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Abstract Dempster-Shafer evidence theory, also called the theory of belief function, is widely used

for uncertainty modeling and reasoning. However, when the size and number of focal elements are

large, the evidence combination will bring a high computational complexity. To address this issue,

various methods have been proposed including the implementation of more efficient combination

rules and the simplifications or approximations of Basic Belief Assignments (BBAs). In this paper,

a novel principle for approximating a BBA into a simpler one is proposed, which is based on the

degree of non-redundancy for focal elements. More non-redundant focal elements are kept in the

approximation while more redundant focal elements in the original BBA are removed first. Three

types of degree of non-redundancy are defined based on three different definitions of focal element

distance, respectively. Two different implementations of this principle for BBA approximations are

proposed including a batch and an iterative type. Examples, experiments, comparisons and related

analyses are provided to validate proposed approximation approaches.
� 2019 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Dempster-Shafer Theory (DST),1 which is also called the
theory of belief function, has been widely used in many
uncertainty modeling and reasoning related application fields

including information fusion,2 pattern classification3 and
Multiple Attributes Decision Making (MADM).4 However,

DST was criticized because of its limitations.5 One limitation
is its computational complexity6 in evidence combination,
which is influenced by the cardinality of the frame of discern-

ment and the number of focal elements in BBAs to combine.
The high computational cost brings a big challenge to the prac-
tical use of belief functions.

To reduce the computational cost encountered in evidence
combination, many approaches were proposed, which can be
in general categorized into the following types. The first type
is to design efficient combination algorithms. The representa-

tives of this type include Kennes’ method,7 Barnett’s
approach,8 and Shafer and Logan’s implementation for hierar-
chical evidence.9 The second type is to simplify the original

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cja.2019.05.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Basic Belief Assignment (BBA), i.e., to obtain a corresponding
approximated BBA. Two major types can be found in the pre-
vailing BBA approximations: (A) To use a BBA with a simpler

and special structure to approximate the original one. For
example, one can use the Bayesian BBA10 and the consonant
approximation of a BBA11; (B) To limit the quantity or size

of focal elements by removing some focal elements by follow-
ing some criteria (focal elements’ size or mass value, or both).
Tessem’s k-l-x method,12 Lowrance et al’s summarization

approach,13 Bauer’s D1 approximation,14 Denœux’ inner and
outer approximations,15 Monte-Carlo approximation,16 etc.
are representatives. They remove focal elements and redis-
tribute the corresponding mass assignment values. In our pre-

vious works in recent years, a hierarchical proportional
redistribution approach,17 rank-level based BBA approxima-
tion,18 and optimization based approximations19 were pro-

posed. Shou et al proposed a BBA approximation based on
the correlation coefficient.20

The work in current paper focuses on reducing the compu-

tational cost of evidence combination with BBA approxima-
tions. As aforementioned, one can limit the number of focal
elements according to some criteria. Intuitively, the rational

criterion should relate to the importance or non-redundancy
of the focal elements. A focal element with more ‘‘common”
or ‘‘shared information” with other focal elements is more
redundant and should be removed first if possible. However,

the available criterion is either the focal element’s size (i.e., car-
dinality) or its mass assignment, which has no direct and log-
ical relation with the focal elements’ importance or the non-

redundancy. Therefore, criteria related to the focal elements’
non-redundancy are required for proposing more reliable
and efficient BBA approximation approaches. This is the moti-

vation of our work in this paper.
We use the average distance between a given focal element

and all other focal elements to define the non-redundancy.

Smaller average distance means that the given focal element
carries more similar information compared with the others,
i.e., it is less non-redundant and should be removed earlier.
Different definitions of the distance between focal elements

are used in this paper to define different non-redundancies of
focal elements. Two strategies of removal (including a batch
and an iterative mode) are proposed in the sequel, followed

by the re-normalization or redistribution. Numerical examples,
simulations and related analyses are provided to show the
rationality and interest of the novel BBA approximation

approaches.
This paper extends our previous ideas briefly introduced in

Ref. 21, where the non-redundancy for focal elements was pre-
liminarily proposed. Comparatively, more definitions for dis-

tance of focal element are used to define the non-redundancy
of focal elements and different distance definitions are ana-
lyzed and compared in this extended version. We also provide

more experiments and analyses to provide a precise evaluation
of these new approximation methods. These are all added val-
ues. The rest of the paper is organized as follows. Section 2

provides the essentials of DST. Some limitations, especially
the computational cost, are pointed out. A brief review of
the available works on BBA approximations is provided in

Section 3. Section 3 then proposes the non-redundancy of focal
elements based on three different types of distance of focal ele-
ments. Numerical examples are provided to illustrate and com-
pare different definitions of non-redundancy. Simulations and
related analyses are provided in Section 4 to verify and evalu-
ate our proposed non-redundancy of focal elements and their

performance in BBA approximations. Comparisons between
the new proposed approaches and some typical existing ones
are also provided. Section 5 concludes this paper.

2. Preliminaries of BBA approximation

2.1. Basics of Dempster-Shafer evidence theory

In Dempster Shafer evidence theory,1 those elements in the

Frame of Discernment (FOD) H are mutually exclusive and
exhaustive. A basic belief assignment (BBA, also called mass

function) on a FOD is defined by a mapping mð�Þ : 2H#½0; 1�
satisfying mð£Þ ¼ 0 andX
A22H

mðAÞ ¼ 1 ð1Þ

If mðAÞ > 0, A is a focal element. Two Bodies of Evidence
(BOEs) can be combined using Dempster’s rule as

mðAÞ ¼
0
1

1�K

P
Ai\Bj¼Am1ðAiÞm2ðBjÞ

(
ð2Þ

where K ¼ P
Ai\Bj¼£m1ðAiÞm2ðBjÞ is the conflict coefficient

representing the total conflicting mass assignments between
BOEs to combine. Note that Dempster’s rule is both commu-

tative and associative. Dempster’s rule has also received seri-
ous arguments due to its counter-intuitive behaviors.22

Various alternative combination rules have been proposed.

See Ref. 23 for more details. These alternatives focus on sup-
pressing the counter-intuitive behaviors of Dempster’s rule.
However, they also have to face the high computational cost

problem6 with the increase of the FOD’s cardinality and that
of the focal elements number.

