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Abstract. We study mixed alphabet cyclic and constacyclic codes over the
two alphabets Z4, the ring of integers modulo 4, and its quadratic exten-
sion Z4[u] = Z4 + uZ4, u2 = 0. Their generator polynomials and minimal
spanning sets are obtained. Further, under new Gray maps, we �nd cyclic,
quasi-cyclic codes over Z4 as the Gray images of both λ-constacyclic and skew
λ-constacyclic codes over Z4[u]. Moreover, it is proved that the Gray images
of Z4Z4[u]-additive constacyclic and skew Z4Z4[u]-additive constacyclic codes
are generalized quasi-cyclic codes over Z4. Finally, several new quaternary
linear codes are obtained from these cyclic and constacyclic codes.

1. Introduction

Cyclic codes form one of the most important classes of codes, either over �nite
�elds [25], or over �nite rings [29], for their properties of encoding, decoding, and
ease of generation allowed by their strong algebraic structure. They are de�ned
as linear codes invariant under the cyclic shift of coordinates. The condition of
linearity has been relaxed recently and replaced by additivity. Also, the de�nition
has been enlarged to accommodate codes over mixed alphabets. Note that every
linear code is additive, but not conversely. In 1973, Delsarte [18] introduced the
additive codes in terms of association schemes. Later, Bierbrauer [13] presented
these codes as a generalized class of cyclic codes de�ned as subgroups rather than
subspaces. In 2010, Borges et al. [14] studied Z2Z4-linear codes that generalize
both binary and quaternary codes. They have obtained their dual codes as well
as their generator matrices. In continuation, Fernandez-Cordoba et al. [21] deter-
mined the rank and kernel of Z2Z4-linear codes. It is worth noting that these codes
have a successful engineering application in the area of data hiding, particularly, in
steganography [26]. Later, these studies were extended over Z2Z2s-additive codes
and obtained some good binary codes under Gray images in [9]. Subsequently, the
natural extensions of above codes are ZpZps -additive codes, ZprZps-additive codes
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and well studied therefore in [10, 30, 32, 33]. On the other hand, to the progress of
cyclic codes on mixed alphabets, in 2014, Abualrub et al. [3] de�ned Z2Z4-additive
cyclic codes as Z4[x]-submodule of Z2[x]/〈xr − 1〉 ×Z4[x]/〈xs − 1〉 and derived the
unique set of generators, and minimal spanning set for these codes where s is an
odd integer. Also, Borges et al. [15] found generator polynomials and duals for
Z2Z4-additive cyclic codes. After introducing the new mixed alphabets Z2Z2[u]-
additive codes, where u2 = 0 in [6], Aydogdu et al. [7] were also investigated
constacyclic codes over mixed alphabets by de�ning them as Z2[u][x]-submodules
of Z2[x]/〈xα−1〉×Z2[u][x]/〈xβ−(1+u)〉. They obtained some optimal binary linear
codes as the Gray images of Z2Z2[u]-cyclic codes. Meanwhile, [31, 23] studied the
algebraic properties of Z2Z2[u]-additive cyclic and constacyclic codes with the unit
1 + u, respectively. Therefore, in continuation of these studies, the expected gener-
alization should be Z2rZ2s [u]-additive cyclic and constacyclic codes, where u2 = 0.
If r = s = 2, this turns out to be our present study. Obviously, the present work
on mixed alphabets cyclic and constacyclic codes is a bridge towards the study of
Z2rZ2s [u]-additive codes which is a stronger and still open problem. Based on the
above survey, one would also be agreed that mixed alphabets cyclic, constacyclic
codes over di�erent and new alphabets are interesting and promising classes for
further study due to their rich algebraic properties and capable to produce several
best known codes.
For the sake of strong motivation discussed above, here we introduce the mixed
alphabets Z4Z4[u]-additive cyclic and constacyclic codes which lead to generalizing
the codes over Z4 as well as Z4 +uZ4, u

2 = 0. To the best of our knowledge, mixed
alphabets codes over Z4Z4[u] are not considered earlier and also constacyclic codes
over mixed alphabets setting are fresh after [7, 23]. We would like to mention that
the primary objective of the article is �rst, to characterize completely these codes in
terms of their generator polynomials and minimal spanning sets, etc. Then utilizing
these structure and new Gray maps, we are seeking to obtain some new Z4-codes.
To do so, for the odd positive integers α, β, we �nd the complete set of generator
polynomials and minimal spanning set for the cyclic codes of length (α, β). Then
we de�ne some new Gray maps and �nd well-known classes like cyclic, quasi-cyclic,
and generalized quasi-cyclic codes over Z4. As a computational result, we construct
Z4-codes and some of them improve on the best known [4]. Further, we extend the
study to skew constacyclic codes in the sense of [17]. While skew cyclic codes have
been studied extensively since that reference (see publications 1,4,5,6,8,9,10 in [35]),
it is only the fourth time that they occur in a mixed alphabet setting [11, 12, 28].
The present article shows some algebraic richness of skew codes over the mentioned
mixed alphabets. For that, we de�ne mixed skew codes under a non-trivial auto-
morphism θ on Z4 + uZ4. Also, we characterize skew Z4Z4[u]-additive constacyclic
code as a left Z4[u][x; θ]-submodule of Z4[x]/〈xα − 1〉 ×Z4[u][x; θ]/〈xβ − λ〉, where
λ is a unit in Z4 + uZ4. Among others, we connect these skew codes under Gray
maps to generalized quasi-cyclic codes over Z4.
The manuscript is organized as follows. In Section 2, we discuss some basic de�-
nitions and results. Section 3 gives the structure of Z4Z4[u]-additive cyclic codes
while Section 4 consider Z4Z4[u]-additive constacyclic codes. In Section 5, we de-
�ne some Gray maps and obtain the Gray images of Z4Z4[u]-additive constacyclic
codes. Section 6 and 7 contain skew Z4Z4[u]-additive constacyclic codes and their
Gray images, respectively. In Section 8, we obtain several new linear codes over Z4
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from these class of codes. The last section is the conclusion of this paper, and also
contains long term open problems.

2. Preliminary

Throughout the article, Z4[u] denotes the �nite commutative ring Z4 + uZ4,
where u2 = 0 of size 16 and characteristic 4. Recall from [34], among 6 ideals of
Z4[u], the unique maximal ideal is 〈2, u〉. It is a local Frobenius non-chain ring and
quotient ring Z4[u]/〈2, u〉 ∼= Z2. Also, {a + ub | a = 1, or 3 and b ∈ Z4} is the set
of units while the ideal 〈2, u〉 is the set of non-units in Z4[u]. A non-empty subset
C of Z4[u]n is called a linear code of length n if it is a Z4[u]-submodule of Z4[u]n

and each member of C is known as codeword.

De�nition 2.1. Let C be a linear code of length n = st over Z4. We de�ne the
quasi-cyclic shift operator πs : Zn4 −→ Zn4 by

πs(e0 | e1 | · · · | es−1) = (σ(e0) | σ(e1) | · · · | σ(es−1)),(1)

where ei ∈ Zt4 for all i = 0, 1, . . . , (s− 1) and σ is the cyclic shift operator. Then C
is said to be a quasi-cyclic code of index s if C is invariant under the map πs, i.e.
πs(C) = C.

The set Z4Z4[u] = {(a, b) | a ∈ Z4, b ∈ Z4[u]} is a commutative group under
componentwise addition. For positive integers α, β, we de�ne Zα4×Z4[u]β = {(a, b) |
a = (a0, a1, · · · , aα−1) ∈ Zα4 , b = (b0, b1, · · · , bβ−1) ∈ Z4[u]β}. Then Zα4 × Z4[u]β is
a commutative group under the componentwise addition. Now, we de�ne a map
ρ : Z4[u] −→ Z4 by ρ(a+ ub) = a and a multiplication

∗ : Z4[u]× Z4Z4[u] −→ Z4Z4[u]

by

c ∗ (a, b) = (ρ(c)a, cb), for a ∈ Z4, b, c ∈ Z4[u].

