),

(

e−tHu
)

(x) =

∫

Rn

Γ(x, y, t)u(y) dy , x ∈ R
n , t > 0 , (2.5)

see Remark 2.3 below. The kernel Γ(x, y, t) is usually called the fundamental solution of the
parabolic equation (2.4).

From the pioneering work of De Giorgi [8] and Nash [26], we know that Γ is a Hölder
continuous function of its three arguments, and the strong maximum principle [16, Section 8.7]
implies that Γ is strictly positive. The following additional properties will be used later on :

a) Since H is selfadjoint, we have Γ(x, y, t) = Γ(y, x, t) for all x, y ∈ R
n and all t > 0.

b) For all x, y ∈ R
n and all t > 0, the following identities hold

∫

Rn

Γ(x, y, t) dx =

∫

Rn

Γ(x, y, t) dy = 1 . (2.6)

c) There exists a constant C > 1 such that, for all x, y ∈ R
n and all t > 0,

1

Ctn/2
e−C|x−y|2/t ≤ Γ(x, y, t) ≤ C

tn/2
e−|x−y|2/(Ct) . (2.7)

Such Gaussian bounds were first established by Aronson [2, 3], see also [7, Chap. 3].

d) Since A∞ is homogeneous of degree zero, we have

λn Γ(λx, λy, λ2t) = Γ(x, y, t) , (2.8)

for all x, y ∈ R
n and all t > 0.

Remark 2.3. That an integral kernel can be associated to any bounded linear operator from
Lp(Ω) to Lq(Ω) with q > p is a “classical” result, which is however rather difficult to locate
precisely in the literature. According to [32], this result is due to Dunford in the particular case
where Ω = [0, 1], and to Buhvalov [6] in more general situations.

2.3 The Green function in dimension n ≥ 3

We next consider the elliptic equation Hu = f , namely

− div
(

A∞(x)∇u(x)
)

= f(x) , x ∈ R
n , (2.9)

where f : Rn → R is given and u : Rn → R is the unknown function. If n ≥ 3 and f is, for
instance, a continuous function with compact support, it is well known that equation (2.9) has a
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unique solution u that vanishes at infinity. In fact, uniqueness is a consequence of the maximum
principle for the uniformly elliptic operator H, see [16, Chapter 3], and existence follows from
the integral representation

u(x) =

∫

Rn

G(x, y)f(y) dy , x ∈ R
n , (2.10)

where G(x, y) is the Green function defined by

G(x, y) =

∫ ∞

0
Γ(x, y, t) dt > 0 , for all x, y,∈ R

n , x 6= y . (2.11)

The following elementary properties are direct consequences of the corresponding assertions for
the fundamental solution Γ :

a) The Green function G is symmetric : G(x, y) = G(y, x) for all x 6= y.

b) There exists a constant C > 1 such that

C−1

|x− y|n−2
≤ G(x, y) ≤ C

|x− y|n−2
, for all x 6= y . (2.12)

c) The Green function is homogeneous of degree 2− n : λn−2G(λx, λy) = G(x, y) for all x 6= y
and all λ > 0.

d) For any y ∈ R
n and any test function v ∈ C∞

c (Rn), we have
∫

Rn

(

A∞(x)∇xG(x, y) ,∇v(x)
)

dx = v(y) . (2.13)

The last property implies that − divx
(

A∞(x)∇xG(x, y)
)

= δ(x − y) in the sense of distri-
butions, so that G(x, y) can be considered as the fundamental solution of the elliptic equation
(2.9). The main statement in this section is the following proposition, which gives accurate
Hölder and gradient estimates for G under our assumptions on the diffusion matrix A∞.

Proposition 2.4. Assume that n ≥ 3, and let G be the Green function associated with the elliptic
problem (2.9), where the diffusion matrix is symmetric, uniformly elliptic, and homogeneous of
degree zero. There exist constants C > 0 and β ∈ (0, 1) such that

|G(x1, y)−G(x2, y)| ≤ C|x1 − x2|β
(

1

|x1 − y|n−2+β
+

1

|x2 − y|n−2+β

)

, (2.14)

for all x1, x2, y ∈ R
n with x1 6= y and x2 6= y. Moreover

|∇xG(x, y)| ≤ C

(

1

|x− y|n−1
+

1

|x|1−β |x− y|n−2+β

)

, (2.15)

for all x, y ∈ R
n with x 6= y and x 6= 0.

Proof. The Hölder estimate (2.14) is explicitly stated in [17, Theorem 1.9], but in that classical
reference the elliptic equation (2.9) is considered in a bounded domain Ω ⊂ R

n with homogeneous
Dirichlet conditions at the boundary ∂Ω. The more recent work [18] studies a class of strongly
elliptic systems that includes the scalar equation (2.9). In the whole space R

n, the following
estimate is stated in [18, Section 3.6] : there exist C > 0 and 0 < β < 1 such that

|G(x1, y)−G(x2, y)| ≤ C|x1 − x2|β|x1 − y|2−n−β , if |x1 − x2| < |x1 − y|/2 . (2.16)
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Exchanging the roles of x1 and x2, we deduce

|G(x1, y)−G(x2, y)| ≤ C|x1 − x2|β|x2 − y|2−n−β , if |x1 − x2| < |x2 − y|/2 . (2.17)

In the intermediate region where xj 6= y and |x1−x2| ≥ |xj−y|/2 for j = 1, 2, we have by (2.12)

|G(xj , y)| ≤ C|xj − y|2−n ≤ C|x1 − x2|β |xj − y|2−n−β , j = 1, 2 ,

hence

|G(x1, y)−G(x2, y)| ≤ G(x1, y) +G(x2, y) ≤ C

( |x1 − x2|β
|x1 − y|n−2+β

+
|x1 − x2|β

|x2 − y|n−2+β

)

. (2.18)

Combining (2.16)–(2.18), we obtain (2.14) in all cases.

We now prove the gradient estimate (2.15), which takes into account the fact that the
diffusion matrix in (2.9) is homogeneous of degree zero. We use the following auxiliary result.

Lemma 2.5. [17] Assume that u is a bounded solution of the elliptic equation Hu = 0 in the
domain Ω = {x ∈ R

n | |x− x0| < r}, where x0 ∈ R
n, x0 6= 0, and 0 < r ≤ |x0|/2. Then

|∇u(x0)| ≤
C

r
sup
x∈Ω

|u(x)| , (2.19)

where C > 0 depends only on n, on λ1, λ2 in (1.2), and on the constant in (2.2).

Estimate (2.19) follows immediately from Lemma 3.1 in [17] and its proof, if we use the fact
that the matrix A∞(x) in (2.9) satisfies the Lipschitz estimate

‖A∞(x)−A∞(y)‖ ≤ C

|x0|
|x− y| , for all x, y ∈ Ω .

We now come back to the proof of estimate (2.15). Fix x0 ∈ R
n, x0 6= 0, and take y ∈ R

n,
y 6= x0. If |x0| ≤ |x0− y|/2, we apply Lemma 2.5 with r = |x0|/2 and u(x) = G(x, y)−G(x0, y).
We know from (2.14) that |u(x)| ≤ C|x−x0|β |x0−y|2−n−β for x ∈ Ω = B(x0, r), and we deduce
from (2.19) that

|∇u(x0)| = |∇G(x0, y)| ≤
C

|x0|1−β |x0 − y|n−2+β
. (2.20)

In the converse case where |x0| > |x0 − y|/2, we apply Lemma 2.5 with r = |x0 − y|/4 and
u(x) = G(x, y). As |u(x)| ≤ C|x− y|2−n, we deduce from (2.19) that

|∇u(x0)| = |∇G(x0, y)| ≤
C

|x0 − y|n−1
. (2.21)

Combining (2.20), (2.21), we obtain estimate (2.15) in all cases. The proof of Proposition 2.4 is
now complete.

2.4 The Green functions in dimension n = 2

In the two-dimensional case, the integral in (2.11) does not converge anymore, and it is no longer
possible to solve the elliptic problem (2.9) using a positive Green function that decays to zero
at infinity. However, as is shown in the Appendix of [21], see also [9, 30], it is still possible to
define a Green function G(x, y) with the following properties :

i) G is symmetric : G(x, y) = G(y, x) for all x, y ∈ R
2 with x 6= y.
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ii) G is Hölder continuous for x 6= y, and there exists a constant C > 0 such that

|G(x, y)| ≤ C
(

1 +
∣

∣log |x− y|
∣

∣

)

, x 6= y . (2.22)

iii) For any f ∈ C0
c (R

2) such that
∫

R2 f(y) dy = 0, the unique solution of the elliptic equation
(2.9) such that u(x) → 0 as |x| → ∞ is given by

u(x) =

∫

R2

G(x, y)f(y) dy , x ∈ R
2 . (2.23)

iv) Equality (2.13) with n = 2 holds for all y ∈ R
2 and all test functions v ∈ C∞

c (R2).

The Green function with these properties is unique up to an additive constant. In the
particular case where A∞ = 1, we have the explicit expression G(x, y) = −(2π)−1 log |x− y|. As
is clear from that example, the Green function is not homogeneous. However, using the fact that
A∞(x) is homogeneous of degree zero, it is easy to verify that, if G(x, y) is a Green function, so
is G(λx, λy) for any λ > 0. Thus G(λx, λy) −G(x, y) must be equal to a constant c(λ), which
depends continuously only on λ. As c(λ1λ2) = c(λ1) + c(λ2) for all λ1, λ2 > 0 by construction,
we conclude that there exists a (positive) real number c0 such that

G(λx, λy) = G(x, y) + c0 log
1

λ
, (2.24)

for all x 6= y and all λ > 0.

The analogue of Proposition 2.4 in the present case is :

Proposition 2.6. Assume that n = 2, and let G be a Green function associated with the elliptic
problem (2.9), where the diffusion matrix is symmetric, uniformly elliptic, and homogeneous of
degree zero. There exist constants C > 0 and β ∈ (0, 1) such that estimates (2.14), (2.15) hold
with n = 2.

Proof. For a class of elliptic systems that include the scalar equation (2.9), a Green function in
the whole plane R2 is constructed in [30, Section 6], and is shown to satisfy the Hölder estimate

|G(x1, y)−G(x2, y)| ≤ C
|x1 − x2|β
|x1 − y|β , if |x1 − x2| < |x1 − y|/2 ,

which is the exact analogue of (2.16) when n = 2. Exchanging the roles x1 and x2, we also have

|G(x1, y)−G(x2, y)| ≤ C
|x1 − x2|β
|x2 − y|β , if |x1 − x2| < |x2 − y|/2 .

In the intermediate region where xj 6= y and |x1 − x2| ≥ |xj − y|/2 for j = 1, 2, we use the
fact that the function (x1, x2, y) 7→ G(x1, y) − G(x2, y) is homogeneous of degree zero, as a
consequence of (2.24). We can thus assume that |x1 − x2| = 1, and using (2.22) we easily find

|G(x1, y)−G(x2, y)| ≤ C

( |x1 − x2|β
|x1 − y|β +

|x1 − x2|β
|x2 − y|β

)

, (2.25)

which completes the proof of (2.14) when n = 2.

To establish the gradient estimate (2.15) for n = 2, we use again Lemma 2.5, which is
valid in all space dimensions. Proceeding as in the proof of Proposition 2.4, we fix x0 ∈ R

2,
x0 6= 0, and take y ∈ R

2, y 6= x0. If |x0| ≤ |x0 − y|/2, we apply Lemma 2.5 with r = |x0|/2
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and u(x) = G(x, y) − G(x0, y). From (2.25) we know that |u(x)| ≤ C|x − x0|β|x0 − y|−β for
x ∈ Ω = B(x0, r), and we deduce from (2.19) that

|∇u(x0)| = |∇G(x0, y)| ≤
C

|x0|1−β |x0 − y|β .

In the converse case where |x0| > |x0 − y|/2, we apply Lemma 2.5 with r = |x0− y|/4 and again
u(x) = G(x, y)−G(x0, y). As |u(x)| ≤ C by (2.25), we deduce from (2.19) that

|∇u(x0)| = |∇G(x0, y)| ≤
C

|x0 − y| .

This completes the proof of estimate (2.15) in the two-dimensional case.

2.5 Weighted estimates for the elliptic equation

The aim of this section is to derive estimates on the integral operator K formally defined by

K[f ](x) =

∫

Rn

G(x, y)f(y) dy , x ∈ R
n , (2.26)

where G is the Green function introduced in Section 2.3 or 2.4. In the two-dimensional case,
the Green function is only defined up to an additive constant, but we always assume that f is
integrable and

∫

R2 f(y) dy = 0, so that there is no ambiguity in definition (2.26).

If n ≥ 3, we know from (2.12) that G(x, y) ≤ C|x− y|2−n for all x 6= y. Using the classical
Hardy-Littlewood-Sobolev inequality [23], we deduce the useful estimate

∥

∥K[f ]
∥

∥

Lq(Rn)
≤ C‖f‖Lp(Rn) , if 1 < p <

n

2
and

1

q
=

1

p
− 2

n
. (2.27)

However, the bound (2.27) is not sufficient for our purposes, first because the case n = 2 is
excluded, and also because we need estimates in the weighted spaces. These improved bounds
will be obtained using the following general result, which concerns integral operators of the form

K[f ](x) =

∫

Rn

k(x, y)f(y) dy , x ∈ R
n , (2.28)

where the integral kernel k(x, y) satisfies the following assumptions :

1) The measurable function k : Rn × R
n → R is homogeneous of degree −d, where d ∈ (0, n] :

k(λx, λy) = λ−d k(x, y) , x, y ∈ R
n , λ > 0 . (2.29)

2) The function k is invariant under simultaneous rotations of both arguments :

k(Sx, Sy) = k(x, y) , x, y ∈ R
n , S ∈ SO(n) . (2.30)

3) There exists p ∈ [1,+∞] with (n−d)p ≤ n such that, for x ∈ S
n−1 ⊂ R

n,

κ1 :=

∫

Rn

|k(x, y)|n/d |y|−n2/(dq) dy < ∞ , where 1 +
1

q
=

1

p
+
d

n
. (2.31)

As a consequence of (2.30), the quantity κ1 does not depend on the choice of x ∈ S
n−1.
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Proposition 2.7. Assume that the integral kernel k(x, y) satisfies assumptions (2.29)–(2.31)
above. Then the operator K defined by (2.28) is bounded from Lp(Rn) to Lq(Rn) and

∥

∥K[f ]
∥

∥

Lq(Rn)
≤ κ

d/n
1 ‖f‖Lp(Rn) , for all f ∈ Lp(Rn) . (2.32)

Remark 2.8. Proposition 2.7 can be seen as a clever, but relatively straightforward general-
ization of the classical Young inequality for convolution operators. In the particular case where
d = n, so that q = p, the result is apparently due to L. G. Mikhailov, N. K. Karapetiants, and
S. G. Samko, see [19, Section 6] and [24]. For the reader’s convenience, we give a proof of the
general case in Section 6.1. As is explained in [24], many classical inequalities, including Hilbert’s
inequality and various forms of Hardy’s inequality, can be deduced from Proposition 2.7 by an
appropriate choice of the integral kernel k. We add to this list the Stein-Weiss inequality [22],
which corresponds to the kernel

k(x, y) =
1

|x|a
1

|x− y|λ
1

|y|b , x 6= y ,

where 0 < λ < n, d := a+ b+ λ ∈ [λ, n], and a < n/q, b < n(1− 1/p) with p, q as in (2.31). As
is easily verified, we can apply Proposition 2.7 to that example under the additional assumption
that a+ b > 0. In particular the limiting case a = b = 0, which corresponds to the classical HLS
inequality, cannot be obtained in this way.