To reduce the high computational cost caused by the evi-
dence combination, one can try to design simpler combination

rules, attempt to develop efficient implementations for prevail-
ing rules, or try to simplify (approximate) the original BBA by
a simpler one with less focal elements. In this paper, we focus

on the BBA approximation, which is deemed more intuitive for
human beings to catch the meaning.24

2.2. Brief review of available BBA approximation approaches

An approximation fð�Þ of BBA aims to find a simpler BBA mS

to represent the original BBA m, i.e., mS ¼ fðmÞ. The available
approaches can be categorized into the following two types:
using the BBA with a special structure and reducing the num-
ber of focal elements.

2.2.1. Using BBA with special structure

(1) Bayesian BBA approximation

A Bayesian BBA approximation outputs a Bayesian BBA
with a special structure where all focal elements are singletons.
The most representative Bayesian approximation of a BBA is

the pignistic probability transformation proposed by Smets6

and Kennes.7 Voorbraak10 uses the normalization of the plau-
sibility for singletons to approximate the original BBA.



Basic belief assignment approximations 2505
Sudano25–27 proposed a series of Bayesian approximations
based on the proportion between plausibilities or beliefs
including the batch mode and the iterative mode. Cuzzolin28

proposed an intersection approximation for BBA using the
proportional repartition of the total non-specific mass assign-
ment for each contribution of the non-specific mass assign-

ments involved. Smarandache and Dezert23 proposed a
Bayesian BBA approximation in the framework of Dezert-
Smarandache Theory (DSmT), i.e., the Dezert-Smarandache

Probability transformation (DSmP), which can also be applied
in DST model. In our previous work,29 a hierarchical DSmP
was proposed. More analyses, comparisons and evaluations
on these Bayesian approximations can be found in Ref. 30.

Note that the Bayesian approximation is usually used for
the probabilistic decision but not reducing the computational
cost in evidence combination, since any Bayesian BBA approx-

imation makes too lossy approximations.
(2) Consonant approximations
Here the special structure for an approximated BBA is

assumed to be consonant support, i.e., the available focal ele-
ments are nested in order. The representative works of the con-
sonant approximation include Refs. 11,31.

2.2.2. Removing focal elements according to some criteria

(1) Limiting the maximum allowed cardinality of remaining
focal elements

In k-additive approximations,32 the maximum cardinality
of available focal elements is no greater than a predefined size
k. In Ref. 32, the mass assignments of focal elements with car-

dinality larger than k are redistributed to those with cardinality
no larger than k. Such a redistribution mass assignments is
done according to the proportions designed based on the aver-
age cardinality. In our previous work,19 such a redistribution

of mass assignments is implemented via an optimization
approach. In our another previous work,17 a BBA approxima-
tion with the hierarchical redistribution was proposed. These

methods aim to remove the focal elements with larger cardinal-
ities since they bring more computational cost in the combina-
tion in general.

(2) Limiting the maximum allowed number of remaining
focal elements

In this type of approaches, the number of focal elements is
reduced by removing some focal elements according to some

criteria until the predefined quantity of remaining focal ele-
ments is reached.

(A) k-l-x method12

A simplified BBA is obtained according to rules: one should
keep no less than k focal elements; one should keep no more
than l focal elements; one should delete the masses being no

greater than x.
In the k-l-x method, all focal elements in the original BBA

are sorted in a descending order based on their mass assign-

ment values. Then, choose the first p focal elements such that
k 6 p 6 l and the summation of mass values of those first p
focal elements is no less than 1� x. The removed mass values
are redistributed to remaining focal elements (re-

normalization).
(B) Summarization method13

Summarization method is similar to the classical k-l-x,

where focal elements with the highest mass values are kept.
The removed mass values are accumulated and assigned to
the union set of corresponding focal elements. Suppose that
k is the number of focal elements in the desired simplified
BBA mS �ð Þ of an original BBA m �ð Þ. Let M denotes the collec-

tion (or set) of k–1 focal elements with the highest mass values.
One can obtain the simplified BBA according to

mSðAÞ ¼
mðAÞ if A 2 MP

A0 #A;A0RMmðA0Þ if A ¼ A0

0 otherwise

8><
>: ð3Þ

where

A0, [
A0RM;mðA0Þ>0

A0 ð4Þ

(C) D1 method14

Let m(�) be the original BBA and mSð�Þ denote the simpli-

fied BBA. The desired number of remaining focal elements is
k. Let M denote the set including k � 1 focal elements with
the highest mass assignment values in m(�), and M� be the

set including all the other focal elements of m(�). D1 method
aims to keep all the members of M and to assign the mass val-
ues of those focal elements in set M� among the focal elements
in M. The set re-assignment is implemented as follows.

For A 2 M�, find all the supersets of A in M to form the set
MA. If MA–£, mðAÞ will be uniformly re-assigned among
those focal elements with smallest size in MA. When

MA ¼ £, then construct the setM0
A:

M0
A ¼ B 2 M

����B�� P ��A��;B \ A–£
� � ð5Þ

If M0
A–£, m(A) is assigned among the focal elements with

smallest size in M0
A. The value assigned to a focal element B

depends on B \ Aj j. The above procedure will be executed iter-
atively until all mðAÞ;A 2 M� have been re-assigned to those

focal elements in the set M. If M0
A ¼ £. There might be two

cases: if H 2 M, the summation of mass assignment values
of the focal elements in M�will be added to mðHÞ; if H R M,
one should set H as a focal element of mSð�Þand assign the
sum of mass assignment values of the focal elements in the

set M� to the simplified BBAmSðHÞ.
More details on D1 method with examples can be found in

Ref. 14.

(D) Joint use of cardinality and mass assignment with rank-
level fusion

In our previous work,18 we jointly use the cardinality and

the mass values of focal element to design a rank-level fusion
based BBA approximation approach, which is briefly recalled
below.

Step 1. Sort all the focal elements of an original BBA (with
L focal elements) in an ascending order according to the mass
assignment values (an underlying assumption: the focal ele-
ment with small mass should be deleted first). The rank vector

can be obtained as

rm ¼ ½rmð1Þ; rmð2Þ; :::; rmðLÞ� ð6Þ
Here rm (i) is the rank position of the ith focal element

(i= 1, 2, . . ., L) in the original BBA based on mass values.

Step 2. Sort all focal elements of the original BBA in a
descending order according to the cardinalities (an underlying
assumption: the focal element with big cardinality should be

deleted first). The rank vector can be obtained as

rc ¼ ½rcð1Þ; rcð2Þ; :::; rcðLÞ� ð7Þ
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Here rc (i) denotes the rank position of the ith focal ele-
ments in the original BBA based on the focal element size.

