
HAL Id: hal-02648738
https://hal.science/hal-02648738

Submitted on 29 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dealing with performance unpredictability in an
asymmetric multicore processor cloud

Boris Teabe, Lavoisier Wapet, Alain Tchana, Daniel Hagimont

To cite this version:
Boris Teabe, Lavoisier Wapet, Alain Tchana, Daniel Hagimont. Dealing with performance unpre-
dictability in an asymmetric multicore processor cloud. European Conference on Parallel Processing
(Euro-Par 2017), Aug 2017, Santiago de Compostela, Spain. pp.332-344. �hal-02648738�

https://hal.science/hal-02648738
https://hal.archives-ouvertes.fr


Official URL 
https://doi.org/10.1007/978-3-319-64203-1_24 

Any correspondence concerning this service should be sent 

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr 

This is an author’s version published in: 
http://oatao.univ-toulouse.fr/22300 

Open  Archive  Toulouse  Archive  Ouverte 

OATAO is an open access repository that collects the work of Toulouse 
researchers and makes it freely available over the web where possible 

To cite this version: Djomgwe Teabe, Boris and Wapet, Patrick 

Lavoisier and Tchana, Alain and Hagimont, Daniel Dealing with 

Performance Unpredictability in an Asymmetric Multicore 

Processor Cloud. (2017) In: European Conference on Parallel 

Processing (Euro-Par 2017), 28 August 2017 - 1 September 2017 

(Santiago de Compostela, Spain). 



Dealing with Performance Unpredictability

in an Asymmetric Multicore Processor Cloud

Boris Teabe(B), Patrick Lavoisier Wapet, Alain Tchana, and Daniel Hagimont

University of Toulouse, Toulouse, France
{boris.teabedjomgwe,patrick.wapet,alain.tchana,

daniel.hagimon}@enseeiht.fr

Abstract. In a Cloud computing data center and especially in a IaaS
(Infrastructure as a Service), performance predictability is one of the most
important challenges. For a given allocated virtual machine (VM) in one
IaaS, a client expects his application to perform identically whatever is
the hosting physical server or its resource management strategy. How-
ever, performance predictability is very difficult to enforce in a heteroge-
neous hardware environment where machines do not have identical per-
formance characteristics, and even more difficult when machines are inter-
nally heterogeneous as for Asymmetric Multicore Processor machines.
In this paper, we introduce a VM scheduler extension which takes into
account hardware performance heterogeneity of Asymmetric Multicore
Processor machines in the cloud. Based on our analysis of the problem,
we designed and implemented two solutions: the first weights CPU alloca-
tions according to core performance, while the second adapts CPU allo-
cations to reach a given instruction execution rate (Ips) regardless the
core types. We demonstrate that such scheduler extensions can enforce
predictability with a negligible overhead on application performance.

1 Introduction

Cloud Computing enables remote access to on-demand allocated resources. The
most popular cloud model is the so-called Infrastructure as a Service (IaaS)
model, since it offers a high flexibility to cloud users. In order to provide isolation,
IaaS clouds are often virtualized so that resources are allocated in terms of virtual
machines (VMs). The provider defines a VM catalog (e.g. t2.medium, t2.small
in Amazon EC2) presenting VM configurations which can be requested by cloud
users. A VM configuration defines a capacity for each resource types, that we
call virtual resource types as machines are virtual. Capacities are expressed as
follows:

– the capacity of the network is expressed in terms of a bandwidth value (e.g.
100 MBps).

– the capacity of the hard disk is expressed in terms of both an IO bandwidth
(e.g. 100 MBps) and a storage space (e.g. 1 TB).

– the capacity of the RAM is expressed in terms of a storage space (e.g. 10 GB).

DOI: 10.1007/978-3-319-64203-1 24



– the capacity of the CPU is expressed in terms of a number of virtual CPU
(noted vCPU, e.g. 4 vCPUs).

The analysis of the above capacity expressions raises one question: from the

user point of view, what is the real capacity of each virtual resource

type, given that virtual resources are mapped to heterogeneous phys-

ical resources? Concerning both the network and the hard disk, the answer is
quite clear because they are expressed using absolute units (independent from
the underlying hardware). This is not the case for the two other virtual resources.
Both the RAM bandwidth (which is not presented to the user) and the vCPU
computing capacity depend on the underlying hardware. Figure 1 left shows that
the same VM type from Rackspace and Azure cloud delivers different perfor-
mance levels according to the underlying processor. This results in the problem
of performance unpredictability [16], which has been identified by Microsoft [2]
as part of the five top significant challenges in the cloud.