The extension of the multiplication ∗ to the elements of Zα4 ×Z4[u]β by the elements
of Z4[u] de�ned by

c ∗ (a, b) = (ρ(c)a0, ρ(c)a1, · · · , ρ(c)aα−1, cb0, cb1, · · · , cbβ−1)

where a = (a0, a1, · · · , aα−1) ∈ Zα4 , b = (b0, b1, · · · , bβ−1) ∈ Z4[u]β .

Lemma 2.2. The set Zα4 × Z4[u]β is a Z4[u]-module under the multiplication ∗
de�ned above.

Proof. Since Z4[u] is a commutative ring with unity 1, so there is no distinction
between left and right Z4[u]-modules. Clearly, Zα4 × Z4[u]β is an additive commu-
tative group. Now, to complete the proof we need to check
(1) r ∗ [(a, b) + (x, y)] = r ∗ (a, b) + r ∗ (x, y),
(2) (r + s) ∗ (a, b) = r ∗ (a, b) + s ∗ (a, b),
(3) (rs) ∗ (a, b) = r ∗ [s ∗ (a, b)], and
(4) 1 ∗ (a, b) = (a, b), for all r, s ∈ Z4[u] and (a, b), (x, y) ∈ Zα4 × Z4[u]β .
Here, explicitly we prove (1) and the other three points follow similarly. In fact, let
(a, b) = (a0, a1, . . . , aα−1, b0, b1, . . . , bβ−1), (x, y) = (x0, x1, . . . , xα−1, y0, y1, . . . , yβ−1)
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∈ Zα4 × Z4[u]β , and r = r1 + ur2 ∈ Z4[u]. Then ρ(r) = r1, and

r ∗ [(a, b) + (x, y)] = r ∗ (a0 + x0, a1 + x1, . . . , aα−1 + xα−1,

b0 + y0, b1 + y1, . . . , bβ−1 + yβ−1)

= (r1a0 + r1x0, r1a1 + r1x1, . . . , r1aα−1 + r1xα−1,

rb0 + ry0, rb1 + ry1, . . . , rbβ−1 + ryβ−1)

= (r1a0, r1a1, . . . , r1aα−1, rb0, rb1, . . . , rbβ−1)+

(r1x0, r1x1, . . . , r1xα−1, ry0, ry1, . . . , ryβ−1)

= r ∗ (a, b) + r ∗ (x, y).

Therefore, Zα4 ×Z4[u]β is a Z4[u]-module with respect to scalar multiplication ∗.

De�nition 2.3. Any non-empty subset C of Zα4 × Z4[u]β is said to be a Z4Z4[u]-
additive code of length (α, β) if C is a Z4[u]-submodule of Zα4 × Z4[u]β .

De�nition 2.4. Let C be a Z4Z4[u]-additive code of length (α, β). Then it is said to
be a Z4Z4[u]-additive cyclic code if for any z = (c0, c1, · · · , cα−1, r0, r1, · · · , rβ−1) ∈
C, we have σα,β(z) = (cα−1, c0, · · · , cα−2, rβ−1, r0, · · · , rβ−2) ∈ C.

An extension of the ring homomorphism ρ is

ρ : Z4[u][x] −→ Z4[x]

de�ned by

ρ(

n∑
i=0

rix
i) =

n∑
i=0

ρ(ri)x
i.

Let Rα,β = Z4[x]/〈xα − 1〉 × Z4[u][x]/〈xβ − 1〉. Then Rα,β is a Z4[u][x]-module
under the multiplication de�ned by

s(x) ∗ (c(x), r(x)) = (ρ(s(x))c(x), s(x)r(x)),

where s(x), r(x) ∈ Z4[u][x] and c(x) ∈ Z4[x]. Let C be a Z4Z4[u]-additive code of
length (α, β). Then for any codeword z = (c, r) = (c0, c1, · · · , cα−1, r0, r1, · · · , rβ−1)
∈ C, we identify a polynomial z(x) = (c(x), r(x)) ∈ Rα,β under the correspondence
z = (c, r) 7→ (c(x), r(x)) = z(x) where c(x) = c0+c1x+· · ·+cα−1xα−1 ∈ Z4[x]/〈xα−
1〉, r(x) = r0 + r1x+ · · ·+ rβ−1x

β−1 ∈ Z4[u][x]/〈xβ − 1〉.

Lemma 2.5. Let C be a Z4Z4[u]-additive code of length (α, β). Then C is a Z4Z4[u]-
additive cyclic code if and only if C is a Z4[u][x]-submodule of Rα,β.

Proof. Let C be a Z4Z4[u]-additive cyclic code of length (α, β). Let s(x) ∈ Z4[u][x]
and z(x) = (c(x), r(x)) ∈ C. Then x ∗ (c(x), r(x)) = (xc(x), xr(x)) where xc(x)
and xr(x) are cyclic shifts of c(x) in Z4[x]/〈xα − 1〉 and r(x) in Z4[u][x]/〈xβ − 1〉,
respectively. Also, x ∗ (c(x), r(x)) represents the image of z(x) under the operator
σα,β , therefore, x ∗ (c(x), r(x)) ∈ C. Similarly, for any positive integer i ≥ 2, we
can show that xi ∗ (c(x), r(x)) ∈ C. As C is a Z4[u]-submodule of Zα4 × Z4[u]β ,
s(x) ∗ (c(x), r(x)) ∈ C, which proves that C is a Z4[u][x]-submodule of Rα,β .
Conversely, let C be a Z4[u][x]-submodule of Rα,β . For any codeword z(x) =
(c(x), r(x)) ∈ C, x ∗ (c(x), r(x)) represents the image of z(x) under the operator
σα,β and x ∗ (c(x), r(x)) ∈ C. Thus, C is a Z4Z4[u]-additive cyclic code of length
(α, β).
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3. Z4Z4[u]-additive cyclic codes

The present section aims to determine the algebraic structure of additive cyclic
codes by means of their generator polynomials and minimal spanning sets. To do
so we use the pullback method which applied to �nd Z4 cyclic codes in [1]. Let
S be a cyclic code of odd length β over Z4[u]. Then the ring homomorphism ρ

acts on the polynomial ring Z4[u][x]/〈xβ − 1〉 by ρ(
∑β−1
i=0 cix

i) =
∑β−1
i=0 ρ(ci)x

i ∈
Z4[x]/〈xβ − 1〉. Now, we consider the restriction of ρ on the ideal S. Clearly, ρ(S)
is an ideal of Z4[x]/〈xβ − 1〉, therefore, by Theorem 1 of [1], ρ(S) = 〈g1 + 2a1〉 and
ker(ρ|S) = 〈ug2 + 2ua2〉 where ai, gi are polynomials such that ai | gi | (xβ − 1)
mod 4 for i = 1, 2. Hence, S = 〈g1 + 2a1 + up, u(g2 + 2a2)〉 for some polynomial
p ∈ Z4[x].
Now, we de�ne the projection map