Step 3. By using the rank-level fusion (weighted average),

one can obtain a fused rank vector as

rf ¼ ½rfð1Þ; rfð2Þ; :::; rfðLÞ� ð8Þ
where rfðiÞ ¼ armðiÞ þ ð1� aÞrcðiÞ and a 2 ½0; 1� denotes the
preference of two different criteria. Such a fused rank can be

considered as a relatively comprehensive criterion reflecting
both the information of mass values and cardinality.

Step 4. Sort rf in an ascending order and find out the focal

element with the smallest rf value, i.e., rf (j) = min rf (i). Then
remove the jth focal element in the original BBA.

Step 5. Repeat Steps 1–4 until k focal elements are left. Re-

normalize the remaining k focal elements, and output the
approximated BBA in the final.

Step 6. Correlation coefficient based BBA approximation
(CR-based approximation)

The correlation coefficient is defined as

CRBBAðm1;m2Þ ¼ cðm1;m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðm1;m1Þcðm2;m2Þ

p ð9Þ

where

cðm1;m2Þ ¼
X2n�1

i¼1

X2n�1

j¼1

m1ðAiÞm2ðAjÞ
Ai \ Aj

�� ��
Ai [ Aj

�� �� ð10Þ

is used for BBA approximation. Suppose that original BBA
has L focal elements, and the quantity of desired remaining
focal elements is k.

i) Remove one focal element Ai and re-assigned its mass
value mðAiÞ to the related remaining focal elements

according to the redistribution strategy based on single-
ton relation proposed in Ref. 20 to generate an approx-
imated BBA m0

i. For each Aj j ¼ 1; 2; :::; Lð Þ and

corresponding m0
j, calculate cðm;m0

jÞ using Eq. (10).

ii) Sort the Aj j ¼ 1; 2; :::; Lð Þ according to cðm;m0
jÞ in an

ascending order. Remove L� k focal elements with top

L� k values of correlation coefficient c.
iii) Reassign the mass values of removed focal elements to

the remaining focal elements according to the re-

distribution strategy based on singleton relation pro-
posed in Ref. 20. Then, one obtain the approximated
BBA.

Besides the above BBA approximations with a preset quan-
tity of remaining focal elements, Denœux’s BBA approxima-
tions by the outer and inner approximations15 using distance

between focal elements also preset such a quantity in the
approximations. See Ref. 15 for details.

Note that the Monte-Carlo based BBA approximation can

also be classified into the approximation approaches using the
strategy of removing focal elements. See Ref. 16 for details.

In this paper, we focus on the BBA approximations

through presetting the quantity of remaining focal elements.
As aforementioned, existing BBA approximations of this type
proposed to remove some focal elements that have smaller

mass assignment values, larger cardinalities, or both. Although
they have some rational justifications, it is quite dangerous (or
risky) to remove those focal elements with small mass values or
larger sizes. It may also be unconvincing to remove those focal
elements with large cardinality justified only by their bringing
possible high computational cost to the combination. There-
fore, one should be prudent when using a technique of BBA

approximation. It is more convincing to remove those ‘‘unim-
portant” focal elements. The very redundant focal elements
can reasonably be considered as ‘‘unimportant” (carry dupli-

cate information) and the relatively non-redundant focal ele-
ments can reasonably be deemed as important; therefore, we
propose to define the degree of non-redundancy for a focal ele-

ment at first. From this degree of non-redundancy, we can then
develop new BBA approximation methods by removing focal
elements according to the degree of non-redundancy, and intu-
itively, the loss of information in terms of distance of evidence

might be smaller.

3. BBA approximations based on non-redundancy of focal

elements

In this section, we define the degree of non-redundancy for

focal elements based on the distance of focal elements first.
Then, we design BBA approximations based on the degree of

non-redundancy.
3.1. Non-redundancy of focal elements

Suppose that a BBA mð�Þ has l> 2 focal elements. If a focal

element Ai has the largest average distance with other focal ele-
ments Aj #H j–ið Þ, then Ai shares the least common infor-

mation with other focal elements in the BBA mð�Þ, i.e., Ai is the
most non-redundant one. Therefore, one can define the degree
of non-redundancy using the average focal distance between a

focal element and the others. Suppose that dFðAi;AjÞ is the dis-
tance between two focal elements Ai and Aj. First, we can com-

pute the distance matrix for all focal elements in BBA mð�Þ as

MatFE ¼

dFðA1;A1Þ dFðA1;A2Þ � � � dFðA1;AlÞ
dFðA2;A1Þ dFðA2;A2Þ � � � dFðA2;AlÞ

..

. ..
. . .

. ..
.

dFðAl;A1Þ dFðAl;A2Þ � � � dFðAl;AlÞ

2
66664

3
77775 ð11Þ

Since dF is a distance, at least there should exist dFðAi;AiÞ ¼ 0

and dFðAi;AjÞ ¼ dFðAj;AiÞ where i = 1,2,. . ., l. That is, the

matrix MatFE is symmetric. Therefore, it is not necessary to
compute all elements in MatFE.

For focal element Ai, we can then define its degree of non-

redundancy as

nRd Aið Þ, 1

l� 1

Xl�1

j¼1

dF Ai;Aj

� � ð12Þ

When nRd(Ai) is larger, Ai has a larger non-redundancy (less
redundancy); when nRd(Ai) takes a smaller value, Ai has a less

non-redundancy (larger redundancy). Then, the problem is
how to describe the distance between focal elements. To be
more strictly, the ‘‘distance” used here should be ‘‘dissimilar-

ity”, since the distance metric should satisfy all the four
requirements including non-degeneracy, symmetry, non-
negativity, and the triangular inequality. When there is no con-
fusion raised, we still use the distance in the sequel.



Table 1 Four BBAs in Example 1.

BBA A1 A2

m1 fh1g H
m2 fh1; h2g H
m3 fh1; h2; h3g H
m4 fh1; h2; h3; h4g H
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3.2. Distance between focal elements

In general, the distance between two focal elements should use
the two aspects of information in focal elements including the
mass assignment and focal element (set) as

dFðAi;AjÞ,fðmðAiÞ;Ai;mðAjÞ;AjÞ ð13Þ
The available distances between focal elements are intro-

duced below.

(1) Erkmen’s distance.
Erkmen and Stephanou33 proposed a distance (denoted by

dFE here) between focal elements as

dFEðAi;AjÞ ¼ 1

Ai \ Aj

�� ��= Ai [ Aj

�� �� mðAiÞ �mðAjÞ
� 	

log2
mðAiÞ
mðAjÞ

ð14Þ
This definition is far from robustness and can bring counter-

intuitive results as shown in the following cases.

