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Abstract

In this paper we propose two non–intrusive methods for identifying hydro power
plant dynamics using standard system identification techniques. The purpose of
the tests is to obtain transfer functions relevant for the frequency containment
reserves delivered by hydro power plants. To validate the methods, we ana-
lytically demonstrate under which conditions the methods will yield consistent
results. Moreover, using a simulation example we discuss the validity of the
methods when one of the conditions is not met. Results using measurements
from the control system of a power plant in the Nordic power system are also
provided.

Our proposed methods also allow us to identify a transfer function that can
be used to check new requirements developed by the Nordic TSOs. The trans-
fer functions obtained by our methods is compared with the transfer function
obtained using the TSOs’ methods using Monte Carlo Simulation.

1. Introduction

Recent concerns for the frequency quality in the Nordic power system [1]
have led to an increased interest in the dynamic performance of the frequency
containment process (FCP). This process is responsible for containing frequency
deviations and is provided by the frequency containment reserves (FCR). The
Nordic transmissions system operators (TSOs) have therefore proposed new
requirements for the FCR [2] that include a series of sine tests for estimating the
transfer function of the FCR. These tests require disconnection of the plants and
may take up to two days. We have therefore investigated less time-consuming
and intrusive alternatives, and in this paper we propose two experiments that
may serve as non-intrusive alternatives to these tests.
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1.1. Related work

Traditionally, requirements for hydro power plants are stated in terms of
time domain performance, such as in the network codes for grid connection of
generators [3]. Following this line of thought [4] proposes a prototype transfer
function for checking time domain requirements for hydro power plants. A
similar approach is taken in [5], where system identification is used for checking
the performance of a steam turbine.

Tests similar to those proposed by the TSOs are often referred to as field
tests, which are tests performed while the plant is operating in an open loop.
In the paper [6] field tests are used to tune parameters in simulation models
based on load rejection tests and steady state measurements. The paper [7]
describes how a model of the turbine can be obtained using a gradient-based
non-linear search algorithm fitting measured frequency responses from injection
of sine and square waves to the governor. A similar approach was used in [8],
where the servo and turbine dynamics were identified from testing at a power
plant. For the system identification they used different techniques such as visual
inspection grey box identification and analysis of the plant’s response in the
frequency domain. In addition it was demonstrated how the backlash, which
can be found in some servos, can be identified.

In more recent research there has been an attempt to identify hydro power
plant dynamics using phasor measurement units (PMUs). These approaches are
promising, especially since they do not require the disconnection of the power
plant or any other disturbance to the operation. However, as was shown in [9] the
transfer function obtained using these approaches are not exactly those needed
for checking the requirements. In [10, 11] they use ARX and ARMAX model
structures to perform the identification, in [9, 12, 13] a box-Jenkins structure is
used and in [14] time domain vector fitting is used.

Another common method for identifying hydro power plant dynamics using
PMU measurements is to use measurements from large power system distur-
bances. This approach is used in the papers [15–18]. In [15, 18] an unscented
Kalman filter is used for the identification and in [16] constrained optimisation
is used for the identification. An example of how to tune simulation models by
comparing simulation results with disturbance recordings can be found in [17].
An obvious drawback of these approaches is that they rely on the occurrence of
large disturbances. Moreover, these papers do not provide an analytical analysis
of whether or not the methods will yield consistent results.

1.2. Contributions and outline

To date, research has focused on how best to identify the dynamics without
disturbing the plant operation at all or on field tests. In this paper we will
contribute to methods for identifying hydro power plant dynamics by:

1. Proposing two non-intrusive experiments for identifying hydro power plant
dynamics relevant for the FCR. The experiments use different measure-
ments available from the plant’s control system while the plant is in nor-
mal operation with added non-intrusive excitation. The amplitude of the
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added excitation is in the same order of magnitude as the noise already
present in the system and does not require disconnection of the plant, and
can thus be considered non-intrusive.

2. Demonstrating that our proposed methods also allow for estimating the
transfer function needed to test the new requirements proposed by the
Nordic TSOs.

3. Analysing whether or not consistent estimates of the relevant dynamics
can be obtained using measurements available during normal operation.
Aside from [9], this analysis is lacking in the others papers where closed-
loop identification is attempted for identifying hydro power plant dynam-
ics. However, this analysis is crucial for ensuring that the results obtained
can be used for validating whether or not a hydro power plant complies
with the requirements. Moreover, the analysis allows for further analysing
and understanding factors that may negatively affect the results.

4. Discussing the effect of process noise on the consistency of the identifi-
cation. The discussion uses the analytical insights and is backed up by
Monte Carlo simulations.

5. Demonstrating that the PMU approach presented in [9] can be seen as
a special case of one of the experiments proposed in this paper without
added extra excitation.

The outline of the paper is as follows. In Section 2 the power plant model
assumed for the analysis is presented. The transfer functions needed to check
the requirements are presented in Section 3 and the experiments for checking
them are presented in Section 4. In Section 5 two technical theorems relevant
for the two experiments we propose are presented, and used in Section 6 for
analysing the identifiability of the different transfer functions using the different
experiments. Readers who are not interested in why the identification is possible
can skip directly to Section 7, which discusses the results from the analysis
and provides some simulation examples to illustrate the main points of the
analysis. The results from a real power plant are presented in Section 8. Finally,
concluding remarks and further work are outlined in Section 9.

2. The power plant model used in the paper

For analysing the identifiability of hydro power plant dynamics we will use
the model depicted in Figure 1. Other models and structures are possible,
however, the same analysis performed in this paper could easily be conducted
for others structures as well. It is important to note that in our analysis the plant
is assumed to be operating within a confined region, such that its behaviour can
be described by linear models.

In Figure 1, we use classical notation. The Laplace transform of a continuous-
time signal x(t) is denoted by x(s) and the shift operator for a discrete time
signal x[n] is denoted by z (n is the sample number).

In Figure 1, the (first-order) continuous-time transfer function GJ(s) rep-
resents the swing dynamics of the power plant. We will assume this transfer
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Figure 1: Block diagram of a hydro power plant in a power system

function to be of the form:

GJ(s) =
1

2Hs+Kd
(1)

where H is the inertia constant of the machine and Kd is the speed damping.
This transfer function is of crucial importance as it determines the initial change
in the electrical angular speed of the machine’s rotor ∆ω(t) due to changes in
the difference between the electric power ∆Pe(t) and the mechanical power
∆Pm(t). Further change in the speed of the machine is contained by the con-
troller Gc, which is responsible for changing ∆Pm(t) to maintain the power
balance. The controller Gc is here assumed to be a digital PID controller and
is therefore represented by a discrete-time transfer function Gc(z). Since the
controller is digital, the continuous-time speed ∆ω(t) needs to be discretised
via a sampling mechanism preceded by an anti-aliasing filter Faa(s). The cor-
responding discrete-time signal is denoted y[n]. The signal r[n] is an excitation
signal that can be added for identification purposes; this signal is thus equal
to zero in normal operation. The discrete-time output c[n] of the controller is
transformed into a continuous-time signal via a zero-order hold (ZOH) mecha-
nism. The resulting continuous-time signal ∆uc(t) is applied to the servo Gs(s)
which changes the water flow to the turbine Gt(s) by changing the opening of
the guide vanes ∆g(t). The parameter ρ in the model is referred to as the droop
and determines the steady state gain of the governor.

In Figure 1, we also assume that we have a discrete-time measurement u[n]
of the (continuous-time) electric power ∆Pe(t), obtained in a similar manner as
∆ω(t).

