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We study mixed alphabet cyclic and constacyclic codes over the two alphabets Z 4 , the ring of integers modulo 4, and its quadratic extension Z 4 [u] = Z 4 + uZ 4 , u 2 = 0. Their generator polynomials and minimal spanning sets are obtained. Further, under new Gray maps, we nd cyclic, quasi-cyclic codes over Z 4 as the Gray images of both λ-constacyclic and skew λ-constacyclic codes over Z 4 [u]. Moreover, it is proved that the Gray images of Z 4 Z 4 [u]-additive constacyclic and skew Z 4 Z 4 [u]-additive constacyclic codes are generalized quasi-cyclic codes over Z 4 . Finally, several new quaternary linear codes are obtained from these cyclic and constacyclic codes.

Introduction

Cyclic codes form one of the most important classes of codes, either over nite elds [START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF], or over nite rings [START_REF] Shi | Codes and Rings: Theory and Practice[END_REF], for their properties of encoding, decoding, and ease of generation allowed by their strong algebraic structure. They are dened as linear codes invariant under the cyclic shift of coordinates. The condition of linearity has been relaxed recently and replaced by additivity. Also, the denition has been enlarged to accommodate codes over mixed alphabets. Note that every linear code is additive, but not conversely. In 1973, Delsarte [START_REF] Delsarte | An Algebraic Approach to Association Schemes of Coding Theory[END_REF] introduced the additive codes in terms of association schemes. Later, Bierbrauer [START_REF] Bierbrauer | The theory of cyclic codes and a generalization to additive codes[END_REF] presented these codes as a generalized class of cyclic codes dened as subgroups rather than subspaces. In 2010, Borges et al. [START_REF] Borges | Z 2 Z 4 -linear codes: geneartor matrices and duality[END_REF] studied Z 2 Z 4 -linear codes that generalize both binary and quaternary codes. They have obtained their dual codes as well as their generator matrices. In continuation, Fernandez-Cordoba et al. [START_REF] Fernandez-Cordoba | Z 2 Z 4 -linear codes: Rank and kernel[END_REF] determined the rank and kernel of Z 2 Z 4 -linear codes. It is worth noting that these codes have a successful engineering application in the area of data hiding, particularly, in steganography [START_REF] Rifa-Pous | Z 2 Z 4 -additive perfect codes in steganography[END_REF]. Later, these studies were extended over Z 2 Z 2 s -additive codes and obtained some good binary codes under Gray images in [START_REF] Aydogdu | The structure of Z 2 Z 2 s -additive codes: Bounds on the minimum distance[END_REF]. Subsequently, the natural extensions of above codes are Z p Z p s -additive codes, Z p r Z p s -additive codes and well studied therefore in [START_REF] Aydogdu | On Z p r Z p s -additive codes[END_REF][START_REF] Shi | On ZpZ p k -additive codes and their duality[END_REF][START_REF] Yao | ZpZ p s -additive cyclic codes are asymptotically good[END_REF][START_REF] Yao | Asymptotically good Z p r Z p s -additive cyclic codes[END_REF]. On the other hand, to the progress of cyclic codes on mixed alphabets, in 2014, Abualrub et al. [START_REF] Abualrub | Z 2 Z 4 -Additive cyclic codes[END_REF] dened Z 2 Z 4 -additive cyclic codes as Z 4 [x]-submodule of Z 2 [x]/ x r -1 × Z 4 [x]/ x s -1 and derived the unique set of generators, and minimal spanning set for these codes where s is an odd integer. Also, Borges et al. [START_REF] Borges | Z 2 Z 4 -additive cyclic codes, generator polynomials and dual codes[END_REF] found generator polynomials and duals for Z 2 Z 4 -additive cyclic codes. After introducing the new mixed alphabets Z 2 Z 2 [u]additive codes, where u 2 = 0 in [START_REF] Aydogdu | On Z 2 Z 2 [u]-additive codes[END_REF], Aydogdu et al. [START_REF] Aydogdu | The Z 2 Z 2 [u]-cyclic and constacyclic codes[END_REF] were also investigated constacyclic codes over mixed alphabets by dening them as

Z 2 [u][x]-submodules of Z 2 [x]/ x α -1 ×Z 2 [u][x]/ x β -(1+u)
. They obtained some optimal binary linear codes as the Gray images of Z 2 Z 2 [u]-cyclic codes. Meanwhile, [START_REF] Srinivasulu | The Z 2 (Z 2 + uZ 2 )-additive cyclic codes and their duals[END_REF][START_REF] Li | On Z 2 Z 2 [u]-(1 + u)-additive constacyclic[END_REF] studied the algebraic properties of Z 2 Z 2 [u]-additive cyclic and constacyclic codes with the unit 1 + u, respectively. Therefore, in continuation of these studies, the expected generalization should be Z 2 r Z 2 s [u]-additive cyclic and constacyclic codes, where u 2 = 0. If r = s = 2, this turns out to be our present study. Obviously, the present work on mixed alphabets cyclic and constacyclic codes is a bridge towards the study of Z 2 r Z 2 s [u]-additive codes which is a stronger and still open problem. Based on the above survey, one would also be agreed that mixed alphabets cyclic, constacyclic codes over dierent and new alphabets are interesting and promising classes for further study due to their rich algebraic properties and capable to produce several best known codes. For the sake of strong motivation discussed above, here we introduce the mixed alphabets Z 4 Z 4 [u]-additive cyclic and constacyclic codes which lead to generalizing the codes over Z 4 as well as Z 4 + uZ 4 , u 2 = 0. To the best of our knowledge, mixed alphabets codes over Z 4 Z 4 [u] are not considered earlier and also constacyclic codes over mixed alphabets setting are fresh after [START_REF] Aydogdu | The Z 2 Z 2 [u]-cyclic and constacyclic codes[END_REF][START_REF] Li | On Z 2 Z 2 [u]-(1 + u)-additive constacyclic[END_REF]. We would like to mention that the primary objective of the article is rst, to characterize completely these codes in terms of their generator polynomials and minimal spanning sets, etc. Then utilizing these structure and new Gray maps, we are seeking to obtain some new Z 4 -codes. To do so, for the odd positive integers α, β, we nd the complete set of generator polynomials and minimal spanning set for the cyclic codes of length (α, β). Then we dene some new Gray maps and nd well-known classes like cyclic, quasi-cyclic, and generalized quasi-cyclic codes over Z 4 . As a computational result, we construct Z 4 -codes and some of them improve on the best known [START_REF] Asamov | Table of Z4 codes[END_REF]. Further, we extend the study to skew constacyclic codes in the sense of [START_REF] Boucher | Skew Constacyclic Codes over Galois Rings[END_REF]. While skew cyclic codes have been studied extensively since that reference (see publications 1,4,5,6,8,9,10 in [START_REF] Ulmer | s publication list[END_REF]), it is only the fourth time that they occur in a mixed alphabet setting [START_REF] Aydogdu | On Z 2 Z 4 [ξ]-Skew cyclic codes[END_REF][START_REF] Benbelkacem | Skew Cyclic Codes over F 4 R[END_REF][START_REF] Sharma | F 3 R-skew cyclic codes[END_REF]. The present article shows some algebraic richness of skew codes over the mentioned mixed alphabets. For that, we dene mixed skew codes under a non-trivial automorphism θ on Z 4 + uZ 4 . Also, we characterize skew

Z 4 Z 4 [u]-additive constacyclic code as a left Z 4 [u][x; θ]-submodule of Z 4 [x]/ x α -1 × Z 4 [u][x; θ]/ x β -λ ,
where λ is a unit in Z 4 + uZ 4 . Among others, we connect these skew codes under Gray maps to generalized quasi-cyclic codes over Z 4 . The manuscript is organized as follows. In Section 2, we discuss some basic denitions and results. Section 3 gives the structure of Z 4 Z 4 [u]-additive cyclic codes while Section 4 consider Z 4 Z 4 [u]-additive constacyclic codes. In Section 5, we dene some Gray maps and obtain the Gray images of Z 4 Z 4 [u]-additive constacyclic codes. Section 6 and 7 contain skew Z 4 Z 4 [u]-additive constacyclic codes and their Gray images, respectively. In Section 8, we obtain several new linear codes over Z 4 from these class of codes. The last section is the conclusion of this paper, and also contains long term open problems.