Fig. 1. Left figure: performance unpredictability illustration in Rackspace and
Microsoft Azure clouds. The experimental application is π-app [6]. Right figure: SMP
and AMP machines

The majority of research projects, if not all, have investigated this issue from
the resource contention perspective [27,30], seen as the only source of the prob-
lem. However, we have shown in a previous work [28] that heterogeneity (of
memory and processor) is actively involved in performance unpredictability. In
this previous work, we focused on heterogeneous Symmetric Multicores Proces-
sor machines (hereafter called SMP clouds) (Fig. 1 left). However, advances in
semiconductor technologies have enabled processor manufacturers to integrate
more and more cores on a chip. This will lead in the near future (for energy
saving reasons [8,18]) to a new type of architecture called Asymmetric Multi-
cores Processor (AMP) (Fig. 1 right). Such an architecture is composed of cores
exporting the same Instruction Set Architecture (ISA) but delivering different
performance [18]. This new architecture comes with new challenges which have
begun to be studied [8,14]. This paper tackles the issue of performance unpre-
dictability in AMP clouds in which three problematic situations can be identified:

1. A multi-vCPU VM whose vCPUs run atop different core types (e.g. in Fig. 1
right, a thread inside the V M2 can be scheduled either on “vCPU ×86 slow”
or “vCPU ×86 fast”);



2. the scheduling of one vCPU across different core types in the same machine
(e.g. in Fig. 1 right, V M3’s vCPU can be scheduled either on “×86 slow”,
“×86 fast”, “×64” or “ARM”);

3. VM migration across different machine types.

The first two situations can only occur in an AMP cloud while the third situation
can raise up in AMP and SMP clouds.

It is clear that providing the same vCPU computing capacity regardless the
underlying core type allows addressing all of the above situations. Our analysis
of this problem led us to the design of two solutions, which both include (1)
an absolute metric to express a vCPU computing capacity, and (2) a sched-
uler which enforces the negotiated contract during the overall VM lifetime. The
first solution consists in using a reference core (noted pref ) as the basis of vCPU
capacity expression. Relying on the proportionality coefficient between the actual
core type and pref , the scheduler dynamically adjusts the allowable CPU time
of the vCPU. This solution is an improvement of our previous work [28] (which
was performing such an adjustment at VM migration time in an SMP cloud).
The second solution uses the “number of instructions per second” (noted Ips)
as the metric to express a vCPU computing capacity. It requires a new kind of
scheduler which relies on the actual number of CPU retired instructions rather
than the CPU time (the standard practice). Theses solutions were prototyped in
the Xen 4.2.0 system, although their design is independent from any virtualiza-
tion system. The overhead of these prototypes at runtime is almost nil. We have
evaluated their effectiveness using well known benchmarks (SPEC CPU2006 [4],
Blast [1], and wordpress [5]). The evaluation results show that our solutions
almost cancel out the issue of performance unpredictability due to core hetero-
geneity.

The rest of the article is structured as follows. Section 2 presents the back-
ground. Section 3 presents our contributions. The evaluation results are reported
in Sect. 4. The related work is presented in Sect. 5 and we present our conclusions
in Sect. 6.

2 Background

Our work is based on the para-virtualized Xen system. Before going into the
description of our contributions, we briefly present Xen and its CPU allocation
mechanism.

2.1 The Xen Hypervisor

Xen [11] is a popular open-source Virtual Machine Monitor (VMM) system (also
called hypervisor) which is widely espoused by several cloud providers such as
Amazon EC2. Its implementation follows the para-virtualization [29] model. In
this model, the hypervisor runs directly on the hardware, so taking the tradi-
tional place of the operating system (OS). Thus, the hypervisor has all privileges



and rights to access the entire hardware. It provides the means to concurrently
run several OS called virtual machines (VM). The host OS (seen as a special
VM) is called dom0 while the others are called domU. The former has more
privileges than the latter since it is responsible for running Xen’s management
toolstack. The next section presents the Xen’s CPU allocation mechanism.