In our modelling we assume the feedback to the controller to be the rotor’s
electrical angular speed. Other choices are possible and one common choice
is to use the power system’s electrical frequency as the feedback signal. Since
the machines are synchronous machines the power system’s frequency will be
very close to the rotor’s electrical angular frequency. However, it may vary for
faster dynamics and we will therefore restrict our analysis to having the rotor’s
electrical speed as the feedback signal. The speed is measured by measuring
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how fast the rotor is rotating and the relation between the rotor’s mechanical
speed and electrical speed is given by:

∆ω(t) ,
p

2
∆ωm(t) (2)

where ∆ωm(t) is the mechanical speed of the rotor and p is the number of poles
in the machine.

For the identification it is very important to know how the systems we want
to identify are excited. Since the plant is assumed to use the rotor’s electri-
cal angular speed as the feedback signal, the main external excitation will be
changes in the electric power at the bus bar. For the active power at the bus bar
of a synchronous machine we have the following approximate expression [19]

Pe(t) =
3Vt(t)Ea(t) sin δEv(t)

Xs
(3)

where Vt(t) is the terminal voltage of the machine, Ea(t) is the internal voltage,
δEV (t) is the angle between the internal voltage angle δ(t) and the terminal
voltage angle δV (t), and Xs is the synchronous reactance. If we linearise (3) we
get the following equation

∆Pe(t) = Kt∆Vt(t) +KE∆Ea(t) +Kv∆δv(t) +K11∆δ(t) (4)

where Kt, KE , Kv, and K11 are linearisation constants. For the identification
we need to determine whether or not there is external excitation and if the
system is operating in a loop. From (4) we see that ∆Pe(t), which excites the
plant is dependent on the rotor angle δ(t) of the plant. Moreover, the internal
voltage Ea(t) and the terminal voltage Vt(t) are dependent on the rotor angle
through the excitation system and the automatic voltage regulator of the plant.
Several plants also have power system stabilisers (PSS); these control systems
change the electric torque of the generator based on measurements of the plant’s
speed deviation. Based on the above considerations we will assume the following
equation for the electrical power of the power plant.

∆Pe(s) = vl(s) + (Tv(s) + TPSS(s) +
K11

s
)∆ω(s) = vl(s) + T (s)∆ω(s) (5)

where vl(s) represents the external excitation provided by random load changes
and other random switching events in the power system, Tv(s) is the transfer
function from the angular speed of the rotor through the excitation system
and voltage regulator to the electrical power, and TPSS(s) is the power system
stabiliser. For brevity and since the exact structure of Tv(s) and TPSS(s) is not
important for the analysis we will use the transfer function T (s). In Sections 5
and 6, where the identifiability is analysed, we need to know whether or not
there is a time delay between the rotor angle δ(t) and the electrical power Pe(t),
from (4) we see that the fourth term K11∆δ(t) represents a direct connection
without any time delay.
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3. Requirements on hydro power plants

In [20] the theory and idea behind the draft requirements are presented. In
short they assume that all power plant’s can be aggregated to one plant and
state stability and performance requirements for this aggregated plant. To check
if a plant can fulfill these requirements the power plant owner has to identify
the transfer function Gp(s), given in (6), through a series of sine tests, that will
be presented in Section 4.

Gp(s) =
Gc(s)Gs(s)Gt(s)

1 + ρGc(s)Gs(s)
(6)

where Gc(s) denotes the continuous-time equivalent of the digital controller
Gc(z). Based on the model ofGp(s), we can directly check the TSO requirements
(global/aggregated requirements). In this paper, we will also pay attention
to the local stability and performance of the hydro power plant and propose
local requirements. For this purpose, let us define two important local transfer
functions: the local sensitivity function S(s) and the local plant’s disturbance
rejection function G1(s):

S(s) =
1

1 +Gp(s)GJ(s)
(7)

G1(s) = GJ(s)S(s) (8)

The requirement for the local stability puts a limit on the allowed upper
bound Ms for the sensitivity function, that is:

max
Ω
|S(jΩ)| < Ms (9)

For the local performance requirements it is required to be able to reject a
disturbance with a power of φPe

(jΩ) such that the power of the rotor speed is
always below a value σ2

ωreq
:

|G1(jΩ)|2φPe
(jΩ) < σ2

ωreq
(10)

Another important performance measure of the power plant is the amount of
reserves delivered by the plant. This amount is determined by the droop setting
ρ of the plant. In case there is no speed damping and ohmic losses in the
turbine and generator, the steady state gain of G1(s) is given by the droop
setting and speed damping of the plant. This means that estimating G1(s)
also gives information on how much FCR a plant can provide given its droop
settings.

4. Experiments for checking the requirements

In this section we will present the open-loop experiment proposed by the
industry and the closed-loop experiments proposed in this paper.
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Table 1: Frequencies of the simulated sine signals

2π
300

2π
150

2π
100

2π
80

2π
70

2π
60

2π
50

2π
40

2π
25

2π
15

2π
10

4.1. Description of the industry-proposed experiment

In [2] they propose removing the feedback signal from y[n] to the gover-
nor and to identify the transfer function Greq(s) between r[n] and u[n] at the
frequencies given in Table 1 using (11).

Greq(jΩp) =
FΩp

(u[n])

FΩp(r[n])
(11)

where FΩp
denotes the value of the discrete Fourier at the frequency Ωp.

By inspecting Figure 1 we see that the transfer function Greq(s) is given by:

Greq(s) =
Gp(s)GJ(z)T (s)

1 +GJ(s)T (s)
(12)

For slow dynamics we can neglect the effect of the exciter and voltage regulator,
moreover, the PSS is to be disconnected. Consequently, T (s) ≈ K11/s. If we
use this and (1) we can write (12) as

Greq(s) =
Gp(s)K11

K11 + s(Kd + 2Hs) (13)

The above equation implies that the experiment proposed in [2] identifies Gp(s)
through a low pass filter. However, for most practical purposes this should be
fine as only slow dynamics are investigated. The time periods investigated are
reported in Table 1 and an comparison of Greq(s) and Gp(s), using the values
for the small power plant in Appendix A, is provided in Figure 2. In the figure
the largest frequency from Table 1 is depicted as the black vertical line. For the
power plant in Appendix Appendix A, Greq(s) is thus is close to Gp(s) for all
the sine tests. However, this cannot in general be guaranteed.

Remark 1. The open-loop experiment proposed by the industry to estimate
Greq(s) will be consistent. For the theory behind open-loop identification, please
refer to e.g. [21]. However, it is important to note that this open-loop experiment
is intrusive and does not directly identify the desired transfer function Gp(s).

In the sequel, we present two closed-loop identification approaches. The first
method directly yields a model of S(s) and G1(s) and, from these models, we
can derive a model of Gp(s). The second method identifies intermediary models
from which models of S(s), G1(s) and Gp(s) can be deduced.

4.2. Experiments proposed in this paper

In this paper we propose using standard system identification techniques for
identifying the hydro power plant dynamics while the plant is operating in a
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Figure 2: Comparison of Gp(s) and Greq(s), the black vertical line corresponds to the largest
frequency in Table 1

closed-loop operation. We will show that these techniques will allow us to derive
both a model of Gp(s) (that can be used to verify the industry requirements)
and models of S(s) and G1(s) (that can be used to verify the local requirements
discussed in Section 3). To identify these models, we use standard techniques
described in [21] and the functions provided by the system identification toolbox
available for MATLAB [22]. Since the identification of the transfer functions is
performed using a computer, the measured signals will have to be sampled. We
will therefore use the discrete version of the signals and transfer functions from
now on.