Case I. If Ai \ Aj ¼ £, i.e., Ai \ Aj

�� �� ¼ 0, then dFEðAi;AjÞ
cannot be calculated (due to a division by zero). One can also
say that it tends to infinity; however, this is not reasonable
since in this case the value of distance is dominated by the rela-

tionship between focal elements (sets).

Case II. If mðAiÞ ¼ mðAjÞ, then dFEðAi;AjÞ ¼ 0. This is also

counter-intuitive, because the distance value is totally domi-
nated by mass assignments. That is to say, two different focal
elements with the same mass value is deemed as identical.

Therefore, Erkmen’s definition is not appropriate for designing
the focal element redundancy.

(2) Denœux’s union distance.

Denœux15 proposed a union-operation based distance as

d[ðAi;AjÞ ¼ ½mðAiÞ þmðAjÞ� Ai [ Aj

�� ���mðAiÞ Aij j �mðAjÞ Aj

�� ��
ð15Þ

(3) Denœux’s intersection distance.
Denœux15 also proposed an intersection-operation based

distance as

d\ðAi;AjÞ ¼ mðAiÞ Aij j þmðAjÞ Aj

�� ��� ½mðAiÞ þmðAjÞ� Ai \ Aj

�� ��
ð16Þ

Actually, both d[ and d\ can be considered as a weighted

sum of the Hamming distance.15 It is not difficult to verify that
both d[ and d\ have no counter-intuitive results for aforemen-
tioned Cases I and II. Therefore, we choose d[ and d\ to define

the degrees of non-redundancy for the focal element. Here we
give further analyses on the two distance definitions d[ and d\.

3.3. Analyses on d[ and d\

Suppose that mð�Þ is a BBA defined on the FOD H where
Hj j ¼ n. To simplify the analysis, we assume that mð�Þ only
has two focal elements A1 and A2 with mass assignments

m A1ð Þ ¼ a and m A2ð Þ ¼ 1� a. The behaviors of d[ and d\
are analyzed under different situations.

3.3.1. Focal elements’ relation: A1 � A2

In such a case, for d\, one gets
d\ A1;A2ð Þ¼ m A1ð Þ A1j jþm A2ð Þ A2j j� m A1ð Þþm A2ð Þ½ � A1\A2j j
¼ m A1ð Þ A1j jþm A2ð Þ A2j j� m A1ð Þþm A2ð Þ½ � A1j j
¼ 1�m A1ð Þð Þ A2j j� A1j jð Þ

ð17Þ
As shown in Eq. (17), if m A1ð Þ is fixed, d\ becomes larger

with the enlargement of the difference between focal elements’
cardinalitiesjA2j � jA1j. This makes sense. If the difference of
cardinalities i.e., jA2j � jA1j is fixed, d\ becomes smaller with

the increase of mass assignment of A1 (which is contained
byA2).

For d[, one gets
d[ A1;A2ð Þ¼ m A1ð Þþm A2ð Þ½ � A1[A2j j�m A1ð Þ A1j j�m A2ð Þ A2j j
¼ m A1ð Þþm A2ð Þ½ � A2j j�m A1ð Þ A1j j�m A2ð Þ A2j j
¼ m A1ð Þ A2j j� A1j jð Þ

ð18Þ

As shown in Eq. (18), if m(A1) is fixed, d[ becomes larger
with the enlargement of the difference between focal elements’
cardinalities jA2j � jA1j. This makes sense. If the difference of

cardinalities i.e., jA2j � jA1j is fixed, d[ becomes lager with the
increase of mass assignment ofA1 (contained by A2). That is,
when A1 � A2 and jA2j � jA1j are fixed, d[ is positively corre-

lated to the mass of focal element with smaller cardinality (A1),
while d\ is positively correlated to the mass of focal element
with larger cardinality (A2).

The analyses above can be supported by Example 1 below.
Example 1. (Focal elements are nested) Suppose that the

FOD is H ¼ fh1; h2; :::; h5g. Four BBAs are defined on H
and each has two focal elements as listed in Table 1.

For each BBA, the mass value of A1 changes from 0.01 to
0.95 with an increase of 0.01 at each step. The values of d\ and
d[ are shown in Fig. 1. As shown in Fig. 1, d[ is positively cor-

related to the mass of focal element with smaller cardinality
(A1) while d\ is positively correlated to the mass of focal ele-
ment with larger cardinality (A2). Given a fixed m(A1), with

the increase of A1, i.e., the decrease of jA2j � jA1j, both
d\ and d[ become smaller.

3.3.2. Focal elements’ relation: A1 \ A2 ¼ £

When A1 \ A2–£, for d\, one gets
d\ A1;A2ð Þ¼ m A1ð Þ A1j jþm A2ð Þ A2j j� m A1ð Þþm A2ð Þ½ � A1\A2j j
¼ m A1ð Þ A1j jþm A2ð Þ A2j j
¼ mðA1Þ A1j j� A2j jð Þþ A2j j

ð19Þ



Fig. 1 Two distances in Example 1. Fig. 2 Two distances in Example 2.
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For d[, one gets

d[ A1;A2ð Þ¼ m A1ð Þþm A2ð Þ½ � A1[A2j j�m A1ð Þ A1j j�m A2ð Þ A2j j
¼ m A1ð Þþm A2ð Þ½ � A1j jþ A2j jð Þ�m A1ð Þ A1j j�m A2ð Þ A2j j
¼ m A1ð Þ A2j j�m A2ð Þ A1j j
¼ m A1ð Þ A2j j� A1j jð Þþ A1j j

ð20Þ
It can be seen that when A1 \ A2 ¼ £, if jA1j is closer to

jA2j, both d\ and d[ are smaller (It means that fh1g is farther
from fh2; h3g than from fh2g, which makes some sense). This

can be shown in Example 2 below.
Example 2. (focal elements have no intersect) Suppose that

the FOD is H ¼ fh1; h2; :::; h5g. Three BBAs are defined on H,
and each has two focal elements as listed in Table 2.

In each BBA, the two focal elements have an empty inter-
section. For each BBA, the mass assignment of A1 changes
from 0.01 to 0.95 with an increase of 0.01 at each step. The val-

ues of d\ and d[ are shown in Fig. 2.
As shown in Fig. 2, when jA1j ¼ jA2j and A1j j is fixed, both

d\ and d[ remain unchanged. Given a fixed mðA1Þ, when the

difference jA2j � jA1j becomes larger, both d\ and d[ become
larger. When the jA2j � jA1j is fixed, d[ is positively correlated
to the mass of focal element with smaller cardinality (A1),
while d\ is positively correlated to the mass of the focal ele-

ment with larger cardinality (A2), i.e., negatively correlated
to the mass of the focal element with smaller cardinality.
Table 2 Four BBAs in Example 2.