2.2 CPU Allocation in Xen

Each VM is configured at start time with a number of vCPU and the hyper-
visor is responsible for scheduling vCPUs on cores. Roughly, each core runs a
dedicated scheduler instance which manages a sub-group of vCPUs. The goal of
each scheduler is to determine which vCPU will receive the core during the next
quantum. Xen implements several scheduling policies including Simple Earliest
Deadline First (SEDF) [11] and Credit [11]. SEDF is a scheduler which guaran-
tees a minimum processing time to a VM. Concerning the Credit scheduler, it
guarantees that a VM will strictly receive a portion (called credit) of the physical
machine computing capacity. Credit is the default and the widely used scheduler.
Therefore our work only considers this scheduler.

The Credit scheduler works as follows. Each VM (noted v) is configured at
start time with a credit value (noted c) between 0 and 100 (full computing capac-
ity). The scheduler defines remainCredit, a scheduling variable (associated with
the VM) initialized to c. Each time a vCPU from v releases a core, (1) the sched-
uler translates into a credit value (let us say burntCredit) the time spent by v on
the core. Subsequently, (2) the scheduler computes a new value of remainCredit

by subtracting burntCredit from the previous remainCredit. When remainCredit

reaches a lower threshold (configured in Xen), the VM enters a “blocked” state.
In order to make blocked VMs schedulable in the future, the scheduler periodi-
cally increases their remainCredit according to their initial credit.

From the above presentation, we can see that the Credit scheduler is based on
the notion of credit which depends on CPU time. The latter is a relative metric,
as opposed to absolute metrics introduced in Sect. 1. Indeed, a vCPU capacity
during a time period depends on the underlying core type. In other words, during
the same time period, different core types result in different numbers of retired
instructions for the same application. The next section presents our solutions
which address this issue.

3 Performance Predictability Enforcement Systems

In public clouds, a vCPU is generally pinned to a dedicated core and is allowed
to fully use this core. Our work is situated in this context1. In such a con-
text, the provider presents to the user the vCPU capacity as a core capacity.
This is ambiguous in AMP clouds since cores have different capacities. This

1 Our solutions can also be easily applied to other contexts where several vCPUs share
the same core.



paper addresses the issue of performance unpredictability which comes from
this ambiguity. To do so, we adopt a two-step approach which is summarized by
the following questions:

– Expressiveness: how to clearly express a vCPU computing capacity?
– Enforcement: how to enforce a booked vCPU computing capacity at runtime?

This section presents two ways to answer the above questions. Relying on the
popular open source Xen hypervisor, we also present the implementation of each
solution.

3.1 The First Solution

Expressiveness. In this solution, a vCPU computing capacity is presented to the
user as the capacity of a specific core type (referred to as “reference core” and
noted pref ) available in the IaaS. pref is chosen once by the provider. It should
be the core type with the lowest computing capacity, so that all other core types
are able to provide this capacity.

Enforcement. Let us note app a single-thread CPU bound application (e.g. π-
app [6]). ExecutionT ime(app, p) is the execution time of app when it exclusively
runs on a core whose type is p. The enforcement system goal here is to ensure that
given a vCPU v, ExecutionT ime(app, p)=ExecutionT ime(app, pref ) regardless
the actual core which runs v. We define the proportionality coefficient between
pref and each core type p (noted coef(p)) as follows

coef(p) =
ExecutionT ime(app, pref )

ExecutionT ime(app, p)
(1)

The proportionality coefficient is computed once by the provider. Then, the
enforcement system relies on an adaptation of the Xen Credit scheduler in order
to dynamically scale each vCPU allowable CPU time according to the propor-
tionality coefficient of its actual core. By doing so, the computing capacity asso-
ciated with a vCPU is always that of pref . In the scheduler, the burnt CPU
time (for a vCPU) is always translated as if it had been executed on pref . This
translation is periodically performed after each scheduler intervention (typically
every 30 ms in Xen). Unlike the native Credit scheduler (see the beginning of
the section) which allows the vCPU to fully use its actual core (noted p), our
modification enforces the use of only a fraction of p. The implementation of this
solution is straightforward in the Xen Credit scheduler. It simply consists in
modifying the vCPUBurntCredit function (see Sect. 2) as follows

1Unsigned int vCPUBurntCredit ( . . . ) {
2 . . .
3 // burn tCred i t has been c a l c u l a t e d above ( in the ց

o r i g i n a l Xen Cred i t s chedu l e r )
4 burntCredit = burntCredit ∗ co e f ( typeOf ( c o r e i d ) ) ;
5 return burntCredit ;
6}

where typeOf(core id) returns the current core type.