As a first application of Proposition 2.7, we establish the following estimate for the linear
operator (2.26) in the weighted spaces L2(m) defined in (1.11).

Proposition 2.9. If n ≥ 3 and if m ≥ 0 satisfies 2 − n/2 < m < n/2, the operator K defined
by (2.26) is bounded from L2(m) to L2(m−2). Specifically, if f ∈ L2(m) and u = K[f ], we have
the homogeneous estimate

∫

Rn

|x|2m−4 |u(x)|2 dx ≤ C

∫

Rn

|x|2m |f(x)|2 dx < ∞ , (2.33)

for some constant C > 0 independent of f .

Proof. If f ∈ L2(m) and u = K[f ] we have, in view of (2.26) and (2.12),

|x|m−2 |u(x)| ≤ C

∫

Rn

k(x, y) |y|m|f(y)|dy , where k(x, y) =
|x|m−2

|x−y|n−2|y|m . (2.34)

The integral kernel k(x, y) in (2.34) is homogeneous of degree −n and invariant under rotations,
in the sense of (2.30). Moreover, for any x ∈ S

n−1 ⊂ R
n, we have

κ1 =

∫

Rn

k(x, y) |y|−n/2 dy < ∞ . (2.35)

Indeed, the integral in (2.35) converges near the origin because m+ n/2 < n, and near infinity
because n − 2 + m + n/2 > n. Moreover, the singularity at y = x is always integrable. So,
applying Proposition 2.7 with d = n and p = q = 2, we obtain the estimate (2.33). If m ≤ 2,
this immediately implies that K is bounded from L2(m) to L2(m−2). If m > 2, which is only
possible when n ≥ 5, it remains to bound the L2 norm of u on the unit ball B = B(0, 1) ⊂ R

n,
which is not controlled by (2.33) since 2m− 4 > 0. This is easily done using the HLS inequality
(2.27), which shows that ‖u‖L2(B) ≤ C‖u‖L2n/(n−4)(Rn) ≤ C‖f‖L2(Rn).
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Remark 2.10. By a similar argument, using estimate (2.15), one can show that the func-
tion u = K[f ] in Proposition 2.9 satisfies ∇u ∈ L2(m−1) and ∇u(x) =

∫

∇xG(x, y)f(y) dy.
Thus, if multiply equality (2.13) by f(y) and integrate over y ∈ R

n, we obtain the relation
∫ (

A∞(x)∇u(x),∇v(x)
)

dx =
∫

v(x)f(x) dx, which is valid for all v ∈ C∞
c (Rn). This implies

that − div(A∞∇u) = f in the sense of distributions on R
n, namely HK[f ] = f where H is

defined in (2.1).

The assumption that m < n/2 is essential in Proposition 2.9, even in the particular case
where A∞ = 1. As we now show, it is possible to establish estimate (2.33) for larger values
of m, if we assume that the function f ∈ L2(m) has zero mean. At this point, we recall that
L2(m) →֒ L1(Rn) precisely when m > n/2. For technical reasons that will become clear in the
proof of Theorem 1.6, we formulate our next result in the more general framework of weighted
Lp spaces, with p ∈ [1, 2]. Those spaces are defined in close analogy with (1.11) :

Lp(m) =
{

f ∈ Lp
loc(R

n)
∣

∣

∣
‖f‖Lp(m) <∞

}

, ‖f‖pLp(m) =

∫

Rn

(1 + |y|)mp|v(y)|p dy . (2.36)

If m > n(1 − 1
p), we have Lp(m) →֒ L1(Rn) by Hölder’s inequality, and in that case we denote

by Lp
0(m) the closed subspace of Lp(m) defined by

Lp
0(m) =

{

f ∈ Lp(m)
∣

∣

∣

∫

Rn

f(x) dx = 0
}

, m > n
(

1− 1
p

)

. (2.37)

Proposition 2.11. Let n ≥ 2 and let β ∈ (0, 1) be as in (2.14). For any m ∈ (n/2, n/2 + β)
and any p ∈ [1, 2] such that p > 2n/(n+4), the operator K defined by (2.26) is bounded from
Lp
0(m−s) to L2(m−2), where s = n/p − n/2. Specifically, if f ∈ Lp

0(m−s) and u = K[f ], we
have the homogeneous estimate

∫

Rn

|x|2m−4 |u(x)|2 dx ≤ C

(
∫

Rn

|x|p(m−s) |f(x)|p dx
)2/p

< ∞ , (2.38)

for some constant C > 0 independent of f .

Remark 2.12. If p = 2, so that s = 0, estimate (2.38) reduces to (2.33), and Proposition 2.11
thus shows that K is bounded from L2

0(m) to L2(m−2) if n/2 < m < n/2 + β. We believe
that the upper bound on m is sharp. In the particular case were A∞ = 1, so that β = 1,
estimate (2.38) is not valid for m > n/2 + 1 unless one assumes that not only the integral but
also the first order moments of f vanish. In the proof of Theorem 1.6 below, where n = 2 or 3,
Proposition 2.11 will also be used with p = 1 and s = n/2.

Remark 2.13. If n = 2, or if n = 3 and β ≤ 1/2, we necessarily have m < 2 in Proposition 2.11,
so that 2m− 4 < 0. In that case, if f satisfies the assumptions of Proposition 2.11, the solution
u of the elliptic equation (2.9) may not belong to L2(Rn), because u(x) decays too slowly as
|x| → +∞. Explicit examples of this phenomenon can be constructed using the Meyers-Serrin
matrix (1.15), see Section 6.3.

Proof. Our assumptions on the parameters m and p obviously imply that s ∈ [0, n/2], s < 2,
and m − s > n(1 − 1

p), so that Lp(m−s) →֒ L1(Rn). If f ∈ Lp
0(m−s) and u = K[f ], we thus

have the representation formula

u(x) =

∫

Rn

(

G(x, y)−G(x, 0)
)

f(y) dy , x ∈ R
n ,
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which is equivalent to (2.26) since
∫

Rn f(x) dx = 0. We recall that the above integral uniquely
defines u even if n = 2 because G is unique up to a constant in that case. We also note that,
in any dimension n ≥ 2, the difference G(x, y) − G(x, 0) is homogeneous of degree 2 − n, see
Sections 2.3 and 2.4. The general idea is to bound that difference using estimate (2.14) when |y|
is small compared to |x|, and estimate (2.12) or (2.22) when |y| ≥ |x|/2. We thus introduce a
smooth cut-off function χ : R+ → [0, 1] satisfying χ(r) = 1 when r ∈ [0, 1/2] and χ(r) = 0 when
r ≥ 3/4. We observe that |u(x)| ≤ u1(x) + u2(x) where

u1(x) =

∫

Rn

∣

∣

∣
G(x, y) −G(x, 0)

∣

∣

∣
χ
(

|y|
|x|

)

|f(y)|dy ,

u2(x) =

∫

Rn

∣

∣

∣
G(x, y) −G(x, 0)

∣

∣

∣

(

1− χ
(

|y|
|x|

))

|f(y)|dy .

We shall prove that, for j = 1, 2, the following estimate holds :

|x|m−2 uj(x) ≤ C

∫

Rn

kj(x, y) |y|m−s|f(y)|dy , (2.39)

where kj(x, y) is an integral kernel which fulfills the assumptions of Proposition 2.7 with d = n−s
and p = 2n/(n+2s). This will imply that both u1 and u2 satisfy estimate (2.38) with q = 2,
which gives the desired conclusion.

We start with u1. Using (2.14) to bound the difference G(x, y)−G(x, 0) ≡ G(y, x)−G(0, x),
we obtain estimate (2.39) for j = 1 where

k1(x, y) =
|x|m−2

|y|m−s

( |y|β
|x− y|n−2+β

+
|y|β

|x|n−2+β

)

χ
( |y|
|x|

)

.

The kernel k1(x, y) is obviously homogeneous of degree −d = s−n and invariant under rotations.
Moreover, if |x| = 1, we have χ(|y|/|x|) = χ(|y|) = 0 when |y| ≥ 3/4, so that condition (2.31)
becomes

∫

Rn

k1(x, y)
n/d |y|−n2/(2d) dy ≡

∫

|y|≤3/4

(

k1(x, y) |y|−n/2
)n/d

dy < ∞ , when |x| = 1 .

The only singularity of the integrand is at the origin where k1(x, y) |y|−n/2 ∼ |y|β+s−m−n/2, and
the assumption that m < n/2 + β ensures that (n/d)

(

m + n/2 − β − s
)

< n. So we can apply
Proposition 2.7 and conclude that the function u1 satisfies estimate (2.38) with q = 2.

To estimate u2 if n ≥ 3, we use (2.12) and we obtain estimate (2.39) for j = 2, where

k2(x, y) =
|x|m−2

|y|m−s

( 1

|x− y|n−2
+

1

|x|n−2

)(

1− χ
(

|y|
|x|

))

, n ≥ 3 .

If n = 2, the difference G(x, y) − G(x, 0) is homogeneous of degree zero, and it follows that
G(x, y) −G(x, 0) = G(x/|x|, y/|x|) −G(x/|x|, 0). Using (2.22), we thus obtain estimate (2.39)
for j = 2, where

k2(x, y) =
|x|m−2

|y|m−s

(

1 +
∣

∣

∣
log

|x− y|
|x|

∣

∣

∣

)

(

1− χ
(

|y|
|x|

))

, n = 2 .

In any case, the kernel k2(x, y) is homogeneous of degree −d = s−n, invariant under rotations,
and if |x| = 1 we have

∫

Rn

k2(x, y)
n/d |y|−n2/(2d) dy ≡

∫

|y|≥1/2

(

k2(x, y) |y|−n/2
)n/d

dy < ∞ .
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Indeed, the singularity at y = x is integrable provided (n/d)(n − 2) < n, which is the case
because we assumed that s < 2, and the convergence of the integral at infinity is guaranteed
since m > n/2. Applying Proposition 2.7 again, we conclude that u2 also satisfies estimate
(2.38) with q = 2. This completes the proof of (2.38).

It is now easy to conclude the proof of Proposition 2.11. If m ≤ 2, estimate (2.38) implies
of course that u ∈ L2(m−2) and ‖u‖L2(m−2) ≤ C‖f‖Lp(m−s). If m > 2, which is possible only
when n ≥ 3, it remains to bound the L2 norm of u on the unit ball B = B(0, 1) ⊂ R

n. If p > 1,
which is automatic when n ≥ 4, this follows from the HLS inequality (2.27), which implies that
‖u‖Lq(Rn) ≤ C‖f‖Lp(Rn) for q = np/(n−2p) > 2. In the particular case where p = 1 and n = 3,
we can obtain the bound ‖u‖Lq(B) ≤ C‖f‖L1(Rn) for all q < 3 using definition (2.26), estimate
(2.12), and Hölder’s inequality.

We also need to estimate the function u = K[f ] in the particular case where f = div g for
some vector field g : Rn → R

n. In that situation, if we integrate by parts formally in (2.26), we
obtain the relation u = (K ◦ div)[g], where the new operator K ◦ div is defined by

(

K ◦ div
)

[g](x) = −
∫

Rn

∇yG(x, y) · g(y) dy , x ∈ R
n . (2.40)

We first prove that this operator is well defined on L2(m−1) if m > 2−n/2 and m ≥ 1, and we
next give conditions on g that ensure that (K ◦ div)[g] = K[div g].

Proposition 2.14. Let n ≥ 2 and let β ∈ (0, 1) be as in (2.14). For any m ∈ (2−n/2, n/2+β)
such that m ≥ 1, the operator K ◦div defined by (2.40) is bounded from L2(m−1)n to L2(m−2).
Specifically, if g ∈ L2(m−1)n and u = (K ◦ div)[g], we have the homogeneous estimate

∫

Rn

|x|2m−4 |u(x)|2 dx ≤ C

∫

Rn

|x|2m−2 |g(x)|2 dx < ∞ , (2.41)

for some constant C > 0 independent of g.

Proof. Let g ∈ L2(m−1)n and u = (K ◦ div)[g]. We estimate the integral kernel ∇yG(x, y) in
(2.40) using the bound (2.15) and keeping in mind that∇yG(x, y) = ∇zG(z, x)

∣

∣

z=y
by symmetry.

This gives

|x|m−2 |u(x)| ≤ C

∫

Rn

k(x, y) |y|m−1|g(y)|dy , (2.42)

where

k(x, y) =
|x|m−2

|y|m−1

( 1

|x− y|n−1
+

1

|y|1−β|x− y|n−2+β

)

.

The kernel k is homogeneous of degree −n and invariant under rotations. To apply Proposi-
tion 2.7 with p = q = 2, we need to verify that, for any x ∈ S

n−1 ⊂ R
n,

∫

Rn

k(x, y) |y|−n/2 dy < ∞ .

The integral converges for small |y| if and only if m − β + n/2 < n, namely m < n/2 + β. At
infinity, the integrability condition is m+n−2+n/2 > n, namely m > 2−n/2. Thus, applying
Proposition 2.7, we deduce (2.41) from (2.42).

To show that u ∈ L2(m−2), it remains to control the L2 norm of u whenm > 2. In that case,
we simply observe that 2 ∈ (2− n/2, n/2 + β), and applying the argument above (with m = 2)
we obtain the bound ‖u‖L2(Rn) ≤ C‖g‖L2(1) ≤ C‖g‖L2(m−1). This concludes the proof.
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Corollary 2.15. If g ∈ L2(m−1)n for some m > n/2 and if f = div g ∈ L2(m), then f ∈ L2
0(m)

and K[f ] = (K ◦ div)[g].

Proof. Asm > n/2, we have L2(m−1) →֒ Lp(Rn) for some p < n/(n−1), by Hölder’s inequality.
Thus, applying Lemma 6.2 below, we see that

∫

Rn f dx = 0 if f is as in the statement. To show
that K[f ] = (K ◦ div)[g], we have to justify the integration by parts leading to (2.40). As in
Section 6.2, we denote χk(x) = χ(x/k), where χ : Rn → [0, 1] is a smooth cut-off function
satisfying χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2. We start from the identity

∫

Rn

χk(y)
(

G(x, y) div g(y) +∇yG(x, y) · g(y)
)

dy = −
∫

Rn

G(x, y) g(y) · ∇χk(y) dy ,

which holds for all k ∈ N
∗ and almost all x ∈ R

n. If m ∈ (n/2, n/2+β), the left hand-side has a
limit in L2(m−2) as k → +∞, in view of Propositions 2.11 and 2.14. To prove the desired result,
it is thus sufficient to show that the right-hand side converges to zero in the sense of distributions.
Integrating against a test function ψ ∈ C∞

c (Rn) and denoting Ψ(y) =
∫

Rn G(x, y)ψ(x) dx, we
have to show that

lim
k→+∞

∫

Rn

Ψ(y) g(y) · ∇χk(y) dy ≡ lim
k→+∞

1

k

∫

k≤|y|≤2k
Ψ(y) g(y) · ∇χ(y/k) dy = 0 .

This in turn is an easy consequence of Hölder’s inequality, if we use the facts that g ∈ L2(m−1)
for some m > 2−n/2, and |Ψ(y)| ≤ C(1+|y|)2−n if n ≥ 3 or |Ψ(y)| ≤ C log(2+|y|) if n = 2.

Remark 2.16. As a final comment, we mention that, if f ∈ L2
0(m) for some m ∈ (n/2, n/2+1),

there exists g ∈ L2(m−1)n such that div g = f , see Lemma 6.3. Thus K[f ] = (K ◦ div)[g] by
Corollary 2.15, and estimate (2.33) can be deduced from estimate (2.41) if m < n/2 + β.