BBA A1 A2

m1 fh1g fh2g
m2 fh1g fh2; h3g
m3 fh1g fh2; h3; h4g
m4 fh1g fh2; h3; h4; h5g
3.3.3. Focal elements’ relation: A1 \ A2–£

Here A1 \ A2–£. Furthermore, A1 cannot be contained by
A2, and A2 cannot be contained by A1. We provide an example

to show d\ and d[’s behaviors in this situation.
Example 3. (focal elements intersect) Suppose that the FOD

is H ¼ fh1; h2; :::; h6g. Four BBAs are defined on H and each

has two focal elements as listed in Table 3.
For each BBA, the mass assignment of A1 changes from

0.01 to 0.95 with an increase of 0.01 at each step. The values

of d\ and d[ are shown in Fig. 3.
As we see in Fig. 3, when jA1j ¼ jA2j, d\ and d[ = 1, and

they remain unchanged. This is because when
jA1j ¼ jA2j ¼ 2, one has d[ðA1;A2Þ ¼ jA1 [ A2j � jA2j and

d\ðA1;A2Þ ¼ jA2j � jA1 \ A2j. So, d\ and d[ = 1.
Given a fixed mðA1Þ, when the difference jA2j � jA1j

becomes larger, both d\ and d[ become larger as shown in

Fig. 3. This makes sense, because the uncommon part of A1

and A2 becomes large. When the difference jA2j � jA1j is fixed,
d[ is positively correlated to the mass of focal element with A1

having a smaller cardinality, while d\ is positively correlated to
the mass of the focal element A2 having a larger cardinality,
i.e., negatively correlated to the mass of the focal element with
smaller cardinality.

3.4. Implementation of BBA approximation using degree of

redundancy for focal elements

Based on the degree of non-redundancy in Eq. (12), new BBA
approximation methods are proposed in this paper, where the
Table 3 Four BBAs in Example 3.

BBA A1 A2

m1 fh1; h2g fh2; h3g
m2 fh1; h2g fh2; h3; h4g
m3 fh1; h2g fh2; h3; h4; h5g
m4 fh1; h2g fh2; h3; h4; h5; h6g



Fig. 3 Two distances in Example 3.

Table 4 Focal elements and mass assignments.

Focal element Mass value

A1 ¼ fh1; h2g 0.50

A2 ¼ fh1; h3; h4g 0.30

A3 ¼ fh3g 0.10

A4 ¼ fh3; h4g 0.05

A5 ¼ fh4; h5g 0.05
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more non-redundant focal elements are kept and the more

redundant ones will be removed earlier.

3.4.1. Batch-mode approximation method

Given an original BBA m(�) with l focal elements, in the
approximation, we want to keep k < l focal elements. The
batch-mode means that the focal elements quantity is reduced
from l to k in one run as follows.

Step 1. Compute the matrix MatFE first, and then for each
Ai i ¼ 1; 2; :::; lð Þ, compute its non-redundancy value nRd(Ai).

Step 2. Sort all nRd(Ai) i ¼ 1; 2; :::; lð Þ in a descending

order.
Step 3. Remove the focal elements with ranking positions of

bottom l� k.

Step 4. Normalize the mass assignments of the kept k focal

elements and obtain the approximated BBA mBRd
S ð�Þ.

3.4.2. Iterative-mode approximation method

Here, we propose to remove iteratively the most redundant
focal element (with the least nRd value) in each step until k
focal elements are kept. This method consists of the following

steps:
Step 1. Compute the matrix MatFE and the nRd vaues for

each focal elementAi i ¼ 1; 2; :::; lð Þ.
Step 2. Sort all nRd(Ai) i ¼ 1; 2; :::; lð Þ in a descending

order.
Step 3. Remove the bottom focal element Ar.
Step 4. If the quantity of the kept focal elements is larger

than k, re-compute nRd(Ai) of the kept focal elements where
i–r and go back to Step 3. Otherwise, switch to Step 5.

Step 5. Normalize the mass assignments of the kept k focal

elements and obtain the approximated BBA mIRd
S ð�Þ.

In the iterative-mode, the matrix and degrees of non-
redundancy are re-computed in each step after removing a

focal element in the precedent step. That is to say, only the
non-redundancy values of the current remaining focal elements
are involved in each step.
3.5. Illustrative examples

Illustrative examples for presenting the procedure of our pro-
posed non-redundancy degree based BBA approximation
approaches are provided here. The specific calculation steps

of other major BBA approximation approaches with preset-
ting the number of focal elements are also provided here for
comparisons.

Example 4 Let us consider a BBA m(�) defined on

H ¼ fh1; h2; :::; h5g as listed in Table 4.
(1) Using k-l-x12

Parameters k and l are both set to 3, and x = 0.1. Focal ele-

ments A4 ¼ fh3; h4g and A5 ¼ fh4; h5g are removed. The kept
total mass value is 1–0.05–0.05 = 0.9; therefore, the constraint
of x is not violated. All the remaining focal elements’ mass

assignments are divided by 0.9 for the normalization. The

approximated BBA mklx
S ð�Þ obtained using k-l-x is shown in

Table 5. Here Ai ði ¼ 1; 2; 3Þ are focal elements in mklx
S ð�Þ.

(2) Using summarization13

Parameter k= 3. By using the summarization method, one
remove focal elements A3 ¼ fh3g, A4 ¼ fh3; h4g and
A5 ¼ fh4; h5g. Their union fh3; h4; h5g is set as a new focal ele-

ment whose mass assignment is 0.2, since
mðfh3gÞ þmðfh3; h4gÞ þmðfh4; h5gÞ ¼ 0:2. The approximated

BBA mSum
S ð�Þ is as shown in Table 6.

(3) Using D114

k is still set to 3 here. When we use D1 method, focal ele-
mentsA1 and A2 belong to M and A3;A4;A5 belong to M�.
The focal element A1 ¼ fh1; h2g has no intersection with those

focal elements in M�; therefore, its value remains unchanged.
In M, A2 is the unique superset of A3 and A4, so,
mðA3Þ þmðA4Þ ¼ 0:10þ 0:05 ¼ 0:15 is added to A2’s original

mass assignment. A2 covers half of A5, so mðA5Þ=2 ¼ 0:025 is
further added to the mass of A2. Finally, the rest mass is

assigned to H. The approximated BBA mD1
S ð�Þ is as shown in

Table 7.