3.2 The Second Solution

Expressiveness. In this solution, a vCPU computing capacity is presented to the
user as an instruction throughput (noted Ips): it is the maximum number of
instructions the vCPU is allowed to performed per second. As well as the metric
used to express a virtual network card capacity (Byte per second, Bps) is clear
and absolute, Ips is also clear and absolute.

Enforcement. The enforcement system aims at ensuring that a vCPU’s booked
Ips is always satisfied regardless its actual core speed. Unlike the first solution
which relies on the translation of a relative metric into an absolute metric, the
second solution is directly based on an absolute metric. Therefore, the imple-
mentation of this solution cannot be implemented with a simple adaptation of
the Xen Credit scheduler. It requires a monitoring system which is able to mea-
sure online the number of instructions performed by each vCPU. Ips Sched,
the new scheduler we have implemented, works as follows. Ips Sched periodi-
cally collects the number of retired instructions (noted ri) related to each vCPU

during the sampling period (noted sp). In our prototype, ri is obtained using
Perfctr-xen [24], a tool which allows accessing performance counters in a vir-
tualized environment. Subsequently, Ips Sched computes the actual instruction
throughput (noted act t) of each vCPU using the following formula

act t =
old t × sp + ri

2 × sp
(2)

where old t is the throughput calculated during the previous sampling period.
Note that old t is zero if the vCPU was blocked during the previous sampling
period. Ips Sched keeps two queues namely UNDER and OV ER. If act t is
lower than the booked Ips, the vCPU is inserted into the UNDER queue.
Otherwise the vCPU is inserted into OV ER. vCPUs which belong to the latter
are not allowed to use the processor during the next sampling period (they are
considered as blocked).

3.3 Comparison of the Two Solutions

This section presents both the advantages and the limitations of our two solu-
tions. We have conducted a survey of cloud users (from two cloud provider part-
ners) regarding the metrics used in the two solutions. The results of this survey
show that the metric introduced in the first solution (the vCPU capacity is that
of a reference core, pref ) is more comprehensive than the metric used in the sec-
ond solution (the vCPU capacity is an instruction throughput, Ips). The latter
is suitable for HPC cloud users since they have the necessary expertise needed to
deal with low level statistics such as Ips. Furthermore, Ips allows doing both fine
grained and flexible CPU reservation. For instance, in the same way that physi-
cal AMP machines exist, the user can define AMP VMs2 by expressing different

2 Several research have highlighted the benefits of AMP VMs for energy saving
improvements.



Ips per vCPU for the same VM. This is not possible using the first solution
since all vCPUs should have the same capacity. Finally the implementation of
the first solution requires more work (calibration of proportionality coefficients)
from the provider than the second solution.

4 Evaluations

This section presents the evaluation results of our solutions. We evaluate the
following aspects:

– Effectiveness: the capacity of the solutions to ensure a vCPU computing
capacity.

– Overhead: the amount of resources consumed by both solutions.

Experimental Setup.

Hardware. The adopted experimental environment is similar to those used in
prior work [15,26] in the domain of AMP. In those works, an AMP machine
consists of two core types namely fast and slow cores. An AMP machine is
simulated by an SMP machine whose cores work at different frequency levels:
a fast core is emulated by running the core at the highest available frequency;
a slow core is emulated by running the core at the lowest available frequency.
Our testbed is composed of 2 DELL PowerEdge R420 machines. Each machine
has 2 sockets, 6 cores per socket. The core’s highest frequency is 2.2 GHz and
the lowest frequency is 1.2 GHz. Each socket is organized into 3 fast cores and
3 slow cores. The operating system is Ubuntu 12.04 (Linux kernel version 3.8.0)
virtualized with Xen 4.2.0. Our private IaaS is managed by OpenStack [3], a
popular IaaS manager system.

Benchmarks. We evaluated our solutions using three reference benchmarks
namely SPEC CPU2006 [4], Blast [1] and wordpress [5].

– SPEC CPU2006 [4] is a suite of single-threaded applications, stressing a sys-
tem’s processor, memory subsystem and compiler.

– Blast [1] is a multi-threaded application which simulates a typical workload
from a health institute.