4.2.1. Description of the first closed-loop identification method

By inspecting Figure 1, we observe that the discrete-time signals r[n], u[n]
and ε[n] = r[n] − y[n] are related by discrete-time versions S(z) and G1(z) of
the continuous-time transfer functions S(s) and G1(s):

ε[n] = G1(z)u[n] + S(z)r[n] (14)

From this we conclude that if we have collected the dataset ZNur = {u[n], r[n], ε[n]|n =
1 . . . N} we can identify S(z) and G1(z) if the systems are identifiable using this
dataset (the identifiability will be the purpose of the next sections). The sub-
script ur in Zur denotes the input signals to the multi input single output
(MISO) system described by (14). With the models of G1(s) and S(s), we can
check the local requirements of Section 3. From the models of G1(s) and S(s),
we can also deduce a model of Gp(s) using the following relation:

Gp(z) = (1− S(z))G1(z)−1 (15)

8



With the model of Gp(s), we can check the TSO requirements.
Note that if we set r[n] = 0, we get the following relation

ε[n] = G1(z)u[n] (16)

In this configuration, it will no longer be possible to identify S(z) and Gp(z).
However, it could still be possible to identify G1(z) using the dataset ZNu =
{u[n], ε[n]|n = 1 . . . N}

4.2.2. Description of the second closed-loop identification method

We can observe in Figure 1 that the signals c[n], u[n] and y[n] are related as
follows:

y[n] = GJp(z)c[n]−GJ(z)u[n] (17)

where GJ(z) is a discretised version of GJ(s) and GJp is a discretised version of
the product Gs(s)Gt(s)GJ(s) (combined with the ZOH and the antia-aliasing
filter). We therefore conclude that we could estimate GJ(z) and GJp(z) using
the dataset ZNcu = {c[n], u[n], y[n]|n = 1 . . . N} if the systems are identifiable
using this dataset. To find Gp(z) we also need to know the transfer function of
the servo Gs(z) and of the controller Gc(z). We will assume the controller to
be known and we see that the signals c[n] and a[n] are related by:

a[n] = Gs(z)c[n] (18)

We therefore conclude that we could estimate Gs(z) using the dataset ZNc =
{c[n], a[n]|n = 1 . . . N} if the system is identifiable using this dataset. An es-
timate of Gp(z) can then be deduced from the models of GJ(z), GJp(z), and
Gs(z) using the following relation:

Gp(z) =
GJp(z)Gc(z)

GJ(z)(1 + ρGc(z)Gs(z))
(19)

The relation (19) allows for checking the TSO proposed requirements. Moreover,
we can use the estimates of Gp(z) and GJ(z) and the relations (7) and (8) to
derive models of S(z) and G1(z). With these models, we can check the local
requirements of Section 3.

Remark 2. For the sequel, it is important to note that the transfer function
GJp(z) will generally contain a delay (due to the presence of the ZOH) while
the other transfer functions GJ(z), S(z) and G1(z) will generally not contain
any delay.

5. Technical theorems

To prove the identifiability of the systems presented in the previous section
we will present two technical theorems: One relevant for MISO systems and one
relevant for single input single output SISO systems. In the next section we will
then discuss the identifiability of the systems using these theorems.
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5.1. MISO theorem

We consider the dataset ZNmiso = {u1[n], u2[n], y[n]|n = 1 . . . N} generated
by:

Smiso : y[n] = G(z, θ0)u[n] + v[n] (20)

where G(z, θ0) =
[
G1(z, θ0) G2(z, θ0)

]
and u =

[
u1[n] u2[n]

]T
. The term

v[n] models process noise and is assumed to be generated by v[n] = H(z, θ0)e[n],
where H(z, θ0) is assumed to be monic and e[n] is white noise with variance σ2

e .
As we can see in (20) the true system Smiso is parametrised by the parameter
vector θ0. In the sequel, we will suppose that this parameter vector θ0 is un-
known, but that the model structure Mmiso = {G1(z, θ), G2(z, θ), H(z, θ)} is
known. Consequently, the identification boils down to the determination of a
consistent estimate of θ0.

The input signals uT [n] =
[
u1[n] u2[n]

]
are assumed to be generated with

two external excitation signals w1[n] and w2[n] and may also be influenced (via
some feedback) by the noise e[n] generating v[n] in (20):

u[n] = K(z)w[n] + Γ(z)e[n] (21)

where w[n] =
[
w1[n] w2[n]

]T
and whereK(z) and Γ(z) are a matrix of transfer

functions and a vector of transfer functions, respectively. In this paper, we
only suppose knowledge of u[n]. Consequently, w[n], K(z) and Γ(z) are not
necessarily known quantities. Using prediction error identification [21] and the

dataset ZNmiso an estimate θ̂N of θ0 can be deduced as follows:

θ̂N = arg min
θ

1

N

N∑
n=1

ε2miso[n, θ] (22)

with the prediction error defined as:

εmiso[n, θ] = H−1(z, θ)(y[n]−G(z, θ)u[n]) (23)

In order to validate our identification setting it is important to verify whether
or not (22)-(23) will lead to a consistent estimate of θ0 when u[n] is generated
as in (21). Indeed, if (22) is a consistent estimate of θ0 and N is sufficiently
large, the estimate (22) is normally distributed around θ0 [21]. The variance
of this estimate is then the only source of uncertainty and this variance can be
estimated and depends on the number of data N and the excitation signal u[n].
To ensure the consistency, we need to verify that the true parameter vector θ0

is the unique solution to the asymptotic prediction criterion:

θ∗ = arg min
θ

Ēε2miso[n, θ] (24)

with

Ēε2miso[n, θ] = lim
N→∞

1

N

N∑
n=1

Eε2miso[n, θ] (25)
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The operator E denotes the expectation operator.
Before we investigate whether or not the estimate (22) is consistent we will

make some assumptions.

Assumption A1. The external excitations w1[n] and w2[n] are assumed to be
uncorrelated white noises with variance σ2

1 and σ2
2 respectively. Moreover, they

are assumed to be uncorrelated to the white noise e[n].

Remark 3. Other w[n] than white noise could also work, such as multisine
and filtered white noise.

Assumption A2. The determinant det(K(ejΩ)) is nonzero for all Ω.

In addition we have the following condition:

Condition C1. If we denote Γ(z) =
[
Γ1(z) Γ2(z)

]T
, there must be a delay

in G1(z, θ0)Γ1(z) and in G2(z, θ0)Γ2(z) whenever these transfer functions are
nonzero.

The identifiability of the system Smiso is now stated in the following theorem.

Theorem 1. Consider the dataset ZNmiso = {u1[n], u2[n], y[n]|n = 1 . . . N}
where ZNmiso is generated by (20)-(21). Moreover, consider Assumptions A1-
A2 and Condition C1 Then the prediction error criterion (22) with (23) yields
a consistent estimate of θ0.

5.2. SISO theorem

We now consider the dataset ZNsiso = {u[n], y[n]|n = 1 . . . N} generated by:

Ssiso : y[n] = G(z, θ0)u[n] + v[n] (26)

where the term v[n] models process noise and is assumed to be generated by
v[n] = H(z, θ0)e[n], where H(z, θ0) is assumed to be monic and e[n] is white
noise with variance σ2

e and the input signal u[n] is given by:

u[n] =

q∑
i=1

Ki(z)wi[n] + Γ(z)e[n] (27)

where q is the number of external excitation signals wi[n](i = 1 . . . q). We
observe that u[n] may also be influenced by e[n] via some feedback. As in the
previous section, we do not suppose wi[n], Ki(z) (i = 1 . . . q) and Γ(z) to be
known. We will nevertheless assume the following:

Assumption A3. The signals wi[n] (i = 1 . . . q) and e[n] are all uncorrelated
white noise with variances σ2

i (i = 1 . . . q) and σ2
e .