3 The diffusion operator in self-similar variables

In this section we study the generator L of the evolution equation (1.8), considered as an operator
in the weighted space L2(m) ⊂ L2(Rn) for some m ≥ 0. This operator is defined by

Lu = div(A∞(x)∇u) + 1

2
x · ∇u+

n

2
u , u ∈ D(L) , (3.1)

where D(L) ⊂ L2(m) is the maximal domain

D(L) =
{

u ∈ L2(m) ∩H1(Rn)
∣

∣ div(A∞(x)∇u) + 1
2x · ∇u ∈ L2(m)

}

.

3.1 The constant coefficient case

In the particular case where A∞ = 1, the operator L is studied in detail in [15, Appendix A]. It
is shown there that the spectrum of L in L2(m) consists of two different parts :

a) a countable sequence of discrete eigenvalues : σdisc = {−k/2 | k = 0, 1, 2, . . . };
b) a half-plane of essential spectrum : σess = {z ∈ C | Re(z) ≤ n

4 − m
2 }.

The spectrum σ = σdisc ∪ σess is represented in Figure 1 for a typical choice of the parameters
n,m. It is worth noting that the discrete spectrum σdisc does not depend on m. In fact,
conjugating the operator L with the Gaussian weight e−|x|2/8, we obtain the useful relation

e|x|
2/8 Le−|x|2/8 = ∆− |x|2

16
+
n

4
, (3.2)
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where the right-hand side is the harmonic operator in R
n, normalized so that its spectrum in

L2(Rn) is precisely the sequence σdisc. This shows that the eigenfunctions of L associated with
the discrete spectrum σdisc have Gaussian decay at infinity, hence belong to L2(m) for any
m ≥ 0. Moreover we have Lϕ = 0, where

ϕ(x) =
1

(4π)n/2
e−|x|2/4 , x ∈ R

n , (3.3)

and differentiating k times the principal eigenfunction ϕ we obtain the k-th order Hermite
functions that span the kernel of L+ k/2 if m is sufficiently large, namely m > k + n/2.

0−1
2−1

m
2 − n

4

Re(z)

Im(z)

Figure 1 –When A∞ = 1 the spectrum of the operator L in the space L2(m) consists of a sequence of
eigenvalues 0,−1/2,−1, . . . and of essential spectrum filling the half-space {z ∈ C | Re(z) ≤ n

4
− m

2
}.

For any k ∈ N, the eigenvalue −k/2 is isolated if m > k + n/2.

On the other hand, the essential spectrum σess has a completely different origin, which is
revealed by applying the Fourier transform so that L becomes a first-order differential operator
acting on the Sobolev space Hm(Rn), see [15, Appendix A]. Using this observation, on can show
that each complex point z /∈ σdisc is an eigenvalue of L of infinite multiplicity (if n ≥ 2), with
eigenfunctions that decay slowly, like |x|2Re(z)−n, as |x| → ∞. In particular, these eigenvalues
belong to L2(m) if and only if Re(z) < n

4 − m
2 , which explains why the essential spectrum σess,

unlike σdisc, is sensitive to the value of m.

To summarize, in the case where A∞ = 1 the operator L has k+1 isolated eigenvalues if the
parameter m is large enough so that m > k + n/2, see Figure 1. In particular, if m > n/2, the
zero eigenvalue is simple and isolated, and the rest of the spectrum is contained in the half-plane
{z ∈ C | Re(z) ≤ −µ}, where µ = min(1/2,m/2 − n/4). Note that the assumption m > n/2
ensures that L2(m) →֒ L1(Rn).

3.2 A nontrivial example : the Meyers-Serrin operator

We next study in detail the instructive example where the limiting matrix A∞ is given by (1.15).
It turns out that, in that case too, the eigenvalues and eigenfunctions of the linear operator (3.1)
can be computed explicitly, and exhibit a nontrivial behavior when the parameter b > 0 is varied.
In what follows we denote

Ab(x) = b1+ (1− b)
x⊗ x

|x|2 , x ∈ R
n \ {0} , (3.4)

where 1 is the identity matrix and (x ⊗ x)ij = xixj . Elliptic equations with a diffusion matrix
of the form (3.4) were considered by Meyers and Serrin nearly sixty years ago. If the parameter
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b > 0 is small enough, they turn out to be useful to illustrate the optimality of general results
concerning the interior regularity of solutions [25, Section 5] or the local uniqueness [29, 4].

As is clear from definition (3.4), we have Ab(x)x = x and Ab(x)y = by for any y ∈ R
n

that is orthogonal to x. If b 6= 1, the eigenvalues of Ab(x) are thus 1 (multiplicity 1) and b
(multiplicity n− 1). For the evolution equation ∂tu = div(Ab(x)∇u), this means that diffusion
in the radial direction is unaffected by the value of b, whereas the diffusion rate is increased
(b > 1) or decreased (b < 1) in the transverse directions.

We now consider the rescaled diffusion operator Lb defined by

Lbu = div(Ab∇u) +
1

2
x · ∇u+

n

2
u , x ∈ R

n . (3.5)

Since

div
(x⊗ x

|x|2 ∇u
)

= div
( x

|x|2 x · ∇u
)

=
1

|x|2
(

(x · ∇)2u+ (n−2)x · ∇u
)

,

we obtain the alternative form

Lbu = b∆u+
1−b
|x|2

(

(x · ∇)2u+ (n−2)x · ∇u
)

+
1

2
x · ∇u+

n

2
u . (3.6)

As is clear from (3.6), the operator Lb is invariant under rotations around the origin, and
this makes it possible to compute its eigenvalues and eigenvectors by the classical method of
“separation of variables”.

Indeed, let p : Rn → R be a harmonic polynomial that is homogeneous of degree ℓ ∈ N. We
look for eigenfunctions of Lb of the form

u(x) = p(x)ϕ(|x|) , x ∈ R
n , (3.7)

where ϕ : R+ → R. As ∆p = 0 and x · ∇p = ℓp, we easily find

∆u(x) = p(x)
(

ϕ′′(r) +
n− 1 + 2ℓ

r
ϕ′(r)

)

, where r = |x| .

Similarly
x · ∇u = p

(

rϕ′ + ℓϕ
)

, (x · ∇)2u = p
(

r2ϕ′′ + (2ℓ+ 1)rϕ′ + ℓ2ϕ
)

,

hence

div
( x

|x|2 x · ∇u
)

= p
(

ϕ′′ +
n− 1 + 2ℓ

r
ϕ′ +

ℓ(n− 2 + ℓ)

r2
ϕ
)

.

It follows that (Lbu)(x) = p(x)(Lb,ℓ ϕ)(|x|), where

Lb,ℓ ϕ = ϕ′′ +
n− 1 + 2ℓ

r
ϕ′ + (1− b)

ℓ(n− 2 + ℓ)

r2
ϕ+

r

2
ϕ′ +

n+ ℓ

2
ϕ . (3.8)

In a second step, we look for eigenfunctions of the radial operator Lb,ℓ of the following form

ϕ(r) = rγe−r2/4ψ(r2/4) , r > 0 , (3.9)

where γ ∈ R is a parameter that will be determined below. A direct computation shows that

ϕ′(r) = rγe−r2/4

(

r

2
ψ′
(r2

4

)

+
(γ

r
− r

2

)

ψ
(r2

4

)

)

,

ϕ′′(r) = rγe−r2/4

(

r2

4
ψ′′ +

(

γ +
1

2
− r2

2

)

ψ′ +
(γ2−γ

r2
− γ − 1

2
+
r2

4

)

ψ

)

,
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and it follows that (Lb,ℓ ϕ)(r) = rγe−r2/4(Lb,ℓ,γψ)(r
2/4), where the differential operator Lb,ℓ,γ

acts on the variable y = r2/4 ∈ R+ and is defined in the following way. Setting

α =
n

2
− 1 + γ + ℓ , δ = γ2 + γ(n− 2 + 2ℓ) + (1− b)ℓ(n− 2 + ℓ) , (3.10)

we have the explicit expression

(

Lb,ℓ,γ ψ
)

(y) = yψ′′(y) + (α+ 1− y)ψ′(y) +
( δ

4y
− γ + ℓ

2

)

ψ(y) , y > 0 . (3.11)

To find eigenfunctions, it is necessary to choose the parameter γ in such a way that the quantity
δ defined in (3.10) vanishes. This leads to

γ =
1

2

(

−(n− 2 + 2ℓ) +
√

(n− 2)2 + 4bℓ(n − 2 + ℓ)
)

(3.12)

Note that γ = 0 if either b = 1 (trivial case) or ℓ = 0 (radially symmetric solutions). In the
general case, we always have γ + ℓ ≥ 0, which means that p(x)|x|γ is bounded near the origin.

Remark 3.1. Taking the other sign in front of the square root in (3.12) would give more singular
solutions of the eigenvalue equation, for which the gradient is not square integrable near the
origin; these are examples of the “pathological solutions” considered by Serrin [29].

The eigenfunctions of the operator Lb,ℓ,γ are easy to determine when γ is chosen so that
δ = 0, because for any k ∈ N the differential equation

yψ′′(y) + (α+ 1− y)ψ′(y) + kψ(y) = 0 , y > 0 ,

has a solution of the form ψ(y) = L
(α)
k (y), where L

(α)
k is the kth (generalized) Laguerre polynomial

with parameter α, see [1, Section 22]. In particular, for k = 0, 1, 2, we have

L
(α)
0 (y) = 1 , L

(α)
1 (y) = −y + α+ 1 , L

(α)
2 (y) =

y2

2
− (α+ 2)y +

(α+ 1)(α+ 2)

2
.

Summarizing, the calculations above lead to the following statement.

Proposition 3.2. Fix b > 0, ℓ ∈ N, k ∈ N, and let

α =
1

2

√

(n− 2)2 + 4bℓ(n − 2 + ℓ)
)

, γ = −n
2
+ 1− ℓ+ α . (3.13)

If p : Rn → R is a harmonic polynomial that is homogeneous of degree ℓ and if

u(x) = p(x)|x|γe−|x|2/4 L
(α)
k (|x|2/4) , x ∈ R

n , (3.14)

where L
(α)
k is the kth Laguerre polynomial with parameter α, then u is an eigenfunctions of the

differential operator Lb defined in (3.6) in the sense that

Lbu = λu , where λ = −γ + ℓ

2
− k . (3.15)
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Figure 2 – The eigenvalues λ = λ(b, ℓ, k) of the linear operator (3.5) are represented as a function of
b ∈ [0, 5], for ℓ, k = 0, 1, 2, 3, 4 and n = 2 (left) or n = 3 (right). The horizontal lines are eigenvalues
corresponding to radially symmetric eigenfunctions (ℓ = 0). The vertical dashed line highlights the
constant coefficient case b = 1, where λ = −ℓ/2− k.

Remark 3.3. For all values of the parameter b > 0, the operator Lb is selfadjoint in the weighted
L2 space

X =
{

u ∈ L2(Rn)
∣

∣ e|x|
2/8 u ∈ L2(Rn)

}

.

Indeed, if v = e|x|
2/8u, it a direct calculation shows that Lbv = e|x|

2/8Lbu where

Lbv = div(Ab∇v)−
|x|2
16

v +
n

4
v , x ∈ R

n . (3.16)

The operator Lb is obviously symmetric in L2(Rn), and becomes selfadjoint when defined on
its maximal domain; moreover Lb has compact resolvent, hence purely discrete spectrum. By
conjugation, the same properties hold for the operator Lb in the weighted space X. In view of
(3.14), all eigenfunctions given by Proposition 3.2 belong to X, and the method of separation of
variables ensures that the corresponding eigenfunctions can be chosen so as to form an orthogonal
basis of X. We conclude that all eigenvalues of Lb in X are given by expressions (3.13), (3.15).
The first few of them are represented in Figure 2, for n = 2 and n = 3.

Remark 3.4. The eigenfunction of Lb given by (3.14) satisfies u(x) ∼ |x|ℓ+γ as x → 0. In
view of (3.13), the exponent ℓ+ γ vanishes if ℓ = 0 and is an increasing function of ℓ ∈ N. On
the other hand, using estimate (2.14) and the fact that u solves the elliptic equation (2.9) with
A∞ = Ab and f(x) =

1
2x · ∇u+ (n2 − λ)u, it is not difficult to verify that |u(x)− u(0)| ≤ C|x|β

as |x| → 0. This shows that β ≤ ℓ+ γ for any ℓ ≥ 1, and taking ℓ = 1 we obtain

0 < β ≤ −n
2
+ 1 +

1

2

√

(n− 2)2 + 4b(n − 1)
)

. (3.17)

The right-hand side of (3.17) is an increasing function of b which converges to 0 as b → 0 and
to 1 as b→ 1. We conjecture that the upper bound (3.17) is optimal for b ∈ (0, 1).
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3.3 Properties of the principal eigenfunction : the general case

After considering two particular examples, we now return to the general case where the matrix
A∞(x) satisfies the assumptions listed at the beginning of Section 2. Much less is known on the
operator L in that situation, but it is still possible to prove that the kernel of L in the space
L2(m) is one-dimensional if m > n/2, so that L2(m) →֒ L1(Rn). We claim that the kernel of L
is spanned by the function ϕ : Rn → R+ defined by

ϕ(x) = Γ(x, 0, 1) , x ∈ R
n , (3.18)

where Γ(x, y, t) is the fundamental solution of (2.4). We already know that ϕ is Hölder con-
tinuous, and the estimates (2.7) imply that ϕ satisfies the Gaussian bounds (1.10). Moreover
the normalization condition

∫

Rn ϕ(x) dx = 1 follows from (2.6). Finally, we observe that the
definition (3.18) reduces to (3.3) in the particular case where A∞ = 1.

Lemma 3.5. If ϕ defined by (3.18), then ϕ ∈ D(L) and Lϕ = 0.

Proof. In view of (1.10), we have ϕ ∈ L2(m) for any m ≥ 0. Moreover, the definition (3.18)
implies that ϕ = e−H/2ψ where ψ(x) = Γ(x, 0, 1/2). As ψ ∈ L2(Rn), we thus have ϕ ∈ D(H) ⊂
H1(Rn). To prove that Lϕ = 0, we start from identity (2.8) with (y, t) = (0, 1), and we set
λ =

√
t where t > 0 is a new parameter. This gives the useful relation

ϕ(x) = tn/2 Γ
(

x
√
t, 0, t

)

, x ∈ R
n , t > 0 . (3.19)

The idea is now to differentiate both sides of (3.19) with respect to t, at point t = 1. Using the
fact that, by definition, the fundamental solution (x, t) 7→ Γ(x, y, t) is a solution of the evolution
equation (2.4) for any fixed y ∈ R

n, we obtain after straightforward calculations :

0 =
n

2
ϕ(x) +

1

2
x · ∇ϕ(x) + div(A∞(x)∇ϕ(x)) ≡

(

Lϕ
)

(x) , x ∈ R
n . (3.20)

This shows that ϕ ∈ D(L) and Lϕ = 0.

To complete the proof of Proposition 1.1, it remains to verify that the kernel of L in the
space of integrable functions is one-dimensional.

Lemma 3.6. If ψ ∈ H1(Rn) ∩ L1(Rn) satisfies Lψ = 0 and
∫

Rn ψ dx = 1, then ψ = ϕ.

Proof. If ψ is as in the statement, we define

u(x, t) =
1

tn/2
ψ
( x√

t

)

, x ∈ R
n , t > 0 .