T : Z4[x]/〈xα − 1〉 × Z4[u][x]/〈xβ − 1〉 → Z4[u][x]/〈xβ − 1〉
by

T (a(x), b(x)) = b(x), where a(x) ∈ Z4[x]/〈xα − 1〉, b(x) ∈ Z4[u][x]/〈xβ − 1〉.
Clearly T is a Z4[u][x]-module homomorphism. Let C be a Z4Z4[u]-additive cyclic
code of length (α, β) where α, β are both odd integers. Then ker(T |C) = {(a, 0) |
a ∈ Z4[x]/〈xα−1〉}. Let D = {a ∈ Z4[x]/〈xα−1〉 | (a, 0) ∈ ker(T |C)}. It is easy to
check that D is an ideal of Z4[x]/〈xα−1〉 and ultimately, D = 〈g1 +2a1〉 where a1 |
g1 | (xα−1) mod 4. Hence, ker(T |C) = 〈(g1+2a1, 0)〉 where a1 | g1 | (xα−1) mod 4.
Moreover, T (C) is an ideal of Z4[u][x]/〈xβ−1〉, so T (C) = 〈g2+2a2+up, ug3+2ua3〉
with ai | gi | (xβ − 1) mod 4, for i = 2, 3. Thus, the Z4Z4[u]-additive cyclic code C
is given by

C = 〈(g1 + 2a1, 0), (f1, g2 + 2a2 + up), (f2, ug3 + 2ua3)〉,

where ai | gi | (xβ − 1) for i = 2, 3 and a1 | g1 | (xα − 1), f1, f2 ∈ Z4[x]. Therefore,
based on the above discussion we have the following result.

Theorem 3.1. Let C be a Z4Z4[u]-additive cyclic code of length (α, β) where α, β
are both odd positive integers. Then C is a Z4[u][x]-submodule of Rα,β given by

C = 〈(g1 + 2a1, 0), (f1, g2 + 2a2 + up), (f2, ug3 + 2ua3)〉,

where ai | gi | (xβ − 1) for i = 2, 3 and a1 | g1 | (xα − 1), f1, f2 ∈ Z4[x].

Remark 1. For further calculations, wherever we use Theorem 3.1, it is assumed
that gi, ai(i = 1, 2, 3) are monic polynomials.

Lemma 3.2. For any odd positive integers α and β, let C be a Z4Z4[u]-additive
cyclic code of length (α, β) given by

C = 〈(g1 + 2a1, 0), (f1, g2 + 2a2 + up), (f2, ug3 + 2ua3)〉,

where ai | gi | (xβ − 1) for i = 2, 3 and a1 | g1 | (xα − 1), f1, f2 ∈ Z4[x]. Let

h = xβ−1
a2

,m1 = gcd{hp, xβ − 1},m2 = xβ−1
m1

. Then (g1 + 2a1) | m2hf1 and

(g1 + 2a1) | f2 x
β−1
a3

.

Proof. Here, T (x
β−1
a3

(f2, ug3 + 2ua3)) = T (x
β−1
a3

f2, 0) = 0. Therefore, (x
β−1
a3

f2, 0)

∈ ker(T ) and this implies (g1 + 2a1) | x
β−1
a3

f2. Further, T (m2h(f1, g2 + 2a2 +

up)) = T (m2hf1,m2hup). Since m1 | hp, so hp = m1m3 for some m3 and hpm2 =

Advances in Mathematics of Communications Volume X, No. X (20xx), X�XX
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m1m2m3 = 0. Hence, T (m2h(f1, g2 + 2a2 + up)) = T (m2hf1, 0) = 0. Thus,
(m2hf1, 0) ∈ ker(T ) and this implies (g1 + 2a1) | m2hf1.

Theorem 3.3. For any odd positive integers α and β, let C be a Z4Z4[u]-additive
cyclic code of length (α, β) given by

C = 〈(g1 + 2a1, 0), (f1, g2 + 2a2 + up), (f2, ug3 + 2ua3)〉,

where ai | gi | (xβ − 1) for i = 2, 3 and a1 | g1 | (xα − 1), f1, f2 ∈ Z4[x]. Let

h = xβ−1
a2

,m1 = gcd{hp, xβ − 1},m2 = xβ−1
m1

and

S1 =

α−deg(a1)−1⋃
i=0

{xi ∗ (g1 + 2a1, 0)};

S2 =

β−deg(a2)−1⋃
i=0

{xi ∗ (f1, g2 + 2a2 + up)};

S3 =

β−deg(m1)−1⋃
i=0

{xi ∗ (hf1, uhp)};

S4 =

β−deg(a3)−1⋃
i=0

{xi ∗ (f2, ug3 + 2ua3)}.

Then S = S1 ∪ S2 ∪ S3 ∪ S4 is a minimal generating set for the code C and | C |=
4α+4β−deg(a1)−2deg(a2)−deg(a3)−deg(m1).

Proof. Let c ∈ C be a codeword. Then

c = c1 ∗ (g1 + 2a1, 0) + c2 ∗ (f1, g2 + 2a2 + up) + c3 ∗ (f2, ug3 + 2ua3)

= (ρ(c1)(g1 + 2a1), 0) + c2 ∗ (f1, g2 + 2a2 + up) + c3 ∗ (f2, ug3 + 2ua3)(2)

where ci ∈ Z4[u][x] for i = 1, 2, 3. If deg(ρ(c1)) ≤ (α−deg(a1)−1), then (ρ(c1)(g1 +
2a1), 0) ∈ span(S1). Otherwise, by division algorithm,

ρ(c1) =
xα − 1

a1
q + r,

where deg(r) ≤ (α− deg(a1)− 1). Therefore,

(ρ(c1)(g1 + 2a1), 0) = ((
xα − 1

a1
q + r)g1 + 2a1, 0)

= r(g1 + 2a1, 0).

Hence, (ρ(c1)(g1 +2a1), 0) ∈ span(S1). To prove c2 ∗ (f1, g2 +2a2 +up) ∈ span(S1∪
S2 ∪ S3), we divide c2 by h and can write c2 = q2h + r2 where deg(r2) ≤ (β −
deg(a2)− 1). Therefore, c2 ∗ (f1, g2 + 2a2 + up) = (q2h+ r2) ∗ (f1, g2 + 2a2 + up) =
q2(hf1, uhp) + r2(f1, g2 + 2a2 + up). Clearly, r2(f1, g2 + 2a2 + up) ∈ span(S2). It
remains to show q2(hf1, uhp) ∈ span(S1 ∪ S2 ∪ S3). Again, by division algorithm,
we have q2 = q3m2 + r3, where deg(r3) ≤ (β − deg(m1) − 1). Also, m1 | hp, so
hp = m1m3 for some m3 and this implies hpm2 = m1m2m3 = 0. Hence,

q2(hf1, uhp) = (q3m2 + r3)(hf1, uhp)

= q3(m2hf1, uhpm2) + r3(hf1, uhp)

= q3(m2hf1, 0) + r3(hf1, uhp).

Advances in Mathematics of Communications Volume X, No. X (20xx), X�XX
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By Lemma 3.2, (g1 + 2a1) | m2hf1, so q3(m2hf2, 0) ∈ span(S1). Also, r3(hf1, uhp)
∈ span(S3), therefore, c2 ∗ (f1, g2 + 2a2 + up) ∈ span(S1 ∪ S2 ∪ S3). Now, to show
c3 ∗ (f2, ug3 + 2ua3) ∈ span(S1 ∪ S4), again applying division algorithm, we have

c3 =
xβ − 1

a3
q4 + r4,

where deg(r4) ≤ (β − deg(a3)− 1). Therefore,

c3 ∗ (f2, ug3 + 2ua3) = (
xβ − 1

a3
q4 + r4) ∗ (f2, ug3 + 2ua3)

= q4(
xβ − 1

a3
f2, 0) + r4 ∗ (f2, ug3 + 2ua3).