For this system the prediction error is given by:

εsiso[n, θ] = H−1(z, θ)(y[n]−G(z, θ)u[n]) (28)

In a similar manner to the MISO system we will verify whether or not (28)
in (22) can lead to a consistent estimate of θ0, given the following technical
condition.
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Condition C2. If this transfer function is nonzero, there is a delay in G(z, θ0)Γ(z).

Theorem 2. Consider the dataset ZNsiso = {u[n], y[n]|n = 1 . . . N} where ZNsiso
is generated by (26) and (27) with q ≥ 1. Moreover, consider Assumption A3
and Condition C2. Then the prediction error criterion (22) with (28) yields a
consistent estimate of θ0.

Remark 4. For SISO identification, a single external excitation (i.e. q = 1)
will be sufficient to ensure the consistency. The advantage of having multiple
external excitation (q > 1) is the reduction of the variance of the estimate θ̂.

6. Validation of the system identification experiments

6.1. Identifiability of S(z) and G1(z) using the dataset ZNur

We will now proceed to investigate whether or not the sensitivity function
S(z) and the disturbance rejection function G1(z) can be identified using the
dataset ZNur = {u[n], r[n], ε[n]|n = 1 . . . N}. We assume that the system can be
parametrised by a parameter vector θ0 in a known model structure.

Sur : ε[n] = G1(z, θ0)u[n] + S(z, θ0)r[n] + v[n] (29)

where v[n] = H(z, θ0)e[n], e[n] is white noise with variance σ2
e and H(z, θ0) is

assumed to be monic. The term v[n] represents process noise. It is not included
in Figure 1, however, in general it is very unlikely that ε[n] is perfectly described
by (14).

We see that this situation corresponds to the one in Section 5.1 Indeed, by
denoting uT [n] = [u[n] r[n]], wT [n] = [el[n] r[n]] and by using Figure 1, we can
write the following for some transfer functions K11(z), K12(z) and Γ1(z):[

u[n]
r[n]

]
=

[
K11(z) K12(z)

0 1

] [
el[n]
r[n]

]
+

[
Γ1(z)

0

]
e[n]

= K(z)w[n] + Γ(z)e[n] (30)

We observe that, if we apply an excitation signal r[n], we have two external

excitation signals generating u[n] =
[
u[n] r[n]

]T
(i.e. el[n] and r[n]). Con-

sequently, using Theorem 1, the estimate of θ0 obtained with prediction error
identification using the dataset ZNur will be consistent if Assumptions A1, A2 and
Condition C1 are fulfilled. Let us discuss this matter in the following remarks:

Remark 5. That Assumption A1 does not hold would imply that at least two
of the following signals, the aggregated stochastic load behaviour el[n], the added
perturbation r[n] and the process noise e[n] are correlated. This is highly un-
likely.

Remark 6. As shown in (30), it is clear that Assumption A2 will always be
respected in practice.

12



Remark 7. In this case, Condition C1 boils down to the presence of a delay
in G1(z, θ0)Γ1(z). This delay condition does not cause any problems when the
feedback mechanism is realised via a digital controller and a ZOH. However,
in our case, the feedback mechanism which is at stake in Theorem 1 is the
one pertaining to the link between ∆ω(t) and ∆Pe(t). In general, there will
be no delay in G1(z, θ0)Γ1(z). Consequently, we will not be able to guarantee
the consistency, and the estimate (22) will therefore be biased. However, the
bias will remain limited if the contribution of the process noise v[n] in u[n]
is negligible. Indeed, in this case, ν(z, θ) in (B.4) reduces to ∆H(z, θ)/H(z, θ)
and (B.5) holds even if there is no delay in G1(z, θ0)Γ1(z). That the contribution
of the process noise v[n] in u[n] is negligible should normally be met in practice
as we can expect the contribution of random fluctuations in the rotor angle to
influence the power at the bus bar less than the contribution of all other random
changes in the power system.

6.2. Identifiability of GJp(z) and GJ(z) using the dataset ZNcu

We will now investigate whether or not we can identify consistent models
of GJp(z) and GJ(z) using the dataset ZNcu = {c[n], u[n], y[n]|n = 1 . . . N}, as
for the previous system we assume that the system can be parametrised by a
parameter vector θ0 in a known model structure:

Scu : y[n] = G(z, θ0)u[n] + v1[n] (31)

where G(z, θ0) =
[
GJp(z, θ0) −GJ(z, θ0)

]
. The term v1[n] models process

noise and is assumed to be generated by v1[n] = H1(z, θ0)e[n], where H1(z, θ0)
is assumed to be monic. Using Figure 1, the input signal uT [n] =

[
c[n] u[n]

]
can thus be rewritten as:[

c[n]
u[n]

]
=

[
Kcl(z) Kcr(z)
Kul(z) Kur(z)

] [
el[n]
r[n]

]
+

[
Γce(z)
Γue(z)

]
e[n]

u[n] = K(z)w[n] + Γ(z)e[n] (32)

If an external signal r[n] is applied to the system, we are thus here also in a
situation corresponding to Section 5.1 and, using Theorem 1, the estimate of
θ0 obtained with the dataset ZNcu will be consistent if Assumption A1, A2 and
Condition C1 are fulfilled. Assumption A1 and A2 are generically fulfilled in
this case too. However, we have a similar problem with Condition C1, which
requires a delay in both GJp(z, θ0)Γce(z) and GJ(z)Γue(z), as discussed in the
following remark:

Remark 8. The delay condition will generally hold for GJp(z, θ0)Γce(z) due to
the presence of the ZOH (see Remark 2). However, for the same reason as in
Remark 7, this will not be the case for GJ(z, θ0)Γue(z). The undesired bias will
however be limited under the same condition as in Remark 7.
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6.3. Identifiability of G1(z) without external excitation using dataset ZNu

We will now investigate whether or not G1(z) can be identified without
adding external excitation, i.e. r[n] = 0. This possibility was mentioned in
Section 4.2.1 (see (16)). Note that we analysed this particular case in a previous
paper[9], but it will also be included here for the sake of completeness with extra
attention given to the delay condition. As for the previous system we assume
that G1(z) can be parametrised by a parameter vector θ0 in a known model
structure. The relevant dataset for this analysis is ZNu = {u[n], ε[n]|n = 1 . . . N},
which we suppose is generated by:

Su : ε[n] = G1(z, θ0)u[n] + v[n] (33)

and using (30) with r[n] = 0. We are thus now in the situation described
in Section 5.2 with q = 1. Consequently, using Theorem 2, the estimate of
θ0 obtained with the dataset ZNu when r[n] = 0 will be consistent if el[n] is
independent of e[n] (Assumption A3) and if Condition C2 holds. This latter
condition here entails the presence of a delay in G1(z, θ0)Γ1(z). As already
mentioned in Remark 7, this will not be the case in practice, but the bias will
be limited under the same condition as the one mentioned in Remark 7.

Remark 9. If we are only interested by G1(z, θ0), it is thus not necessary to add
the external excitation r[n]. However, as pointed out in Remark 4 adding this
external excitation r[n] and following the procedure in Section 6.1 will generally
yield an estimate with lower variance. The addition of an external excitation
r[n] will also make it more likely that the contribution of v[n] in u[n] is negligible,
reducing in this way the bias due to the absence of delay in G1(z, θ0)Γ1(z) (see
Remark 7)

6.4. Identifiability of Gs(z) using the dataset ZNc

We will now investigate whether or not we can identify Gs(z). For this
purpose, we assume that the system can be parametrised by a parameter vector
θ0. The relevant dataset in this case ZNc = {c[n], a[n]|n = 1 . . . N} is supposed
generated by:

Sc : a[n] = Gs(z, θ0)c[n] + v2[n] (34)

v2[n] models process noise and is assumed to be generated by v2[n] = H2(z, θ0)e2[n],
where H2(z, θ0) is assumed to be monic. It is arguable whether there will be
significant process noise in the servo; however, it is included for completeness
and it will be supposed that this signal v2 is uncorrelated with el[n] and v[n].
The signal v2[n] will generally be negligible in practice with respect to el[n]
and v[n]. That is the reason why it was not considered as an extra external
excitation in the previous subsection. The signal c[n] in (34) will be made up
of a contribution of the random load changes el[n], the process noise e[n] and
possibly of a contribution of the external excitation r[n].