(4) Using Denœux’ inner and outer approximations15

Since this method uses the focal element distance definition
in Eq. (14), here we also use it for comparison. When using the

inner approximation,15 the focal elements pair with the small-
est distance is removed, and their intersection is considered as
a supplemented focal element. Its mass value is the summation

of two removed focal elements’ mass assignments. Such a pro-
cedure is repeated until the preset focal elements quantity is

reached. The approximated BBA mInner
S ð�Þ is shown in Table 8.

As one sees in Table 8, the empty set is generated as a focal

element, which is not allowed in the classical DST under the
closed-world assumption.



Table 5 mklx
S ð�Þ using k-l-x for Exam-

ple 4.

Focal element Mass value

A1 ¼ fh1; h2g 0.5556

A2 ¼ fh1; h3; h4g 0.3333

A3 ¼ fh3g 0.1111

Table 6 mSum
S ð�Þ using summarization

for Example 4.

Focal element Mass value

A1 ¼ fh1; h2g 0.50

A2 ¼ fh1; h3; h4g 0.30

A3 ¼ fh3; h4; h5g 0.20

Table 7 mD1
S ð�Þ using D1 for Example

4.

Focal element Mass value

A1 ¼ fh1; h2g 0.500

A2 ¼ fh1; h3; h4g 0.475

A3 ¼ H 0.025

Table 8 mInner
S ð�Þ using Inner approx-

imation for Example 4.

Focal element Mass value

A1 ¼ fh1; h2g 0.5

A2 ¼ fh1; h3; h4g 0.3

A3 ¼ £ 0.2

Table 9 mOuter
S ð�Þ using outer approx-

imation for Example 4.

Focal element Mass value

A1 ¼ fh1; h2g 0.50

A2 ¼ fh1; h3; h4g 0.45

A3 ¼ fh4; h5g 0.05

Table 10 mRank
S ð�Þ using rank-level fusion

based approximation for Example 4.

Focal element Mass value

A1 ¼ fh1; h2g 0.7692

A2 ¼ fh3g 0.1538

A3 ¼ fh1; h3; h4g 0.0769
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The outer approximation is similar to the inner approxima-
tion except that the distance used is d[. The approximated

BBA mOuter
S ð�Þ is shown in Table 9.

(5) Using rank-level fusion based method18

The rank of focal elements in m(�) according to the mass

assignments is [1,2,3,4,4] (in a descending order). Here
[1,2,3,4,4] means that A1 takes the 1st place; A2 take the 2nd
place; A3 takes the 3rd place; and A4 and A5 both take the
4th place due to their equal mass values.

The rank of focal elements according to their cardinalities
in ascending order is [2,3,1,2,2]. Here we set a ¼ 0:5, and the

approximated BBA mRank
S ð�Þ is shown in Table 10.

(6) Using CR-based approximation
Using the CR-based approximation, the correlation coeffi-

cient values are

cðm;m0
1Þ ¼ 0:7096; cðm;m0

2Þ ¼ 0:9462; cðm;m0
3Þ ¼ 0:9912;

cðm;m0
4Þ ¼ 0:9462; cðm;m0

5Þ ¼ 0:9975

Then, remove A3 and A5, since they have the top two cor-

relation coefficient values. After the redistribution, the approx-

imated BBA mCR
S ð�Þ is shown in Table 11.
(7) Using the non-redundancy based batch-mode
approximation

We want to keep three focal elements, i.e., k = 3. Calculate
the distance matrix MatFE as
Using this matrix, the degree of non-redundancy for each
focal elements in m(�) are obtained as listed in Table 12.

Since A3 and A4 have the two smallest nRd values, they are

two focal elements with the lowest non-redundancy (the high-
est redundancy). So, they’d better be removed first and their
mass assignments are redistributed with the classical normal-

ization step. The approximated BBA mBRd
S ð�Þ is listed in

Table 13.
(8) Using the redundancy-based iterative approximation

Here k= 3, and then two focal elements should be
removed. In the iterative mode, we only remove one focal ele-
ment in each step. Therefore, two steps are required in this

example.
In Step 1, we obtain the same degrees of non-redundancy as

listed in Table 11. Then, A4 is removed.
In Step 2, nRd for Ai i ¼ 1; 2; :::; 5; i–4ð Þ is recalculated

according to

nRdðAiÞ ¼
X5

j¼1;j–4;j–i

dFðAi;AjÞ

The results are

nRdðA1Þ ¼ 1:1000; nRdðA2Þ ¼ 0:7833

nRdðA3Þ ¼ 0:6333; nRdðA5Þ ¼ 0:6500

Then, A3 is removed due to its smallest nRd value (i.e., the
biggest redundancy among those remaining focal elements). As

we see, in this example, the BBA mIRd
S ð�Þ obtained is the same



Table 11 mCR
S ð�Þ using rank-level fusion

based approximation for Example 4.

Focal element Mass value

A1 ¼ fh1; h2g 0.5083

A2 ¼ fh3g 0.1208

A3 ¼ fh1; h3; h4g 0.3709

Table 12 Non-redundancy for different focal elements.

Focal element Mass value nRd(Ai)

A1 ¼ fh1; h2g 0.50 1.1000

A2 ¼ fh1; h3; h4g 0.30 0.6625

A3 ¼ fh3g 0.10 0.4875

A4 ¼ fh3; h4g 0.05 0.3875

A5 ¼ fh4; h5g 0.05 0.5125

Table 13 mBRd
S ð�Þ using batch approx-

imation based on redundancy for

Example 4.

Focal element Mass value

A1 ¼ fh1; h2g 0.5882

A2 ¼ fh1; h3; h4g 0.3530

A3 ¼ fh4; h5g 0.0588

Table 14 Focal elements and mass

values.

Focal element Mass value

A1 ¼ fh1; h2g 0.1780

A2 ¼ fh2; h3g 0.2477

A3 ¼ fh2g 0.2322

A4 ¼ fh3g 0.1759

A5 ¼ H 0.1662

BRd

Basic belief assignment approximations 2511
as mBRd
S ð�Þ listed in Table 12. Note that the batch-mode and the

iterative approximations do not always obtain the same results

as illustrated in Example 5.
Example 5 Assume that the FOD is H ¼ h1; h2; h3f g. An

original BBA is listed in Table 14, and the quantity of remain-

ing focal elements is set to k= 3.
Using d\, we can obtain the distance matrix:
Table 15 mS ð�Þ using batch approx-

imation based on redundancy with d\.