Preliminary

Throughout the article, Z 4 [u] denotes the nite commutative ring Z 4 + uZ 4 , where u 2 = 0 of size 16 and characteristic 4. Recall from [START_REF] Yildiz | On cyclic codes over Z 4 + uZ 4 and their Z 4 -images[END_REF], among 6 ideals of Z 4 [u], the unique maximal ideal is 2, u . It is a local Frobenius non-chain ring and quotient ring

Z 4 [u]/ 2, u ∼ = Z 2 . Also, {a + ub | a = 1, or 3 and b ∈ Z 4 } is the set of units while the ideal 2, u is the set of non-units in Z 4 [u]. A non-empty subset C of Z 4 [u] n is called a linear code of length n if it is a Z 4 [u]-submodule of Z 4 [u] n
and each member of C is known as codeword.

Denition 2.1. Let C be a linear code of length n = st over Z 4 . We dene the quasi-cyclic shift operator π s :

Z n 4 -→ Z n 4 by π s (e 0 | e 1 | • • • | e s-1 ) = (σ(e 0 ) | σ(e 1 ) | • • • | σ(e s-1 )), (1) 
where e i ∈ Z t 4 for all i = 0, 1, . . . , (s -1) and σ is the cyclic shift operator. Then C is said to be a quasi-cyclic code of index s if C is invariant under the map π s , i.e.

π s (C) = C. The set Z 4 Z 4 [u] = {(a, b) | a ∈ Z 4 , b ∈ Z 4 [u]} is a commutative group under componentwise addition. For positive integers α, β, we dene Z α 4 ×Z 4 [u] β = {(a, b) | a = (a 0 , a 1 , • • • , a α-1 ) ∈ Z α 4 , b = (b 0 , b 1 , • • • , b β-1 ) ∈ Z 4 [u] β }. Then Z α 4 × Z 4 [u]
β is a commutative group under the componentwise addition. Now, we dene a map ρ : Z 4 [u] -→ Z 4 by ρ(a + ub) = a and a multiplication * :

Z 4 [u] × Z 4 Z 4 [u] -→ Z 4 Z 4 [u] by c * (a, b) = (ρ(c)a, cb), for a ∈ Z 4 , b, c ∈ Z 4 [u].
The extension of the multiplication * to the elements of

Z α 4 ×Z 4 [u] β by the elements of Z 4 [u] dened by c * (a, b) = (ρ(c)a 0 , ρ(c)a 1 , • • • , ρ(c)a α-1 , cb 0 , cb 1 , • • • , cb β-1 ) where a = (a 0 , a 1 , • • • , a α-1 ) ∈ Z α 4 , b = (b 0 , b 1 , • • • , b β-1 ) ∈ Z 4 [u] β . Lemma 2.2. The set Z α Proof. Since Z 4 [u]
is a commutative ring with unity 1, so there is no distinction between left and right

Z 4 [u]-modules. Clearly, Z α 4 × Z 4 [u]
β is an additive commutative group. Now, to complete the proof we need to check = (r 1 a 0 + r 1 x 0 , r 1 a 1 + r 1 x 1 , . . . , r 1 a α-1 + r 1 x α-1 , rb 0 + ry 0 , rb 1 + ry 1 , . . . , rb β-1 + ry β-1 ) = (r 1 a 0 , r 1 a 1 , . . . , r 1 a α-1 , rb 0 , rb 1 , . . . , rb β-1 )+ (r 1 x 0 , r 1 x 1 , . . . , r 1 x α-1 , ry 0 , ry 1 , . . . , ry β-1 )

= r * (a, b) + r * (x, y).

Therefore,

Z α 4 ×Z 4 [u] β is a Z 4 [u]
-module with respect to scalar multiplication * .

Denition 2.3. Any non-empty subset

C of Z α 4 × Z 4 [u] β is said to be a Z 4 Z 4 [u]- additive code of length (α, β) if C is a Z 4 [u]-submodule of Z α 4 × Z 4 [u] β . Denition 2.4. Let C be a Z 4 Z 4 [u]-additive code of length (α, β). Then it is said to be a Z 4 Z 4 [u]-additive cyclic code if for any z = (c 0 , c 1 , • • • , c α-1 , r 0 , r 1 , • • • , r β-1 ) ∈ C, we have σ α,β (z) = (c α-1 , c 0 , • • • , c α-2 , r β-1 , r 0 , • • • , r β-2 ) ∈ C.
An extension of the ring homomorphism ρ is

ρ : Z 4 [u][x] -→ Z 4 [x]
dened by

ρ( n i=0 r i x i ) = n i=0 ρ(r i )x i . Let R α,β = Z 4 [x]/ x α -1 × Z 4 [u][x]/ x β -1 . Then R α,β is a Z 4 [u][x]-module
under the multiplication dened by s(x) * (c(x), r(x)) = (ρ(s(x))c(x), s(x)r(x)),

where s(x), r(x)

∈ Z 4 [u][x] and c(x) ∈ Z 4 [x]. Let C be a Z 4 Z 4 [u]-additive code of length (α, β). Then for any codeword z = (c, r) = (c 0 , c 1 , • • • , c α-1 , r 0 , r 1 , • • • , r β-1 ) ∈ C, we identify a polynomial z(x) = (c(x), r(x)) ∈ R α,β under the correspondence z = (c, r) → (c(x), r(x)) = z(x) where c(x) = c 0 +c 1 x+• • •+c α-1 x α-1 ∈ Z 4 [x]/ x α - 1 , r(x) = r 0 + r 1 x + • • • + r β-1 x β-1 ∈ Z 4 [u][x]/ x β -1 . Lemma 2.5. Let C be a Z 4 Z 4 [u]-additive code of length (α, β). Then C is a Z 4 Z 4 [u]- additive cyclic code if and only if C is a Z 4 [u][x]-submodule of R α,β . Proof. Let C be a Z 4 Z 4 [u]-additive cyclic code of length (α, β). Let s(x) ∈ Z 4 [u][x] and z(x) = (c(x), r(x)) ∈ C. Then x * (c(x), r(x)) = (xc(x), xr(x)) where xc(x) and xr(x) are cyclic shifts of c(x) in Z 4 [x]/ x α -1 and r(x) in Z 4 [u][x]/ x β -1 , respectively. Also, x * (c(x), r(x))
represents the image of z(x) under the operator σ α,β , therefore, x * (c(x), r(x)) ∈ C. Similarly, for any positive integer i ≥ 2, we can show that

x i * (c(x), r(x)) ∈ C. As C is a Z 4 [u]-submodule of Z α 4 × Z 4 [u] β , s(x) * (c(x), r(x)) ∈ C, which proves that C is a Z 4 [u][x]-submodule of R α,β . Conversely, let C be a Z 4 [u][x]-submodule of R α,β . For any codeword z(x) = (c(x), r(x)) ∈ C, x * (c(x), r(x)) represents the image of z(x) under the operator σ α,β and x * (c(x), r(x)) ∈ C. Thus, C is a Z 4 Z 4 [u]-additive cyclic code of length (α, β).
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Z 4 Z 4 [u]-additive cyclic codes

The present section aims to determine the algebraic structure of additive cyclic codes by means of their generator polynomials and minimal spanning sets. To do so we use the pullback method which applied to nd Z 4 cyclic codes in [START_REF] Abualrub | Reversible cyclic codes over Z 4[END_REF]. Let S be a cyclic code of odd length β over Z 4 [u]. Then the ring homomorphism ρ acts on the polynomial ring

Z 4 [u][x]/ x β -1 by ρ( β-1 i=0 c i x i ) = β-1 i=0 ρ(c i )x i ∈ Z 4 [x]/ x β -1 . Now, we consider the restriction of ρ on the ideal S. Clearly, ρ(S) is an ideal of Z 4 [x]/ x β -1 , therefore, by Theorem 1 of [1], ρ(S) = g 1 + 2a 1 and ker(ρ| S ) = ug 2 + 2ua 2 where a i , g i are polynomials such that a i | g i | (x β -1) mod 4 for i = 1, 2. Hence, S = g 1 + 2a 1 + up, u(g 2 + 2a 2 ) for some polynomial p ∈ Z 4 [x].