By Lemma 3.2, we have (g1 + 2a1) | x
β−1
a3

f2, so q4(x
β−1
a3

f2, 0) ∈ span(S1). Also,

r4 ∗ (f2, ug3 + 2ua3) ∈ span(S4). Therefore, c3 ∗ (f2, ug3 + 2ua3) ∈ span(S1 ∪ S4).
Hence, from equation 2, we conclude that c ∈ span(S), i.e., S generates the code
C. By the construction of S, we can easily check that none of the element of S is a
linear combination of the remaining elements of S. Thus, S is a minimal spanning
set for the code C.

Corollary 3.4. Let C be a Z4Z4[u]-additive cyclic code of length (α, β) given by
Theorem 3.3. Then any codeword c ∈ C is uniquely expressed as

c = s1 ∗ (g1 + 2a1, 0) + s2 ∗ (f1, g2 + 2a2 + up) + s3 ∗ (hf1, uhp)

+ s4 ∗ (f2, ug3 + 2ua3),

where s1, s3, s4 ∈ Z4[x], s2 ∈ Z4[u][x] such that deg(s1) ≤ (α−deg(a1)−1), deg(s2) ≤
(β − deg(a2)− 1), deg(s3) ≤ (β − deg(m1)− 1), deg(s4) ≤ (β − deg(a4)− 1).

Proof. By Theorem 3.3, we know that S is a minimal spanning set of C, so any
codeword c ∈ C is uniquely expressed as a linear combination of elements of S.

4. Z4Z4[u]-additive constacyclic codes

In this section, by using the structure of additive cyclic codes obtained in the
previous section we discuss the algebraic properties of additive constacyclic codes.

De�nition 4.1. Let λ be a unit in Z4[u]. A linear code S of length β over Z4[u]
is said to be a λ-constacyclic code if τλ(c) = (λcβ−1, c0, · · · , cβ−2) ∈ C whenever
c = (c0, c1, · · · , cβ−1) ∈ S. The operator τλ is known as λ-constacyclic shift.

Let λ = 3 + 2u. Then λ is a unit in Z4[u]. De�ne a map

γ : Z4[u][x]/〈xβ − 1〉 → Z4[u][x]/〈xβ − λ〉

by

γ(a(x)) = a(λx), where a(x) ∈ Z4[u][x]/〈xβ − 1〉.

Then it is easy to check that γ is a ring isomorphism if β is an odd integer. Also, by
above ring isomorphism γ, we can characterize the λ-constacyclic codes over Z4[u]
with odd length β as follows.
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Theorem 4.2. Let S be a λ-constacyclic code of odd length β over Z4[u]. Then
generators of S are given by

S = 〈g1(y) + 2a1(y) + up(y), ug2(y) + 2ua2(y)〉,

where y = λx and ai | gi | (xβ − 1) mod 4.

De�nition 4.3. The Z4Z4[u]-additive code C of length (α, β) is said to be a
Z4Z4[u]-additive constacyclic code if

τλ,β(z) = (cα−1, c0, · · · , cα−2, λrβ−1, r0, · · · , rβ−2) ∈ C

whenever z = (c0, c1, · · · , cα−1, r0, r1, · · · , rβ−1) ∈ C.

Lemma 4.4. A Z4Z4[u]-additive code C of length (α, β) is a Z4Z4[u]-additive con-
stacyclic code if and only if it is a Z4[u][x]-submodule of Rα,β,λ = Z4[x]/〈xα− 1〉×
Z4[u][x]/〈xβ − λ〉.

Proof. Let C be a Z4Z4[u]-additive constacyclic code. Similar to Lemma 2.5, for
(a(x), b(x)) ∈ C, we have xi ∗ (a(x), b(x)) ∈ C for i ≥ 1. Therefore, r(x) ∗
(a(x), b(x)) ∈ C for any r(x) ∈ Z4[u][x]. Hence, C is a Z4[u][x]-submodule of
Rα,β,λ. Conversely, if C is a Z4[u][x]-submodule of Rα,β,λ, then for any code-
word z = (a, b) ∈ C, we have x ∗ (a(x), b(x)) = τλ,β(z) ∈ C, where (a(x), b(x)) is
the polynomial representation of the codeword z = (a, b) ∈ C. Therefore, C is a
Z4Z4[u]-additive constacyclic code.

Here, we de�ne a projection map

P : Z4[x]/〈xα − 1〉 × Z4[u][x]/〈xβ − λ〉 → Z4[u][x]/〈xβ − λ〉

by

P (a(x), b(x)) = b(x), where a(x) ∈ Z4[x]/〈xα − 1〉, b(x) ∈ Z4[u][x]/〈xβ − λ〉.

Then P is a Z4[u][x]-module homomorphism. Let C be a Z4Z4[u]-additive consta-
cyclic code of length (α, β). Then, by similar arguments as given in case of cyclic
codes, ker(P |C) = 〈(g1 + 2a1, 0)〉 with a1 | g1 | (xα− 1) and also P (C) is an ideal of
Z4[u][x]/〈xβ − λ〉. Therefore, by Theorem 4.2, we have

P (C) = 〈g1(y) + 2a1(y) + up(y), ug2(y) + 2ua2(y)〉,

with y = λx and ai | gi | (xβ−1) mod 4. Thus, by above discussion, we characterize
the Z4Z4[u]-additive constacyclic code of length (α, β) as follows.

Theorem 4.5. Let C be a Z4Z4[u]-additive constacyclic code of length (α, β) where
α, β both are odd integers. Then C is a Z4[u][x]-submodule of Rα,β,λ given by

C =〈(g1(x) + 2a1(x), 0), (f1(x), g2(λx) + 2a2(λx) + up(λx)),

(f2(x), ug3(λx) + 2ua3(λx))〉,

where a1(x) | g1(x) | (xα − 1), ai(x) | gi(x) | (xβ − 1) mod 4 for i = 2, 3 and
f1(x), f2(x), p(x) ∈ Z4[x].
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5. Gray maps and Z4-images of constacyclic codes

In this section, we de�ne some Gray maps and discuss their Z4-images. Towards
this, we �rst de�ne a map

φ1 : Z4[u] −→ Z2
4

by

φ1(a+ ub) = (2a, 2b), a, b ∈ Z4.(3)

The map φ1 is linear and its extension

φ1 : Z4[u]β −→ Z2β
4

is de�ned by

φ1(r0, r1, · · · , rβ−1) = (2a0, 2a1, · · · , 2aβ−1, 2b0, 2b1, · · · , 2bβ−1),

where ri = ai + ubi ∈ Z4[u] for i = 0, 1, · · · , β − 1. We de�ne the Gray weight
wG(x) = wL(φ1(x)), for x ∈ Z4[u]β , where wL is the Lee weight over Z4 and hence,
the Gray distance is dG(x, y) = wG(x − y) for x, y ∈ Z4[u]β . In this regards, the

map φ1 is a linear isometric map from Z4[u]β (Gray distance) to Z2β
4 (Lee distance).

Lemma 5.1. Let φ1 be the Gray map de�ned in equation (3), τλ, the λ-constacyclic
shift and π2, the quasi-cyclic shift de�ned in equation (1). Then φ1τλ = π2φ1.

Proof. Let ri = ai + ubi ∈ Z4[u] for i = 0, 1, · · · , β − 1 and r = (r0, r1, · · · , rβ−1) ∈
Z4[u]β . Now,

φ1τλ(r) = φ1(λrβ−1, r0, . . . , rβ−2)

= (2aβ−1, 2a0, · · · , 2aβ−2, 2b0, 2b1, · · · , 2bβ−2).

On the other side, we have

π2φ1(r) = π2(2a0, 2a1, · · · , 2aβ−1, 2b0, 2b1, · · · , 2bβ−1)

= (2aβ−1, 2a0, · · · , 2aβ−2, 2b0, 2b1, · · · , 2bβ−2).