We claim that, after modifying ψ on a negligible set if needed, we have the relation

ψ(x) =

∫

Rn

Γ
(

x, y, 1 − t
)

u(y, t) dy ≡
∫

Rn

Γ
(

x, y
√
t, 1− t

)

ψ(y) dy , (3.21)

for all x ∈ R
n and all t ∈ (0, 1). Indeed, if we differentiate with respect to time the last member

of (3.21), considered as a distribution on R
n, we obtain as in Lemma 3.5

d

dt

∫

Rn

Γ
(

x, y
√
t, 1− t

)

ψ(y) dy = −1

t

∫

Rn

Γ
(

x, y
√
t, 1− t

)

(Lψ)(y) dy = 0 .

Thus the first integral in (3.21) is independent of time, and converges to ψ(x) in L1(Rn) as
t→ 1, in view of the properties (2.6), (2.7) of the fundamental solution Γ. This proves (3.21).
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We next take the limit t → 0 in the second member of (3.21), for a fixed x ∈ R
n. As Γ is

Hölder continuous and satisfies (2.7), it is clear that

∫

Rn

(

Γ(x, y, 1− t)− Γ(x, y, 1)
)

u(y, t) dy −−−−→
t→0

0 .

Moreover u(·, t) ⇀ δ0 (the Dirac measure at the origin) as t → 0, so that

∫

Rn

Γ(x, y, 1)u(y, t) dy −−−−→
t→0

Γ(x, 0, 1) = ϕ(x) .

We conclude that ψ(x) = ϕ(x) for (almost) all x ∈ R
n.

The following properties of the derivatives of ϕ will be useful.

Proposition 3.7. If ϕ is defined by (3.18), then |∇ϕ| ∈ L2(m) for all m ∈ N. In addition we
have ∇ϕ ∈ Lq(Rn) for 2 ≤ q < n/(1− β), where β is as in Proposition 2.4 or 2.6.

Proof. Let χ : Rn → [0, 1] be a smooth and compactly supported function such that χ(x) = 1
if |x| ≤ 1. We also assume that χ is radially symmetric and satisfies x ·∇χ(x) ≤ 0 for all x ∈ R

n.
Given any m ∈ N, we introduce for each k ∈ N

∗ the truncated weight function

pk(x) = |x|2mχ(x/k) , x ∈ R
n .

We now multiply both sides of (3.20) by pkϕ and integrate the resulting equality over x ∈ R
n.

After integrating by parts, we obtain the relation

∫

Rn

pk
(

∇ϕ,A∞∇ϕ
)

dx+

∫

Rn

ϕ
(

∇pk, A∞∇ϕ
)

dx =
n

4

∫

Rn

pkϕ
2 dx− 1

4

∫

Rn

(x · ∇pk)ϕ2 dx ,

and using the ellipticity assumption (1.2) we deduce that

λ1

∫

Rn

pk|∇ϕ|2 dx ≤ λ2

∫

Rn

ϕ |∇pk||∇ϕ|dx+
n

4

∫

Rn

pkϕ
2 dx− 1

4

∫

Rn

(x · ∇pk)ϕ2 dx . (3.22)

As ϕ satisfies the Gaussian bound (1.10), we have
∫

pkϕ
2 dx →

∫

|x|2mϕ2 dx as k → ∞. To
control the other terms in the right-hand side of (3.22), we observe that

∇pk(x) = 2mx|x|2m−2χ(x/k) +
1

k
|x|2m∇χ(x/k) ,

from which we infer
∫

Rn

ϕ |∇pk||∇ϕ|dx −−−−−→
k→∞

2m

∫

Rn

|x|2m−1ϕ|∇ϕ|dx ,
∫

Rn

(x · ∇pk)ϕ2 dx −−−−−→
k→∞

2m

∫

Rn

|x|2mϕ2 dx .

Thus taking the limit k → ∞ in (3.22) and using the monotone convergence theorem, we
conclude that

λ1

∫

Rn

|x|2m|∇ϕ|2 dx ≤ 2mλ2

∫

Rn

|x|2m−1ϕ|∇ϕ|dx+
(n

4
− m

2

)

∫

Rn

|x|2mϕ2 dx < ∞ .

This shows that |x|m|∇ϕ| ∈ L2(Rn) for all m ∈ N, hence |∇ϕ| ∈ L2(m) for all m ∈ N.
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We next prove the second assertion in Proposition 3.7. We know from (3.20) that ϕ satisfies
the elliptic equation (2.9) with f(x) = 1

2x · ∇ϕ(x) + n
2ϕ(x) = 1

2 div(xϕ). We thus have the
representation (2.10), which is valid even in the two-dimensional case because

∫

f(x) dx = 0.
Differentiating both sides of (2.10) we obtain

∇ϕ(x) =

∫

Rn

∇xG(x, y)f(y) dy =

∫

Rn

∇xG(x, y)
(

1
2y · ∇ϕ(y) + n

2ϕ(y)
)

dy , (3.23)

for (almost) all x ∈ R
n. This relation allows us to estimate ∇ϕ in Lp(Rn) for some p > 2 using

the following lemma, which is proved below.

Lemma 3.8. Let p ∈
(

1, n
2−β

)

where β ∈ (0, 1) is as in (2.15). If f ∈ Lp(Rn), the function g

defined by g(x) =
∫

Rn ∇xG(x, y)f(y) dy belongs to Lq(Rn) with q such that 1
q +

1
n = 1

p .

Let p∗ = n/(2−β) and q∗ = n/(1−β). We first assume that p∗ ≤ 2, which means that either
n = 2, or n = 3 and β ≤ 1/2. We know from (1.10) and from the previous step that f ∈ L2(m)
for all m ∈ N, hence f ∈ Lp(Rn) for all p ∈ [1, 2]. We can thus apply Lemma 3.8 to (3.23) for
any p ∈ (1, p∗), and we obtain that ∇ϕ belongs to Lq(Rn) for any q ∈ (2, q∗), which gives the
desired conclusion.

We next consider the case where p∗ > 2, which requires a bootstrap argument. For any j ∈ N

with j < n/2, we denote pj = 2n/(n−2j), and we observe that 1/pj = 1/n+1/pj+1. As before,
we start with the knowledge that f ∈ Lp(Rn) for all p ∈ [1, 2] ≡ [1, p0], and a first application
of Lemma 3.8 to (3.23) shows that ∇ϕ belongs to Lq(Rn) for all q ∈ (2, p1). Since we also know
that |x|m∇ϕ ∈ L2(Rn) for any m ∈ N, we obtain by interpolation that y · ∇ϕ ∈ Lr(Rn) for any
r ∈ (2, q); in particular, we have shown that f ∈ Lp(Rn) for all p ∈ [1, p1). Repeating the same
argument if needed, we prove inductively that f ∈ Lp(Rn) for all p ∈ [1, pj) (j = 1, 2, . . . ), until
we reach the smallest j ∈ N

∗ such that pj ≥ p∗. At this point we know that f ∈ Lp(Rn) for all
p ∈ [1, p∗), and Lemma 3.8 implies that ∇ϕ ∈ Lq(Rn) for all q ∈ (2, q∗).

Proof of Lemma 3.8. In view of (2.15), we have |g(x)| ≤ C
(

ψ1(x) + ψ2(x)
)

where

ψ1(x) =

∫

Rn

1

|x− y|n−1
|f(y)|dy , ψ2(x) =

1

|x|1−β

∫

Rn

1

|x− y|n−2+β
|f(y)|dy .

The Hardy-Littlewood-Sobolev inequality directly yields ψ1 ∈ Lq(Rn), see e.g. [23]. To control
ψ2, we apply Proposition 2.7 with k(x, y) = |x|β−1|x− y|2−n−β, which is a homogeneous kernel
of degree −d = −(n− 1). As 1 + 1/q = 1/p+ d/n and p < n/(2− β) < n = n/(n− d), we only
need to check the condition (2.31), namely

∫

Rn

(

1

|x− y|n−2+β |y|n/q
)n/(n−1)

dy < ∞ , for some x ∈ S
n−1 .

Our assumptions on p are equivalent to n
n−1 < q < n

1−β , and these inequalities ensure that the
integral above converges for small |y| and for large |y|, respectively. Moreover, the singularity
at y = x is integrable because β < 1, so that ψ2 ∈ Lq(Rn) by Proposition 2.7. �

Remark 3.9. Since the coefficient A∞ of the operator L is Lipschitz outside the origin, the
classical regularity theory for second order elliptic equations [16] implies that any eigenfunction
of L, in particular the principal eigenfunction ϕ, is necessarily of class C1,α on R

n \{0} for some
α > 0. However, the example studied in Section 3.2 shows that ∇ϕ may have a singularity at
the origin, as it is the case for the function ψ2 in the above proof. This indicates that estimate
(2.15) for the Green function cannot be substantially improved in general.
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Remark 3.10. In the constant coefficient case, the relation (3.2) shows that the operator L is
formally conjugated to a selfadjoint operator. Such a property is not known to hold in general,
but the following observation can be made. If Φ : Rn → R has bounded second-order derivatives,
a direct calculation shows that

eΦL
(

e−Φu
)

= div(A∞∇u) + n

2
u+ VΦ · ∇u+WΦu , (3.24)

for all u ∈ C2
c (R

n), where the functions VΦ and WΦ are given by

VΦ =
x

2
− 2A∞∇Φ , WΦ =

(

A∞∇Φ,∇Φ
)

− div(A∞∇Φ)− x

2
· ∇Φ .

The conjugated operator (3.24) is symmetric in L2(Rn) if VΦ = 0, namely if A∞∇Φ = x/4. For
a general matrix A∞(x) satisfying the assumptions listed in Section 2, there is no function Φ
with that property. However, if we assume that A∞(x)x = x for all x ∈ R

n, which is the case
for the Meyers-Serrin matrix (1.15), we can take Φ(x) = |x|2/8 and we obtain, in close analogy
with (3.2),

e|x|
2/8L

(

e−|x|2/8u
)

= div(A∞∇u)− |x|2
16

u+
n

4
u .

Note that, in that situation, we also have Lϕ = 0 where ϕ is given by (3.3).

Remark 3.11. It is interesting to note that, in general, the principal eigenfunction of the
operator L is not given by the explicit expression (3.3). In fact, let B : Rn → Mn(R) be a matrix
valued function that is homogeneous of degree zero, smooth outside the origin, symmetric and
uniformly elliptic in the sense of (1.2). We want to determine under which additional conditions
the function ϕ : Rn → R defined by

ϕ(x) = exp
(

−1

4

(

B(x)x, x
)

)

, x ∈ R
n , (3.25)

is (up to normalization) the principal eigenfunction of the operator L for some appropriate choice
of the diffusion matrix A∞. This is certainly the case if we can construct A∞ in such a way that
A∞(x)∇ϕ(x) + x

2ϕ(x) = 0 for all x ∈ R
n, because the desired property Lϕ = 0 then follows by

taking the divergence with respect to the variable x. In view of (3.25), the condition on A∞

becomes

A∞(x)B(x)x+
1

2
A∞(x)

(

∇B(x)x, x
)

= x , x ∈ R
n , (3.26)

where
(

∇B(x)x, x
)

∈ R
n denotes the vector with components

(

∂jB(x)x, x
)

for j = 1, . . . , n.
Consider the matrix M(x) and the vectors ζ(x), ξ(x) defined as follows :

M(x) = B(x)1/2A∞(x)B(x)1/2 , ζ(x) = B(x)1/2x , ξ(x) =
1

2
B(x)−1/2

(

∇B(x)x, x
)

.

Then our condition (3.26) can be written in the equivalent form

M(x)ζ(x) +M(x)ξ(x) = ζ(x) , x ∈ R
n . (3.27)

Moreover, we observe that

2
(

ζ(x), ξ(x)
)

=

n
∑

j=1

xj
(

(∂jB)x, x
)

=
((

n
∑

j=1

xj∂jB
)

x, x
)

= 0 ,
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because B(x) is homogeneous of degree zero; we deduce that ζ(x)⊥ξ(x) for all x ∈ R
n. Now, if

M(x) is the symmetric matrix with components Mij(x) defined by

Mij(x) =
|ξ(x)|2
|ζ(x)|4 ζi(x)ζj(x)−

1

|ζ(x)|2
(

ζi(x)ξj(x) + ξi(x)ζj(x)
)

+ δij , x ∈ R
n \ {0} ,

it is straightforward to verify that (3.27) hold for all x ∈ R
n, and that the map x 7→ M(x) is

homogeneous of degree zero. Moreover, the matrix M(x) is positive definite if we assume that
|ξ(x)| ≤ κ|ζ(x)| for some κ < 1, which is the case if ∇B is sufficiently small compared to B on
the unit sphere S

n−1. Under that assumption, if we set A∞(x) = B(x)−1/2M(x)B(x)−1/2, we
conclude that A∞ satisfies the assumptions listed in Section 2 and that the operator L defined
by (3.1) has the property that Lϕ = 0, where ϕ is defined by (3.25).

4 Long-time asymptotics in the linear case

This section is devoted to the proof of Theorem 1.3. We start from the rescaled equation (1.6)
with N = 0, namely

∂τv = div
(

A
(

yeτ/2
)

∇v
)

+
1

2
y · ∇v + n

2
v , y ∈ R

n , τ > 0 , (4.1)

and we consider it as an evolution equation in the weighted space L2(m) defined in (1.11).

Lemma 4.1. For any m ≥ 0, the Cauchy problem for Eq. (4.1) is globally well-posed in L2(m).

Proof. That statement, as well as all subsequent claims regarding existence and regularity of
solutions to (4.1), can be justified by the following standard arguments. If we undo the change
of variables (1.5), we obtain the linear diffusion equation (1.1) with N = 0, namely

∂tu(x, t) = div
(

A(x)∇u(x, t)
)

, x ∈ R
n , t > 0 , (4.2)

which is known to define an analytic evolution semigroup in the Hilbert space L2(Rn), see
Section 2 for a similar analysis. We set u(x, t) = p(x)ũ(x, t), where p(x) = (1+|x|2)−m/2. The
new function ũ then satisfies the modified evolution equation

∂tũ = div
(

A(x)∇ũ
)

+
2

p

(

∇p , A(x)∇ũ
)

+
1

p
div

(

A(x)∇p
)

ũ , (4.3)

which differs from (4.2) by a relatively compact perturbation, in the sense of operator theory.
It follows [27, Section 3.2] that (4.3) defines an analytic semigroup in L2(Rn), which amounts
to saying that (4.2) defines an analytic semigroup in L2(m). In particular, given initial data
u0 ∈ L2(m), Eq. (4.2) has a unique solution u ∈ C0([0,+∞), L2(m)) ∩ C1((0,+∞), L2(m))
such that u(0) = u0. Moreover ∇u ∈ C0((0,+∞), L2(m)n) ∩ L2((0, T ), L2(m)n) for any T > 0.
Applying now the change of variables (1.5), which leaves the space L2(m) invariant, we conclude
in particular that, given initial data v0 ∈ L2(m), equation (4.1) has a unique global solution
v ∈ C0([0,+∞), L2(m)) such that v(0) = v0.

4.1 Spectral decomposition of the solution

We assume from now on that m > n/2, so that L2(m) →֒ L1(Rn). If v ∈ C0([0,+∞), L2(m)) is
a solution of (4.1) with initial data v0 ∈ L2(m), we observe that

∫

Rn

v(y, τ) dy =

∫

Rn

v0(y) dy , for all τ ≥ 0 . (4.4)
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Indeed, if u ∈ C0([0,+∞), L2(m)) ∩ C1((0,+∞), L2(m)) is the corresponding solution of (4.2),
we have

d

dt

∫

Rn

u(x, t) dx =

∫

Rn

div
(

A(x)∇u(x, t)
)

dx = 0 , for all t > 0 ,

where the last equality follows from Lemma 6.2 since div
(

A∇u
)

∈ L2(m) and A∇u ∈ L2(m)n

for any t > 0. It follows that the integral of u(·, t) does not depend on time, and the same
property holds for the rescaled function v(·, τ) in view of (1.5). This gives (4.4).