This situation corresponds to the case discussed in Section 5.2. Using The-
orem 2, this identification will therefore yield a consistent estimate since all
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Figure 3: Small test system used for the simulations
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lines are the analytical calculated versions and the dashed, loosely dashed, and dotted lines
represent an SNR of 12dB, 6dB, and 0dB respectively

conditions/assumptions are here respected. In particular, note that, here, Con-
dition C2 will hold since the to be identified transfer function Gs(z, θ0) will
generally contains a delay (due the presence of the ZOH between c[n] and a[n]).

Note also that, due to the presence of el[n], we will necessarily have q ≥ 1
and the external excitation r[n] is thus not required for the consistency.

7. Simulation results and discussion

We will now proceed with a numerical example.

7.1. Simulation set up

For the simulations, the simple test system depicted in Figure 3 was imple-
mented in Simulink. The power plants at bus 1 and 2 were modeled using their
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synchronous reactance, the swing equation, the non-linear model assuming a
non-elastic water column described in [23] for the turbine and governor. For the
plant at bus 1 the governor from [23] was replaced with a digital PI regulator.
A DC power flow was used for modelling the power flow. The stochastic load at
bus 5 was modelled as white noise through an integrator. Its power was chosen
such that the power system frequency stayed within its allowed band of 0.1Hz.
Process noise was added to the angular speed ∆ω[n] of the power plant at bus
1. For a more detailed derivation of the test system please refer to [24]. When
r[n] = 0 the only external excitations are e[n] and el[n], which means that no
process noise is added to the power plant at bus 2. In this section, the excitation
signal r[n] will always be applied and will be given by a white noise of standard
deviation 0.1

50·3 . This standard deviation was chosen to keep the per-unit value of
r[n] within 0.1[Hz] with a 99.7% probability, where 0.1/50[p.u.] is the allowed
band of the power system frequency in normal operation1.

To strengthen the conclusions from the simulations a Monte Carlo Simulation
(MCS) approach was used. The approach consisted of running the test system
for a simulation time of 1800s to generate the different datasets. The transfer
functions S(z, θ̂N ), G1(z, θ̂N ), Gp(z, θ̂N ) and GJ(z, θ̂N ) were then identified
using these datasets and the functions provided by the system identification
MATLAB toolbox [22]. For the SISO systems a box-Jenkins model structure
was used and for the MISO systems a high-order ARX model structure was
preferred. These simulations and identification were repeated a 1000 times,
and stochasticity was added by regenerating the process noise e[n], and the
stochastic load el[n] after each simulation. Since r[n] is a signal generated for
the purpose of the identification it is only generated once.

As mentioned in Remarks 7, 8 and 9, the absence of a delay in certain
transfer functions leads to a bias that will be smaller for larger values of the
signal to noise ratio (SNR) (by SNR, we here mean the ratio of the contribution
of el[n] and r[n] to u[n]. To check this, we ran multiple MCS for different values
of the SNR. Different SNR values can be obtained by changing the variance of
e[n] in the process noise. The lowest SNR we tried was 0dB, which means that
random fluctuations in the angular speed of the machine contributes equally to
the measured electric power as random power fluctuations due to load and other
switching events in the power system.

7.2. The influence of process noise on the identification using ZNcu

Let us first consider the experiment of Section 4.2.2 and let us apply this
experiment 1000 times and for different values of the SNR to derive models for
Gp(z) and GJ(z). These models of Gp(z) and GJ(z) can subsequently be used
to derive models for G1(z) and S(z) using (7) and (8).

In Figure 4, we represent the means of the frequency responses of the models
Gp(z) and GJ(z) obtained in this way and we observe that the bias remains

1In practice the power system will sometimes leave this band
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limited. The same can also be said for the means of the models for G1(z) and
S(z) (see Figures 5 and 6).

7.3. The influence of process noise on the identification using ZNur

The procedure of Section 4.2.1 based on the dataset ZNur has also been tested
using a MCS for different values of the SNR. This procedure yields the mean
values represented in blue in Figures 5 and 6. We observe a larger bias than
in the case of the procedure in Section 4.2.2, especially for the low frequency
range of S(z). The procedure in Section 4.2.1 thus appears more sensitive (at
least in in this example) to the bias introduced by the absence of delay. Note
also that, since S(z) is identified directly in this procedure, the low gain in low
frequencies is more difficult to identify (see Figure 5).

7.4. Checking the requirements using the different experiments

We will now proceed to compare which method is best for checking the
different parts of the local requirements described in Section 3. To perform the
comparison we will use a normalised root mean square error (NRMSE) defined
as follows:

NRMSE =

√
1

L

∑L
i=1 (a0 − ai)2

a2
0

(35)
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where a0 is the true value of the quantity to be estimated, ai is the estimate of
a0 obtained at MCS iteration i, and L is the number of MCS iterations.

In Figure 7 the different identification methods that yield a model of G1(z)
and that therefore allow us to check the local performance requirement given
in (10) are compared. In the comparison we look at the peak and steady state
gain of the estimated transfer function. The steady state gain of G1(z) is of
interest since it is closely related to the droop setting ρ of the plant, which is
how much FCR the plant is providing. It should be noted that checking the
peak of G1(z) is only sufficient if Pe1 [n] is white noise. However, since the true
nature of Pe1 [n] may vary from system to system we chose in this case to look
at the peak.

In Figure 7a the NRMSE results for the different identification methods (i.e.
the ones using ZNcu, and ZNur) are presented for the case where a0 in (35) is the
true value of the steady state gain G1(z = 1) of G1(z). Note that this true
value is G1(z = 1) = 0.0794. From this figure, it can be concluded that the best
experiment to use for our simulation setup is the dataset ZNcu.

In Figure 7b the same datasets are used to compare which dataset is best for
estimating maxΩ |G1(ejΩ)| = 1.01. The dataset ZNcu clearly gives best results
and is less sensitive to the SNR change.

Let us now consider the second local performance requirement, i.e. the one
linked to S(z). As shown in (9), we are here only interested in the peak gain
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Figure 7: Comparison of different methods for checking the requirements for local performance

which, in our example, is equal to 1.29. The two methods allowing us to identify
S(z) (i.e. the ones using ZNur and ZNcu) are evaluated in Figure 8 in their ability
at estimating this peak gain. Just as with the peak gain of G1(z) the dataset
ZNcu provides the best results.

7.5. Comparison with industry-proposed experiment

We also tested the industry-proposed experiment using the described MCS
approach. To do this, let us consider the following NRMSE that will be defined
at all frequencies of Table 1:

NRMSE(Ω) =

√
1

L

∑L
i=1 |Gp(ejΩ)−Gi(ejΩ)|2

|Gp(ejΩ)|2 (36)

where Gp(e
jΩ) is the frequency response at Ω of Gp(z). For the closed-loop

method of this paper (we will here only consider the method using ZNcu), Gi(e
jΩ)

is directly the model of Gp(e
jΩ) obtained at MCS iteration i. For the industry-

proposed method, Gi(e
jΩ) is the estimate of Greq(e

jΩ) obtained at MCS it-
eration i (see Section 4). In (36), |x| is the modulus of the complex number
x.