– Wordpress [5] is a web application commonly deployed in the cloud. Its per-
formance metrics are the throughput (req/sec) and the response time.

4.1 The Effectiveness

Methodology. Performance predictability is guaranteed when the same workload
execution results in the same performance regardless the core type. This contract
is respected in an SMP machine because cores are identical (obviously) and we
avoid other sources of problem (e.g. resource contention [30]) in order to only
focus on the issue related to core heterogeneity. Therefore, we first execute appli-
cations on SMP machines managed with the native Xen system (representing the



“baseline”). Afterwards, we run the same applications on AMP machines man-
aged with the native Xen (def) and with our solutions (sol1 and sol2). Finally, we
compare the obtained results: our solutions are effective if they provide the same
results as the baseline. In addition, to highlight the criticality of the addressed
issue, we evaluate the use of the native Xen system to manage AMP machines.
Notice that each experiment is repeated several times. In the evaluation of the
first solution (sol1), pref is set to the slow core type. Concerning the evaluation
of the second solution, the booked Ips of any vCPU is set to 50 Mega Ips.

Results. The first experiment uses CPU bound applications (SPEC CPU2006
and Blast) to evaluate the effectiveness of our solutions. As well as SPEC
CPU2006 and Blast are respectively single-threaded and multi-threaded appli-
cations, they were ran respectively in single-vCPU and four-vCPU VMs. Each
application is the subject of several executions, so that all vCPU to core type
mappings are experimented. Performance predictability is achieved if the execu-
tion time of an application is almost the same in all executions. Figure 2 contains
box plots presenting the normalized execution time of each benchmark (normal-
ized to the baseline). The height of the boxes corresponds to the performance
variation between various executions of benchmarks. We can observe that our
solutions (sol1 and sol2) lead to a unique execution time which is equal to the
baseline execution time. This is not the case for the native Xen system (def).
The latter results in up to five different execution times, which correspond to the
various vCPU to core type mappings: SPEC CPU2006 and Blast applications
have respectively two and five possible vCPU to core mappings.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Def Sol1 Sol2

N
o

rm
 P

er
f.

Astar

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Def Sol1 Sol2

N
o

rm
 P

er
f.

Xanbmck

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Def Sol1 Sol2

N
o

rm
 P

er
f.

Bzip2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Def Sol1 Sol2

N
o

rm
 P

er
f.

Omnetp

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Def Sol1 Sol2

N
o

rm
 P

er
f.

H264ref

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Def Sol1 Sol2

N
o

rm
 P

er
f.

Blast

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Def Sol1 Sol2

N
o

rm
 P

er
f.

Hmmer

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Def Sol1 Sol2

N
o

rm
 P

er
f.

Gobmk

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Def Sol1 Sol2

N
o

rm
 P

er
f.

Perlbench

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Def Sol1 Sol2

N
o

rm
 P

er
f.

Sjeng

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Def Sol1 Sol2

N
o

rm
 P

er
f.

Libquantum

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Def Sol1 Sol2

N
o

rm
 P

er
f.

Mcf

Fig. 2. Effectiveness evaluation of our solutions with SPEC CPU2006 and Blast.

The second experiment type is based on wordpress, an internet service appli-
cation. We configure the benchmark as a two-tier application composed of a load
balancer (Haproxy) which distributes requests among two Apache web servers
(see Fig. 3 left). Each Apache server runs in a single-vCPU VM and a constant
workload is submitted to wordpress. We experimented several vCPU to core
type mappings (VM to core mappings). The results of this experiment are pre-
sented through a Cumulative Distribution Function (CDF) in Fig. 3 right. We



can observe that our solutions (sol1 and sol2) provide almost the same response
time values as the baseline regardless the vCPU to core type mappings. Con-
versely, the native Xen (def) system results in two response time values (691 and
44385 micro sec) corresponding to the scenario where the two Apache servers
(the two VMs) run on different core types.

Fig. 3. Effectiveness evaluation of our solutions with wordpress. The right side figure
presents the Cumulative Distribution Function (CDF) of the obtained response times.

4.2 The Overhead

The overhead of our solutions is almost nil. In reality, only the second solution
could have introduced a possible overhead during performance counters collec-
tion. However, Perfctr-xen [24] authors and several other researches [10] have
reported that this fear is unjustified. This also corresponds to what we have
observed.