Now, we dene the projection map

T : Z 4 [x]/ x α -1 × Z 4 [u][x]/ x β -1 → Z 4 [u][x]/ x β -1 by T (a(x), b(x)) = b(x), where a(x) ∈ Z 4 [x]/ x α -1 , b(x) ∈ Z 4 [u][x]/ x β -1 . Clearly T is a Z 4 [u][x]-module homomorphism. Let C be a Z 4 Z 4 [u]-additive cyclic code of length (α, β) where α, β are both odd integers. Then ker(T | C ) = {(a, 0) | a ∈ Z 4 [x]/ x α -1 }. Let D = {a ∈ Z 4 [x]/ x α -1 | (a, 0) ∈ ker(T | C )}. It is easy to check that D is an ideal of Z 4 [x]/ x α -1 and ultimately, D = g 1 + 2a 1 where a 1 | g 1 | (x α -1) mod 4. Hence, ker(T | C ) = (g 1 +2a 1 , 0) where a 1 | g 1 | (x α -1) mod 4. Moreover, T (C) is an ideal of Z 4 [u][x]/ x β -1 , so T (C) = g 2 +2a 2 +up, ug 3 +2ua 3 with a i | g i | (x β -1) mod 4, for i = 2, 3. Thus, the Z 4 Z 4 [u]-additive cyclic code C is given by C = (g 1 + 2a 1 , 0), (f 1 , g 2 + 2a 2 + up), (f 2 , ug 3 + 2ua 3 ) , where a i | g i | (x β -1) for i = 2, 3 and a 1 | g 1 | (x α -1), f 1 , f 2 ∈ Z 4 [x]
. Therefore, based on the above discussion we have the following result.

Theorem 3.1. Let C be a Z 4 Z 4 [u]-additive cyclic code of length (α, β) where α, β are both odd positive integers. Then C is a Z 4 [u][x]-submodule of R α,β given by C = (g 1 + 2a 1 , 0), (f 1 , g 2 + 2a 2 + up), (f 2 , ug 3 + 2ua 3 ) , where a i | g i | (x β -1) for i = 2, 3 and a 1 | g 1 | (x α -1), f 1 , f 2 ∈ Z 4 [x].
Remark 1. For further calculations, wherever we use Theorem 3.1, it is assumed that g i , a i (i = 1, 2, 3) are monic polynomials. Lemma 3.2. For any odd positive integers α and β, let C be a

Z 4 Z 4 [u]-additive cyclic code of length (α, β) given by C = (g 1 + 2a 1 , 0), (f 1 , g 2 + 2a 2 + up), (f 2 , ug 3 + 2ua 3 ) , where a i | g i | (x β -1) for i = 2, 3 and a 1 | g 1 | (x α -1), f 1 , f 2 ∈ Z 4 [x]. Let h = x β -1 a2 , m 1 = gcd{hp, x β -1}, m 2 = x β -1 m1 . Then (g 1 + 2a 1 ) | m 2 hf 1 and (g 1 + 2a 1 ) | f 2 x β -1 a3 . Proof. Here, T ( x β -1 a3 (f 2 , ug 3 + 2ua 3 )) = T ( x β -1 a3 f 2 , 0) = 0. Therefore, ( x β -1 a3 f 2 , 0) ∈ ker(T ) and this implies (g 1 + 2a 1 ) | x β -1 a3 f 2 . Further, T (m 2 h(f 1 , g 2 + 2a 2 + up)) = T (m 2 hf 1 , m 2 hup). Since m 1 | hp, so hp = m 1 m 3 for some m 3 and hpm 2 = m 1 m 2 m 3 = 0. Hence, T (m 2 h(f 1 , g 2 + 2a 2 + up)) = T (m 2 hf 1 , 0) = 0. Thus, (m 2 hf 1 , 0) ∈ ker(T ) and this implies (g 1 + 2a 1 ) | m 2 hf 1 .
Theorem 3.3. For any odd positive integers α and β, let C be a Z 4 Z 4 [u]-additive cyclic code of length (α, β) given by

C = (g 1 + 2a 1 , 0), (f 1 , g 2 + 2a 2 + up), (f 2 , ug 3 + 2ua 3 ) , where a i | g i | (x β -1) for i = 2, 3 and a 1 | g 1 | (x α -1), f 1 , f 2 ∈ Z 4 [x]. Let h = x β -1 a2 , m 1 = gcd{hp, x β -1}, m 2 = x β -1
m1 and

S 1 = α-deg(a1)-1 i=0 {x i * (g 1 + 2a 1 , 0)}; S 2 = β-deg(a2)-1 i=0 {x i * (f 1 , g 2 + 2a 2 + up)}; S 3 = β-deg(m1)-1 i=0 {x i * (hf 1 , uhp)}; S 4 = β-deg(a3)-1 i=0 {x i * (f 2 , ug 3 + 2ua 3 )}. Then S = S 1 ∪ S 2 ∪ S 3 ∪ S 4 is a minimal generating set for the code C and | C |= 4 α+4β-deg(a1)-2deg(a2)-deg(a3)-deg(m1) . Proof. Let c ∈ C be a codeword. Then c = c 1 * (g 1 + 2a 1 , 0) + c 2 * (f 1 , g 2 + 2a 2 + up) + c 3 * (f 2 , ug 3 + 2ua 3 ) = (ρ(c 1 )(g 1 + 2a 1 ), 0) + c 2 * (f 1 , g 2 + 2a 2 + up) + c 3 * (f 2 , ug 3 + 2ua 3 ) (2) 
where

c i ∈ Z 4 [u][x] for i = 1, 2, 3. If deg(ρ(c 1 )) ≤ (α -deg(a 1 ) -1)
, then (ρ(c 1 )(g 1 + 2a 1 ), 0) ∈ span(S 1 ). Otherwise, by division algorithm,