Figure 9 gives the corresponding results. From the figure it can be seen
that the NRMSE increases for both experiments with increasing frequencies.
Our closed-loop approach performs similarly to the industry-proposed approach.
The industry-proposed approach seems less sensitive to the noise in our setup.
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However, to determine which test is best in practice, actual SNR levels from
real power plants must be investigated.

Figure 9 (and the previous figures) has been obtained for a dataset of length
30 minutes. For the industry method, since an experiment has to be performed
for every frequency in Table 1, this means that the total experiment duration
is 330 minutes. Consequently, the industry-proposed experiment is very time-
consuming with respect to the method proposed in this paper for which the
experiment duration is just 30 minutes. An experiment duration of 330 minutes
may be deemed too long for the intrusive industry method. Let us thus also
evaluate its performance and that of the closed-loop method for a dataset length
of 10 minutes. In Figure 10, the different experiments with a dataset length of
10 minutes and varying levels of SNR are depicted. In this case we see that our
closed-loop approach performs better for all considered SNR.

Until now, we have supposed that we have an exact measurement of the elec-
trical power u[n]. Since this quantity will be measured with a sensor, a mea-
surement error will nevertheless always be present. In the industry-proposed
method, u[n] is the output of the to-be-identified system. Consequently, the
measurement error will increase the variance of the estimate. In our closed-loop
apporaches, u[n] is considered as an input of the to-be-identified system and
the identification problem is then a so-called error-in-the-variable problem [21],
which could in theory be more problematic. It is therefore important to inves-
tigate what are the consequences of a reasonable measurement error on u[n] for
the industry-based method and for the prefered closed-loop method (the one
based on the data set ZNcu) when, in both approaches, we will use the measured
signal u[n] for the identification. In a power plant the electric power used by the
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Figure 9: NRMSE (36) with different levels of SNR with dataset lengths of 30min. The solid,
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Figure 10: NRMSE (36) with different levels of SNR with dataset lenghts of 10min. The solid,
dashed and dotted lines represent an SNR of 12dB, 6dB, and 0dB respectively

control system is obtained using voltage and current measurement transformers.
The maximum allowed measurement error for the different accuracy classes for
measurement transformers defined in [25], close to rated power, are in the range
0.15% to 1.2%. In Figure 11 we compare results obtained using the dataset ZNcu
and the industry-proposed method with different levels of process noise and a
measurement noise level of 1%. When comparing Figure 9 (obtained with no
measurement noise) and Figure 11 (obtained with 1% measurement noise), we
can conclude that the measurement error that is typicalled observed in practice
hardly modifies the results in this example.

8. Results from a real power plant

In this section, the procedure discussed in Section 6.3 (i.e. a procedure with
r[n] = 0) will be used on real-life data. A test was performed on a power plant
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Figure 11: NRMSE (36) with different levels of SNR with dataset lengths of 30min and a
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in the Norwegian power system. For the test the dataset ZNu was collected with
a small adjustment with respect to Figure 1: the plant plant was operating
with the power system frequency as the feedback signal. It would be possible
to operate with the angular speed of the rotor as the feedback signal. However,
to change to this operation the plant would have to be shut down. Since the
difference between these two signals is negligible for slow dynamics, we decided
not to change the feedback signal.

The results obtained from five different datasets are depicted in Figure 12.
The identified transfer functions are plotted together with their 95% confidence
interval, which is added to the figure as lines with some opacity. The droop con-
stant ρ was chosen differently in each of these datasets. Moreover, the propor-
tional constant of the PID regulator was changed from 2.5 to 5 for the datasets
where the droop was below 6%. The parameters were changed at intervals of
one hour and the datasets were recorded in between, so the datasets are about
an hour long. In the figure it can clearly be seen that the static gain of the
disturbance rejection is changed when the droop is changed. Similarly, a change
in the peak of the transfer function can clearly be seen when the proportional
constant of the PID regulator is changed. The legend of Figure 12 shows the
value of the droop the plant owner used for the dataset.

To determine the accuracy of the obtained estimate, the droop setting was
compared with the one calculated from the steady state gain of the estimated
transfer function. The results are presented in Table 2. As can be seen from the
table there is a good correspondence even when only a part of the full dataset
(of 60 min) is used for the identification.

9. Concluding remarks and further work

The Nordic TSO have developed draft requirements for the FCR providers
that require open-loop testing of the plants. In this paper we have proposed
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Figure 12: Identification of G1(z, θ̂N ) with different droop

two non-intrusive alternative experiments. These experiments have the added
benefit of identifying the transfer functions relevant for the local plant stability
and performance.

We have shown that the dynamics relevant for the local stability and per-
formance of the FCP of a hydro power plant can be identified in closed loop
operation if extra excitation is added. Although, consistency cannot in general
be guaranteed, due to the lack of a time delay, we expect potential bias due to
the lack of time delay to be negligible. This was demonstrated by testing the
identification procedure with large levels of process noise. Moreover, the local
performance (G1(z)) can be checked without adding extra excitation. The best

Table 2: Droop setting and limz→1 |G1(z)|

Droop
Dataset lenght

60min 45min 30min 15min

10% 9.5% 9.5% 9.5% 9.5%
6% 6.2% 6.0% 5.9% 6.1%
5% 4.9% 4.9% 5.0% 5.1%
3% 3.1% 3.1% 3.1% 2.9%
2% 2.0% 1.8% 1.8% 1.7%
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results were obtained by using the dataset ZNcu; That is to say, by measuring
the output from the PI controller, the electric power and angular speed of the
rotor.

Our experiment using the dataset ZNcu were also compared to the exper-
iment proposed by the TSOs. This comparison showed that the experiment
proposed by the TSOs were less sensitive to the levels of process noise we tested
with. However, our proposed experiment estimated Gp(z) better than the TSO
propsed experiment for most of the levels of the process noise, and our method
was better with shorter dataset lengths. With respect to measurement noise
the dataset ZNcu gave similar results as the TSO proposed experient.

In addition to the analytical insight and the simulation examples, some re-
sults from a real power plant were also presented. These results were obtained
without adding extra excitation and therefore could only be used for identify-
ing G1(z). The results were promising and we demonstrated that the method
could estimate the droop setting of the machine and detect changes in the PID
parameters.

Although the presented results from a real power plant are promising, more
tests should be conducted on real power plants. This paper demonstrates that
alternative experiments are possible; however, it still remains to investigate
whether or not the process noise will be a problem in real power plants and
if it can be mitigated. It should also be investigated for what types of power
plants backlash is a problem and how to mitigate it. In Pelton turbines there
is normally no backlash; however, it is a well-known fact that this may not be
the case for high-pressure Francis turbines and Kaplan turbines.