Hence, φ1τλ = π2φ1.

Theorem 5.2. Let S be a λ-constacyclic code of length β over Z4[u]. Then φ1(S)
is a quasi-cyclic code of length 2β and index 2 over Z4.

Proof. Since S is a λ-constacyclic code, so τλ(S) = S. By Lemma 5.1, we have
φ1τλ(S) = φ1(S) = π2(φ1(S)). Therefore, φ1(S) is a quasi-cyclic code of length 2β
and index 2 over Z4.

We de�ne another map

φ2 : Z4[u] −→ Z4

by

φ2(a+ ub) = (2a+ b, 3b), a, b ∈ Z4.(4)

Lemma 5.3. Let φ2 be the Gray map de�ned in equation (4), τλ be the λ-constacyclic
and σ be the cyclic shift operator. Then φ2τλ = σφ2.
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Proof. Let ri = ai + ubi ∈ Z4[u] for i = 0, 1, · · · , β − 1 and r = (r0, r1, · · · , rβ−1) ∈
Z4[u]β . Now,

φ2τλ(r) = φ2(λrβ−1, r0, · · · , rβ−2)

= (3bβ−1, 2a0 + b0, · · · , 2aβ−2 + bβ−2, 2aβ−1 + bβ−1, 3b0, · · · , 3bβ−2).

On the other side,

σφ2(r) = σ(2a0 + b0, 2a1 + b1, · · · , 2aβ−1 + bβ−1, 3b0, 3b1, · · · , 3bβ−1)

= (3bβ−1, 2a0 + b0, · · · , 2aβ−2 + bβ−2, 2aβ−1 + bβ−1, 3b0, · · · , 3bβ−2).

Hence, φ2τλ = σφ2.

Theorem 5.4. Let S be a λ-constacyclic code of length β over Z4[u]. Then φ2(S)
is a cyclic code of length 2β over Z4.

Proof. Since S is a λ-constacyclic code, so τλ(S) = S. Also, by Lemma 5.3, we
have φ2τλ(S) = φ2(S) = σ(φ2(S)). This shows that φ2(S) is a cyclic code of length
2β over Z4.

De�nition 5.5. (De�nition 1, [20]) Let m1,m2, . . . ,ml be positive integers and

set Ri = Z4[x]
〈xmi−1〉 , for i = 1, 2, . . . , l. Then any Z4[x]-submodule of Z4[x]-module

R′ := R1×R2× · · · ×Rl is said to be generalized quasi-cyclic (GQC) code of block
length (m1,m2, . . . ,ml). Note that a GQC code of block length (m1,m2, . . . ,ml)
with m1 = m2 = · · · = ml is a QC code of length lm. Further, if l = 1 then it is a
cyclic code of length m.

Now, we de�ne a map Φ1 with the help of the map φ1 as follows:

Φ1 : Z4 × Z4[u] −→ Z3
4

by

Φ1(c, a+ ub) = (c, φ1(a+ ub)) = (c, 2a, 2b), a, b, c ∈ Z4.(5)

The map Φ1 can also be extended as

Φ1 : Zα4 × Z4[u]β −→ Zα+2β
4

de�ned by

Φ1(c0, c1, · · · , cα−1, r0, r1, · · · , rβ−1)

= (c0, c1, · · · , cα−1, 2a0, 2a1, · · · , 2aβ−1, 2b0, 2b1, · · · , 2bβ−1)

where ri = ai + ubi ∈ Z4[u] and ai, bi, ci ∈ Z4 for i = 0, 1, · · · , β − 1.

Theorem 5.6. Let C be a Z4Z4[u]-additive constacyclic code of length (α, β). Then
Φ1(C) is a generalized QC code of block length (α, β, β) over Z4.

Proof. Let (c0, c1, · · · , cα−1, 2a0, 2a1, · · · , 2aβ−1, 2b0, 2b1, · · · , 2bβ−1) ∈ Φ1(C).
Then there exists (c0, c1, · · · , cα−1, r0, r1, · · · , rβ−1) ∈ C such that

Φ1(c0, c1, · · · , cα−1, r0, r1, · · · , rβ−1)

= (c0, c1, · · · , cα−1, 2a0, 2a1, · · · , 2aβ−1, 2b0, 2b1, . . . , 2bβ−1)
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where ri = ai + ubi ∈ Z4[u] and ai, bi, ci ∈ Z4 for i = 0, 1, · · · , β − 1. Since C is
a Z4Z4[u]-additive constacyclic code, (cα−1, c0, · · · , cα−2, λrβ−1, r0, · · · , rβ−2) ∈ C.
Therefore,

Φ1(cα−1, c0, · · · , cα−2, λrβ−1, r0, · · · , rβ−2)

= (cα−1, c0, · · · , cα−2, 2aβ−1, 2a0, · · · , 2aβ−2, 2bβ−1, 2b0, · · · , 2bβ−2) ∈ Φ(C).
This shows that Φ1(C) is a generalized QC code of block length (α, β, β) over Z4.

Corollary 5.7. If C is a Z4Z4[u]-additive constacyclic code of length (α, α), then
Φ(C) is a quasi-cyclic code of length 3α and index 3 over Z4.

Proof. It follows from the Theorem 5.6 with α = β.

Now, we de�ne another map Φ2 as follows:

Φ2 : Zα4 × Z4[u]β −→ Zα+2β
4

by

Φ2(c0, c1, · · · , cα−1, r0, r1, · · · , rβ−1)

= (c0, c1, · · · , cα−1, 2a0 + b0, 2a1 + b1, · · · , 2aβ−1 + bβ−1, 3b0, 3b1, · · · , 3bβ−1)

where ri = ai + ubi ∈ Z4[u] and ai, bi, ci ∈ Z4 for i = 0, 1, · · · , β − 1.

Theorem 5.8. Let C be a Z4Z4[u]-additive constacyclic code of length (α, β). Then
Φ2(C) is a generalized QC code of block length (α, 2β) over Z4.

Proof. Let (c0, c1, · · · , cα−1, 2a0+b0, 2a1+b1, · · · , 2aβ−1+bβ−1, 3b0, 3b1, · · · , 3bβ−1) ∈
Φ2(C). Then there exist (c0, c1, · · · , cα−1, r0, r1, · · · , rβ−1) ∈ C such that

Φ2(c0, c1, · · · , cα−1, r0, r1, · · · , rβ−1)

= (c0, c1, · · · , cα−1, 2a0 + b0, 2a1 + b1, · · · , 2aβ−1 + bβ−1, 3b0, 3b1, · · · , 3bβ−1)

where ri = ai + ubi ∈ Z4[u] and ai, bi, ci ∈ Z4 for i = 0, 1, · · · , β − 1. Since C is a
Z4Z4[u]-additive constacyclic code, so (cα−1, c0, · · · , cα−2, λrβ−1, r0, · · · , rβ−2) ∈ C.
Therefore,

Φ2(cα−1, c0, · · · , cα−2, λrβ−1, r0, · · · , rβ−2)

= (cα−1, c0, · · · , cα−2, 3bβ−1, 2a0 + b0, · · · , 2aβ−1 + bβ−1, 3b0, · · · , 3bβ−2) ∈ Φ2(C).
This shows that Φ2(C) is a generalized QC code of block length (α, 2β) over Z4.

Corollary 5.9. If C is a Z4Z4[u]-additive constacyclic code of length (2δ, δ), then
Φ2(C) is a quasi-cyclic code of length 4δ and index 2 over Z4.

Proof. It follows from the proof of the Theorem 5.8 with α = 2δ = 2β.