ρ(c 1 ) = x α -1 a 1 q + r,
where deg(r) ≤ (α -deg(a 1 ) -1). Therefore,

(ρ(c 1 )(g 1 + 2a 1 ), 0) = (( x α -1 a 1 q + r)g 1 + 2a 1 , 0) = r(g 1 + 2a 1 , 0).
Hence, (ρ(c 1 )(g 1 + 2a 1 ), 0) ∈ span(S 1 ). To prove

c 2 * (f 1 , g 2 + 2a 2 + up) ∈ span(S 1 ∪ S 2 ∪ S 3 ), we divide c 2 by h and can write c 2 = q 2 h + r 2 where deg(r 2 ) ≤ (β - deg(a 2 ) -1). Therefore, c 2 * (f 1 , g 2 + 2a 2 + up) = (q 2 h + r 2 ) * (f 1 , g 2 + 2a 2 + up) = q 2 (hf 1 , uhp) + r 2 (f 1 , g 2 + 2a 2 + up). Clearly, r 2 (f 1 , g 2 + 2a 2 + up) ∈ span(S 2 ). It remains to show q 2 (hf 1 , uhp) ∈ span(S 1 ∪ S 2 ∪ S 3 ).
Again, by division algorithm, we have q 2 = q 3 m 2 + r 3 , where deg(r 3 ) ≤ (β -deg(m 1 ) -1). Also, m 1 | hp, so hp = m 1 m 3 for some m 3 and this implies hpm 2 = m 1 m 2 m 3 = 0. Hence,

q 2 (hf 1 , uhp) = (q 3 m 2 + r 3 )(hf 1 , uhp) = q 3 (m 2 hf 1 , uhpm 2 ) + r 3 (hf 1 , uhp) = q 3 (m 2 hf 1 , 0) + r 3 (hf 1 , uhp).
Advances in Mathematics of Communications Volume X, No. X (20xx), XXX By Lemma 3.2, (g 1 + 2a 1 ) | m 2 hf 1 , so q 3 (m 2 hf 2 , 0) ∈ span(S 1 ). Also, r 3 (hf 1 , uhp) ∈ span(S 3 ), therefore, c 2 * (f 1 , g 2 + 2a 2 + up) ∈ span(S 1 ∪ S 2 ∪ S 3 ). Now, to show c 3 * (f 2 , ug 3 + 2ua 3 ) ∈ span(S 1 ∪ S 4 ), again applying division algorithm, we have

c 3 = x β -1 a 3 q 4 + r 4 ,
where deg(r 4 ) ≤ (β -deg(a 3 ) -1). Therefore,

c 3 * (f 2 , ug 3 + 2ua 3 ) = ( x β -1 a 3 q 4 + r 4 ) * (f 2 , ug 3 + 2ua 3 ) = q 4 ( x β -1 a 3 f 2 , 0) + r 4 * (f 2 , ug 3 + 2ua 3 ).
By Lemma 3.2, we have

(g 1 + 2a 1 ) | x β -1 a3 f 2 , so q 4 ( x β -1 a3 f 2 , 0) ∈ span(S 1 ). Also, r 4 * (f 2 , ug 3 + 2ua 3 ) ∈ span(S 4 ). Therefore, c 3 * (f 2 , ug 3 + 2ua 3 ) ∈ span(S 1 ∪ S 4 ).
Hence, from equation 2, we conclude that c ∈ span(S), i.e., S generates the code C. By the construction of S, we can easily check that none of the element of S is a linear combination of the remaining elements of S. Thus, S is a minimal spanning set for the code C. 

c = s 1 * (g 1 + 2a 1 , 0) + s 2 * (f 1 , g 2 + 2a 2 + up) + s 3 * (hf 1 , uhp) + s 4 * (f 2 , ug 3 + 2ua 3 ), where s 1 , s 3 , s 4 ∈ Z 4 [x], s 2 ∈ Z 4 [u][x] such that deg(s 1 ) ≤ (α-deg(a 1 )-1), deg(s 2 ) ≤ (β -deg(a 2 ) -1), deg(s 3 ) ≤ (β -deg(m 1 ) -1), deg(s 4 ) ≤ (β -deg(a 4 ) -1).
Proof. By Theorem 3.3, we know that S is a minimal spanning set of C, so any codeword c ∈ C is uniquely expressed as a linear combination of elements of S.

Z 4 Z 4 [u]-additive constacyclic codes

In this section, by using the structure of additive cyclic codes obtained in the previous section we discuss the algebraic properties of additive constacyclic codes. Denition 4.1. Let λ be a unit in

Z 4 [u]. A linear code S of length β over Z 4 [u] is said to be a λ-constacyclic code if τ λ (c) = (λc β-1 , c 0 , • • • , c β-2 ) ∈ C whenever c = (c 0 , c 1 , • • • , c β-1 ) ∈ S.
The operator τ λ is known as λ-constacyclic shift.

Let λ = 3 + 2u. Then λ is a unit in Z 4 [u]. Dene a map γ : Z 4 [u][x]/ x β -1 → Z 4 [u][x]/ x β -λ by γ(a(x)) = a(λx), where a(x) ∈ Z 4 [u][x]/ x β -1 .
Then it is easy to check that γ is a ring isomorphism if β is an odd integer. Also, by above ring isomorphism γ, we can characterize the λ-constacyclic codes over Z 4 [u] with odd length β as follows.

Theorem 4.2. Let S be a λ-constacyclic code of odd length β over Z 4 [u]. Then generators of S are given by S = g 1 (y) + 2a 1 (y) + up(y), ug 2 (y) + 2ua 2 (y) , where y = λx and a

i | g i | (x β -1) mod 4. Denition 4.3. The Z 4 Z 4 [u]-additive code C of length (α, β) is said to be a Z 4 Z 4 [u]-additive constacyclic code if τ λ,β (z) = (c α-1 , c 0 , • • • , c α-2 , λr β-1 , r 0 , • • • , r β-2 ) ∈ C whenever z = (c 0 , c 1 , • • • , c α-1 , r 0 , r 1 , • • • , r β-1 ) ∈ C. Lemma 4.4. A Z 4 Z 4 [u]-additive code C of length (α, β) is a Z 4 Z 4 [u]-additive con- stacyclic code if and only if it is a Z 4 [u][x]-submodule of R α,β,λ = Z 4 [x]/ x α -1 × Z 4 [u][x]/ x β -λ . Proof. Let C be a Z 4 Z 4 [u]-additive constacyclic code. Similar to Lemma 2.5, for (a(x), b(x)) ∈ C, we have x i * (a(x), b(x)) ∈ C for i ≥ 1. Therefore, r(x) * (a(x), b(x)) ∈ C for any r(x) ∈ Z 4 [u][x]. Hence, C is a Z 4 [u][x]-submodule of R α,β,λ . Conversely, if C is a Z 4 [u][x]-submodule of R α,β,λ , then for any code- word z = (a, b) ∈ C, we have x * (a(x), b(x)) = τ λ,β (z) ∈ C, where (a(x), b(x)) is the polynomial representation of the codeword z = (a, b) ∈ C. Therefore, C is a Z 4 Z 4 [u]-additive constacyclic code.
Here, we dene a projection map

P : Z 4 [x]/ x α -1 × Z 4 [u][x]/ x β -λ → Z 4 [u][x]/ x β -λ by P (a(x), b(x)) = b(x), where a(x) ∈ Z 4 [x]/ x α -1 , b(x) ∈ Z 4 [u][x]/ x β -λ . Then P is a Z 4 [u][x]-module homomorphism. Let C be a Z 4 Z 4 [u]-additive consta- cyclic code of length (α, β).
Then, by similar arguments as given in case of cyclic codes, ker(P | C ) = (g 1 + 2a 1 , 0) with a 1 | g 1 | (x α -1) and also P (C) is an ideal of Z 4 [u][x]/ x β -λ . Therefore, by Theorem 4.2, we have

P (C) = g 1 (y) + 2a 1 (y) + up(y), ug 2 (y) + 2ua 2 (y) ,
with y = λx and a i | g i | (x β -1) mod 4. Thus, by above discussion, we characterize the Z 4 Z 4 [u]-additive constacyclic code of length (α, β) as follows. 