In conclusion we have shown both analytically and using simple simulation
examples that it is possible to check the new requirements using non-intrusive
experiments. Indeed, it is even possible to identify the turbine and swing dy-
namics of the plant in addition to the FCP dynamics using the non-intrusive
experiments. We have also shown that the The results using our method were
similar in accuracy to those of the experiment proposed by the TSO, even with
considerable levels of process noise. Our method also only requires one dataset
and works well with short datasets. It should therefore be of interest as an
alternative for the TSO-propsed method that requires 11 datasets. However, to
determine the most accurate and suitable method, more tests should be con-
ducted at actual power plants.
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Table A.3: The parameters used for Figure 3

Variable Explanation Value

S1 Machine 1 base power 300MW -
S2 Machine 2 base power 3GW -
Sbase System base power 3.3GW -
Ubase Base voltage for the transmission system 400kV -
UM base voltage for the machines 20kV -
D Proportional load frequency dependency 50 Sbase
H1 Generator 1 inertia constant 3.5
H2 Generator 2 inertia constant 9.60s
Kd1 Damping constant 0.1 -
kd2 Damping constant 0.1 -
x1 Reactance between bus 3 and 5 1 Sbase
x2 Reactance between bus 4 and 5 1 Sbase
xd1 Sub transient reactance generator 1 0.15 S1

xd2 Sub transient reactance generator 2 0.15 S2

Table A.4: Hydro turbine governor parameters plant 1

Variable Explanation Value

Tf Low pass filter time constant 0.05s
Kp PI proportional constant 1
Ti PI integral time 9.1s
ρ Droop 0.08
Tg Servo time constant 0.2s
Tw Water starting time 1s
qnl No load flow 0.1

hs Static head of water column 1
At Turbine gain 1

Table A.5: Hydro turbine governor parameters plant 2

Variable Explanation Value

Tf Low pass filter time constant 0.05s
Tr Droop time constant 5s
r Temporary droop 0.3
ρ Droop 0.08
Tg Servo time constant 0.2s
Tw Water starting time 1s
qnl No load flow 0.1

hs Static head of water column 1
At Turbine gain 1
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Appendix B. Proof of the technical theorems

Appendix B.1. Proof of Theorem 1

Proof. We start by inserting (20) into (23) to obtain:

εmiso[n, θ] = e[n] +
∆G(z, θ)u[n] + ∆H(z, θ)e[n]

H(z, θ)
(B.1)

with ∆G(z, θ) = G(z, θ0) − G(z, θ) and ∆H(z, θ) = H(z, θ0) − H(z, θ). We
now insert (21) into (B.1).

εmiso[n, θ] = e[n] + ν(z, θ)e[n] + χ(z, θ)K(z)w[n] (B.2)

with

χ(z, θ) =
∆G(z, θ)

H(z, θ)
(B.3)

and

ν(z, θ) = χ(z, θ)

[
Γ1(z)
Γ2(z)

]
+

∆H(z, θ)

H(z, θ)
(B.4)

Due to the monicity of H(z, θ0) and the combination of Assumption A1 and
Condition C1, we have that:

Ēε2miso[n, θ] = σ2
e

+
1

2π

∫ π

−π
ν(ejΩ, θ)σ2

eν(e−jΩ, θ)dΩ

+
1

2π

∫ π

−π
χ(ejΩ, θ)φKw(Ω)χT (e−jΩ, θ)dΩ (B.5)

with
φKw(Ω) = K(ejΩ)φw(Ω)KT (e−jΩ) (B.6)

where φw(Ω) = diag(σ2
1 , σ

2
2). Let us first observe that (B.6) is a strictly positive

definite matrix at each Ω by Assumption A2. To prove the consistency, we
will show that θ0 is the unique minimszer of (B.5). That is to say, it is the
unique parameter vector θ∗ yielding Ēε2miso[n, θ

∗] = σ2
e . Since (B.6) is strictly

positive definite, we observe that this only holds if χ(θ∗) = ν(θ∗) = 0 for all Ω.
From (B.3) and (B.4), this implies that ∆G(θ∗) = ∆H(θ∗) = 0 for all Ω; which
in turn implies θ∗ = θ0.

Appendix B.2. Proof of theorem 2

Proof. We start by inserting (26) into (28) to obtain.

εsiso[n, θ] = e[n]

+
∆G(z, θ)u[n] + ∆H(z, θ)e[n]

H(z, θ)
(B.7)

with ∆G(z, θ) = G(z, θ0)−G(z, θ), and ∆H(z, θ) = H(z, θ0)−H(z, θ)
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Due to the monicity of H(z, θ0) combined with Assumption A3 and Condi-
tion C2,

Ēε2siso[n, θ] = σ2
e +

1

2π

∫ π

−π
ζ(ejΩ, θ)σ2

eζ(e−jΩ, θ)dΩ

+
1

2π

q∑
i=1

∫ π

−π
χi(e

jΩ, θ)σ2
i χi(e

−jΩ, θ)dΩ (B.8)

with

ζ(z, θ) =
∆G(z, θ)Γ(z) + ∆H(z, θ)

H(z, θ)
(B.9)

and

χi(z, θ) =
∆G(z, θ)

H(z, θ)
Ki(z) (B.10)

To prove the consistency, we will show that θ0 is the unique minimiser of (B.8),
that is it is the unique parameter vector θ∗ yielding Ēε2siso[n, θ

∗] = σ2
e . We

observe that this only holds if ζ(z, θ∗) = χi(z, θ
∗) = 0(i = 1 . . . q). Since

q ≥ 1 it follows from (B.9) and (B.10) that the latter statement implies that
∆G(z, θ∗) = ∆H(z, θ∗) = 0. This in turn implies θ∗ = θ0.

References

References

[1] ENTSO-E, Challenges and opportunities Report (2016).

[2] P. W. Group, Technical Requirements for Frequency Containment Reserve
Provision in the Nordic Synchronous Area, Draft, ENTSO-E Nordic (Jun.
2017).

[3] E. Commission, Network code on requirements for grid connection of gen-
erators (Apr. 2016).
URL https://www.entsoe.eu/network_codes/rfg/

[4] D. I. Jones, S. P. Mansoor, F. C. Aris, G. R. Jones, D. A. Bradley, D. J.
King, A standard method for specifying the response of hydroelectric plant
in frequency-control mode, Electric Power Systems Research 68 (1) (2004)
19–32. doi:10.1016/S0378-7796(03)00152-4.
URL http://www.sciencedirect.com/science/article/pii/

S0378779603001524

[5] J. Wang, J. Su, Y. Zhao, X. Pang, J. Li, Z. Bi, Performance as-
sessment of primary frequency control responses for thermal power
generation units using system identification techniques, International
Journal of Electrical Power & Energy Systems 100 (2018) 81–90.
doi:10.1016/j.ijepes.2018.02.036.
URL http://www.sciencedirect.com/science/article/pii/

S014206151732848X

27

https://www.entsoe.eu/network_codes/rfg/
https://www.entsoe.eu/network_codes/rfg/
https://www.entsoe.eu/network_codes/rfg/
http://www.sciencedirect.com/science/article/pii/S0378779603001524
http://www.sciencedirect.com/science/article/pii/S0378779603001524
https://doi.org/10.1016/S0378-7796(03)00152-4
http://www.sciencedirect.com/science/article/pii/S0378779603001524
http://www.sciencedirect.com/science/article/pii/S0378779603001524
http://www.sciencedirect.com/science/article/pii/S014206151732848X
http://www.sciencedirect.com/science/article/pii/S014206151732848X
http://www.sciencedirect.com/science/article/pii/S014206151732848X
https://doi.org/10.1016/j.ijepes.2018.02.036
http://www.sciencedirect.com/science/article/pii/S014206151732848X
http://www.sciencedirect.com/science/article/pii/S014206151732848X


[6] L. N. Hannett, J. W. Feltes, B. Fardanesh, Field tests to validate hydro
turbine-governor model structure and parameters, IEEE Transactions on
Power Systems 9 (4) (1994) 1744–1751. doi:10.1109/59.331426.

[7] D. J. Trudnowski, J. C. Agee, Identifying a hydraulic-turbine model from
measured field data, IEEE Transactions on Energy Conversion 10 (4) (1995)
768–773. doi:10.1109/60.475851.

[8] L. Saarinen, P. Norrlund, U. Lundin, Field Measurements and System Iden-
tification of Three Frequency Controlling Hydropower Plants, IEEE Trans-
actions on Energy Conversion 30 (3) (2015) 1061–1068. doi:10.1109/TEC.
2015.2425915.

[9] S. H. Jakobsen, K. Uhlen, X. Bombois, Identification of hydro turbine
governors using PMU data, in: 2018 IEEE International Conference on
Probabilistic Methods Applied to Power Systems (PMAPS), 2018, pp. 1–6.
doi:10.1109/PMAPS.2018.8440273.