We also recall that, in view of (1.3) and (1.4), the diffusion matrix A can be decomposed as

A(x) = A∞(x) +B(x) , x ∈ R
n , (4.5)

where A∞ is homogeneous of degree zero and the remainder B satisfies

sup
x∈Rn

(1 + |x|)ν ‖B(x)‖ < ∞ , for some ν > 0 . (4.6)

Let L be the limiting operator (3.1), and ϕ ∈ L2(m) be the principal eigenfunction of L given
by Proposition 1.1. We decompose the solution of (4.1) in the following way :

v(y, τ) = αϕ(y) + w(y, τ) , where α =

∫

Rn

v(y, τ) dy . (4.7)

Since ϕ is normalized so that
∫

Rn ϕdy = 1, it follows from (4.7) that
∫

Rn w(y, τ) dy = 0 for all
τ ≥ 0. Moreover, in view of (4.1) and (1.9), the evolution equation satisfied by w is

∂τw = div
(

A
(

yeτ/2
)

∇w
)

+
1

2
y · ∇w +

n

2
w + r1 , y ∈ R

n , τ > 0 , (4.8)

where
r1(y, τ) = α div

(

B(yeτ/2)∇ϕ(y)
)

. (4.9)

Remark 4.2. As simple as it may seem, the decomposition (4.7) is an essential step in the proof
of Theorem 1.3. To understand its meaning, let us assume for the moment that the solutions
of (4.1) are well approximated, for large times, by those of the limiting equation (1.8); this is
certainly expected in view of (4.5), (4.6). So our task is to understand the long-time behavior
of the semigroup eτL generated by the limiting operator (3.1). In the weighted space L2(m)
with m > n/2, we claim that 0 is a simple eigenvalue of L, and that the rest of the spectrum
is contained in the half-plane {z ∈ C | Re(z) ≤ −µ} for some µ > 0. This is in fact what
Theorem 1.3 asserts in the particular case where A = A∞. As is easily verified, the spectral
projection P onto the kernel of L is the map v 7→ Pv defined by

(Pv)(y) = ϕ(y)

∫

Rn

v(y) dy , y ∈ R
n .

With this notation, the decomposition (4.7) simply reads v = Pv + w where w = (1− P )v. To
prove Theorem 1.3, our strategy is to show that the solutions of (4.8) in the invariant subspace
L2
0(m) ≡ (1−P )L2(m) decay exponentially to zero as τ → +∞, even though the equation for w

involves the time-dependent matrix A(yeτ/2) instead of the limiting matrix A∞(y). As we shall
see in the rest of this section, the exponential decay of w can be established using appropriate
energy estimates.

27



4.2 Weighted estimates for the perturbation

Given any solution w of (4.8) in L2(m), we consider the energy functional

em,δ(τ) =
1

2

∫

Rn

(δ + |y|2)mw(y, τ)2 dy , τ ≥ 0 , (4.10)

where δ > 0 is a parameter that will be fixed later on. This quantity is differentiable for τ > 0,
and using (4.8) we find

∂τem,δ(τ) =

∫

(δ + |y|2)mw
[

div(A(yeτ/2)∇w) + 1

2
(y · ∇)w +

n

2
w + r1

]

dy

= −
∫

〈

∇
(

(δ + |y|2)mw
)

, A(yeτ/2)∇w
〉

dy +
1

4

∫

(δ + |y|2)my · ∇(w2) dy (4.11)

+
n

2

∫

(δ + |y|2)m|w|2 dy − α

∫

〈

∇
(

(δ + |y|2)mw
)

, B(yeτ/2)∇ϕ
〉

dy ,

where the second equality is obtained after integrating by parts and using the definition (4.9) of
the quantity r. Here and in what follows, it is understood that all integrals are taken over the
whole space R

n. In view of the elementary identities

∇
(

(δ + |y|2)m
)

= 2my (δ + |y|2)m−1 ,

div
(

y(δ + |y|2)m
)

= (n+ 2m)(δ + |y|2)m − 2mδ(δ + |y|2)m−1 ,

we can write (4.11) in the equivalent form

∂τ em,δ(τ) = −
∫

(δ + |y|2)m
〈

∇w,A(yeτ/2)∇w
〉

dy − 2m

∫

(δ + |y|2)m−1w
〈

y,A(yeτ/2)∇w
〉

dy

+
n−2m

4

∫

(δ + |y|2)m|w|2 dy + mδ

2

∫

(δ + |y|2)m−1|w|2 dy (4.12)

− α

∫

(δ + |y|2)m
〈

∇w,B(yeτ/2)∇ϕ
〉

dy − 2αm

∫

(δ + |y|2)m−1w
〈

y,B(yeτ/2)∇ϕ〉dy .

The last term in the first line of the right-hand side has no obvious sign, but applying Hölder’s
inequality we can estimate it as follows :

2m
∣

∣

∣

∫

(δ + |y|2)m−1w
〈

y,A(yeτ/2)∇w
〉

dy
∣

∣

∣

≤ 1

4

∫

(δ + |y|2)m
〈

∇w,A(yeτ/2)∇w
〉

dy + 4m2

∫

(δ + |y|2)m−2|w|2
〈

y,A(yeτ/2)y
〉

dy

≤ 1

4

∫

(δ + |y|2)m
〈

∇w,A(yeτ/2)∇w
〉

dy + Cm2

∫

(δ + |y|2)m−1|w|2 dy ,

where in the last line we used the obvious fact that (δ + |y|2)m−2|y|2 ≤ (δ + |y|2)m−1. Here and
below, we denote by C any positive constant depending only on the properties of the matrix A.
We proceed in a similar way to bound both terms in the last line of (4.12), and this leads to the
inequality

∂τ em,δ(τ) ≤ −1

2

∫

(δ + |y|2)m
〈

∇w,A(yeτ/2)∇w
〉

dy +
n−2m

2
em,δ(τ)

+
(

mδ + C1m
2
)

em−1,δ(τ) + C2α
2

∫

(δ + |y|2)m‖B(yeτ/2)‖2|∇ϕ|2 dy ,
(4.13)

for some positive constants C1, C2.
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Remark 4.3. If we forget for the moment the last term in (4.13), assuming thus that B ≡ 0,
we have shown that

∂τem,δ(τ) ≤ n−2m

2
em,δ(τ) +

(

mδ + C1m
2
)

em−1,δ(τ) , τ > 0 . (4.14)

If m = 0, so that e0,δ(τ) = 1
2‖w(·, τ)‖2L2 , the last term in (4.14) disappears, and we are left

with the differential inequality ∂τ e0,δ ≤ (n/2) e0,δ which allows for an exponential growth in
time. This is compatible with the spectral picture in Figure 1, where the essential spectrum of
the operator L fills the half-plane {Re(z) ≤ n/4} if m = 0. Now, if we assume that m > n/2,
the coefficient in front of em,δ in the right-hand side of (4.14) becomes negative, but then we
also have the “lower order term” proportional to em−1,δ which makes it impossible to prove
exponential decay using only (4.14). The obstacle we hit here is in the nature of things : we
cannot prove exponential decay in time of the solution of (4.8) if we do not use the crucial fact
that

∫

Rn w dy = 0.

4.3 Evolution equation for the antiderivative

If we want to study evolutionary PDEs using just L2 energy estimates, it is not straightforward
to exploit the information, if applicable, that the solutions under consideration have zero mean.
In the one-dimensional case, the following elementary observation was made in [14] and applied
to the analysis of parabolic or damped hyperbolic equations : if u : R → R belongs to L2(m) for
some m ≥ 1 and has zero mean, the primitive function U(x) =

∫ x
−∞ u(y) dy is square integrable

and satisfies ‖U‖L2 ≤ 2‖xu‖L2 (this is a variant of Hardy’s inequality). The idea is then to
control the evolution of the primitive U using L2 energy estimates, and it turns out that this
procedure takes into account the information that the original function u has zero mean.

In the same spirit, we propose here an approach that works in dimensions two and three,
and can be extended to cover the higher-dimensional cases as well (see Section 4.5 below). If
m > n/2 and w ∈ L2

0(m), so that
∫

Rn w(y) dy = 0, the idea is to define the “antiderivative” W
of w as the solution of the elliptic equation

− div
(

A∞(y)∇W (y)
)

= w(y) , y ∈ R
n . (4.15)

More precisely we set W = K[w], where K denotes the integral operator (2.26) whose kernel is
the Green function G(x, y) of the differential operator in (4.15), see Section 2.5. We recall that,
if m ∈ (n/2, n/2 + β) where β ∈ (0, 1) is defined in Proposition 2.4, then K is a bounded linear
operator from L2

0(m) to L2(m−2). Moreover, as is shown in Proposition 2.14, the operatorK can
be extended so as to act on first order distributions of the form w = div g, where g ∈ L2(m−1)n.

The definition (4.15) has the property that the antiderivative W satisfies a nice equation if
w evolves according to (4.8).

Lemma 4.4. Assume that m ∈ (n/2, n/2 + β), and that w ∈ C0([0,+∞), L2
0(m)) is a solution

of Eq. (4.8). If we define W (·, τ) = K[w(·, τ)] for τ ≥ 0, then W ∈ C0([0,+∞), L2(m−2)) is a
solution of the evolution equation

∂τW = div
(

A∞(y)∇W
)

+
1

2
y · ∇W +

n−2

2
W +R1 , (4.16)

where the remainder term R(y, τ) is given by

R1(·, τ) = K
[

div
(

B(· eτ/2)(α∇ϕ+∇w)
)]

, τ ≥ 0 . (4.17)
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Proof. We rewrite the evolution equation (4.8) in the equivalent form

∂τw = div
(

A∞(y)∇w
)

+
1

2
div

(

yw
)

+ r̃1 , (4.18)

where r̃1(y, τ) = div
[

B(yeτ/2)
(

α∇ϕ(y)+∇w(y, τ)
)]

, and we apply the linear operatorK to both
sides of (4.18). Since W = K[w] and R1 = K[r̃1] by definition, it remains to treat the first two
terms in the right-hand side, which are in divergence form so that we can apply Corollary 2.15.
We assume here that ∇w(·, τ) ∈ L2(m)n, which is the case as soon as τ > 0. We make the
following observations :

1. Let F = −(K ◦ div)
[

A∞∇w
]

, where w ∈ L2
0(m) and ∇w ∈ L2(m)n. By (2.40), we have

F (x) =

∫

Rn

(

∇yG(x, y) ·
(

A∞(y)∇w(y)
)

)

dy =

∫

Rn

(

A∞(y)∇yG(x, y) ,∇w(y)
)

dy ,

for (almost) all x ∈ R
n. If w ∈ C∞

c (Rn), the right-hand side is equal to w(x) by (2.13), and
using a density argument we deduce that F = w in the general case. As w = − div

(

A∞∇W
)

by Remark 2.10, this gives the elegant relation (K ◦ div)
[

A∞∇w
]

= div
(

A∞∇W
)

.

2. As the matrix A∞ is homogeneous of degree zero, the Green function G has the following
property : there exists a constant c0 ∈ R such that, for all x, y ∈ R

n with x 6= y,

(n− 2)G(x, y) + x · ∇xG(x, y) + y · ∇yG(x, y) = −c0 . (4.19)

Indeed, if n ≥ 3, we have λn−2G(λx, λy) = G(x, y) for any λ > 0, and this implies the Euler
relation (4.19) with c0 = 0; when n = 2, we deduce (4.19) directly from (2.24). If w ∈ L2

0(m)
and g(y) = yw(y), then g ∈ L2(m−1)n and, in view of (2.40) and Proposition 2.14, we have

[

K ◦ div g
]

(x) = −
∫

(

y · ∇yG(x, y)
)

w(y) dy =

∫

(

x · ∇xG(x, y) + (n− 2)G(x, y) + c0
)

w(y) dy

=

∫

(

divx
(

xG(x, y)
)

− 2G(x, y)
)

w(y) dy =
(

div
(

xK[w]
)

− 2K[w]
)

(x) ,

where we used (4.19) and the fact that
∫

w dy = 0. After changing x into y, the relation above
becomes (K ◦ div)[yw] = div(yW )− 2W = y · ∇W + (n−2)W .

Summarizing, if apply the operator K to all terms in (4.18) and use the steps 1 and 2 above,
we arrive at (4.16).

Notice that Equation (4.16) is very similar to (4.8), with the important difference that the
“amplification factor” n/2 in the right-hand side of (4.8) is reduced to (n−2)/2 in (4.16). This
makes it possible to control the evolution of the antiderivativeW using energy estimates if n ≤ 3.
To this end, we introduce the following additional energy functional :

Em−2,δ(τ) =
1

2

∫

Rn

(δ + |y|2)m−2|W (y, τ)|2 dy , τ ≥ 0 . (4.20)

Repeating the same calculations as in Section 4.2, we obtain in analogy with (4.13) :

∂τEm−2,δ(τ) ≤ −1

2

∫

(δ + |y|2)m−2
〈

∇W,A∞∇W
〉

dy +
n−2m

2
Em−2,δ(τ)

+
(

(m−2)δ + C1(m−2)2
)

Em−3,δ(τ) +

∫

(δ + |y|2)m−2WR1 dy .

(4.21)
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Remark 4.5. In the derivation of (4.21), the coefficient in front of Em−2,δ(τ) in the right-hand
side is obtained through the elementary calculation

n− 2m

4
=

n− 2

2
− n+ 2(m− 2)

4
,

where we observe that the smaller “amplification factor” (n−2)/2 in (4.16) is exactly compen-
sated by the fact that we estimate the antiderivative W in L2(m−2) instead of L2(m). As a
result, we obtain exactly the same coefficient (n−2m)/2 in both estimates (4.13) and (4.21).

4.4 Exponential decay of the perturbation in low dimensions

In this section, we assume that n = 2 or n = 3, and we combine estimates (4.13), (4.21) to
prove that the solutions of (4.8) in L2

0(m) converge exponentially to zero as τ → +∞. For the
moment, we assume that m ∈ (n/2, n/2 + β), so that we can apply Proposition 2.11 to control
the antiderivative W , and for convenience we also suppose that m ≤ 2 (note, however, that
all upper bounds on m will be relaxed later). The crucial observation is that the coefficient of
Em−3,δ in (4.21) vanishes if m = 2, and becomes negative if m < 2 provided that the parameter
δ > 0 is chosen large enough. Therefore, we assume that

m =
n

2
+ λ , where 0 < λ < β , λ ≤ 2− n

2
, and δ ≥ 2C1(2−m) . (4.22)

Under these hypotheses, inequalities (4.21), (4.13) become

∂τEm−2,δ(τ) ≤ −λ1
2

∫

(δ + |y|2)m−2|∇W |2 dy − λEm−2,δ(τ) +

∫

(δ + |y|2)m−2WR1 dy ,

∂τ em,δ(τ) ≤ −λ1
2

∫

(δ + |y|2)m|∇w|2 dy − λem,δ(τ) + C3 em−1,δ(τ) (4.23)

+ C2 α
2

∫

(δ + |y|2)m‖B(yeτ/2)‖2|∇ϕ|2 dy ,

where C3 = mδ + C1m
2 and λ1 > 0 is as in (1.2).