C = (g 1 (x) + 2a 1 (x), 0), (f 1 (x), g 2 (λx) + 2a 2 (λx) + up(λx)), (f 2 (x), ug 3 (λx) + 2ua 3 (λx)) , where a 1 (x) | g 1 (x) | (x α -1), a i (x) | g i (x) | (x β -1) mod 4 for i = 2, 3 and f 1 (x), f 2 (x), p(x) ∈ Z 4 [x].
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r i = a i + ub i ∈ Z 4 [u] for i = 0, 1, • • • , β -1 and r = (r 0 , r 1 , • • • , r β-1 ) ∈ Z 4 [u] β . Now, φ 2 τ λ (r) = φ 2 (λr β-1 , r 0 , • • • , r β-2 ) = (3b β-1 , 2a 0 + b 0 , • • • , 2a β-2 + b β-2 , 2a β-1 + b β-1 , 3b 0 , • • • , 3b β-2 ).
On the other side,

σφ 2 (r) = σ(2a 0 + b 0 , 2a 1 + b 1 , • • • , 2a β-1 + b β-1 , 3b 0 , 3b 1 , • • • , 3b β-1 ) = (3b β-1 , 2a 0 + b 0 , • • • , 2a β-2 + b β-2 , 2a β-1 + b β-1 , 3b 0 , • • • , 3b β-2 ).
Hence, φ 2 τ λ = σφ 2 .

Theorem 5.4. Let S be a λ-constacyclic code of length

β over Z 4 [u]. Then φ 2 (S)
is a cyclic code of length 2β over Z 4 .

Proof. Since S is a λ-constacyclic code, so τ λ (S) = S. Also, by Lemma 5.3, we have φ 2 τ λ (S) = φ 2 (S) = σ(φ 2 (S)). This shows that φ 2 (S) is a cyclic code of length 2β over Z 4 .

Denition 5.5. (Denition 1, [START_REF] Esmaeilia | Generalized quasi-cyclic codes: structrural properties and code construction[END_REF]) Let m 1 , m 2 , . . . , m l be positive integers and

set R i = Z4[x] x m i -1 , for i = 1, 2, . . . , l. Then any Z 4 [x]-submodule of Z 4 [x]-module R := R 1 × R 2 × • • • × R l is said to be generalized quasi-cyclic (GQC) code of block length (m 1 , m 2 , . . . , m l ). Note that a GQC code of block length (m 1 , m 2 , . . . , m l ) with m 1 = m 2 = • • • = m l is a QC code of length lm. Further, if l = 1 then it is a cyclic code of length m.
Now, we dene a map Φ 1 with the help of the map φ 1 as follows:

Φ 1 : Z 4 × Z 4 [u] -→ Z 3 4 by Φ 1 (c, a + ub) = (c, φ 1 (a + ub)) = (c, 2a, 2b), a, b, c ∈ Z 4 .
(5)

The map Φ 1 can also be extended as

Φ 1 : Z α 4 × Z 4 [u] β -→ Z α+2β 4 dened by Φ 1 (c 0 , c 1 , • • • , c α-1 , r 0 , r 1 , • • • , r β-1 ) = (c 0 , c 1 , • • • , c α-1 , 2a 0 , 2a 1 , • • • , 2a β-1 , 2b 0 , 2b 1 , • • • , 2b β-1 )
where

r i = a i + ub i ∈ Z 4 [u] and a i , b i , c i ∈ Z 4 for i = 0, 1, • • • , β -1. Theorem 5.6. Let C be a Z 4 Z 4 [u]-additive constacyclic code of length (α, β). Then Φ 1 (C) is a generalized QC code of block length (α, β, β) over Z 4 . Proof. Let (c 0 , c 1 , • • • , c α-1 , 2a 0 , 2a 1 , • • • , 2a β-1 , 2b 0 , 2b 1 , • • • , 2b β-1 ) ∈ Φ 1 (C).
Then there exists

(c 0 , c 1 , • • • , c α-1 , r 0 , r 1 , • • • , r β-1 ) ∈ C such that Φ 1 (c 0 , c 1 , • • • , c α-1 , r 0 , r 1 , • • • , r β-1 ) = (c 0 , c 1 , • • • , c α-1 , 2a 0 , 2a 1 , • • • , 2a β-1 , 2b 0 , 2b 1 , . . . , 2b β-1 )
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where

r i = a i + ub i ∈ Z 4 [u] and a i , b i , c i ∈ Z 4 for i = 0, 1, • • • , β -1. Since C is a Z 4 Z 4 [u]-additive constacyclic code, (c α-1 , c 0 , • • • , c α-2 , λr β-1 , r 0 , • • • , r β-2 ) ∈ C. Therefore, Φ 1 (c α-1 , c 0 , • • • , c α-2 , λr β-1 , r 0 , • • • , r β-2 ) = (c α-1 , c 0 , • • • , c α-2 , 2a β-1 , 2a 0 , • • • , 2a β-2 , 2b β-1 , 2b 0 , • • • , 2b β-2 ) ∈ Φ(C).
This shows that Φ Now, we dene another map Φ 2 as follows:

Φ 2 : Z α 4 × Z 4 [u] β -→ Z α+2β 4 by Φ 2 (c 0 , c 1 , • • • , c α-1 , r 0 , r 1 , • • • , r β-1 ) = (c 0 , c 1 , • • • , c α-1 , 2a 0 + b 0 , 2a 1 + b 1 , • • • , 2a β-1 + b β-1 , 3b 0 , 3b 1 , • • • , 3b β-1 )
where

r i = a i + ub i ∈ Z 4 [u] and a i , b i , c i ∈ Z 4 for i = 0, 1, • • • , β -1. Theorem 5.8. Let C be a Z 4 Z 4 [u]-additive constacyclic code of length (α, β). Then Φ 2 (C) is a generalized QC code of block length (α, 2β) over Z 4 . Proof. Let (c 0 , c 1 , • • • , c α-1 , 2a 0 +b 0 , 2a 1 +b 1 , • • • , 2a β-1 +b β-1 , 3b 0 , 3b 1 , • • • , 3b β-1 ) ∈ Φ 2 (C). Then there exist (c 0 , c 1 , • • • , c α-1 , r 0 , r 1 , • • • , r β-1 ) ∈ C such that Φ 2 (c 0 , c 1 , • • • , c α-1 , r 0 , r 1 , • • • , r β-1 ) = (c 0 , c 1 , • • • , c α-1 , 2a 0 + b 0 , 2a 1 + b 1 , • • • , 2a β-1 + b β-1 , 3b 0 , 3b 1 , • • • , 3b β-1 )
where

r i = a i + ub i ∈ Z 4 [u] and a i , b i , c i ∈ Z 4 for i = 0, 1, • • • , β -1. Since C is a Z 4 Z 4 [u]-additive constacyclic code, so (c α-1 , c 0 , • • • , c α-2 , λr β-1 , r 0 , • • • , r β-2 ) ∈ C. Therefore, Φ 2 (c α-1 , c 0 , • • • , c α-2 , λr β-1 , r 0 , • • • , r β-2 ) = (c α-1 , c 0 , • • • , c α-2 , 3b β-1 , 2a 0 + b 0 , • • • , 2a β-1 + b β-1 , 3b 0 , • • • , 3b β-2 ) ∈ Φ 2 (C).
This shows that Φ 2 (C) is a generalized QC code of block length (α, 2β) over Z 4 .

Corollary 5.9.

If C is a Z 4 Z 4 [u]-additive constacyclic code of length (2δ, δ), then Φ 2 (C) is a quasi-cyclic code of length 4δ and index 2 over Z 4 .
Proof. It follows from the proof of the Theorem 5.8 with α = 2δ = 2β.