5 Related Work

The Heterogeneity Issue in SMP Clouds

Several researches have investigated the problem of hardware heterogeneity
in today’s clouds. [12] evaluates the impact of assuming a heterogeneous cloud
as being homogeneous. It proposes a metric to express an application sensibil-
ity facing heterogeneity. [25] proposed to standardize the representation of the
processing power of CPU by using Processing Units. [13] based on this Process-
ing Units, presents the Execution and Resources Homogenization Architecture
(ERHA). ERHA aims to provide mechanisms for submitting and executing batch
applications in private IaaS clouds using homogeneous virtual environments cre-
ated over heterogeneous physical infrastructure. Concerning public clouds, some
(such as Amazon EC2) avoid the issue of hardware heterogeneity by dedicating
the same hardware type to each VM type. For instance, EC2 announces to their
customers that a m3.medium VM instance will always run atop an Intel Xeon



CPU E5-2650 2.00 GHz processor. This strategy is constraining for VM coloca-
tion. Indeed, a VM could not be deployed on a machine even if this machine
has enough resources to host the VM. Concerning other public clouds such as
Rackspace, the allocation unit is a vCPU and no more information is given
about the real computing capacity. The actual computing capacity of a VM on
this IaaS depends on the underlying core type, as illustrated in the introduction
(see Fig. 1).

The Heterogeneity Issue in AMP Clouds

Several research works on AMP systems have focused on the scheduling issue and
not on the predictability issue. Most of them have been conducted in the context
of native systems. [9,17,18,21–23,26] aim at determining the best thread to core
mapping in order to improve thread performance. [26] investigates applications
which are composed of both parallel and sequential phases. [26] improves the
scheduler by running sequential phase threads on fast cores. [7] tries to ensure
fair sharing of the fast cores while [20] proposes to assigned vCPUs to core
according to their speed. Therefore, fast core run-queues receive more vCPUs
than slow cores. [9] shows that in an AMP, dynamic thread migration policies
provide larger performance improvements than static policies. Their dynamic
thread migration policy executes the threads for a small time duration on each
core to measure their IPC (Instruction Per Cycle). Based on this, a thread that
achieves only modest performance improvements from running on a fast core is
executed on a slow core, and a thread that benefits significantly from running
on a fast core is executed on the fast core. Researches conducted in virtualized
systems [15,18,19,26] consist in translating native system solutions in virtualized
systems (vCPUs are seen as threads). For instance, [15] proposes to realize a fair
sharing of fast cores on AMP machines. They present a scheduling technique
for hypervisors implemented in Xen. To ensure that all virtual CPUs (vCPUs)
equally share the fast physical cores, the quota of a VM is decided depending
on the number of vCPUs in it.

Positioning of Our Work

From far of our knowledge, no research study has investigated the issue of per-
formance unpredictability in AMP clouds. The majority of research projects,
if not all, have investigated this issue in SMP clouds. Also, they have mainly
focused on the resource contention perspective, seen as the only source of the
unpredictability problem. We have shown that heterogeneity (of memory and
processor) is significantly involved in performance unpredictability. This paper
is the only one to proposed solutions to the unpredictability in AMP clouds.

6 Conclusion

This paper addresses the issue of performance unpredictability due to the ambi-
guity of vCPU computing capacity expression in AMP clouds. We have presented
two solutions and their implementations within the Xen virtualized system. Each
solution includes both an absolute metric definition and an enforcement system.



The first solution relies on a reference core (pref ) as the basis of vCPU capac-
ity expression. Subsequently, relying on the proportionality coefficient between
the actual core type and pref , the scheduler dynamically adjusts the allowable
CPU time of the vCPU. The second solution directly introduces an absolute
metric namely the “number of instructions per second” (noted Ips). We have
demonstrated the effectiveness of each solution by experimenting several refer-
ence benchmarks.