6. Skew constacyclic codes

In this section, we discuss skew constacyclic codes over Z4[u] and Z4Z4[u], re-
spectively. It is worth mentioning that skew constacyclic codes over Z4[u] with a
di�erent unit λ = 1 + 2u are studied in [27]. Here, we use the unit λ = 3 + 2u
which allows to de�ne suitable Gray maps to characterize these codes as quasi-
cyclic or cyclic codes over Z4. Now, we de�ne an automorphism θ on Z4[u] as
θ(a+ ub) = a+ 3ub for all a, b ∈ Z4. Here, the order of the automorphism is 2 and
the set of polynomials

Z4[u][x; θ] = {a0 + a1x+ · · ·+ aβ−1x
β−1 | ai ∈ Z4[u], for all i}
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is a non-commutative ring under usual addition of polynomials and multiplication
of polynomials de�ne with respect to the condition (axs)(bxt) = aθs(b)xs+t. Under
the left multiplication de�ned by

z(x)(a(x) + 〈xβ − λ〉) = z(x)a(x) + 〈xβ − λ〉, where z(x), a(x) ∈ Z4[u][x; θ],

the set Rλ,θ,β = Z4[u][x; θ]/〈xβ − λ〉 is a left Z4[u][x; θ]-module. We identify each
codeword z = (z0, z1, · · · , zβ−1) ∈ Z4[u]β by a polynomial z(x) = z0 + z1x + · · · +
zn−1x

β−1 ∈ Rλ,θ,β .

De�nition 6.1. A linear code S of length β over Z4[u] is said to be a skew λ-
constacyclic code if for any c = (c0, c1, · · · , cβ−1) ∈ S, we have τλ,θ(c) = (θ(λcβ−1),
θ(c0), · · · , θ(cβ−2)) ∈ S. The operator τλ,θ is known as the skew λ-constacyclic
shift.

Lemma 6.2. Let S be a linear code of length β over Z4[u]. Then S is a skew
λ-constacyclic code if and only if S is a left Z4[u][x; θ]-submodule of Rλ,θ,β.

Proof. Let S be a skew λ-constacyclic code of length β. Let a(x) ∈ S, where
a(x) = a0 + a1x+ · · ·+ aβ−1x

β−1. Now,

xa(x) = θ(a0)x+ θ(a1)x2 + · · ·+ θ(aβ−2)xβ−1 + θ(aβ−1)xβ

= λθ(aβ−1) + θ(a0)x+ θ(a1)x2 + · · ·+ θ(aβ−2)xβ−1

= τλ,θ(a) ∈ S.

Therefore, for all i ≥ 2, we have xia(x) ∈ S. Hence, for any r(x) ∈ Z4[x; θ], we
have r(x)a(x) ∈ S. Therefore, S is a left Z4[u][x; θ]-submodule of Rλ,θ,β .
On the other hand, if S is a left Z4[u][x; θ]-submodule of Rλ,θ,β , then for any
a(x) ∈ S we must have τλ,θ(a) = xa(x) ∈ S. Hence, S is a skew λ-constacyclic
code of length β over Z4[u].

To consider an algebraic structure on Rλ,θ,α,β = Z4[x]/〈xα−1〉×Z4[u][x; θ]/〈xβ−
λ〉, we de�ne the left multiplication by z(x)(a(x), b(x)) = (ρ(z(x))a(x), z(x)b(x)),
where z(x) ∈ Z4[u][x; θ], a(x) ∈ Z4[x]/〈xα − 1〉 and b(x) ∈ Z4[u][x; θ]/〈xβ − λ〉.
Under this multiplication, Rλ,θ,α,β is a left Z4[u][x; θ]-module. We identify each
codeword z = (c0, c1, · · · , cα−1, r0, r1, · · · , rβ−1) in Zα4 × Z4[u]β by a polynomial
z(x) = (c(x), r(x)) ∈ Rλ,θ,α,β where c(x) = c0 + c1x + · · · + cα−1x

α−1 and r(x) =
r0 + r1x+ · · ·+ rβ−1x

β−1.

De�nition 6.3. Let C be a Z4Z4[u]-additive code of length (α, β). Then C is said
to be skew Z4Z4[u]-additive constacyclic code if for any

z = (c0, c1, · · · , cα−1, r0, r1, · · · , rβ−1) ∈ C,
we have

τλ,θ,β(z) = (c0, c1, · · · , cα−1, θ(λrβ−1), θ(r0), · · · , θ(rβ−2)) ∈ C.

Lemma 6.4. Let C be a Z4Z4[u]-additive code of length (α, β). Then C is skew
Z4Z4[u]-additive constacyclic code if and only if C is a left Z4[u][x; θ]-submodule of
Rλ,θ,α,β.

Proof. Let C be a skew Z4Z4[u]-additive constacyclic code of length (α, β) and
t(x) ∈ Z4[u][x; θ]. Let z(x) = (c(x), r(x)) be any codeword of C where c(x) ∈
Z4[x]/〈xα − 1〉 and r(x) ∈ Z4[u][x; θ]/〈xβ − λ〉. It is easy to verify that xc(x) is
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the cyclic shift of c(x) and xr(x) is the skew constacyclic shift of r(x). Therefore,
xz(x) = x(c(x), r(x)) is the image of z(x) under the operation τλ,θ,β . Since C is a
skew Z4Z4[u]-additive constacyclic code, so xz(x) ∈ C. Similarly, for any integer
i ≥ 2, we can show xiz(x) ∈ C. As C is Z4[u]-submodule of Zα4 × Z4[u]β , we have
t(x)z(x) ∈ C. Hence, C is a left Z4[u][x; θ]-submodule of Rλ,θ,α,β .
Conversely, let C be a left Z4[u][x; θ]-submodule ofRλ,θ,α,β . Let z(x) = (c(x), r(x)) ∈
C where c(x) ∈ Z4[x]/〈xα − 1〉 and r(x) ∈ Z4[u][x; θ]/〈xβ − λ〉. Since xz(x) =
x(c(x), r(x)) is the image of z(x) under the map τλ,θ,β , and xz(x) ∈ C, therefore C
is a skew Z4Z4[u]-additive constacyclic code of length (α, β).

Theorem 6.5. Let C be a skew Z4Z4[u]-additive constacyclic code of length (α, 1)
where α is any odd positive integer. Then C is a Z4Z4[u]-additive cyclic code of
length (α, 1).

Proof. Let z = (c0, c1, · · · , cα−1, r0) ∈ C. Since the polynomial representation of z
is z(x) = (c0 + c1x+ · · ·+ cα−1x

α−1, r0), therefore,

xα+1z(x) = (cα−1 + c0x+ · · ·+ cα−2x
α−2, θα+1(r0)xα+1).

Also, α is an odd integer, so θα+1(r0) = r0. Moreover, in Z4[u][x]/〈x− λ〉, we have
x = λ, which implies xα+1 = λα+1 = 1. Hence,

xα+1z(x) = (cα−1 + c0x+ · · ·+ cα−2x
α−2, θα+1(r0)xα+1)

= (cα−1 + c0x+ · · ·+ cα−2x
α−2, r0) ∈ C.

This shows that C is a Z4Z4[u]-additive cyclic code of length (α, 1).

Corollary 6.6. For any odd positive integer α, every left Z4[u][x; θ]-submodule of
Z4[x]/〈xα−1〉×Z4[u][x; θ]/〈x−λ〉 is also a Z4[u][x]-submodule of Z4[x]/〈xα−1〉×
Z4[u][x]/〈x− λ〉.

7. Gray maps and Z4-images of skew constacyclic codes

In the present section, like codes over commutative rings, we discuss the Z4-
images of skew constacyclic codes. These codes turn out to be quasi-cyclic or
generalized quasi-cyclic codes under di�erent Gray maps.