Skew constacyclic codes

In this section, we discuss skew constacyclic codes over Z 4 [u] and Z 4 Z 4 [u], respectively. It is worth mentioning that skew constacyclic codes over Z 4 [u] with a dierent unit λ = 1 + 2u are studied in [START_REF] Sharma | A class of skew-constacyclic codes over Z 4 + uZ 4[END_REF]. Here, we use the unit λ = 3 + 2u which allows to dene suitable Gray maps to characterize these codes as quasicyclic or cyclic codes over Z 4 . Now, we dene an automorphism θ on Z 4 [u] as θ(a + ub) = a + 3ub for all a, b ∈ Z 4 . Here, the order of the automorphism is 2 and the set of polynomials

Z 4 [u][x; θ] = {a 0 + a 1 x + • • • + a β-1 x β-1 | a i ∈ Z 4 [u], for all i} Advances in Mathematics of Communications Volume X, No. X (20xx), XXX
is a non-commutative ring under usual addition of polynomials and multiplication of polynomials dene with respect to the condition (ax s )(bx t ) = aθ s (b)x s+t . Under the left multiplication dened by

z(x)(a(x) + x β -λ ) = z(x)a(x) + x β -λ , where z(x), a(x) ∈ Z 4 [u][x; θ], the set R λ,θ,β = Z 4 [u][x; θ]/ x β -λ is a left Z 4 [u][x; θ]-module. We identify each codeword z = (z 0 , z 1 , • • • , z β-1 ) ∈ Z 4 [u] β by a polynomial z(x) = z 0 + z 1 x + • • • + z n-1 x β-1 ∈ R λ,θ,β . Denition 6.1. A linear code S of length β over Z 4 [u] is said to be a skew λ- constacyclic code if for any c = (c 0 , c 1 , • • • , c β-1 ) ∈ S, we have τ λ,θ (c) = (θ(λc β-1 ), θ(c 0 ), • • • , θ(c β-2 )) ∈ S.
The operator τ λ,θ is known as the skew λ-constacyclic shift. Lemma 6.2. Let S be a linear code of length

β over Z 4 [u]. Then S is a skew λ-constacyclic code if and only if S is a left Z 4 [u][x; θ]-submodule of R λ,θ,β . Proof. Let S be a skew λ-constacyclic code of length β. Let a(x) ∈ S, where a(x) = a 0 + a 1 x + • • • + a β-1 x β-1 . Now, xa(x) = θ(a 0 )x + θ(a 1 )x 2 + • • • + θ(a β-2 )x β-1 + θ(a β-1 )x β = λθ(a β-1 ) + θ(a 0 )x + θ(a 1 )x 2 + • • • + θ(a β-2 )x β-1 = τ λ,θ (a) ∈ S.
Therefore, for all i ≥ 2, we have x i a(x) ∈ S. Hence, for any r(x) To consider an algebraic structure on 

∈ Z 4 [x; θ], we have r(x)a(x) ∈ S. Therefore, S is a left Z 4 [u][x; θ]-submodule of R λ,θ,β . On the other hand, if S is a left Z 4 [u][x; θ]-submodule of R λ,θ,β ,
R λ,θ,α,β = Z 4 [x]/ x α -1 ×Z 4 [u][x; θ]/ x β - λ , we dene the left multiplication by z(x)(a(x), b(x)) = (ρ(z(x))a(x), z(x)b(x)), where z(x) ∈ Z 4 [u][x; θ], a(x) ∈ Z 4 [x]/ x α -1 and b(x) ∈ Z 4 [u][x; θ]/ x β -λ . Under this multiplication, R λ,θ,α,β is a left Z 4 [u][x; θ]-module. We identify each codeword z = (c 0 , c 1 , • • • , c α-1 , r 0 , r 1 , • • • , r β-1 ) in Z α 4 × Z 4 [u] β by a polynomial z(x) = (c(x), r(x)) ∈ R λ,θ,α,β where c(x) = c 0 + c 1 x + • • • + c α-1 x α-1 and r(x) = r 0 + r 1 x + • • • + r β-1 x β-1 . Denition 6.3. Let C be a Z 4 Z 4 [u]-additive code of length (α, β). Then C is said to be skew Z 4 Z 4 [u]-additive constacyclic code if for any z = (c 0 , c 1 , • • • , c α-1 , r 0 , r 1 , • • • , r β-1 ) ∈ C, we have τ λ,θ,β (z) = (c 0 , c 1 , • • • , c α-1 , θ(λr β-1 ), θ(r 0 ), • • • , θ(r β-2 )) ∈ C. Lemma 6.4. Let C be a Z 4 Z 4 [u]-additive code of length (α, β). Then C is skew Z 4 Z 4 [u]-additive constacyclic code if and only if C is a left Z 4 [u][x; θ]-submodule of R λ,θ,α,β . Proof. Let C be a skew Z 4 Z 4 [u]-additive constacyclic code of length (α, β) and t(x) ∈ Z 4 [u][x; θ]. Let z(x) = (c(x), r(x)) be any codeword of C where c(x) ∈ Z 4 [x]/ x α -1 and r(x) ∈ Z 4 [u][x; θ]/ x β -
x i z(x) ∈ C. As C is Z 4 [u]-submodule of Z α 4 × Z 4 [u] β , we have t(x)z(x) ∈ C. Hence, C is a left Z 4 [u][x; θ]-submodule of R λ,θ,α,β . Conversely, let C be a left Z 4 [u][x; θ]-submodule of R λ,θ,α,β . Let z(x) = (c(x), r(x)) ∈ C where c(x) ∈ Z 4 [x]/ x α -1 and r(x) ∈ Z 4 [u][x; θ]/ x β -λ . Since xz(x) = x(c(x), r(x))
is the image of z(x) under the map τ λ,θ,β , and

xz(x) ∈ C, therefore C is a skew Z 4 Z 4 [u]-additive constacyclic code of length (α, β). Theorem 6.5. Let C be a skew Z 4 Z 4 [u]-additive constacyclic code of length (α, 1)
where α is any odd positive integer. Then C is a Z 4 Z 4 [u]-additive cyclic code of length (α, 1).

Proof. Let z = (c 0 , c 1 , • • • , c α-1 , r 0 ) ∈ C. Since the polynomial representation of z is z(x) = (c 0 + c 1 x + • • • + c α-1 x α-1 , r 0 ), therefore, x α+1 z(x) = (c α-1 + c 0 x + • • • + c α-2 x α-2 , θ α+1 (r 0 )x α+1 ).
Also, α is an odd integer, so θ α+1 (r 0 ) = r 0 . Moreover, in Z 4 [u][x]/ x -λ , we have x = λ, which implies x α+1 = λ α+1 = 1. Hence,

x α+1 z(x) = (c α-1 + c 0 x + • • • + c α-2 x α-2 , θ α+1 (r 0 )x α+1 ) = (c α-1 + c 0 x + • • • + c α-2 x α-2 , r 0 ) ∈ C.
This shows that C is a Z 4 Z 4 [u]-additive cyclic code of length (α, 1). Corollary 6.6. For any odd positive integer α, every left Z 4 [u][x; θ]-submodule of

Z 4 [x]/ x α -1 × Z 4 [u][x; θ]/ x -λ is also a Z 4 [u][x]-submodule of Z 4 [x]/ x α -1 × Z 4 [u][x]/ x -λ .