References

1. Blast. http://fiehnlab.ucdavis.edu/staff/kind/Collector/Benchmark/Blast Bench
mark. Accessed 3 Feb 2015

2. Microsoft’s top 10 business practices for environmentally sustainable data
centers. http://www.microsoft.com/environment/news-and-resources/datacenter-
best-practices.aspx. Accessed 10 Feb 2015

3. Open Stack. https://www.openstack.org/enterprise/virtualization-integration/.
Accessed 3 Feb 2015

4. SPEC CPU2006. http://www.spec.org/cpu2006/. Accessed 3 Dec 2015
5. Wordpress. https://fr.wordpress.org/. Accessed 3 Feb 2015
6. y-cruncher - A multi-threaded Pi-program. http://www.numberworld.org/

y-cruncher/#Benchmarks. Accessed 3 May 2014
7. Balakrishnan, S., Rajwar, R., Upton, M., Lai, K.: The impact of performance asym-

metry in emerging multicore architectures. In: Proceedings of the 32Nd Annual
International Symposium on Computer Architecture, ISCA 2005, pp. 506–517.
IEEE Computer Society, Washington (2005). https://doi.org/10.1109/ISCA.2005.
51

8. Baumann, A., Barham, P., Dagand, P.E., Harris, T., Isaacs, R., Peter, S., Roscoe,
T., Schüpbach, A., Singhania, A.: The multikernel: a new OS architecture for
scalable multicore systems. In: Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, SOSP 2009, pp. 29–44. ACM, New York (2009).
http://doi.acm.org/10.1145/1629575.1629579

9. Becchi, M., Crowley, P.: Dynamic thread assignment on heterogeneous multiproces-
sor architectures. In: Proceedings of the 3rd Conference on Computing Frontiers,
CF 2006, pp. 29–40. ACM, New York (2006). http://doi.acm.org/10.1145/1128022.
1128029

10. Bui, V.Q.B., Teabe, B., Tchana, A., Hagimont, D.: Kyoto: applying the polluters
pay principle to cache contention in an IaaS. In: Proceedings of the International
Workshop on Virtualization Technologies, VT15, pp. 1–6. ACM, New York (2011).
http://doi.acm.org/10.1145/2835075.2835077

11. Cherkasova, L., Gupta, D., Vahdat, A.: Comparison of the three CPU schedulers
in Xen. SIGMETRICS Perform. Eval. Rev. 35(2), 42–51. http://doi.acm.org/10.
1145/1330555.1330556

12. Fedorova, A., Vengerov, D., Doucette, D.: Operating system scheduling on het-
erogeneous core systems. In: Proceedings of 2007 Operating System Support for
Heterogeneous Multicore Architectures (2007)

13. Jin, X., Park, S., Sheng, T., Chen, R., Shan, Z., Zhou, Y.: ERHA: execution and
resources homogenization architecture. In: The Third International Conference on
Cloud Computing, GRIDs, and Virtualization, CLOUD COMPUTING (2015)



14. Jin, X., Park, S., Sheng, T., Chen, R., Shan, Z., Zhou, Y.: FTXen: making
hypervisor resilient to hardware faults on relaxed cores. In: 21st IEEE Interna-
tional Symposium on High Performance Computer Architecture, HPCA 2015,
Burlingame, CA, USA, 7–11 February 2015, pp. 451–462 (2015). https://doi.org/
10.1109/HPCA.2015.7056054

15. Kazempour, V., Kamali, A., Fedorova, A.: AASH: an asymmetry-aware sched-
uler for hypervisors. SIGPLAN Not. 45(7), 85–96. http://doi.acm.org/10.1145/
1837854.1736011

16. Koh, Y., Knauerhase, R.C., Brett, P., Bowman, M., Wen, Z., Pu, C.: An analysis
of performance interference effects in virtual environments. In: Proceedings of 2007
IEEE International Symposium on Performance Analysis of Systems and Software,
San Jose, California, USA, 25–27 April 2007, pp. 200–209 (2007). https://doi.org/
10.1109/ISPASS.2007.363750

17. Koufaty, D., Reddy, D., Hahn, S.: Bias scheduling in heterogeneous multi-core
architectures. In: Proceedings of the 5th European Conference on Computer Sys-
tems, EuroSys 2010, pp. 125–138. ACM, New York (2010). http://doi.acm.org/10.
1145/1755913.1755928

18. Kumar, R., Tullsen, D.M., Ranganathan, P., Jouppi, N.P., Farkas, K.I.: Single-
ISA heterogeneous multi-core architectures for multithreaded workload perfor-
mance. In: Proceedings of the 31st Annual International Symposium on Computer
Architecture, ISCA 2004, pp. 64–77. IEEE Computer Society, Washington (2004).
http://dl.acm.org/citation.cfm?id=998680.1006707