Focal element Mass value

A ¼ fh ; h g 0.5882
1 1 2

A2 ¼ fh2g 0.3530

A3 ¼ fh3g 0.0588

Table 16 mIRd
S ð�Þ using batch approx-

imation based on redundancy with d\.

Focal element Mass value

A1 ¼ fh1; h2g 0.2959

A2 ¼ fh2; h3g 0.4117

A3 ¼ fh3g 0.2924
All focal elements’ degrees of non-redundancy are

nRdðA1Þ ¼ 0:3255; nRdðA2Þ ¼ 0:2718

nRdðA3Þ ¼ 0:2915; nRdðA4Þ ¼ 0:3800; nRdðA5Þ ¼ 0:2493

Using the batch mode method, focal elements A2 and A5

are removed. The approximated BBA is shown in Table 15.

By using the iterative mode method, the degrees of non-
redundancy obtained in Step 1 are

nRdIðA1Þ ¼ 0:3255; nRdIðA2Þ ¼ 0:2718

nRdIðA3Þ ¼ 0:2915; nRdIðA4Þ ¼ 0:3800; nRdIðA5Þ ¼ 0:2493
Then, we first remove the focal element A5 since nRd(A5) is
the least one. Then recalculate nRd values for remaining focal
elementsA1,A2,A3 and A4:

nRdIIðA1Þ ¼ 0:3785; nRdIIðA2Þ ¼ 0:3070

nRdIIðA3Þ ¼ 0:2779; nRdIIðA4Þ ¼ 0:3959

In Step 2, nRd(A3) is the least one, therefore, A3 is

removed. After normalization, we obtain the BBA mIRd
S ð�Þwith

iterative approximation as shown in Table 16.
Using d[, the distance matrix is
The degrees of non-redundancy are

nRdIðA1Þ ¼ 0:3414; nRdIðA2Þ ¼ 0:2705

nRdIðA3Þ ¼ 0:3342; nRdIðA4Þ ¼ 0:3664; nRdIðA5Þ ¼ 0:3105

By using the batch mode method, the focal elements A2 and

A5 are removed. After applying the normalization, we obtain
the approximated BBA as shown in Table 17.

Using the iterative mode method, degrees of non-

redundancy obtained in Step 1 are

nRdIðA1Þ ¼ 0:3414; nRdIðA2Þ ¼ 0:2705

nRdIðA3Þ ¼ 0:3342; nRdIðA4Þ ¼ 0:3664; nRdIðA5Þ ¼ 0:3105



Table 17 mBRd
S ð�Þ using batch approx-

imation based on redundancy with d[.

Focal element Mass value

A1 ¼ fh1; h2g 0.3037

A2 ¼ fh2g 0.3962

A3 ¼ fh3g 0.3001

Table 18 mIRd
S ð�Þ using iterative approximation

based on redundancy with d[.

Focal element Mass value

A1 ¼ fh1; h2g 0.3037

A2 ¼ fh2g 0.3962

A3 ¼ fh3g 0.3001

Table 19 Algorithm 1: Random generation of BBA.

Random generation of BBA

Input: H: Frame of discernment;

Nmax: Maximum number of focal elements

Output: m BBA

Generate PðHÞ, which is the power set of H;

Generate a random permutation of PðHÞ ! RðHÞ;
Generate an integer between 1 and Nmax ! l.

FOReach First k elements of RðHÞ do
Generate a value within ½0; 1� ! mi; ði ¼ 1; 2; :::; lÞ;
END

Normalize the vector m ¼ ½m1;m2; :::;ml� ! m0;
mðAiÞ ¼ m0

i
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The focal element A2 is removed first, since it has the small-
est nRd value. Then recalculate all nRd values for remaining

focal elements A1, A3, A4 and A5:

nRdIIðA1Þ ¼ 0:3133; nRdIIðA2Þ ¼ 0:3682

nRdIIðA3Þ ¼ 0:4299; nRdIIðA4Þ ¼ 0:3314

In Step 2, the focal element A1 is removed, since nRd(A1) is

the smallest one. After normalization, we can obtain the BBA

mIRd
S ð�Þ as shown in Table 18.

As we can see in Example 5, the results of the batch mode

and iterative mode approximations are different. In the next
section, we provide experiments and simulations to evaluate
our proposed BBA approximation approaches and those avail-
able ones.

4. Simulations for evaluation

We use the computational cost caused by the evidence combi-

nation and the closeness between the approximated BBA and
the original one in average to evaluate the performance of
approximations. An approximation with less computational

cost and larger closeness is desirable. To describe the closeness
between BBAs, we use a strict distance of evidence, which is
Jousselme’s distance (dJ).

34 One can also use other types of

strict distance in evidence theory e.g., belief interval based dis-
tance of evidence35

Suppose that m1;m2 are two BBAs defined on H( Hj j ¼ n).

If m1 and m2 are considered as two vectors denoted bym1

and m2, respectively, Jousselme’s distance of evidence is
defined as

dJðm1;m2Þ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 m1 �m2ð ÞTJac m1 �m2ð Þ

q
ð21Þ

where Jac is the so-called Jaccard’s weighting matrix whose
elements Jij ¼ JacðAi;BjÞ are defined by

JacðAi;BjÞ ¼
Ai \ Bj

�� ��
Ai [ Bj

�� �� ð22Þ

It is a most widely used distance of evidence, and it has been
proven to be a strict distance metric.36
Our simulation is based on a Monte Carlo simulation using
M ¼ 200 random runs. In jth simulation run, the original BBA

to approximate mjð�Þ is randomly generated and the different

approximation results fmj
Si
ð�Þg are obtained using the different

approximations, where idenotes the i-th approximation
approach. Here we use � to denote the evidence combination.
We calculate the computational time of the original evidence

combination of mjð�Þ �mjð�Þ with Dempster’s rule, and the
computation time of Dempster’s combination of each approx-

imated BBA mj
Si
ð�Þ �mj

Si
ð�Þ. Here we compare our proposed

approaches with k-l-x method (S1), D1 method (S2), Summa-

rization method (S3), Denouex’s outer approximation (S4),
the rank-level fusion based approximation (S5), and our new
degree of non-redundancy based approximations including

the batch mode with d\ (S6), iterative mode with d\ (S7), batch
mode with d[ (S8), iterative mode with d[ (S9), and CR-based
approximation (S10) since all these methods can set the quan-
tity of the remaining focal elements, and they never consider

the empty set as a valid focal element (contrarily to inner
approximation which will bring troubles for making the com-
parisons because Jousselme’s distance cannot be computed if

one allows to put positive mass on empty set because £j j ¼ 0).
In our simulations, the cardinality of the FOD H is 4. In

each random generation, there are 24 � 1 ¼ 15 focal elements
in the original BBA. The number of remaining focal elements

for all the approaches used here is set to from 14 down to 2.
We randomly generate BBA using Algorithm 137 in Table 19
below.