The next step is a simple interpolation argument which allows us to control the undesirable
quantity C3 em−1,δ in (4.23) using the negative terms involving ∇w and ∇W . In view of (4.15),
we have

2em−1,δ =

∫

(δ + |y|2)m−1|w|2 dy = −
∫

(δ + |y|2)m−1w div
(

A∞∇W
)

dy

=

∫

(δ + |y|2)m−1
〈

∇w,A∞∇W
〉

dy + 2(m−1)

∫

(δ + |y|2)m−2w
〈

y,A∞∇W
〉

dy

≤ ǫ0

∫

(δ + |y|2)m|∇w|2 dy + Cǫ0,m

∫

(δ + |y|2)m−2|∇W |2 dy + em−1,δ ,

where the parameter ǫ0 > 0 can be taken arbitrarily small. In the last line, we used again the
obvious inequality (δ+ |y|2)m−2|y|2 ≤ (δ+ |y|2)m−1. Assuming that C3ǫ0 ≤ λ1/4, we thus obtain

C3 em−1,δ ≤ λ1
4

∫

(δ + |y|2)m|∇w|2 dy + C4

∫

(δ + |y|2)m−2|∇W |2 dy , (4.24)

for some positive constant C4.

We now choose a constant κ > 0 large enough so that κλ1 ≥ 2C4, and we consider the
combined energy functional

Em,δ(τ) = em,δ(τ) + κEm−2,δ(τ) , τ ≥ 0 . (4.25)
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By Proposition 2.11, we have em,δ(τ) ≤ Em,δ(τ) ≤ C5 em,δ(τ) for some C5 > 0. Moreover, it
follows from (4.23) and from our choice of κ that Em,δ(τ) satisfies the differential inequality

∂τEm,δ(τ) ≤ −λ1
4

∫

(δ + |y|2)m|∇w|2 dy − λEm,δ(τ) + κF1(τ) + C2F2(τ) , (4.26)

where

F1(τ) =

∫

(δ + |y|2)m−2WR1 dy , F2(τ) = α2

∫

(δ + |y|2)m‖B(yeτ/2)‖2 |∇ϕ|2 dy .

Our final task is to estimate the remainder terms F1,F2 in (4.26), which involve the matrix
B(x) = A(x) − A∞(x), either explicitly or through the definition (4.17) of R1. We recall that
B satisfies the bound (4.6) for some ν > 0. We start with the term F1, which can be bounded
using Young’s inequality and Proposition 2.14. For ǫ > 0 arbitrarily small, we thus obtain

F1(τ) ≤ ǫEm−2,δ(τ) + Cǫ

∫

(δ + |y|2)m−2|R1(y, τ)|2 dy

≤ ǫEm−2,δ(τ) + Cǫ

∫

|y|2m−2‖B(yeτ/2)‖2
(

α2|∇ϕ|2 + |∇w|2
)

dy ,

where in the second line we used the fact that (δ + |y|2)m−2 ≤ |y|2m−4 because m ≤ 2, and we
applied estimate (2.41) with u = R1 and g = B(· eτ/2)(α∇ϕ+∇w). To bound the last integral,
we take γ = min(ν,m− 1) > 0 and we observe that

|y|2m−2‖B(yeτ/2)‖2 ≤ C|y|2γ‖B(yeτ/2)‖2(δ + |y|2)m ≤ C e−γτ (δ + |y|2)m ,

because supx∈Rn |x|γ‖B(x)‖ <∞. Using in addition Proposition 3.7, we arrive at

F1(τ) ≤ ǫEm−2,δ(τ) + Cǫ e
−γτ

(

α2 +

∫

(δ + |y|2)m|∇w|2 dy
)

. (4.27)

To control F2, we use the bound (δ + |y|2)m ≤ 2m−1(δm + |y|2m), and we treat the term
involving |y|2m exactly as before. When no power of |y| is available, this argument does not
work, but taking 0 < ǫ < γ we can apply Hölder’s inequality with conjugate exponents

q =
n

2(γ−ǫ) , p =
n

n− 2(γ−ǫ) , so that 1 < p <
n

2(1 − β)
.

We know that ∇ϕ ∈ L2p(Rn) by Proposition 3.7, and that x 7→ B(x) ∈ L2q(Rn) in view of (4.6)
because 2q = n/(γ−ǫ) > n/ν. It follows that

∫

‖B(yeτ/2)‖2|∇ϕ|2 dy ≤
(
∫

‖B(yeτ/2)‖2q dy
)1/q(∫

|∇ϕ|2p dy
)1/p

≤ Cǫ e
−(γ−ǫ)τ‖∇ϕ‖2L2p ,

hence
F2(τ) ≤ Cǫ α

2 e−(γ−ǫ)τ
(

‖∇ϕ‖2L2p + ‖(1 + |y|)m∇ϕ‖2L2

)

. (4.28)

To summarize, it follows from (4.26), (4.27), (4.28) that

∂τEm,δ(τ) ≤ −(λ− ǫ)Em,δ(τ) +
(

Cǫ e
−γτ − λ1

)

Dm,δ(τ) + C ′
ǫ α

2 e−(γ−ǫ)τ , τ > 0 , (4.29)

where

Dm,δ(τ) =
1

4

∫

(δ + |y|2)m|∇w(y, τ)|2 dy . (4.30)
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Here the parameter ǫ > 0 can be taken arbitrarily small, and the constants Cǫ, C
′
ǫ > 0 depend

only on ǫ and on the properties of the matrix A. If τ > 0 is large enough, the coefficient of
Dm,δ(τ) in the right-hand side of (4.29) becomes negative, and we obtain a differential inequality
for the combined energy which implies that Em,δ(τ) decays exponentially as τ → +∞. More
precisely, using inequalities (4.13) and (4.29), we obtain :

Proposition 4.6. Assume that n = 2 or 3, m ∈ (n/2, n/2 + β), and m ≤ 2. For any real
number µ satisfying (1.12), there exists a positive constant C such that, for any α ∈ R and any
initial data w0 ∈ L2

0(m), the solution w ∈ C0([0,+∞), L2
0(m)) of (4.8) satisfies

‖w(τ)‖L2(m) ≤ C
(

‖w0‖L2(m) + |α|
)

e−µτ , τ ≥ 0 . (4.31)

Proof. Given µ satisfying (1.12), we choose ǫ > 0 small enough so that 2µ < min(λ, γ)−ǫ, where
(as above) λ = m − n/2 and γ = min(ν,m−1). If τ∗ > 0 is large enough so that λ1 e

γτ∗ ≥ Cǫ,
we can omit the term involving Dm,δ(τ) in the right-hand side of (4.29), and integrating the
resulting differential inequality we obtain Em,δ(τ) ≤ C

(

Em,δ(τ∗)+α
2
)

e−2µ(τ−τ∗) for τ ≥ τ∗. Since
the combined energy Em,δ(τ) is equivalent to ‖w(τ)‖2L2(m), this gives the large time estimate

‖w(τ)‖2L2(m) ≤ C
(

‖w(τ∗)‖2L2(m) + α2
)

e−2µ(τ−τ∗) , τ ≥ τ∗ . (4.32)

To control the solution for intermediate times, we use the differential inequality (4.13) with
δ = 1, which is in fact valid regardless of the value of the parameter m. If we bound the last
term in the right-hand side using (4.28), we obtain the useful inequality

∂τ‖w(τ)‖2L2(m′) ≤ n−2m′

2
‖w(τ)‖2L2(m′) +

(

m′δ + C1m
′2
)

‖w(τ)‖2L2(m′−1) + C2 α
2 e−γ′τ , (4.33)

which holds for any m′ ≥ 0 and any γ′ ∈ [0,m′] with γ′ < ν. In particular, if m′ = 0 and γ′ = 0,
we have ∂τ‖w(τ)‖2L2 ≤ (n/2)‖w(τ)‖2L2 + C2α

2, so that ‖w(τ)‖2L2 ≤
(

‖w(0)‖2L2 + Cα2
)

enτ/2 for
all τ ≥ 0. Then, taking successively m′ = 1, m′ = 2, . . . we obtain in a finite number of steps
the rough estimate

‖w(τ)‖2L2(m) ≤ C
(

‖w0‖2L2(m) + α2
)

enτ/2 , τ ≥ 0 . (4.34)

Combining (4.34) for τ ≤ τ∗ and (4.32) for τ ≥ τ∗ , we easily obtain (4.31).

4.5 Higher-order antiderivatives

Proposition 4.6 is the main ingredient in the proof of Theorem 1.3 in low space dimensions.
It is obtained, however, under the (unfortunate) assumption that m ≤ 2, which implies first
that n ≤ 3, and also that the convergence rate µ cannot exceed the value 1/4 if n = 3, even
if the parameters β, ν are larger than 1/2. To remove these artificial restrictions, we need to
introduce higher-order antiderivatives, as we now explain. The reader who is satisfied with the
assumptions of Proposition 4.6 can skip what follows and jump directly to Section 4.6.

We first recall that most of our analysis so far, including the weighted estimates in Section 2.5,
is valid in arbitrary space dimension n ≥ 2. In Section 4, the differential inequality (4.13) for
the energy functional em,δ(τ) holds for all n ≥ 2 and any m ≥ 0, but is not sufficient by itself
to prove exponential decay of the solutions. This was precisely the reason for introducing the
additional functional Em−2,δ(τ), which involves the antiderivative W = K[w]. The assumption
that m ≤ 2 is needed to eliminate the undesirable term involving Em−3,δ(τ) in the right-hand
side of (4.21), so as to obtain exponential decay by combining (4.13) and (4.21).
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We now consider the situation where m ∈ (n/2, n/2 + β) and 2 < m ≤ 4, which is possible
if n = 3 and β > 1/2, or if 4 ≤ n ≤ 7. In that case, keeping in mind the conclusions of
Propositions 2.11 and 2.14, which show that each application of the linear operator K decreases
by two units the power m in the weight (δ + |y|2)m, we introduce the “second antiderivative”
W (2) = K[W ] = K2[w]. We know from Remark 2.12 that W ∈ L2(m−2), and our current
assumptions on m imply that 0 < m − 2 < n/2. Thus we can apply Proposition 2.9 which
asserts that W (2) ∈ L2(m−4) with ‖W (2)‖L2(m−4) ≤ C‖W‖L2(m−2) ≤ C‖w‖L2(m). Moreover,

proceeding as in Section 4.3, it is straightforward to verify that W (2)(y, τ) satisfies the evolution
equation

∂τW
(2) = div

(

A∞(y)∇W (2)
)

+
1

2
y · ∇W (2) +

n−4

2
W (2) +K[R1] , (4.35)

where R1 is as in (4.17). Note that the factor (n−2)/2 in (4.16) becomes (n−4)/2 in (4.35).

The natural energy functional for the new variable W (2) is

E
(2)
m−4,δ(τ) =

1

2

∫

Rn

(δ + |y|2)m−4|W (2)(y, τ)|2 dy , τ ≥ 0 . (4.36)

In analogy with (4.21) we find

∂τE
(2)
m−4,δ(τ) ≤ −1

2

∫

(δ + |y|2)m−4
〈

∇W (2), A∞∇W (2)
〉

dy +
n−2m

2
E

(2)
m−2,δ(τ)

+
(

(m−4)δ + C1(m−4)2
)

E
(2)
m−5,δ(τ) +

∫

(δ + |y|2)m−4W (2)K[R1] dy .

(4.37)

As in Section 4.4, since m ≤ 4, the coefficient of E
(2)
m−5,δ in (4.37) can be made non-positive by

an appropriate choice of δ. Moreover the negative term involving ∇W (2) can be used to control
the undesirable quantity

(

(m−2)δ+C1(m−2)2
)

Em−3,δ(τ) in (4.21), in view of the interpolation
inequality

Em−3,δ ≤ ε

∫

(δ + |y|2)m−2|∇W |2 dy + Cε

∫

(δ + |y|2)m−4|∇W (2)|2 dy ,

which is established exactly as in (4.24). Finally, the remainder term in (4.37) can be estimated
just as the quantity F1 in (4.26). Indeed, since m− 4 ≤ 0, Proposition 2.9 yields

∫

(δ + |y|2)m−4 |K[R1]|2 dy ≤
∫

|y|2(m−4) |K[R1]|2 dy ≤ C

∫

|y|2(m−2) |R1|2 dy .

The arguments above allow us to control the solution of (4.8) using the new functional

E(2)
m,δ(τ) = em,δ(τ) + κ1Em−2,δ(τ) + κ2E

(2)
m−4,δ(τ) , τ ≥ 0 ,

where κ1, κ2 are positive constants satisfying κ2 ≫ κ1 ≫ 1. Combining the differential inequal-
ities (4.13), (4.21), (4.37) and proceeding as in Section 4.4, it is straightforward to prove the

exponential decay of the energy E(2)
m,δ(τ) as τ → +∞.

In yet higher space dimensions, namely when m ∈ (n/2, n/2 + β) and m > 4, the strategy
is similar but it becomes necessary to use the iterated antiderivatives W (ℓ) = Kℓ[w] for larger
values of ℓ ∈ N. To give a flavor, let ℓ be the smallest integer such that m − 2ℓ ≤ 0. The

energy functional E
(ℓ)
m−2ℓ,δ(τ) is defined in close analogy with (4.36), and satisfies a differential

inequality similar to (4.37) where the coefficient (m−2ℓ)δ +C1(m−2ℓ)2 in front of E
(ℓ)
m−2ℓ−1,δ is

either zero or can be made negative by an appropriate choice of δ. Moreover, the negative term
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involving |∇W (ℓ)|2 can be used to control an undesirable quantity in the evolution equation

for the next functional in the hierarchy, which is E
(ℓ−1)
m−2(ℓ−1),δ . Exponential decay can thus be

established using a combined functional of the form

E(ℓ)
m,δ(τ) = em,δ(τ) + κ1Em−2,δ(τ) + κ2E

(2)
m−4,δ(τ) + · · ·+ κℓE

(ℓ)
m−2ℓ,δ(τ) ,

for some suitable constants κ1, . . . , κℓ. The details are left to the reader.

Taking the above arguments for granted, we thus obtain :

Corollary 4.7. The conclusion of Proposition 4.6 holds for all n ≥ 2 if m ∈ (n/2, n/2 + β).

4.6 End of the proof of Theorem 1.3

We conclude here the proof of Theorem 1.3 assuming the validity of Corollary 4.7, which was
carefully established at least in low dimensions, see Proposition 4.6. What remains to be done
is essentially to remove the upper bound n/2+β on the parameter m. This will not increase the
convergence rate µ, as can be seen from (1.12), but estimate (1.13) will nevertheless be obtained
in a stronger norm. To do that, our strategy is to introduce an auxiliary parameter m̄ ≤ m such
that m̄ ∈ (n/2, n/2 + β). Estimate (4.31) allows us to control the solution in the larger space
L2(m̄), and a simple interpolation gives convergence in L2(m) too.

We now provide the details. Assume that n ≥ 2 and take initial data v0 ∈ L2(m) for some
m > n/2. We decompose v0 = αϕ + w0, where α =

∫

v0(y) dy, and we consider the unique
solution w ∈ C0([0,+∞), L2

0(m)) of equation (4.8) such that w(0) = w0. Given µ satisfying
(1.12), we choose m̄ ≤ m such that m̄ ∈ (n/2+2µ, n/2+β). We start from estimate (4.33) with
m′ = m and γ′ = 2µ, which gives

∂τ‖w(τ)‖2L2(m) ≤ n−2m

2
‖w(τ)‖2L2(m) +

(

mδ + C1m
2
)

‖w(τ)‖2L2(m−1) + C2 α
2 e−2µτ .