Gray maps and Z 4 -images of skew constacyclic codes

In the present section, like codes over commutative rings, we discuss the Z 4images of skew constacyclic codes. These codes turn out to be quasi-cyclic or generalized quasi-cyclic codes under dierent Gray maps. Lemma 7.1. Let φ 1 be the Gray map dene in equation (3), τ λ,θ be the skew λconstacyclic shift and π 2 be the quasi-cyclic shift dened in equation [START_REF] Abualrub | Reversible cyclic codes over Z 4[END_REF]. Then

φ 1 τ λ,θ = π 2 φ 1 . Proof. Let r i = a i + ub i ∈ Z 4 [u] for i = 0, 1, • • • , β -1 and r = (r 0 , r 1 , • • • , r β-1 ). Now λr β-1 = (3 + 2u)(a β-1 + ub β-1 ) = 3a β-1 + u(2a β-1 + 3b β-1 ) and θ(λr β-1 ) = 3a β-1 + u(2a β-1 + b β-1 ). Therefore, φ 1 τ λ,θ (r) = φ 1 (θ(λr β-1 ), θ(r 0 ), • • • , θ(r β-2 )) = (2a β-1 , 2a 0 , • • • , 2a β-2 , 2b β-1 , 2b 0 , • • • , 2b β-2 ).
Also, from the proof of the Lemma 3.2, we have

π 2 φ 2 (r) = (2a β-1 , 2a 0 , • • • , 2a β-2 , 2b β-1 , 2b 0 , • • • , 2b β-2 ). Hence, φ 1 τ λ,θ = π 2 φ 1 . Theorem 7.2. If S is a skew λ-constacyclic code of length β over Z 4 [u], then φ 1 (S)
is a quasi-cyclic code of length 2β and index 2 over Z 4 . Theorem 7.7. Let Φ 3 be a Gray map dened in equation [START_REF] Aydogdu | The Z 2 Z 2 [u]-cyclic and constacyclic codes[END_REF] and C be a skew

Z 4 Z 4 [u]-additive constacyclic code of length (α, β). Then Φ 3 (C) is a generalized QC code of block length (α, 2β) over Z 4 . Proof. Let (c 0 , c 1 , • • • , c α-1 , a 0 + 2b 0 , a 1 + 2b 1 , • • • , a β-1 + 2b β-1 , 3a 0 + 2b 0 , 3a 1 + 2b 1 , • • • , 3a β-1 +2b β-1 ) ∈ Φ 3 (C). Then there exist (c 0 , c 1 , • • • , c α-1 , r 0 , r 1 , • • • , r β-1 ) ∈ C such that Φ 3 (c 0 , c 1 , • • • , c α-1 , r 0 , r 1 , • • • , r β-1 ) = (c 0 , c 1 , • • • , c α-1 , a 0 + 2b 0 , a 1 + 2b 1 , • • • , a β-1 + 2b β-1 , 3a 0 + 2b 0 , 3a 1 + 2b 1 , • • • , 3a β-1 + 2b β-1 )
where

r i = a i + ub i ∈ Z 4 [u] and a i , b i , c i ∈ Z 4 for i = 0, 1, • • • , n -1. Since C is a skew Z 4 Z 4 [u]-additive constacyclic code, so (c α-1 , c 0 , • • • , c α-2 , θ(λr β-1 ), θ(r 0 ), • • • , θ(r β-2 )) ∈ C. Therefore, Φ 3 (c α-1 , c 0 , • • • , c α-2 , θ(λr β-1 ), θ(r 0 ), • • • , θ(r β-2 )) = (c α-1 , c 0 , • • • , c α-2 , 3a β-1 + 2b β-1 , a 0 + 2b 0 , a 1 + 2b 1 , • • • , a β-1 + 2b β-1 , 3a 0 + 2b 0 , 3a 1 + 2b 1 , • • • , 3a β-2 + 2b β-2 ) ∈ Φ 3 (C). Hence, Φ 3 (C) is a generalized QC code of block length (α, 2β) over Z 4 . Corollary 7.8. If C is a skew Z 4 Z 4 [u]-additive constacyclic code of length (2α, α), then Φ 3 (C) is a quasi-cyclic code of length 4α and index 2 over Z 4 .

Examples

Here, we present some new quaternary linear codes from above obtained cyclic and constacyclic codes. At rst, we consider the (3 + 2u)-constacyclic code of odd length β over Z 4 [u], which is found in Theorem 4.2 as follows S = g 1 (y) + 2a 1 (y), ug 2 (y) + 2ua 2 (y) , where y = λx = (3+2u)x and a i | g i | (x β -1) mod 4, for i = 1, 2. Here, we represent S by h(x), k(x) , where h(x) = g 1 (λx) + 2a 1 (λx), k(x) = ug 2 (λx) + 2ua 2 (λx). In Table 1, column 2 and column 3 represent the generator polynomials h(x) and k(x), respectively while column 4 and column 5 include the Gray images of constacyclic codes under the maps φ 1 and φ 2 , respectively. We write coecients of generator polynomials in decreasing order, for example, we write [3 + 2u, 3, 0, 1, 1 + 2u, 0, 1 + 2u, 1 + u] to represent the polynomial (3 + 2u)x 7 + 3x 6 

+ x 4 + (1 + 2u)x 3 + (1 + 2u)x + 1 + u.
Again, we recall from Theorem 3.3 that for the odd positive integers α and β the Z 4 Z 4 [u]-additive cyclic code is given by

C = (g 1 + 2a 1 , 0), (f 1 , g 2 + 2a 2 + up), (f 2 , ug 3 + 2ua 3 ) where a i | g i | (x β -1) for i = 2, 3 and a 1 | g 1 | (x α -1), f 1 , f 2 ∈ Z 4 [x].
In Table 2, we give the generator polynomials for Z 4 Z 4 [u]-additive cyclic codes and also obtain their Z 4 -Gray images which give several new linear codes. In both, Table 1 and Table 2, * denotes the new code and # denotes the best known code according to the online database [START_REF] Asamov | Table of Z4 codes[END_REF]. 

Conclusion and Open Problems

In the present paper, we have studied codes over the mixed alphabet (Z 4 , Z 4 [u]) with respect to cyclicity. Thus, we have determined the algebraic structure of both constacyclic and skew constacyclic codes, and of their Gray images, which turn out to be quasi-cyclic or generalized quasi-cyclic. Examples in modest lengths show that the resulting Z 4 -codes are sometimes as good as the best known. Although algebraic properties of skew Z 4 Z 4 [u]-additive constacyclic codes are presented their computational burden is still under consideration. Apart from the above, the following problems are worth to work on in the future:

1 

( 1 )Z α 4 ×

 14 r * [(a, b) + (x, y)] = r * (a, b) + r * (x, y), (2) (r + s) * (a, b) = r * (a, b) + s * (a, b), (3) (rs) * (a, b) = r * [s * (a, b)], and (4) 1 * (a, b) = (a, b), for all r, s ∈ Z 4 [u] and (a, b), (x, y) ∈ Z α 4 × Z 4 [u] β . Here, explicitly we prove (1) and the other three points follow similarly. In fact, let (a, b) = (a 0 , a 1 , . . . , a α-1 , b 0 , b 1 , . . . , b β-1 ), (x, y) = (x 0 , x 1 , . . . , x α-1 , y 0 , y 1 , . . . , y β-1 ) Advances in Mathematics of Communications Volume X, No. X (20xx), XXX ∈ Z 4 [u] β , and r = r 1 + ur 2 ∈ Z 4 [u]. Then ρ(r) = r 1 , and r * [(a, b) + (x, y)] = r * (a 0 + x 0 , a 1 + x 1 , . . . , a α-1 + x α-1 , b 0 + y 0 , b 1 + y 1 , . . . , b β-1 + y β-1 )

Corollary 3 . 4 .

 34 Let C be a Z 4 Z 4 [u]-additive cyclic code of length (α, β) given by Theorem 3.3. Then any codeword c ∈ C is uniquely expressed as

Theorem 4 . 5 .

 45 Let C be a Z 4 Z 4 [u]-additive constacyclic code of length (α, β) where α, β both are odd integers. Then C is a Z 4 [u][x]-submodule of R α,β,λ given by

  then for any a(x) ∈ S we must have τ λ,θ (a) = xa(x) ∈ S. Hence, S is a skew λ-constacyclic code of length β over Z 4[u].