The average (over 200 runs) combination time and average
(over 200 runs) distance values (dJ) between the original BBA
and the approximated BBA’s obtained using different

approaches given different remaining focal elements’ numbers
are shown in Figs. 4 and 5, respectively. The average (over all
runs and all numbers of remaining focal elements) computa-
tion time and distance values are shown in Table 20.

Note that the computer for the experiments is with i7-
8550CPU, 16 GB LPDDRIII RAM, WINDOWS 10 OS and
MATLAB 2013B.

It can be shown from Table 20, Figs. 4 and 5 that for all the
approximations compared here including our proposed four
types of approximations based on degree of redundancy for

focal elements, the computational time are significantly
reduced when compared with original computation time. At
the same time, our focal element redundancy based approxi-



Table 20 Comparisons between different BBA approxima-

tions in terms of combination time and closeness.

Approach Time (s) dJ

Original BBA 0.0260 0

k-l-x (S1) 0.0085 0.1072

D1(S2) 0.0074 0.1284

Sum(S3) 0.0077 0.1512

Outer (S4) 0.0086 0.1143

Rank-level(S5) 0.0079 0.1104

Batch d\(S6) 0.0083 0.1027

Iterative d\(S7) 0.0082 0.0926

Batch d[(S8) 0.0085 0.1139

Iterative d[(S9) 0.0086 0.0973

CR-based (S10) 0.0084 0.1031

Fig. 5 Comparisons between different approximations in terms

of dJ.

Table 21 Comparison between different BBA approximations

in terms of combination complexity.

Approach Average computation

time (s)

Complexity

k-l-x (S1) 0.00075 O nlgnð Þ
D1(S2) 0.00052 OðnÞ
Sum(S3) 0.00056 OðnÞ
Outer (S4) 0.00150 O n2 þ n2lgn

� �
Rank-level (S5) 0.00079 O nlgnð Þ
Batch d\(S6) 0.00110 O n2 þ n2lgn

� �
Iterative d\(S7) 0.00540 O ðn� kÞðn2 þ n2lgnÞ� �
Batch d[(S8) 0.00100 O n2 þ n2lgn

� �
Iterative d[(S9) 0.00500 O ðn� kÞðn2 þ n2lgnÞ� �
CR-based(S10) 1.78150 O ð2nÞn�k


 �
Fig. 4 Comparisons between different approximations in terms

of computation time.
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mations have smaller distance (less loss of information)
according to all the distances of evidence used here. In our four

new approximations, the iterative mode with d\ performs the
best.

Here we also provide the comparisons of computational

cost of different approximation approaches themselves. To
obtain the approximation computation time, in each run for
different approximation approaches, the average time of

approximation with remaining focal elements numbers from
2 to 14 is calculated. Then, each approximation approach’s
averaging computation time over 200 runs is listed in Table 21.

The computational complexity of each approach listed is also
listed in Table 21.

As shown in Fig. 5, the approximated BBA obtained using

CR-based method can have smaller distance to the original
BBA when the number of remaining focal elements are not
so small (from 14 down to 9). However, it is at the price of
computational cost. Its computation time is about 102 times

of other approaches compared.
CR-based method use a way like the traversal when select-

ing the focal elements to remove. Actually, it is not a real

traversal, since it removes the L-k focal elements in a batch,
but not one by one. Therefore, when the remaining focal ele-
ments number is small, its distance becomes not so small.

Comparatively, according to the experimental results, our
proposed approximation approach can achieve smaller dis-
tance and at the same time, its time cost is accepted.

Note that with the improvement of the computer’s comput-

ing capability, the importance of the mass function approxima-
tion will be decreased. However, there still exists some
resource-restricted environment or platforms, for example,

the embedded system for real time tasks, where the computa-
tional resource including the CPU and the RAM are not so
adequate and the approximation, which can save computa-

tional time, is still important.
On the other hand, the BBA approximation could be con-

sidered as a preprocessing of ‘‘data”, which can reduce the

computational cost. Even if the computational resource is
enough, to further reduce the computational cost is still desir-
able, especially for those real-time applications.

Note that our current performance evaluation on different

approximation approaches is based on the experimental results
in terms of the statistical averaging combination computa-
tional time, and the distance between the approximated BBA

and the original one. This makes sense from the engineering
or application viewpoints. To comprehensively evaluate differ-
ent approximation approaches, theoretical analysis and proof

are needed, which is also one of the research focuses in our
work in the future.
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5. Conclusions

Novel methods for BBA approximations are proposed in this
paper, where the most redundant focal elements are removed

at first. The degree of non-redundancy is defined based on dis-
tance between focal elements. Batch and iterative implementa-
tions of the BBA approximations are provided. It is

experimentally shown that our new BBA approximations can
reduce the computational cost of evidence combination with
less loss of information, which is described by the distance of
evidence. At the same time, the computation time of approxi-

mations in our proposed approaches is acceptable.
In our future work, we will focus on designing more com-

prehensive and rational distance of focal elements, based on

which, the degree of focal elements can be calculated. In fact,
the non-redundancy represents a type of ‘‘importance” for
focal elements. We will also try to define some new type of

‘‘importance”, based on which the removal of focal elements
can be done more rationally executed. As shown in this paper,
we evaluate the performance of different BBA approximations

using the computation time and the distance of evidence. In
future work, we will also explore more comprehensive evalua-
tion criteria and theoretical evaluation in mathematics for the
BBA approximation approaches. This is crucial for the design

of more effective BBA approximations.
When we use some criterion (e.g., the non-redundancy pro-

posed in this paper) to determine those ‘‘unimportant” or ‘‘re-

dundant” focal elements, we can combine these focal elements
to a new one (with intersection or union operation of these ele-
ments) besides removing them. For example, we can combine

the most two redundant focal elements to a new focal element
by using the operations like intersection, union and other ways
to replace the current the removal of redundant focal elements.

Furthermore, we can use the method like PCA in the design of
BBA approximations for the combination of focal elements to
expect a better approximation performance in the future
research work.
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