19. Kwon, Y., Kim, C., Maeng, S., Huh, J.: Virtualizing performance asymmetric
multi-core systems. In: Proceedings of the 38th Annual International Symposium
on Computer Architecture, ISCA 2011, pp. 45–56. ACM, New York (2011). http://
doi.acm.org/10.1145/2000064.2000071

20. Li, T., Baumberger, D., Koufaty, D.A., Hahn, S.: Efficient operating system
scheduling for performance-asymmetric multi-core architectures. In: Proceedings
of the 2007 ACM/IEEE Conference on Supercomputing, SC 2007, pp. 1–11. ACM,
New York (2007). http://doi.acm.org/10.1145/1362622.1362694

21. Liu, G., Park, J., Marculescu, D.: Dynamic thread mapping for high-performance,
power-efficient heterogeneous many-core systems. In: 2013 IEEE 31st International
Conference on Computer Design, ICCD 2013, Asheville, NC, USA, 6–9 October
2013, pp. 54–61 (2013). https://doi.org/10.1109/ICCD.2013.6657025

22. Luo, Y., Packirisamy, V., Hsu, W.C., Zhai, A.: Energy efficient speculative threads:
Dynamic thread allocation in same-ISA heterogeneous multicore systems. In: Pro-
ceedings of the 19th International Conference on Parallel Architectures and Com-
pilation Techniques, PACT 2010, pp. 453–464. ACM, New York (2010). http://
doi.acm.org/10.1145/1854273.1854329

23. Morad, T.Y., Kolodny, A., Weiser, U.C.: Scheduling multiple multithreaded appli-
cations on asymmetric and symmetric chip multiprocessors. In: Third International
Symposium on Parallel Architectures, Algorithms and Programming, PAAP 2010,
Dalian, China, 18–20, pp. 65–72 (2010). https://doi.org/10.1109/PAAP.2010.50

24. Nikolaev, R., Back, G.: Perfctr-Xen: a framework for performance counter virtual-
ization. In: Proceedings of the 7th ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments, VEE 2011, pp. 15–26. ACM, New York
(2011). http://doi.acm.org/10.1145/1952682.1952687



25. Rego, P.A.L., Coutinho, E.F., Gomes, D.G., de Souza, J.N.: FairCPU: architecture
for allocation of virtual machines using processing features. In: Proceedings of the
2011 Fourth IEEE International Conference on Utility and Cloud Computing, UCC
2011, pp. 371–376. IEEE Computer Society, Washington (2011). http://dx.doi.org/
10.1109/UCC.2011.62

26. Shelepov, D., Saez Alcaide, J.C., Jeffery, S., Fedorova, A., Perez, N., Huang,
Z.F., Blagodurov, S., Kumar, V.: HASS: a scheduler for heterogeneous multi-
core systems. SIGOPS Oper. Syst. Rev. 43(2), 66–75. http://doi.acm.org/10.1145/
1531793.1531804

27. Tang, L., Mars, J., Soffa, M.L.: Contentiousness vs. sensitivity: improving con-
tention aware runtime systems on multicore architectures. In: Proceedings of the
1st International Workshop on Adaptive Self-Tuning Computing Systems for the
Exaflop Era, EXADAPT 2011, pp. 12–21. ACM, New York (2011). http://doi.acm.
org/10.1145/2000417.2000419

28. Teabe, B., Tchana, A., Hagimont, D.: Enforcing CPU allocation in a heteroge-
neous IaaS. Future Gener. Comput. Syst. 53(C), 1–12. http://dx.doi.org/10.1016/
j.future.2015.05.013

29. Whitaker, A., Shaw, M., Gribble, S.D.: Scale and performance in the Denali isola-
tion kernel. In: Proceedings of the 5th Symposium on Operating Systems Design
and implementation Copyright Restrictions Prevent ACM from Being Able to
Make the PDFs for This Conference Available for Downloading, OSDI 2002, pp.
195–209. USENIX Association, Berkeley (2002). http://dl.acm.org/citation.cfm?
id=1060289.1060308

30. Zhuravlev, S., Blagodurov, S., Fedorova, A.: Addressing shared resource contention
in multicore processors via scheduling. In: Proceedings of the Fifteenth Edition of
ASPLOS on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XV, pp. 129–142. ACM, New York (2010). http://doi.acm.org/
10.1145/1736020.1736036