We next use the elementary bound

‖w(τ)‖2L2(m−1) ≤ ǫ‖w(τ)‖2L2(m) + Cǫ‖w(τ)‖2L2(m̄) ,

which is obtained by interpolation if m̄ < m−1 < m, and is completely obvious ifm−1 ≤ m̄ ≤ m.
Taking any λ such that 2µ < λ < (n−2m)/2 and choosing ǫ > 0 small enough, we thus obtain

∂τ‖w(τ)‖2L2(m) ≤ −λ ‖w(τ)‖2L2(m) + C ′
ǫ‖w(τ)‖2L2(m̄) + C2 α

2 e−2µτ .

The second term in the right-hand side is controlled using estimate (4.31) in the space L2(m̄),
and taking into account the fact that m̄ ∈ (n/2 + 2µ, n/2 + β). This gives

∂τ‖w(τ)‖2L2(m) ≤ −λ ‖w(τ)‖2L2(m) + C ′′
ǫ

(

‖w0‖2L2(m̄) + α2
)

e−2µτ + C2 α
2 e−2µτ .

As ‖w0‖L2(m̄) ≤ ‖w0‖L2(m) and λ > 2µ, a final application of Grönwall’s lemma gives the desired
estimate

‖w(τ)‖L2(m) ≤ C
(

‖w0‖L2(m) + |α|
)

e−µτ , τ ≥ 0 ,

where the constant C depends on n, m, µ, and on the properties of the matrix A. �
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5 Long-time asymptotics in the semilinear case

In this section we study the long-time behavior of small solutions to the full equation (1.6),
where the nonlinearity N (τ, v) is given by (1.7). As before, we concentrate on the low space
dimensions n = 2 and n = 3, but using the ideas introduced in Section 4.5 it is possible to treat
the higher-dimensional case as well. We recall that the function N in (1.7) satisfies (1.17), and
we suppose without loss of generality that the exponent σ in (1.17) lies in the range

1 +
2

n
< σ ≤ 1 +

3

n
. (5.1)

This means that the quantity η defined in (1.18) satisfies 0 < η ≤ 1/2. Clearly, a larger value of
σ, hence of η, would not increase the convergence exponent µ in (1.18), since β < 1.

In view of (1.7), (1.17), the nonlinearity N in (1.6) satisfies

∣

∣N (τ, v)
∣

∣ ≤ C0 e
−ητ |v|σ , and

∣

∣N (v) −N (ṽ)
∣

∣ ≤ C0 e
τ |v − ṽ| , (5.2)

for all v, ṽ ∈ R and all τ ≥ 0, where C0 is some positive constant. In particular, since N (τ, v)
is a globally Lipschitz function of v, uniformly in τ on compact intervals, it is straightforward
to verify, as in Lemma 4.1, that the Cauchy problem for Eq. (1.6) is globally well-posed in the
space L2(m) for any m ≥ 0. In other words, given any initial data v0 ∈ L2(m), there exists a
unique global solution v ∈ C0([0,+∞), L2(m)) of (1.6) such that v(0) = v0. Our goal here is to
compute the long-time behavior of that solution when the initial data are sufficiently small.

We assume henceforth that m > n/2, so that L2(m) →֒ L1(Rn). We decompose the solution
as in (4.7), with the important difference that the integral of v is no longer a conserved quantity.
Instead we have

α(τ) =

∫

Rn

v(y, τ) dy , and α′(τ) =

∫

Rn

N
(

τ, v(y, τ)
)

dy . (5.3)

The equation satisfied by the perturbation w(y, τ) = v(y, τ) − α(τ)ϕ(y) is of the form (4.8),
except that the remainder term r1 given by (4.9) is replaced by r1 + r2, where

r2(y, τ) = N
(

τ, α(τ)ϕ(y) + w(y, τ)
)

− α′(τ)ϕ(y) . (5.4)

Similarly, the antiderivative W (y, τ) defined by (4.15) satisfies equation (4.16), except that the
remainder term R1 defined by (4.17) is replaced by R1 +R2, where R2 = K[r2].

As in the previous section, our strategy is to control the solution of (4.8) or (4.16) using
weighted energy estimates, where the weight is a power of ρ(y) := (δ + |y|2)1/2. To treat the
nonlinear terms, the following auxiliary results will be useful.

Lemma 5.1. If w ∈ L2(m) and ∇w ∈ L2(m)n, we have, for all τ ≥ 0,

∫

Rn

ρ2m|w|
∣

∣N (τ, αϕ+w)
∣

∣ dy ≤ C e−ητ
(

|α|σ‖w‖L2(m)+‖w‖σ+1
L2(m)

+‖∇w‖η+1
L2(m)

‖w‖σ−η
L2(m)

)

, (5.5)

where η > 0 is as in (1.18).

Proof. In view of (5.2), we have |N (τ, αϕ+w)| ≤ C e−ητ
(

|α|σϕσ + |w|σ
)

, hence

∫

Rn

ρ2m|w|
∣

∣N (τ, αϕ+w)
∣

∣ dy ≤ C e−ητ

(

|α|σ‖w‖L2(m) +

∫

Rn

ρ2m|w|σ+1 dy

)

,

36



where we used the Cauchy-Schwarz inequality and the fact that ϕσ ∈ L2(m), see (1.10). To
bound the last integral, we observe that ρ2m|w|σ+1 ≤ |ω|σ+1 where ω = ρmw, and we use the
interpolation inequality

∫

Rn

|ω|σ+1 dy ≤ C ‖∇ω‖
n
2
(σ−1)

L2(Rn)
‖ω‖σ+1−n

2
(σ−1)

L2(Rn)
, (5.6)

which is valid because (σ+1)(n− 2) ≤ 2n. Since ‖∇ω‖L2(Rn) ≤ C
(

‖∇w‖L2(m) + ‖w‖L2(m)

)

and
(n/2)(σ − 1) = 1 + η, we obtain (5.5).

Remark 5.2. We can simplify somehow estimate (5.5) by applying Young’s inequality to the
various terms in the right-hand side. The appropriate pairs of conjugate exponents are p = p′ = 2
for the first two terms, and q = 2/(1+η), q′ = 2/(1−η) for the last one. We observe that q′ > 2
and q′(σ − η) > 2σ, hence assuming that ‖w‖L2(m) ≤ 1 we obtain, for any ǫ > 0,

∫

Rn

ρ2m|w|
∣

∣N (τ, αϕ+w)
∣

∣ dy ≤ ǫ
(

‖w‖2L2(m) + ‖∇w‖2L2(m)

)

+ Cǫ e
−2ητ

(

|α|2σ + ‖w‖2σL2(m)

)

.

Lemma 5.3. If w ∈ L2(m) and ∇w ∈ L2(m)n, we have, for all τ ≥ 0,
∫

Rn

ρm−n/2
∣

∣N (τ, αϕ+w)
∣

∣ dy ≤ C e−ητ
(

|α|σ + ‖w‖σL2(m) + ζn‖∇w‖σ−2
L2(m)

‖w‖2L2(m)

)

, (5.7)

where ζn = 0 if n ≥ 3 and ζn = 1 if n = 2.

Proof. In view of (5.2) and (1.10), we have as before

∫

Rn

ρm−n/2
∣

∣N (τ, αϕ+w)
∣

∣ dy ≤ C e−ητ

(

|α|σ +

∫

Rn

ρm−n/2|w|σ dy
)

.

If n ≥ 3, then σ ∈ (1, 2] by (5.1), and a simple application of Hölder’s inequality yields
∫

Rn

ρm−n/2|w|σ dy ≤ ‖ρ−m(σ−1)−n/2‖L2/(2−σ)(Rn)‖w‖σL2(m) ≤ C‖w‖σL2(m) .

We thus obtain (5.7) with ζn = 0, for any w ∈ L2(m). If n = 2, then σ > 2 by (5.1), and we can
control the term involving |w|σ as in the proof of Lemma 5.1. Setting ω = ρmw and using the
interpolation inequality (5.6) with σ replaced by σ − 1, we arrive at (5.7) with ζn = 1.

Our main goal is to prove that the quantities |α′(τ)| and ‖w(·, τ)‖L2(m) decay exponentially
to zero as τ → +∞, if we assume a priori that |α(τ)| + ‖w(·, τ)‖L2(m) ≤ 1 for all τ ≥ 0. As we
shall see, that condition will be fulfilled if we take sufficiently small initial data. Proceeding as
in Section 4, our strategy is to use the differential inequalities satisfied by the energy functionals
em,δ(τ) and Em−2,δ(τ) defined by (4.10), (4.25), respectively. In what follows, we fix some δ ≥ 1
and we denote ρ(y) = (δ + |y|2)1/2.

We first control the evolution of the scalar quantity α. The derivative α′(τ) given by (5.3)
can be estimated using Lemma 5.3, if we disregard the factor ρm−n/2 ≥ 1 in the left-hand side
of (5.7). We thus find

|α′(τ)| ≤ C e−ητ
(

|α|σ + ‖w‖σL2(m) + ζn‖∇w‖σ−2
L2(m)

‖w‖2L2(m)

)

. (5.8)

Next, since the function w satisfies (4.8) with remainder term r1 + r2, we obtain as in (4.23) :

∂τem,δ(τ) ≤ −2λ1Dm,δ(τ)− λem,δ(τ) + C3 em−1,δ(τ) + C2F2(τ) + F3(τ) , (5.9)
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where λ = m− n/2, C3 = mδ + C1m
2, Dm,δ(τ) is defined in (4.30), and F3(τ) =

∫

ρ2mw r2 dy.
In view of (4.28), we have F2(τ) ≤ Cǫ α

2 e−(γ−ǫ)τ for any small ǫ > 0, where γ = min(ν,m− 1).
Moreover, the definition (5.4) of r2 implies that

F3(τ) ≤
∫

ρ2m |w|
∣

∣N (τ, αϕ + w)
∣

∣ dy + |α′(τ)|
∫

ρ2m |w|ϕdy .

The first term in the right-hand side is estimated using Lemma 5.1 and Remark 5.2, whereas
for the second term we use (5.8), the Cauchy-Schwarz inequality, and Young’s inequality. We
thus find

F3(τ) ≤ ǫ
(

‖w‖2L2(m) + ‖∇w‖2L2(m)

)

+ Cǫ e
−2ητ

(

|α|2σ + ‖w‖2σL2(m)

)

, (5.10)

where ǫ > 0 is arbitrarily small. Replacing these estimates into (5.9), we arrive at

∂τem,δ(τ) ≤ − (2λ1−ǫ)Dm,δ(τ)− (λ−ǫ)em,δ(τ) + C3 em−1,δ(τ)

+ Cǫ α
2 e−(γ−ǫ)τ +Cǫ e

−2ητ
(

|α|2σ + em,δ(τ)
σ
)

,
(5.11)

for some sufficiently small ǫ > 0.

The second important quantity we want to control is the combined energy functional (4.25),
which involves both w and the antiderivative W . At this point, we have to assume as in
Proposition 4.6 that m ∈ (n/2, n/2+β) and m ≤ 2. We also suppose that δ satisfies (4.22). Due
to the additional nonlinear terms in the evolution equations for w and W , we obtain instead of
(4.26) :

∂τEm,δ(τ) ≤ −λ1Dm,δ(τ)− λEm,δ(τ) + κ
(

F1(τ) + F4(τ)
)

+ C2F2(τ) + F3(τ) , (5.12)

where F1(τ) satisfies (4.27) and F4(τ) =
∫

ρ2m−4WR2 dy =
∫

ρ2m−4WK[r2] dy. To estimate
the new term, we first apply the Cauchy-Schwarz inequality, and then Proposition 2.11 with
p = 1 and s = n/2. We thus obtain

|F4(τ)| ≤ C‖W‖L2(m−2)

∫

Rn

ρm−n/2
∣

∣

∣
N
(

τ, αϕ + w
)

− α′(τ)ϕ
∣

∣

∣
dy ,

where the integral in the right-hand side can be controlled using Lemma 5.3 and estimate (5.8).
Using in addition Young’s inequality when n = 2 (in which case ζn = 1), we obtain

F4(τ) ≤ ǫ
(

‖W‖2L2(m−2) + ζn‖∇w‖2L2(m)

)

+ Cǫ e
−2ητ

(

|α|2σ + ‖w‖2σL2(m)

)

. (5.13)

If we bound F1(τ) by (4.27), F4(τ) by (5.13), and F2(τ),F3(τ) as in (5.11), we can write (5.12)
in the form

∂τEm,δ(τ) ≤ − (λ− ǫ)Em,δ(τ) +
(

C ′
ǫ e

−γτ − λ1

)

Dm,δ(τ)

+ C ′′
ǫ α

2 e−(γ−ǫ)τ + C ′′
ǫ e

−2ητ
(

|α|2σ + em,δ(τ)
σ
)

,
(5.14)

where ǫ > 0 is small enough. Both inequalities (5.11), (5.14) are valid as long as ‖w(τ)‖L2(m) ≤ 1,
and the constants Cǫ, C

′
ǫ, C

′′
ǫ therein depend only on ǫ and on the properties of the matrix A.

End of the proof of Theorem 1.6. We now show how to deduce the conclusion of Theorem 1.6
from estimates (5.8), (5.11), and (5.14), assuming for simplicity that either n = 2 or n = 3
and µ < 1/4. The arguments here are pretty standard, and we only indicate the main steps.
Throughout the proof, we assume that v is the solution of (1.6) with initial data v0 ∈ L2(m)
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satisfying ‖v0‖L2(m) ≤ ǫ0, for some sufficiently small ǫ0 > 0. We decompose this solution as
v(y, τ) = α(τ)ϕ(y) + w(y, τ) where α(τ) is defined by (5.3).

Step 1. (Short-time estimate) We claim that there exist constants C9 > 1 and θ > n/2 such
that

α(τ)2 + em,δ(τ) ≤ C9 e
θτ
(

α(0)2 + em,δ(0)
)

, τ ≥ 0 , (5.15)

as long as the right-hand side is smaller than or equal to 1. To prove (5.15), we start from
the differential inequality (5.11), which is valid for any m > n/2. Using the rough estimate
em−1,δ(τ) ≤ em,δ(τ) and assuming that α(τ)2 + em,δ(τ) ≤ 1, we deduce from (5.11) that

∂τem,δ(τ) ≤ −cDm,δ(τ) + θem,δ(τ) + C e−2µτ
(

α(τ)2 + em,δ(τ)
)

, (5.16)

where c = 2λ1 − ǫ and θ = C3 − λ+ ǫ. Under the same assumptions, it follows from (5.8) and
Young’s inequality that

2α(τ)α′(τ) ≤ ǫ
(

α(τ)2 + ζnDm,δ(τ)
)

+Cǫ e
−2ητ

(

α(τ)2 + em,δ(τ)
)

, (5.17)

where ǫ > 0 is arbitrarily small. Combining (5.16), (5.17) we obtain a differential inequality for
the quadratic quantity α(τ)2 + em,δ(τ), which can be integrated to give (5.15).