Lemma 7.1. Let φ1 be the Gray map de�ne in equation (3), τλ,θ be the skew λ-
constacyclic shift and π2 be the quasi-cyclic shift de�ned in equation (1). Then
φ1τλ,θ = π2φ1.

Proof. Let ri = ai + ubi ∈ Z4[u] for i = 0, 1, · · · , β − 1 and r = (r0, r1, · · · , rβ−1).
Now λrβ−1 = (3 + 2u)(aβ−1 + ubβ−1) = 3aβ−1 + u(2aβ−1 + 3bβ−1) and θ(λrβ−1) =
3aβ−1 + u(2aβ−1 + bβ−1). Therefore,

φ1τλ,θ(r) = φ1(θ(λrβ−1), θ(r0), · · · , θ(rβ−2))

= (2aβ−1, 2a0, · · · , 2aβ−2, 2bβ−1, 2b0, · · · , 2bβ−2).

Also, from the proof of the Lemma 3.2, we have

π2φ2(r) = (2aβ−1, 2a0, · · · , 2aβ−2, 2bβ−1, 2b0, · · · , 2bβ−2).

Hence, φ1τλ,θ = π2φ1.

Theorem 7.2. If S is a skew λ-constacyclic code of length β over Z4[u], then φ1(S)
is a quasi-cyclic code of length 2β and index 2 over Z4.
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Proof. Let S be a skew λ-constacyclic code of length β over Z4[u]. Then τλ,θ(S) =
S. Now, by Lemma 7.1, φ1τλ,θ(C) = φ1(S) = π2φ1(S). Therefore, φ1(S) is a
quasi-cyclic code of length 2β and index 2 over Z4.

We de�ne a map

φ3 : Z4[u] −→ Z2
4

by

φ3(a+ ub) = (a+ 2b, 3a+ 2b), a, b ∈ Z4.(6)

Lemma 7.3. Let φ3 be a Gray map de�ned in equation (6), τλ,θ be skew λ-
constacyclic shift and σ be the cyclic shift operator. Then φ3τλ,θ = σφ3.

Proof. Let ri = ai + ubi ∈ Z4[u] for i = 0, 1, · · · , β − 1 and r = (r0, r1, · · · , rβ−1).
Now, λrβ−1 = (3 + 2u)(aβ−1 +ubβ−1) = 3aβ−1 +u(2aβ−1 + 3bβ−1) and θ(λrβ−1) =
3aβ−1 + u(2aβ−1 + bβ−1). Therefore,

φ3τλ,θ(r) = φ3(θ(λrβ−1), θ(r0), · · · , θ(rβ−2))

= (3aβ−1 + 2bβ−1, a0 + 2b0, · · · , aβ−2 + 2bβ−2, aβ−1 + 2bβ−1,

3a0 + 2b0, 3a1 + 2b1, · · · , 3aβ−2 + 2bβ−2).

On the other side,

σφ3(r) = σ(a0 + 2b0, a1 + 2b1, · · · , aβ−1 + 2bβ−1, 3a0 + 2b0, 3a1 + 2b1,

· · · , 3aβ−1 + 2bβ−1)

= (3aβ−1 + 2bβ−1, a0 + 2b0, · · · , aβ−2 + 2bβ−2, aβ−1 + 2bβ−1,

3a0 + 2b0, 3a1 + 2b1, · · · , 3aβ−2 + 2bβ−2).

Hence, φ3τλ,θ = σφ3.

Theorem 7.4. If S is a skew λ-constacyclic code of length β over Z4[u], then φ3(S)
is a cyclic code of length 2β over Z4.

Proof. If S is a skew λ-constacyclic code of length β over Z4[u], then τλ,θ(S) = S.
Also, by Lemma 7.3, φ3τλ,θ(S) = φ3(S) = σφ3(S). Therefore, φ3(S) is a cyclic
code of length 2β over Z4.

Theorem 7.5. Let Φ1 be the Gray map de�ned in equation (5) and C be a skew
Z4Z4[u]-additive constacyclic code of length (α, β). Then Φ1(C) is a generalized QC
code of block length (α, β, β) over Z4.

Proof. It is similar to the proof of Theorem 5.6.

Corollary 7.6. If C is a skew Z4Z4[u]-additive constacyclic code of length (α, α),
then Φ1(C) is a quasi-cyclic code of length 3α and index 3 over Z4.

Now, we de�ne another map Φ3 as

Φ3 : Zα4 × Z4[u]β −→ Zα+2β
4

by

Φ3(c0, c1, · · · , cα−1, r0, r1, · · · , rβ−1)

= (c0, c1, · · · , cα−1, a0 + 2b0, a1 + 2b1, · · · , aβ−1 + 2bβ−1, 3a0 + 2b0,

3a1 + 2b1, · · · , 3aβ−1 + 2bβ−1)(7)

where ri = ai + ubi ∈ Z4[u] and ai, bi, ci ∈ Z4 for i = 0, 1, · · · , β − 1.
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Theorem 7.7. Let Φ3 be a Gray map de�ned in equation (7) and C be a skew
Z4Z4[u]-additive constacyclic code of length (α, β). Then Φ3(C) is a generalized
QC code of block length (α, 2β) over Z4.

Proof. Let (c0, c1, · · · , cα−1, a0 + 2b0, a1 + 2b1, · · · , aβ−1 + 2bβ−1, 3a0 + 2b0, 3a1 +
2b1, · · · , 3aβ−1+2bβ−1) ∈ Φ3(C). Then there exist (c0, c1, · · · , cα−1, r0, r1, · · · , rβ−1)
∈ C such that

Φ3(c0, c1, · · · , cα−1, r0, r1, · · · , rβ−1)

= (c0, c1, · · · , cα−1, a0 + 2b0, a1 + 2b1, · · · , aβ−1 + 2bβ−1, 3a0 + 2b0, 3a1 + 2b1,

· · · , 3aβ−1 + 2bβ−1)

where ri = ai + ubi ∈ Z4[u] and ai, bi, ci ∈ Z4 for i = 0, 1, · · · , n − 1. Since C is a
skew Z4Z4[u]-additive constacyclic code, so (cα−1, c0, · · · , cα−2, θ(λrβ−1),
θ(r0), · · · , θ(rβ−2)) ∈ C. Therefore,

Φ3(cα−1, c0, · · · , cα−2, θ(λrβ−1), θ(r0), · · · , θ(rβ−2))

= (cα−1, c0, · · · , cα−2, 3aβ−1 + 2bβ−1, a0 + 2b0, a1 + 2b1, · · · , aβ−1 + 2bβ−1,

3a0 + 2b0, 3a1 + 2b1, · · · , 3aβ−2 + 2bβ−2) ∈ Φ3(C).
Hence, Φ3(C) is a generalized QC code of block length (α, 2β) over Z4.

Corollary 7.8. If C is a skew Z4Z4[u]-additive constacyclic code of length (2α, α),
then Φ3(C) is a quasi-cyclic code of length 4α and index 2 over Z4.