[10] D. T. Duong, K. Uhlen, S. Løvlund, E. A. Jansson, Estimation of hydro
turbinegovernor’s transfer function from PMU measurements, in: IEEE
PES General Meeting, Boston: IEEE, 2016.

[11] B. Mogharbel, L. Fan, Z. Miao, Least squares estimation-based synchronous
generator parameter estimation using PMU data, in: 2015 IEEE Power En-
ergy Society General Meeting, 2015, pp. 1–5. doi:10.1109/PESGM.2015.

7286559.

[12] S. H. Jakobsen, K. Uhlen, P. Lie, System identification techniques for val-
idating hydro power plant’s FCR performance, 2019.

[13] S. H. Jakobsen, K. Uhlen, Testing of a hydropower plant’s stabil-
ity and performance using PMU and control system data in closed
loop, IET Generation, Transmission &amp; Distribution (Oct. 2019).
doi:10.1049/iet-gtd.2019.0804.
URL https://digital-library.theiet.org/content/journals/10.

1049/iet-gtd.2019.0804

[14] S. H. Jakobsen, K. Uhlen, Vector fitting for estimation of turbine governing
system parameters, in: 2017 IEEE Manchester PowerTech, 2017, pp. 1–6.
doi:10.1109/PTC.2017.7980855.

[15] H. Aghamolki, Z. Miao, L. Fan, W. Jiang, D. Manjure, Identification
of synchronous generator model with frequency control using unscented
Kalman filter, Electric Power Systems Research 126 (2015) 45–55. doi:

10.1016/j.epsr.2015.04.016.

[16] N. D. Hatziargyriou, E. S. Karapidakis, G. S. Stavrakakis, I. F. Dimopou-
los, K. Kalaitzakis, Identification of synchronous machine parameters using
constrained optimization, in: Power Tech Proceedings, 2001 IEEE Porto,
Vol. 4, 2001, pp. 5 pp. vol.4–. doi:10.1109/PTC.2001.964812.

28

https://doi.org/10.1109/59.331426
https://doi.org/10.1109/60.475851
https://doi.org/10.1109/TEC.2015.2425915
https://doi.org/10.1109/TEC.2015.2425915
https://doi.org/10.1109/PMAPS.2018.8440273
https://doi.org/10.1109/PESGM.2015.7286559
https://doi.org/10.1109/PESGM.2015.7286559
https://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2019.0804
https://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2019.0804
https://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2019.0804
https://doi.org/10.1049/iet-gtd.2019.0804
https://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2019.0804
https://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2019.0804
https://doi.org/10.1109/PTC.2017.7980855
https://doi.org/10.1016/j.epsr.2015.04.016
https://doi.org/10.1016/j.epsr.2015.04.016
https://doi.org/10.1109/PTC.2001.964812


[17] D. Kosterev, Hydro turbine-governor model validation in pacific northwest,
IEEE Transactions on Power Systems 19 (2) (2004) 1144–1149. doi:10.

1109/TPWRS.2003.821464.

[18] J. C. N. Pantoja, A. Olarte, H. Dı́az, Simultaneous estimation of exciter,
governor and synchronous generator parameters using phasor measure-
ments, in: 2014 Electric Power Quality and Supply Reliability Conference
(PQ), 2014, pp. 43–49. doi:10.1109/PQ.2014.6866781.

[19] S. J. Chapman, Electric machinery and power system fundamentals, Vol. 3,
McGraw-Hill New York, 2002.

[20] R. Eriksson, N. Modig, A. Westberg, FCR-N DESIGN OF REQUIRE-
MENTS, ENTSO-E report, ENTSO-E Nordic (Jul. 2017).
URL https://www.statnett.no/for-aktorer-i-kraftbransjen/

utvikling-av-kraftsystemet/prosjekter-og-tiltak/

nordisk-frekvensstabilitet/

[21] L. Ljung, System Identification: Theory for the User, 1st Edition, Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1987.

[22] Mathworks, System Identification Toolbox (2018).
URL https://se.mathworks.com/products/sysid.html

[23] Working Group on Prime Mover and Energy Supply Models for System Dy-
namic Performance Studies, Hydraulic turbine and turbine control models
for system dynamic studies, IEEE Transactions on Power Systems 7 (1)
(1992) 167–179. doi:10.1109/59.141700.

[24] S. H. Jakobsen, K. Uhlen, Development of a test system for identification
of turbine dynamics using the dc power flow, IFAC-PapersOnLine 51 (2)
(2018) 97–102. doi:10.1016/j.ifacol.2018.03.017.
URL http://www.sciencedirect.com/science/article/pii/

S240589631830017X

[25] Requirements for Instrument Transformers Working, Group,, IEEE Stan-
dard Requirements for Instrument Transformers, IEEE Std C57.13-2016
(Revision of IEEE Std C57.13-2008) (2016) 1–96Conference Name: IEEE
Std C57.13-2016 (Revision of IEEE Std C57.13-2008). doi:10.1109/

IEEESTD.2016.7501435.

29

https://doi.org/10.1109/TPWRS.2003.821464
https://doi.org/10.1109/TPWRS.2003.821464
https://doi.org/10.1109/PQ.2014.6866781
https://www.statnett.no/for-aktorer-i-kraftbransjen/utvikling-av-kraftsystemet/prosjekter-og-tiltak/nordisk-frekvensstabilitet/
https://www.statnett.no/for-aktorer-i-kraftbransjen/utvikling-av-kraftsystemet/prosjekter-og-tiltak/nordisk-frekvensstabilitet/
https://www.statnett.no/for-aktorer-i-kraftbransjen/utvikling-av-kraftsystemet/prosjekter-og-tiltak/nordisk-frekvensstabilitet/
https://www.statnett.no/for-aktorer-i-kraftbransjen/utvikling-av-kraftsystemet/prosjekter-og-tiltak/nordisk-frekvensstabilitet/
https://www.statnett.no/for-aktorer-i-kraftbransjen/utvikling-av-kraftsystemet/prosjekter-og-tiltak/nordisk-frekvensstabilitet/
https://se.mathworks.com/products/sysid.html
https://se.mathworks.com/products/sysid.html
https://doi.org/10.1109/59.141700
http://www.sciencedirect.com/science/article/pii/S240589631830017X
http://www.sciencedirect.com/science/article/pii/S240589631830017X
https://doi.org/10.1016/j.ifacol.2018.03.017
http://www.sciencedirect.com/science/article/pii/S240589631830017X
http://www.sciencedirect.com/science/article/pii/S240589631830017X
https://doi.org/10.1109/IEEESTD.2016.7501435
https://doi.org/10.1109/IEEESTD.2016.7501435

	Introduction
	Related work
	Contributions and outline

	The power plant model used in the paper
	Requirements on hydro power plants
	Experiments for checking the requirements
	Description of the industry-proposed experiment
	Experiments proposed in this paper
	Description of the first closed-loop identification method
	Description of the second closed-loop identification method


	Technical theorems
	MISO theorem
	SISO theorem

	Validation of the system identification experiments
	Identifiability of S(z) and G1(z) using the dataset ZurN
	Identifiability of GJp(z) and GJ(z) using the dataset ZcuN
	Identifiability of G1(z) without external excitation using dataset ZNu
	Identifiability of Gs(z) using the dataset ZcN

	Simulation results and discussion
	Simulation set up
	The influence of process noise on the identification using ZcuN
	The influence of process noise on the identification using ZurN
	Checking the requirements using the different experiments
	Comparison with industry-proposed experiment

	Results from a real power plant
	Concluding remarks and further work
	Simulation parameters
	Proof of the technical theorems
	Proof of Theorem 1
	Proof of theorem 2