Z 4 -g 1 =( 7 , 3 ) g 1 = x 7 - 1 , g 2 = x 3 - 1 , g 3 = x + 3 ,a 1 =( 9 , 3 ) g 1 = x 3 + 3 , g 2 = x 3 - 1 , g 3 = x + 3 , a 1 =

 417317123133193133231331 Gray images of Z 4 Z 4 [u]-additive cyclic codes of length (α, β) g 2 = x 2 + x + 1,g 3 = x + 1,a 1 = a 2 = a 3 = 1, p = 1, f 1 = f 2 = x + 1 [9, 4 3 2 3 , 1] * [9, 4 6 2 0 , 1] (3, 3) g 1 = g 2 = g 3 = x 3 -1, a 1 = x 2 + x + 1,a 2 = a 3 = x + 3, p = 1, f 1 = f 2 = x 2 + 2 [9, 4 3 2 2 , 1] * [9, 4 5 2 1 , 1] * (3, 7) g 1 = x 3 -1, g 2 = x 4 + x 3 + 3x 2 + 2x + 1, g 3 = x 7 -1,a 1 = x 2 + x + 1, a 2 = x + 3, a 3 = x 3 + 3x 2 + 2x + 3, p = 1, f 1 = f 2 = x + 1 [17, 4 2 2 8 , 2] * [17, 4 9 2 1 , 2] * x 4 + 2x 3 + 3x 2 + x + 1, a 2 = x 2 + x + 1, a 3 = 1, p = 1, f 1 = f 2 = x + 3 [13, 4 3 2 5 , 2] * [13, 4 6 2 2 , 2] * (7, 7) g 1 = x 4 + x 3 + 3x 2 + 2x + 1, g 2 = x 4 + 2x 3 + 3x 2 + x + 1, g 3 = x + 3,a 1 = x 3 + 2x 2 + x + 3, a 2 = x 3 + 3x 2 + 2x + 3, a 3 = 1, p = 1, f 1 = f 2 = x + 3 [21, 4 6 2 8 , 2] * [21, 4 13 2 2 , 2] * (9, 9) g 1 = x 2 + x + 1, g 2 = x 7 + 3x 6 + x 4 + 3x 3 + x + 3, g 3 = x 6 + x 3 + 1, a 1 = 1, a 2 = x 6 + x 3 + 1, a 3 = 1, p = 1, f 1 = f 2 = x + 3 [27, 4 9 2 9 , 2] * [27, 4 16 2 4 , 2] * (3, 9) g 1 = x 2 + x + 1, g 2 = x 7 + 3x 6 + x 4 + 3x 3 + x + 3, g 3 = x 3 + 3, a 1 = 1, a 2 = a 3 = x + 3, p = 1, f 1 = f 2 = x + 3 [21, 4 3 2 9 , 1] * [21, 4 12 2 0 , 1] x 2 + x + 1, a 2 = x + 3, a 3 = 1, p = 1, f 1 = f 2 = x + 3 [15, 4 8 2 4 , 2] * [15, 4 11 2 1 , 2] * (7, 9) g 1 = x 4 + x 3 + 3x 2 + 2x + 1, g 2 = x 7 + 3x 6 + x 4 + 3x 3 + x + 3, g 3 = x 2 + x + 1,a 1 = x 3 + 2x 2 + x + 3, a 2 = x 6 + x 3 + 1, a 3 = 1, p = 1, f 1 = f 2 = x + 1 [25, 4 6 2 10 , 2] * [25, 4 15 2 1 , 2] *

  1 (C) is a generalized QC code of block length (α, β, β) over Z 4 . Corollary 5.7. If C is a Z 4 Z 4 [u]-additive constacyclic code of length (α, α), then Φ(C) is a quasi-cyclic code of length 3α and index 3 over Z 4 . Proof. It follows from the Theorem 5.6 with α = β.

  λ . It is easy to verify that xc(x) is Advances in Mathematics of Communications Volume X, No. X (20xx), XXX the cyclic shift of c(x) and xr(x) is the skew constacyclic shift of r(x). Therefore, xz(x) = x(c(x), r(x)) is the image of z(x) under the operation τ λ,θ,β . Since C is a skew Z 4 Z 4 [u]-additive constacyclic code, so xz(x) ∈ C. Similarly, for any integer i ≥ 2, we can show

Table 1 .

 1 Gray images of (3 + 2u)-constacyclic codes over Z 4[u] 

	β	h(x)	k(x)	φ 1 (S)	φ 2 (S)

Table 2 .

 2 

  . The natural open question is to study the codes just replacing Z 4 by some other ring R, and Z 4 [u] by some quadratic extension of R in this study. It would also be rewarding to consider mixed codes over(Z 4 , Z 4 [v]) where v satises dierent condition than v 2 = 0. For instance, v 2 = v + 1 leads to Z 4 [v] = GR(4, 2), the Galois ring of characteristic 4 and order 16, already studied in[START_REF] Boucher | Skew Constacyclic Codes over Galois Rings[END_REF]. 2. As stated in the introduction the mixed alphabets codes over the alphabetsZ 2 Z 2 s [u] or in more general, Z 2 r Z 2 s [u], where u 2 = 0 are promising and open.

× Z 4 [u] β is a Z 4 [u]-module under the multiplication * dened above.
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Gray maps and Z 4 -images of constacyclic codes

In this section, we dene some Gray maps and discuss their Z 4 -images. Towards this, we rst dene a map (3)

The map φ 1 is linear and its extension

, where w L is the Lee weight over Z 4 and hence, the Gray distance is

Lemma 5.1. Let φ 1 be the Gray map dened in equation ( 3), τ λ , the λ-constacyclic shift and π 2 , the quasi-cyclic shift dened in equation [START_REF] Abualrub | Reversible cyclic codes over Z 4[END_REF]. Then

On the other side, we have

Hence,

is a quasi-cyclic code of length 2β and index 2 over Z 4 .

Proof. Since S is a λ-constacyclic code, so τ λ (S) = S. By Lemma 5.1, we have

We dene another map

Lemma 5.3. Let φ 2 be the Gray map dened in equation ( 4), τ λ be the λ-constacyclic and σ be the cyclic shift operator. Then φ 2 τ λ = σφ 2 .

Advances in Mathematics of Communications Volume X, No. X (20xx), XXX

Proof. Let S be a skew λ-constacyclic code of length β over Z 4 [u]. Then τ λ,θ (S) = S. Now, by Lemma 7.1, φ 1 τ λ,θ (C) = φ 1 (S) = π 2 φ 1 (S). Therefore, φ 1 (S) is a quasi-cyclic code of length 2β and index 2 over Z 4 .

We dene a map

Lemma 7.3. Let φ 3 be a Gray map dened in equation ( 6), τ λ,θ be skew λconstacyclic shift and σ be the cyclic shift operator. Then

). Therefore,

On the other side,

Hence,

is a cyclic code of length 2β over Z 4 .

Proof. If S is a skew λ-constacyclic code of length β over Z 4 [u], then τ λ,θ (S) = S. Also, by Lemma 7.3, φ 3 τ λ,θ (S) = φ 3 (S) = σφ 3 (S). Therefore, φ 3 (S) is a cyclic code of length 2β over Z 4 .

Theorem 7.5. Let Φ 1 be the Gray map dened in equation ( 5) and C be a skew

Proof. It is similar to the proof of Theorem 5.6.

Corollary 7.6.

then Φ 1 (C) is a quasi-cyclic code of length 3α and index 3 over Z 4 . Now, we dene another map Φ 3 as Advances in Mathematics of Communications Volume X, No. X (20xx), XXX