8. Examples

Here, we present some new quaternary linear codes from above obtained cyclic
and constacyclic codes. At �rst, we consider the (3 + 2u)-constacyclic code of odd
length β over Z4[u], which is found in Theorem 4.2 as follows

S = 〈g1(y) + 2a1(y), ug2(y) + 2ua2(y)〉,

where y = λx = (3+2u)x and ai | gi | (xβ−1)mod 4, for i = 1, 2. Here, we represent
S by 〈h(x), k(x)〉, where h(x) = g1(λx) + 2a1(λx), k(x) = ug2(λx) + 2ua2(λx). In
Table 1, column 2 and column 3 represent the generator polynomials h(x) and k(x),
respectively while column 4 and column 5 include the Gray images of constacyclic
codes under the maps φ1 and φ2, respectively. We write coe�cients of generator
polynomials in decreasing order, for example, we write [3 + 2u, 3, 0, 1, 1 + 2u, 0, 1 +
2u, 1 + u] to represent the polynomial (3 + 2u)x7 + 3x6 + x4 + (1 + 2u)x3 + (1 +
2u)x+ 1 + u.
Again, we recall from Theorem 3.3 that for the odd positive integers α and β the
Z4Z4[u]-additive cyclic code is given by

C = 〈(g1 + 2a1, 0), (f1, g2 + 2a2 + up), (f2, ug3 + 2ua3)〉

where ai | gi | (xβ − 1) for i = 2, 3 and a1 | g1 | (xα − 1), f1, f2 ∈ Z4[x]. In Table 2,
we give the generator polynomials for Z4Z4[u]-additive cyclic codes and also obtain
their Z4-Gray images which give several new linear codes. In both, Table 1 and
Table 2, ′∗′ denotes the new code and ′#′ denotes the best known code according
to the online database [4].
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Table 1. Gray images of (3 + 2u)-constacyclic codes over Z4[u]

β h(x) k(x) φ1(S) φ2(S)

3 [1, 3 + 2u, 3 + u] [3u, u] [6, 4024, 2]∗ [6, 4420, 2]#

7 [1, 3 + 2u, 3, 0, 1 + u] [3u, 3u, 2u, u] [14, 4327, 2] [14, 4723, 4]#

7 [3 + 2u, 2, 3 + 2u, 1 + u] [3u, 3u, 2u, u] [14, 40211, 2] [14, 4724, 2]

9 [3 + 2u, 0, 2, 1 + u] [u, 0, 0, 3u, 0, 0, 3u] [18, 40215, 2] [18, 4926, 2]

9 [3 + 2u, 3, 0, 1, 1 + 2u, 0, 1 + 2u, 1 + u] [u, 3u, 3u] [18, 40211, 2]∗ [18, 4922, 2]

15 [3 + 2u, 3, 2, 1, 2 + u] [u, 2u, 2u, 3u, u, u, 3u] [30, 40226, 2] [30, 415211, 2]∗

15 [1, 0, 2, 2, 1, 3 + 2u, 1, 3 + 2u, 3 + u] [u, 3u, 3u] [30, 40220, 4] [30, 41525, 4]∗

17 [3 + 2u, 3, 2, 1, 2, 2, 1 + 2u, 2, 1 + 2u, 2, 1 + 2u, 1 + u] [u, 3u, 3u, 0, 3u, 0, 3u, 3u, 3u] [34, 40225, 2]∗ [34, 41728, 2]∗

17 [1, 0, 2, 1 + 2u, 1, 1 + 2u, 2, 0, 3 + u] [u, 3u, 3u, 0, 3u, 0, 3u, 3u, 3u] [34, 40226, 2]∗ [34, 41729, 2]∗

21 [3 + 2u, 0, 0, 3, 0, 0, 0, 0, 2, 1 + u] [u, 3u, 3u, 0, 3u, 2u, 3u] [42, 40233, 2]∗ [42, 421218, 2]∗

21 [3 + 2u, 3, 2, 2, 3 + 2u, 1, 2, 1, 3 + 2u, 3 + u] [3u, 0, 2u, u] [42, 40233, 2]∗ [42, 421212, 2]∗
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Table 2. Z4-Gray images of Z4Z4[u]-additive cyclic codes of length (α, β)

(α, β) Generators Φ1(C) Φ2(C)

(3, 3) g1 = g2 = x2 + x+ 1, g3 = x+ 1,a1 = a2 = a3 = 1, p = 1, f1 = f2 = x+ 1 [9, 4323, 1]∗ [9, 4620, 1]

(3, 3) g1 = g2 = g3 = x3 − 1, a1 = x2 + x+ 1,a2 = a3 = x+ 3, p = 1, f1 = f2 = x2 + 2 [9, 4322, 1]∗ [9, 4521, 1]∗

(3, 7) g1 = x3 − 1, g2 = x4 + x3 + 3x2 + 2x+ 1, g3 = x7 − 1,

a1 = x2 + x+ 1, a2 = x+ 3, a3 = x3 + 3x2 + 2x+ 3, p = 1, f1 = f2 = x+ 1 [17, 4228, 2]∗ [17, 4921, 2]∗

(7, 3) g1 = x7 − 1, g2 = x3 − 1, g3 = x+ 3,

a1 = x4 + 2x3 + 3x2 + x+ 1, a2 = x2 + x+ 1, a3 = 1, p = 1, f1 = f2 = x+ 3 [13, 4325, 2]∗ [13, 4622, 2]∗

(7, 7) g1 = x4 + x3 + 3x2 + 2x+ 1, g2 = x4 + 2x3 + 3x2 + x+ 1, g3 = x+ 3,

a1 = x3 + 2x2 + x+ 3, a2 = x3 + 3x2 + 2x+ 3, a3 = 1, p = 1, f1 = f2 = x+ 3 [21, 4628, 2]∗ [21, 41322, 2]∗

(9, 9) g1 = x2 + x+ 1, g2 = x7 + 3x6 + x4 + 3x3 + x+ 3, g3 = x6 + x3 + 1,

a1 = 1, a2 = x6 + x3 + 1, a3 = 1, p = 1, f1 = f2 = x+ 3 [27, 4929, 2]∗ [27, 41624, 2]∗

(3, 9) g1 = x2 + x+ 1, g2 = x7 + 3x6 + x4 + 3x3 + x+ 3, g3 = x3 + 3,

a1 = 1, a2 = a3 = x+ 3, p = 1, f1 = f2 = x+ 3 [21, 4329, 1]∗ [21, 41220, 1]

(9, 3) g1 = x3 + 3, g2 = x3 − 1, g3 = x+ 3,

a1 = x2 + x+ 1, a2 = x+ 3, a3 = 1, p = 1, f1 = f2 = x+ 3 [15, 4824, 2]∗ [15, 41121, 2]∗

(7, 9) g1 = x4 + x3 + 3x2 + 2x+ 1, g2 = x7 + 3x6 + x4 + 3x3 + x+ 3, g3 = x2 + x+ 1,

a1 = x3 + 2x2 + x+ 3, a2 = x6 + x3 + 1, a3 = 1, p = 1, f1 = f2 = x+ 1 [25, 46210, 2]∗ [25, 41521, 2]∗
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9. Conclusion and Open Problems

In the present paper, we have studied codes over the mixed alphabet (Z4,Z4[u])
with respect to cyclicity. Thus, we have determined the algebraic structure of both
constacyclic and skew constacyclic codes, and of their Gray images, which turn out
to be quasi-cyclic or generalized quasi-cyclic. Examples in modest lengths show
that the resulting Z4-codes are sometimes as good as the best known. Although
algebraic properties of skew Z4Z4[u]-additive constacyclic codes are presented their
computational burden is still under consideration. Apart from the above, the fol-
lowing problems are worth to work on in the future:

1. The natural open question is to study the codes just replacing Z4 by some
other ring R, and Z4[u] by some quadratic extension of R in this study. It
would also be rewarding to consider mixed codes over (Z4,Z4[v]) where v
satis�es di�erent condition than v2 = 0. For instance, v2 = v + 1 leads to
Z4[v] = GR(4, 2), the Galois ring of characteristic 4 and order 16, already
studied in [17].

2. As stated in the introduction the mixed alphabets codes over the alphabets
Z2Z2s [u] or in more general, Z2rZ2s [u], where u2 = 0 are promising and open.
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