Step 2. (Exponential decay for large times) We assume for the time being that m ≤ 2 and
m ∈ (n/2 + 2µ, n/2 + β), so that estimate (5.14) is valid. We take τ1 > 0 large enough so that
C ′
ǫ e

−γτ1 ≤ λ1/2, where C
′
ǫ is as in (5.14), and we assume that ǫ21 := α(τ1)

2 + em,δ(τ1) ≪ 1. In
view of (5.15), this condition is fulfilled if the initial data are sufficiently small. For τ ≥ τ1, as
long as the solution satisfies α(τ)2 + em,δ(τ) ≤ M2ǫ21 ≤ 1, for some fixed constant M > 1, we
can integrate the differential inequality (5.14) to obtain

Em,δ(τ) +
λ1
2

∫ τ

τ1

e−λ′(τ−s)Dm,δ(s) ds ≤ e−λ′(τ−τ1) Em,δ(τ1) + CM2ǫ21 e
−2µτ , (5.18)

where λ′ = λ− ǫ. Under the same assumptions, integrating (5.8), we obtain for τ1 ≤ τ2 ≤ τ :

∣

∣α(τ) − α(τ2)
∣

∣ ≤
∫ τ

τ2

∣

∣α′(s)
∣

∣ ds ≤ CMσǫσ1 e
−ητ2 . (5.19)

Estimate (5.19) is straightforward to obtain when n ≥ 3, but in the two-dimensional case we
must use the integral term in the right-hand side of (5.18) to control the quantity involving
‖∇w‖L2(m) in the expression (5.8) of α′(τ). In any case, it follows from (5.18), (5.19) that

α(τ)2 + em,δ(τ) ≤ C10

(

ǫ21 +M2ǫ21 e
−2µτ1

)

, τ ≥ τ1 , (5.20)

as long as α(τ)2+em,δ(τ) ≤M2ǫ21. Here the constant C10 does not depend onM nor on τ1. Thus
we can chooseM large enough so thatM2 > 2C10, and then τ1 large enough so that e2µτ1 ≥M2.
Under these assumptions, we deduce from (5.20) that α(τ)2+em,δ(τ) ≤M2ǫ21 ≤ 1 for all τ ≥ τ1,
and this in turn implies that estimates (5.18), (5.19) hold for all τ ≥ 0. In particular, we have
em,δ(τ) ≤ Em,δ(τ) ≤ Cǫ21 e

−2µτ , and there exists α∗ ∈ R such that |α(τ) − α∗| ≤ Cǫ1 e
−ητ for

all τ ≥ τ1. Together with the short time estimate (5.15), this proves (1.19) in the case where
m ∈ (n/2 + 2µ, n/2 + β) and m ≤ 2.

The final step consists in proving the exponential decay for large times in the general case
wherem > n/2. This can be done using the previous result and a simple interpolation argument
as in the proof of Theorem 1.3. We omit the details. �
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Remark 5.4. It is possible to relax considerably our assumptions (1.17) on the nonlinearity
N and to strengthen our convergence result (1.19) by using additional functionals that control
derivatives of the solution v(y, τ). In view of (4.13), it is natural to consider the functional

Dm,δ(τ) =
1

2

∫

(δ + |y|2)m
〈

∇w(y, τ), A(yeτ/2)∇w(y, τ)
〉

dy , (5.21)

which is equivalent to Dm,δ(τ) in (4.30). However, controlling the time evolution of Dm,δ(τ)
requires the additional hypothesis that the matrix A(x) in (1.1) satisfies x ·∇A ∈ L∞(Rn). Such
an assumption is quite natural in our problem, but is not required in Theorems 1.3 and 1.6.

6 Appendix

6.1 A generalized Young inequality

In this section, following [24], we give a short proof of Proposition 2.7.

Lemma 6.1. Under the assumptions of Proposition 2.7, we define, for any y ∈ S
n−1 ⊂ R

n,

κ2 =

∫

Rn

|k(x, y)|n/d |x|−n2/(dp′) dx , where
1

p
+

1

p′
= 1 . (6.1)

Then κ2 = κ1, where κ1 is given by (2.31).

Proof. Proceeding as in [24, Lemma 1], we write x = rσ and y = ρθ, where r = |x|, ρ = |y|,
and σ, θ ∈ S

n−1. By rotation invariance, the definition (2.31) does not depend on the choice of
x ≡ σ ∈ S

n−1. Thus, averaging over σ, we obtain

κ1 =
1

sn

∫

Sn−1

∫

Sn−1

∫ ∞

0
|k(σ, ρθ)|n/d ρn−1−n2/(dq) dρdθ dσ ,

where sn = 2πn/2 Γ(n/2)−1 is the measure of Sn−1. We perform the change of variable ρ = 1/r
in the inner integral, and use the fact that |k(x, y)|n/d is homogeneous of degree −n. This gives

κ1 =
1

sn

∫

Sn−1

∫

Sn−1

∫ ∞

0
|k(rσ, θ)|n/d rn−1−n2/(dp′) dρdσ dθ , (6.2)

because n2/(dq) = n − n2/(dp′) in view of (2.31). The right-hand side of (6.2) is the average
over θ ∈ S

n−1 of the quantity (6.1), which does not depend on the choice of y ≡ θ ∈ S
n−1. This

yields the desired equality κ1 = κ2.

Proof of Proposition 2.7. We assume for definiteness that 1 < p < q <∞, which is the most
interesting situation. The other cases, where some of the inequalities above are not strict, can
be established by similar (or simpler) arguments. If f ∈ Lp(Rn) and g = K[f ], we have

|g(x)| ≤
∫

Rn

(

|k(x, y)|a|y|−b
)(

|k(x, y)|1−a|y|b|f(y)|p/q
)

|f(y)|1−p/q dy , x ∈ R
n ,

where a = n/(dp′) and b = n2/(dqp′). We apply to the right-hand side the trilinear Hölder
inequality with exponents p′, q, and r := pq/(q − p), which satisfy 1/p′ + 1/q + 1/r = 1. This
gives

|g(x)|q ≤ I(x)

(
∫

Rn

|k(x, y)|(1−a)q |y|bq|f(y)|p dy
)

‖f‖q−p
Lp(Rn)

, (6.3)
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where

I(x)p
′/q =

∫

Rn

|k(x, y)|ap′ |y|−bp′ dy =

∫

Rn

|k(x, y)|n/d|y|−n2/(dq) dy .

Applying the change of variables y = |x|z in the last integral and using the assumption that the
expression |k(x, y)|n/d is homogeneous of degree −n, we obtain

I(x)p
′/q = |x|n−n2/dq

∫

Rn

∣

∣k(x, |x|z)
∣

∣

n/d |z|−n2/(dq) dz = κ1 |x|−n2/(dq) .

We now replace this expression into (6.3) and integrate over x ∈ Rn, using Fubini’s theorem to
exchange the integrals. Since (1− a)q = n/d and bq = n2/(dp′), this gives

‖g‖q
Lq(Rn)

≤ κ
q/p′

1 ‖f‖q−p
Lp(Rn)

∫

Rn

J(y)|y|n2/(dp′)|f(y)|p dy , (6.4)

where

J(y) =

∫

Rn

|k(x, y)|n/d|x|−n2/(dp′) dx .

As for the computation of I, we use the homogeneity of k and the change of variable z = x/|y|
to obtain

J(y) =

∫

Rn

∣

∣k(z, y/|y|)
∣

∣

n/d|z|−n2/(dp′)|y|−n2/(dp′) dz = κ2 |y|−n2/(dp′) .

Using Lemma 6.1, we conclude that ‖g‖Lq(Rn) ≤ κ
1/p′

1 κ
1/q
2 ‖f‖Lp(Rn) = κ

d/n
1 ‖f‖Lp(Rn). �

6.2 On the divergence of localized vector fields

Let χ : Rn → [0, 1] be any smooth, compactly supported function such that χ(x) = 1 for |x| ≤ 1
and χ(x) = 0 for |x| ≥ 2. Given any k ∈ N

∗, we denote χk(x) = χ(x/k).

Lemma 6.2. Assume that g ∈ Lp(Rn)n for some p ∈ [1,∞) such that (n − 1)p < n. Then we
have 〈div g , χk〉 → 0 as k → +∞. In particular, if div g ∈ L1(Rn), then

∫

Rn div g dx = 0.

Proof. For any k ≥ 1, we have

〈div g , χk〉 = −〈g , ∇χk〉 = −1

k

∫

Rn

g(x) · ∇χ(x/k) dx . (6.5)

The integral in the right-hand side is easily estimated using Hölder’s inequality :

∣

∣

∣

∫

Rn

g(x) · ∇χ(x/k) dx
∣

∣

∣
≤ C

∫

|k|≤|x|≤2|k|
|g(x)|dx ≤ C‖g‖Lp(kn)1−

1
p .

Our assumption on p ensures that n(1− 1/p) < 1, hence the last member of (6.5) converges to
zero as k → ∞. Finally, if div g ∈ L1(Rn), the first member of (6.5) converges to

∫

Rn div g dx
by Lebesgue’s dominated convergence theorem.

Lemma 6.3. Let n ≥ 2, m ∈ (n/2, n/2+1), and assume that f ∈ L2(m) satisfies
∫

Rn f dx = 0.
Then there exists g ∈ L2(m−1)n such that div g = f and ‖g‖L2(m−1) ≤ C‖f‖L2(m).
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Proof. Under our assumptions on f , it is known that the elliptic equation ∆u = f has a unique
solution u : Rn → R that decays to zero at infinity [16]. We take g = ∇u. Using the explicit
form of the fundamental solution of the Laplace equation in R

n, we obtain the representations

g(x) =
1

sn

∫

Rn

x− y

|x− y|n f(y) dy =
1

sn

∫

Rn

(

x− y

|x− y|n − x

|x|n
)

f(y) dy , (6.6)

where sn is again the measure of the unit sphere S
n−1. Since f ∈ L2(Rn), we can apply the

Hardy-Littlewood-Sobolev inequality to the first expression of g in (6.6), and we deduce that
g ∈ Lp(Rn) for p = 2n/(n − 2) when n ≥ 3. If n ≥ 2, using the fact that L2(m) →֒ Lq(R2) for
q ∈ (1, 2), we obtain that g ∈ Lp(R2) for p ∈ (2,∞). In particular, we have in all cases

∫

|x|≤1
|g(x)|2 dx ≤ C‖f‖2L2(m) . (6.7)

We next exploit the second expression of g in (6.6). We claim that
∣

∣

∣

∣

x− y

|x− y|n − x

|x|n
∣

∣

∣

∣

≤ C|y|
|x||x− y|

(

1

|x− y|n−2
+

1

|x|n−2

)

, (6.8)

for all x, y ∈ R
n with x 6= 0 and x 6= y. Equivalently,
∣

∣

∣
|x|n(x− y)− x |x− y|n

∣

∣

∣
≤ C|x| |y| |x− y|

(

|x− y|n−2 + |x|n−2
)

, (6.9)

for all x, y ∈ Rn. To establish (6.9), we decompose

|x|n(x−y)− x |x−y|n = |x|n−1
(

|x|(x−y)− x |x−y|
)

+ x |x−y|
(

|x|n−1 − |x−y|n−1
)

, (6.10)

and we use the following two elementary observations :

1. For any x, z ∈ R
n we have

∣

∣|x|z−x|z|
∣

∣ ≤ 2|z||x− z|. This can be proved by taking the square
of both sides and considering two cases according to whether |x| ≤ 4|z| or |x| ≥ 4|z|.
2. For any x, z ∈ R

n, we have

∣

∣

∣
|x|n−1 − |z|n−1

∣

∣

∣
≤ n−1

2

∣

∣|x| − |z|
∣

∣

(

|x|n−2 + |z|n−2
)

.

Indeed the map t 7→ h(t) = (n−1)tn−2 is convex on R+, so that for all b ≥ a ≥ 0 we have
∫ b
a h(t) dt ≤ (b− a)(h(a) + h(b))/2, which gives the result if a = min(|x|, |z|), b = max(|x|, |z|).
Applying these elementary estimates with z = x−y, we can bound both terms in the right-hand
side of (6.10), and we arrive at (6.9).

Now, in view of (6.6), (6.8), we have |x|m−1|g(x)| ≤ C
∫

Rn k(x, y)|y|m|f(y)|dy, where

k(x, y) =
|x|m−2

|x− y| |y|m−1

(

1

|x− y|n−2
+

1

|x|n−2

)

.

The kernel k(x, y) is homogeneous of degree −n and invariant under rotations in R
n. Moreover,

if |x| = 1, the assumption that m ∈ (n/2, n/2 + 1) ensures that
∫

Rn k(x, y)|y|−n/2 dy < ∞.
Applying Proposition 2.7 with d = n and p = q = 2, we deduce that

∫

Rn

|x|2m−2|g(x)|2 dx ≤ C

∫

Rn

|y|2m|f(y)|2 dy ,

and combining this estimate with (6.7) we conclude that ‖g‖L2(m−1) ≤ C‖f‖L2(m).
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6.3 On the optimality of Proposition 2.11

We show here using an explicit example that the assumption m < n/2 + β in Proposition 2.11
cannot be relaxed. Given a, b > 0, we consider the functions u, f : Rn → R defined by

u(x) =
x1

(1 + |x|2)a , f(x) = − div
(

Ab(x)∇u(x)
)

, (6.11)

where Ab is the Meyers-Serrin matrix (3.4). We have

∇u(x) =
e1

(1 + |x|2)a − 2ax1x

(1 + |x|2)a+1
, where e1 = (1, 0, . . . , 0) ,

and since Ab(x)x = x we find

Ab(x)∇u(x) =
1

(1 + |x|2)a
(

be1 + (1− b)
x1x

|x|2
)

− 2ax1x

(1 + |x|2)a+1
.

Taking the divergence with respect to x, we arrive at

f(x) = −(1−b)(n−1)

(1 + |x|2)a
x1
|x|2 +

2a(n+2)x1
(1 + |x|2)a+1

− 4a(a+1)x1|x|2
(1 + |x|2)a+2

, x ∈ R
n .

For simplicity, we assume henceforth that n ≥ 3, so that f ∈ L2
loc(R

n). As |x| → ∞, we have

f(x) = x1

( c

|x|2a+2
+O

( 1

|x|2a+4

))

, as |x| → +∞ , (6.12)

where c = −(1 − b)(n − 1) + 2an − 4a2. The idea is now to choose the parameters a, b so that
c = 0, in order to maximize the decay of f . For instance, we can take

a =
1

4

(

n+
√

n2 − 4(1−b)(n−1)
)

=
1

4

(

n+
√

(n−2)2 + 4b(n−1)
)

. (6.13)

With this choice, given m > n/2, it follows from (6.11), (6.12) that

|x|mf ∈ L2(Rn) if and only if 2a > n/2 +m− 3 ,

|x|m−2u ∈ L2(Rn) if and only if 2a > n/2 +m− 1 .
(6.14)

Under the first condition in (6.14), we also have
∫

Rn f(x) dx = 0 since f is odd, hence f ∈ L2
0(m).

According to (6.14), the pair (u, f) violates inequality (2.38) with p = 2, s = 0 provided
m > n/2 and

n/2 +m− 3 < 2a < n/2 +m− 1 . (6.15)

For instance, if n = 3 and m = 2, we have 1/2 < 2a < 5/2 by (6.13) if b > 0 is sufficiently small,
and it follows that f ∈ L2(m),

∫

R3 f(x) dx = 0, and yet u /∈ L2(R3). The explanation is that the
Hölder exponent β in Proposition 2.4 tends to zero as b → 0 in the case of the Meyers-Serrin
operator, see Remark 3.4, and that the value m = 2 is not allowed in Proposition 2.11 if n = 3
and β < 1/2. More generally, if n ≥ 3 and n/2 < m < n/2+1, we can choose b > 0 small enough
so that inequalities (6.15) hold, which implies the failure of estimate (2.38) with p = 2, s = 0;
but it follows from (6.13) and (3.17) that 2a ≥ n− 1 + β, hence the second inequality in (6.15)
implies that m > n/2 + β. This shows that the assumption m < n/2 + β in Proposition 2.11 is
sharp in the case of the Meyers-Serrin matrix (3.4), at least if the quantity β is understood as
given by the right-hand side of (3.17).
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